Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Электронный ЛАТР своими руками

Беспомеховый автотрансформатор с электронной регулировкой напряжения
В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Помехи в таком ЛАТРе, всё же были из – за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:
Беспомеховый автотрансформатор с электронной регулировкой напряжения

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа


Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Вот его схема:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
На красный и чёрный провода подаём питание.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Добавляется напряжение с первой обмотки.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.
Беспомеховый автотрансформатор с электронной регулировкой напряжения

Изготовление ЛАТРа


Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Высоковольтный клеммник надёжно крепим к трансформатору.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения

Понадобится


Нам понадобятся детали:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 – 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 – на 2 – 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 – 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 – по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 – терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Размещаем на плате детали и припаиваем их.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Смотрите видео


Электронный латр своими руками (схемы)

Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.

Схема устройства электронного ЛАТРа

Схема устройства электронного ЛАТРа.

Что представляет собой прибор

Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).

Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.

Схема простого варианта ЛАТРа

Рисунок 1. Схема простого варианта ЛАТРа.

Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:

  • однофазного;
  • трехфазного.

Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.

Простой прибор для регулирования

Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.

Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.

ЛАТР с биполярным транзистором

Рисунок 2. ЛАТР с биполярным транзистором.

Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.

Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.

К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.

Регулятор напряжения: вариант с трансформатором

Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.

Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.

К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².

В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.

С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.

Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.

Электронный латр – РадиоСхема

В нынешнее время большое распространение получили автотрансформаторы (ЛАТР — лабораторные автотрансформаторы). Это тип обычного трансформатора в котором первичная и вторичная обмотки друг от друга не изолированы, а соеденены электрически напрямую, следовательно в них используется не только электрическая, но и электромагнитная связь. Общая обмотка трансформатора имеет несколько разных выводов (2, 3, 4 и более), при подключении к ним можно получить разные напряжения.

На рисунке показана схема электронного ЛАТРа, с обмотки III сетевого трансформатора Т1 переменное напряжение (0,5…1В) поступает через делитель напряжения (R15 R16 R3) на УНЧ. Данный УНЧ выполнен по схеме упрощенного УМЗЧ, мощности УНЧ достаточно для питания небольшого по мощности устройства подключенного к ЛАТРу, если необходима большая мощность то надо применить долее мощный УМЗЧ и трансформатора Т2. Непосредственно с выхода УНЧ снимается переменное напряжение величина которого от 0 до максимального питающего напряжения.

Обмотка II Т1 должна выдавать напряжение 22…24В. VT1…VT4 должны быть установлены на общем радиаторе. R3 должен быть расположен на лицевой панели корпуса ЛАТРа.

Напряжение питания ОУ должно быть в пределах +/-13…14В. Падение напряжения на R13 R14 должно быть в пределах 0,34…0,4В. На выходе УЧН должна быть синусоида 50Гц (для этого надо подключить нагрузку 16 Ом мощностью не менее 10…15Вт). Т2 пита ТВ3-1-9 от лампового ТВ УЛПЦТИ.

Или любой другой трансформатор с напряжением на первичной обмотке 6В (то есть подавая на его первичную обмотку (на схеме это вторичная) 222В на выходе должно быть 6В, которая является первичной в схеме ЛАТРа, то есть на выходе УНЧ регуляторами настройки R15 R4 и регулятором выходного напряжения R3 мы должны получить максимальное неискаженное синусоидальное напряжение с частотой 50 Гц в пределах 6,2В, при этом напряжение на выходе Т2 должно быть не менее 230В.) Регулятор R3 позволяет получить на выходе Т2 напряжение от 0 до 230 В с частотой 50Гц.

Литература Ж. Радиосхема 2006-5 Автор: А.Н. Маньковский, пос. Шевченко, Донецкая обл

Электронный латр своими руками схема, что такое латер?

ПРОЕКТ №25: транзисторный «ЛАТР»
Историческая справка.
ЛАТР – лабораторный автотрансформатор регулируемый. Это такое устройство на основе трансформатора с одной обмоткой, которое позволяет получать на выходе регулируемое напряжение. Помню, в детстве у нас был телевизор «Старт-3», который подключался к сети через специальный автотрансформатор:

Напряжение в сети вечерами падало, потому что увеличивалась нагрузка. А электричество вырабатывал местный генератор. Вот и приходилось с помощью автотрансформатора повышать напряжение до нормы. Позже появился феррорезонансный стабилизатор. ЛАТР – устройство довольно громоздкое и тяжёлое. НО, если на входе ЛАТРа синусоидальное напряжение, то и на выходе точно такой же формы – вот что важно! Регулировка напряжения осуществляется за счёт скольжения подвижного контакта по оголённым частям витков обмотки автотрансформатора, в результате чего возникает искрение и, соответственно, помехи.
Подробнее о ЛАТРе см., например, на сайте http://www.avellinfo.ru/elektronika/avtotrans.html
Моя цель – не повествование о ЛАТРе. Я хочу поведать об ином… ЛАТРе! Тема не новая, тем не менее, попытаюсь внести в неё нечто для разнообразия.
1. После распайки платы CRT-монитора на радиаторе остались элементы:

С5129 – мощный биполярный низкочастотный N-P-N транзистор:
макс. напр. к-б при заданном обратном токе к и разомкнутой цепи э. (Uкбо макс) 1500 В;
макс. напр. к-э при заданном токе к и разомкнутой цепи б. (Uкэо макс) 800 В;
максимально допустимый ток к ( Iк макс.) 10 А;
статический коэффициент передачи тока h31э (мин) 30;
граничная частота коэффициента передачи тока fгр. 1,7МГц;
максимальная рассеиваемая мощность 50Вт.

5TUZ47 –демпфирующий HOTдиод:

D1417 – это Silicon NPN Darlington (составной) Transistor:
Ucb: 60V
Ic: 7A
β (Ic/Ib): 6000 ?!
N: 30W

Я не стал долго и досконально докапываться до всех параметров, их можно посмотреть в Datasheet’ах.
Возникла идея дурацкая (а, может быть, и не совсем?) собрать на транзисторе С5129 регулятор переменного напряжения (аналог ЛАТРа) ~0…220В.
2. Я вспомнил, что когда-то давно мне встретилась схема регулятора напряжения:

в журнале «Юный техник», №9, 1988г, стр.78, В. Янцев, «Сколько нужно ватт?»
Поp;t в журнале «Моделист-Конструктор», №4, 1990 г, стр.21, В.Янцев, «Электричество по дозе» предложил более совершенную схему:
Надо полагать, регулятор оказался настолько хорош, что в «РАДИО», №9, 1991г, стр. 32, В. Янцев опубликовал продолжение «Комбинированный блок питания», совместив вышеупомянутый регулятор с обычным компенсационным стабилизатором:

Позднее в журнале «РАДИО», №11, 1999г, стр. 40 появился материал А. Чекарова, «Безпомеховый регулятор напряжения»

REM: Как говорится, найди пару отличий от схемы Янцева! По правде говоря, меня несколько удивил тот факт, что редакция cnjkm авторитетного издания пропустила явный плагиат.

3. В настоящее время в Сети имеется масса «вариаций» на тему последней схемы В. Янцева:

И что же мы видим? Вот типические примеры:
на сайте http://www.cxema73.narod.ru/ представлен «комбинированный блок питания», который автор выдаёт за собственное творение, не ссылаясь ни на что и ни на кого:

на сайте http://radiolub.ru/category/bloki-pitanija/ представлен «регулируемый стабилизатор переменного напряжения». Хотя о стабилизации напряжения «автор» имеет такое же cvenyjt представление, как «слушательница курсов имени Леонардо да Винчи о сельском хозяйстве» (Ильф и Петров, «12 стульев»). И, что характерно, «автор» также выдаёт схему за собственное творение, не ссылаясь ни на что и ни на кого:
Вот такие дела. Предполагается, что достаточно немного изменить расположение деталей, подкрасить их и ты, якобы, ТВОРЕЦ!
«Грустно, девушки!», как говорил великий комбинатор.
4. Хочу заметить, что все регуляторы, выполненные по данной схеме, собраны на отечественной элементной базе. Есть попытки применить буржуйские диоды, но не более того.
Смотрим параметры транзистора КТ840Б:
максимально допустимое (импульсное) напряжение коллектор-база 350 В;
максимально допустимое (импульсное) напряжение коллектор-эмиттер 350 В;
максимально допустимый постоянный(импульсный) ток коллектора 6 (8) А;
максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом 60 Вт;
статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером =>10;
обратный ток коллектора <=3 мА;
граничная частота коэффициента передачи тока в схеме с общим эмиттером =>8 МГц;
коэффициент шума биполярного транзистора <3 дБ.
И сравниваем их с параметрами транзистора С5129. По основным – вполне соответствует. Полагаю, граничная частота, в данном случае, параметр не столь важный.
Так что, значит, можно?
5. Подтверждением (или опровержением) любых предположений (или гипотез) такого рода является ЭКСПЕРИМЕНТ, а не многословная болтовня на форумах. Итак, приступим.
5.1. Проверка транзистора С5129 мультиметром:

Запись, например, «B+ —> C-» означает: к БАЗЕ ПЛЮС мультиметра, к КОЛЛЕКТОРУ МИНУС мультиметра.
Транзистор стопудово исправен.
5.2. Теперь, по прошествии некоторого времени, я могусовершенно чётко заявить: чёрт меня дёрнул попытаться проверить вариант из журнала «Юный техник», №9, 1988г! Накатили ностальгические чувства… Наверное потому, что я раньше не собрал это устройство. Теперьэто история, и она требует того, чтобы данный факт зафиксировать в сетевых скрижалях (как в дебильной рекламе: «Запостил – было, а не запостил – и не было!»).
Регулятор на транзисторе КТ812Б собран и включен. При замкнутом SA2 и R1=10 кОм (другого номинала не нашлось) напряжение на нагрузке никак не менялось.
Заменил R1 на два последовательно включенных подстроечных 220 Ом и 330 Ом – снова никакого результата, хотя напряжение на вторичной обмотке Т1 более ~12В,
Напряжение на базе почти не менялось. Всё это делалось, повторяю, с VT1 отечественным КТ812Б. Я заменил его на буржуйский С5129.
Результат тот же – ничего! На базе напряжение меняется от 0,05 до 0,61 В. На выходе – никак. Я плюнул на это дело и…

5.3. Приступил к тому, что хотел, собственно, сделать с самого начала: регулятор из журнала «РАДИО», №11, 1999г.
Вот детали для регулятора; далее – они распаяны в 3D:
Первое включение разочаровало – напряжение на нагрузке нулевое. Но я ведь поставил движок переменникана половину! Стоило его немного повернуть (вниз по схеме), и регулятор заработал! В смысле: он заработал сразу после включения, посто ток базы был слишком мал.
Напряжение регулируется от 0 до 240В, правда, при R1=10 кОм его изменение происходит где-то на ¼ R, т.е. на 2,2 – 2,5 кОм.
К сожалению, поиски R1 нужного номинала пока не увенчались успехом. Один «умник» мне заявил, что такое барахло он выкинул лет 10 назад, ведь «теперь всё на процессорАХ» (ударение его). Интересно посмотреть, какой дурак возьмётся городить подобное устройство на процессоре, пусть и «микро»? Пришлось напомнить ему, что и «на херАХ» пока ещё делается тоже немало. Если он упустил данный факт из виду, то это его проблема.
Итак, эксперимент показал, что транзистор С5129 можно использовать в качестве регулирующего элемента в транзисторном ЛАТРе. Нагрев вполне терпимый, палец не обжигает (ощущение субъективное). Следует иметь в виду, что чем больше радиатор транзистора, тем лучше. Но без фанатизма. Кулер тоже будет не лишним, но требует отдельного питания, а если без оного, то… у меня, например, не нашлось небольшого малошумящего вентилятора на сетевое напряжение.
Понятно, что и другие аналогичные транзисторы также подойдут для такого «ЛАТРа».
Схема:

Детали:
VD1: мост B250C5000/3300 на 3,3/5А 600В
VD2: мост D2SBA60 на 1,5А 800В
Т1: небольшой силовой трансформатор от какого импортного устройства; на вторичной обмотке около 12В
VT1: транзистор C5129
VD3: диод1N4007 на 1А 700В
R1: переменный проволочный ППБ-25Г13 на 10 кОм
R2: я вообще решил не ставить, т.к. сопротивление R1 и так довольно велико, и ток базы уменьшать нет смысла
С1: электролитический 470 мк х 25 В
Как видно, только R1 – отечественный, всё остальное – буржуинское. Таким образом, я тоже внёс свою лепту в развитие данной конструкции:

7. Создание законченной конструкции.
Как я упоминал, у меня накопилась масса РАДИОхабара, из которого я время от времени извлекаю нечто подходящее для той или иной конструкции. К сожалению, свободного времени я имею, наоборот, слишком мало для изготовления сложных конструкций, поэтому некоторое количество проектов находится в «замороженном» состоянии. Вот и занимаюсь иногда «для души» мелочёвкой. Но это всё лирика. «Ближе к телу, как говорил Мопасан» устами великого комбинатора.
Очень кстати нашёлся корпус от древнего фильмоскопа. Были такие аппараты для демонстрации диафильмов. В этот корпус, как по заказу, вписываются вольтметр и радиатор мощного транзистора.

Вот так ЛАТР будет смотреться в перспективе:

Ставлю транзистор C5129 на радиатор, заполировав место касания и смазав термопастой:

Думаю, что делать плату для нескольких деталей смысла не имеет. Тем более, что есть идея по установке и креплению вольтметра. Там будет достаточно просторная площадка, где я и размещу все детали. Примерно так:

Соединение:

Подключение и проверка:

В корпусе сделаны нужные отверстия:

Выходные клеммы должны быть рассчитаны на подключение сетевой вилки, однополюсных вилок и просто поводов:

Выключатель, предохранитель, выходные клеммы и регулятор напряжения закреплены:

Вставляю основной блок:

Всё припаяно:

Проверка:

«ЛАТР» собран:

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А

  • где I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Электронный ЛАТР


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Размещаем на плате детали и припаиваем их.
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Подготовка к работе и подключение

После пребывания автотрансформатора в условиях низкой температуры, его нужно выдержать в условиях будущей эксплуатации как минимум 4 часа.

Перед подключением производится осмотр корпуса трансформатора на предмет отсутствия видимых внешних повреждений. После этого, схема подключения ЛАТР предполагает подключение кабеля нагрузки и сетевого кабеля. После всех подключений, осуществляется подача к автотрансформатору питающего напряжения.

Для того, чтобы подключение было выполнено правильно, при отключенной нагрузке, на шкале прибора устанавливается половинное значение напряжения. Затем, необходимо включить вольтметр, первый щуп соединить с нулевым проводом сети, а второй щуп должен контролировать напряжение на выходе автотрансформатора. На одном контакте напряжение будет иметь нулевое, а на втором контакте половинное значение. Это означает, что прибор подключен правильно. В случае неправильного подключения, напряжение на выходе будет таким же, как и в электрической сети, в пределах 220 вольт.

При подключении ЛАТР необходимо соблюдать правила электробезопасности. Внутри прибора существует опасное значение напряжения свыше 220 вольт, при частоте 50 герц. Поэтому, работать с автотрансформатором могут только специалисты с допуском, разрешающим работать с оборудованием при напряжении до 1000 вольт.

С самим трансформатором нужно обращаться бережно, избегать ударов, перегрузок, воздействия агрессивной среды.

Вместо ЛАТРа

  Предлагаю схему регулируемого источника переменного напряжения. Указанный регулятор можно использовать вместо лабораторного автотрансформатора (ЛАТРа) для регулирования освещения лампами накаливания, температуры жала паяльника, скорости вращения электродвигателя и т.д. Особенностью данной схемы является использование в качестве регулирующего элемента мощного биполярного транзистора VT1, который выполняет функцию переменного резистора, включенного последовательно с нагрузкой. Предлагаемый регулятор дает возможность регулировать напряжение как при активной, так и при реактивной нагрузке. К недостаткам регулятора можно отнести выделение большого количества тепла регулирующим транзистором и проблему его отвода. Преимущества такого технического решения перед регуляторами на тиристорах или на ЛАТРе следующие:
– отсутствие помех в электросеть от его работы;
– получение на выходе синусоидального напряжения;
– малые габариты и небольшой вес;
– простота схемного решения и не дефицитность деталей.

  Диодный мост VD2…VD5 обеспечивает протекание прямого тока через транзистор VT1 при любом полупериоде переменного напряжения сети. Трансформатор Т1 — мощностью 12…15 Вт со вторичным напряжением 6…10 В. Это напряжение выпрямляется диодным мостом VD6 и сглаживается конденсатором С1. Изменяя сопротивление переменного резистора R2, мы тем самым регулируем базовый ток транзистора VT1, а следовательно — и его сопротивление в цепи переменного тока.

  Сопротивление R1, включенное в базу транзистора VT1 — токоограничивающее. Диод VD1 — защитный. Он предотвращает попадание на базу транзистора VT1 напряжения отрицательной полярности. Напряжение на выходе регулятора контролируют вольтметром PV1. Как видно из схемы, ток нагрузки (потребителя) зависит от величины управляющего напряжения на базе транзистора. Изменяя это напряжение, мы тем самым управляем током его коллектора, а следовательно — и величиной тока нагрузки. В крайнем нижнем (по схеме) положении движка резистора R2 транзистор VT1 будет полностью открыт, и напряжение на нагрузке — максимальное. В крайнем верхнем положении движка транзистор закрыт, ток через нагрузку — минимальный, и напряжение на выходе регулятора равно нулю.

  Конструкция регулятора и его детали. Монтаж — навесной. Диоды — большой мощности (Д245, Д246, Д247, Д248, Д223 и т.д.), и поэтому при данном токе не требуют теплоотводов. Транзистор VT1 установлен на радиатор площадью не менее 250 см2. Выпрямительные диоды (блоки) VD6 — КЦ 405 с любой буквой. Переменное сопротивление R2 – обязательно проволочное ППБ15, ППБЗ мощность не менее 2,5 Вт. Вольтметр переменного тока – на напряжение 250…300 В. Если возникнет необходимость увеличения мощности нагрузки, то потребуется замена регулирующего транзистора VT1 и диодов VD2…VD5 на более мощные. В крайнем случае, можно включать несколько транзисторов в параллель, стараясь подбирать их с одинаковыми коэффициентами усиления h31э. Транзистор КТ856 позволяет подключать нагрузку 150 Вт, КТ834 — 200 Вт, КТ847 — 250 Вт.Соответственно необходимо увеличивать площадь радиаторов или устанавливать небольшой вентилятор для обдува. Диод VD1 тоже необходимо заменить на более мощный с номинальным током 1 А.

  Внимание! Данный источник гальванически связан с электросетью 220 В. Корпус источника желательно сделать из диэлектрика, а на ось резистора R2 одеть хорошо изолированную ручку. Необходимо соблюдать меры безопасности при его наладке – все изменения в конструкцию вносить только в отключенном от сети состоянии. Подробнее…

  Литература
1. Горшков Б.И. Элементы радиоэлектронных устройств: Справочник. — М.: Радио и связь, 1988.
2. Боровской В.П. Справочник по схемотехнике для радиолюбителя. — Технiка, 1987.

В. БАШКАТОВ
Донецкая обл.
г. Горловка-46
Радиолюбитель №2, 1998

Источник: shems.h2.ru

Электронной ЛАТР – Sam-Sdelay.RU – Сделай сам!


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из – за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.
Схема электронного ЛАТРа
Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.

Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.

Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Изготовление ЛАТРа
Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:

С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.

Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.

Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.

Высоковольтный клеммник надёжно крепим к трансформатору.

На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.

Понадобится
Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 – 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 – на 2 – 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 – 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 – по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 – терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.



Размещаем на плате детали и припаиваем их.






Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.

После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.

Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.

Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.


Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.

Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.



Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.
Смотрите видео

Источник

Лабараторный ЛАТР своими руками: схема и сборка

Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.

сделать ЛАТР

Подготовка материала

Для сборки ЛАТРа понадобятся следующие материалы и устройства:

  • Медная обмотка;
  • Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
  • Термоустойчивый лак;
  • Тряпичная изолента;
  • Корпус с закрепленными разъемами для подключения нагрузки и питания.

Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:

  1. Цифровой или аналоговый вольтметр.
  2. Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2  –  P / U1 = 300 / 127  –  300 / 220  = 1 А

  • где  I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Автотрансформатор схема

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Таблица тип провода и сечение

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где  к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где  W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Процесс сборки

Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой.  Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.

магнитопровод

Петли

После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.

После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.

выводы проводов

Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.

Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.

Схема сборки латра

Проверка

Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:

  1. Подключаем автотрансформатор к сети 220 В;
  2. Проверяем на отсутствие задымления, запаха гари, сильных шумов;
  3. Вольтметром проверяем соответствие выходных значений;
  4. Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
  5. Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.

При отсутствии проблем автотрансформатор готов к работе.

Полевой транзистор »Электроника Примечания

Полевой транзистор, полевой транзистор, представляет собой трехполюсное активное устройство, которое использует электрическое поле для управления током и имеет высокий входной импеданс, что полезно во многих цепях.


FET, полевой транзистор, учебное пособие включает в себя:
FET основы FET характеристики JFET МОП-транзистор Двойные ворота MOSFET Мощность МОП-транзистора MESFET / GaAs FET HEMT & PHEMT Технология FinFET


Полевой транзистор, FET – ключевой электронный компонент, используемый во многих областях электронной промышленности.

FET используется во многих схемах, построенных из дискретных электронных компонентов в областях от радиочастотной технологии до управления мощностью и электронного переключения на общее усиление.

Однако основное применение для полевого транзистора, FET находится в интегральных схемах. В этом приложении схемы FET потребляют гораздо более низкие уровни мощности, чем микросхемы, использующие технологию биполярных транзисторов. Это позволяет работать очень крупным интегральным схемам. Если бы использовалась биполярная технология, потребляемая мощность была бы на порядок выше, а генерируемая мощность слишком велика, чтобы рассеиваться из интегральной схемы.

Помимо использования в интегральных схемах, дискретные версии полевых транзисторов доступны как в виде свинцовых электронных компонентов, так и в качестве устройств поверхностного монтажа.

A lineup of field effect transistors - 2N7000 N-channel MOSFET - these are leaded electronic components, although many are available as surface mount devices Типичные полевые транзисторы Полевой транзистор

, история FET

До появления первых полевых транзисторов на рынке электронных компонентов эта концепция была известна в течение ряда лет. Было много трудностей с реализацией этого типа устройства и его работой.

Некоторые из ранних концепций полевого транзистора были изложены в статье Лилиенфилда в 1926 году и в другой статье Хейля в 1935 году.

Следующие фонды были созданы в 1940-х годах в Bell Laboratories, где была создана исследовательская группа по полупроводникам. Эта группа исследовала ряд областей, относящихся к полупроводникам и полупроводниковой технологии, одной из которых было устройство, которое модулировало бы ток, протекающий в полупроводниковом канале, при размещении электрического поля рядом с ним.

Во время этих ранних экспериментов исследователи не смогли воплотить идею в жизнь, превратив свои идеи в другую идею и, в конечном итоге, изобрели другую форму компонента полупроводниковой электроники: биполярный транзистор.

После этого большая часть исследований полупроводников была сфокусирована на улучшении биполярного транзистора, и идея полевого транзистора некоторое время не была полностью исследована. В настоящее время полевые транзисторы очень широко используются, обеспечивая основной активный элемент во многих интегральных схемах.Без этих электронных компонентов технология электроники была бы совсем другой, чем сейчас.

Полевой транзистор

– основы

Концепция полевого транзистора основана на концепции, согласно которой заряд на соседнем объекте может привлекать заряды в полупроводниковом канале. Он по сути работает с использованием эффекта электрического поля – отсюда и название.

Полевой транзистор состоит из полупроводникового канала с электродами на обоих концах, называемых стоком и истоком.

Управляющий электрод, называемый затвором, расположен в непосредственной близости от канала, так что его электрический заряд способен влиять на канал.

Таким образом, затвор полевого транзистора управляет потоком носителей (электронов или дырок), текущим от источника к стоку. Это достигается путем контроля размера и формы проводящего канала.

Полупроводниковый канал, в котором протекает ток, может быть P-типа или N-типа. Это приводит к двум типам или категориям полевых транзисторов, известных как полевые транзисторы с каналом P-типа и N-каналом.

В дополнение к этому есть еще две категории. Увеличение напряжения на затворе может либо истощить, либо увеличить количество носителей заряда, доступных в канале. В результате появляются улучшенные режимы FET и FETs режима истощения.

N and P channel junction FET circuit symbol Обозначение цепи соединения FET

Поскольку только электрическое поле управляет током, протекающим в канале, устройство называется работающим от напряжения и имеет высокий входной импеданс, обычно много мегом. Это может быть явным преимуществом по сравнению с биполярным транзистором, который работает от тока и имеет намного более низкий входной импеданс.

Junction FET, JFET working below saturation Транзистор с эффектом полевого соединения, JFET, работающий ниже насыщения

FET схемы

Полевые транзисторы широко используются во всех видах схем, от используемых в схемах с дискретными электронными компонентами, до используемых в интегральных схемах.

Примечание по дизайну схемы полевого транзистора:

Полевые транзисторы могут использоваться во многих типах цепей, хотя тремя основными конфигурациями являются общий источник, общий сток (повторитель источника) и общий затвор.Сам дизайн схемы достаточно прост и может быть выполнен довольно легко.

Подробнее о Конструкция схемы полевого транзистора

Поскольку полевой транзистор является устройством, управляемым напряжением, а не токовым устройством, таким как биполярный транзистор, это означает, что некоторые аспекты схемы очень разные: в частности, схемы смещения. Однако проектирование электронных схем с помощью полевых транзисторов относительно просто – оно немного отличается от того, которое используют биполярные транзисторы.

Используя полевые транзисторы, можно спроектировать схемы, такие как усилители напряжения, буферы или токоподводы, генераторы, фильтры и многое другое, и схемы очень похожи на схемы для биполярных транзисторов и даже термоэлектронных клапанов / вакуумных трубок. Интересно, что клапаны / трубки также являются устройствами, работающими от напряжения, и поэтому их цепи очень похожи, даже с точки зрения расположения смещения.

Типы полевых транзисторов

Есть много способов определить различные типы FET, которые доступны.Различные типы означают, что во время проектирования электронных схем, есть выбор правильного электронного компонента для схемы. Выбрав правильное устройство, можно получить наилучшую производительность для данной схемы.

FET могут быть категоризированы несколькими способами, но некоторые из основных типов FET могут быть охвачены в диаграмме дерева ниже.

Field effect transistor types: insulated gate, junction, depletion, enhancement, p-channel, n-channel Типы полевых транзисторов

На рынке существует много разных типов полевых транзисторов, для которых существуют разные названия.Некоторые из основных категорий задерживаются ниже.

  • Соединительный полевой транзистор, JFET: Соединительный полевой транзистор или JFET использует обратное смещенное диодное соединение для обеспечения соединения затвора. Структура состоит из полупроводникового канала, который может быть N-типа или P-типа. Затем на канал изготавливают полупроводниковый диод таким образом, чтобы напряжение на диоде влияло на канал FET.

    При работе это обратное смещение, и это означает, что оно эффективно изолировано от канала – между ними может протекать только обратный ток диода.JFET – это самый основной тип FET, и тот, который был впервые разработан. Однако он по-прежнему обеспечивает отличный сервис во многих областях электроники.


  • Изолированный затвор МОП-транзистор с металлическим оксидом и кремнием / МОП-транзистор: В МОП-транзисторе используется изолированный слой между затвором и каналом. Обычно это формируется из слоя оксида полупроводника.

    Название IGFET относится к любому типу полевого транзистора с изолированным затвором.Наиболее распространенной формой IGFET является кремниевый MOSFET – металлический оксид кремния FET. Здесь затвор выполнен из слоя металла, нанесенного на оксид кремния, который в свою очередь находится на кремниевом канале. МОП-транзисторы широко используются во многих областях электроники и особенно в интегральных схемах.

    Ключевым фактором IGFET / MOSFET является чрезвычайно высокий импеданс затвора, который способны обеспечить эти полевые транзисторы. Тем не менее, будет связанная емкость, и это уменьшит входной импеданс при увеличении частоты.


  • MOSFET с двумя воротами: Это специализированная форма MOSFET с двумя последовательно соединенными воротами вдоль канала. Это позволяет добиться значительного улучшения производительности, особенно в радиочастотах, по сравнению с устройствами с одним затвором.

    Второй вентиль MOSFET обеспечивает дополнительную изоляцию между входом и выходом, и в дополнение к этому он может использоваться в приложениях, таких как микширование / умножение.


  • MESFET: MEET Кремниевый FET обычно изготавливается с использованием арсенида галлия и часто называется GaAs FET. Часто GaAsFET используются для радиочастотных приложений, где они могут обеспечить высокое усиление и низкий уровень шума. Одним из недостатков технологии GaAsFET является очень маленькая структура затвора, что делает его очень чувствительным к повреждениям от статического электричества. При обращении с этими устройствами необходимо соблюдать особую осторожность.


  • HEMT / PHEMT: Транзистор с высокой подвижностью электронов и псевдоморфный транзистор с высокой подвижностью электронов являются разработками базовой концепции FET, но разработаны для обеспечения работы на очень высоких частотах. Хотя они и дороги, они обеспечивают очень высокие частоты и высокий уровень производительности.


  • FinFET: В настоящее время технология FinFET используется в интегральных микросхемах для обеспечения более высоких уровней интеграции за счет использования меньших размеров функций.Поскольку требуются более высокие уровни плотности, и становится все труднее реализовать все меньшие размеры элементов, технология FinFET используется более широко.


  • VMOS: Стандарт VMOS для вертикальных MOS. Это тип полевого транзистора, который использует вертикальный поток тока для улучшения характеристик переключения и пропускания тока. VMOS FET широко используются для силовых приложений.

Хотя в литературе можно встретить и другие типы полевых транзисторов, часто эти типы являются торговыми наименованиями для конкретной технологии и являются вариантами некоторых типов FET, перечисленных выше.

FET технические характеристики

Помимо выбора конкретного типа полевого транзистора для любой данной схемы, также необходимо понимать различные характеристики. Таким образом, можно гарантировать, что FET будет работать с требуемыми параметрами производительности.

Спецификации

FET включают в себя все, от максимально допустимых напряжений и токов до уровней емкости и коэффициента трансдуктивности. Все они играют определенную роль в определении того, подходит ли какой-либо конкретный FET для данной схемы или приложения.

Технология полевых транзисторов может использоваться в ряде областей, где биполярные транзисторы не являются подходящими: каждое из этих полупроводниковых устройств имеет свои преимущества и недостатки и может быть эффективно использовано во многих цепях. Полевой транзистор имеет очень высокий входной импеданс и является устройством, управляемым напряжением, и это открывает его для использования во многих областях.

Больше электронных компонентов:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители РЧ разъемы Клапаны / Трубы батареи Выключатели Реле
Вернуться в меню компонентов., ,

.

Junction Field Effect Transistor »Электроника Примечания

JFET – это активный электронный компонент, являющийся одной из рабочих лошадок электронной промышленности, обеспечивающий хороший баланс между затратами и производительностью.


FET, полевой транзистор, учебное пособие включает в себя:
FET основы FET характеристики JFET МОП-транзистор Двойные ворота MOSFET Мощность МОП-транзистора MESFET / GaAs FET HEMT & PHEMT Технология FinFET


Шунтирующий полевой транзистор или JFET широко используется в электронных схемах.Транзистор с полевым эффектом перехода является надежным и полезным электронным компонентом, который очень легко можно использовать в различных электронных схемах, от усилителей JFET до схем переключателей JFET.

Полевой транзистор с полевым контактом находится в свободном доступе, и JFET можно купить за очень небольшие деньги. Это делает их идеальными для использования во многих цепях, где интерес представляет хороший баланс между стоимостью и производительностью.

JFET доступны в течение многих лет, и, хотя они не обеспечивают чрезвычайно высокого уровня входного сопротивления постоянного тока MOSFET, они, тем не менее, очень надежны, надежны и просты в использовании.Это делает эти электронные компоненты идеальным выбором для многих электронных схем. Кроме того, компоненты доступны как в свинцовых, так и в поверхностных форматах устройства.

Основы JFET

В основном полевой транзистор или полевой транзистор состоит из участка кремния, проводимость которого контролируется электрическим полем. Участок кремния, через который протекает ток, называется каналом и состоит из одного типа кремния: N-типа или P-типа.

N and P channel junction FET, JFET circuit symbol JET FET, символ цепи JFET

Соединения на обоих концах устройства известны как исток и сток.Электрическое поле для управления током прикладывается к третьему электроду, известному как затвор.

Поскольку только электрическое поле управляет током, протекающим в канале, устройство называется работающим от напряжения и имеет высокий входной импеданс, обычно много мегом. Это может быть явным преимуществом по сравнению с биполярным транзистором, который работает от тока и имеет намного более низкий входной импеданс.

JFET операция

Junction FET – это устройство с управлением по напряжению.Другими словами, напряжения, возникающие на затворе, управляют работой устройства.

Как N-канальные, так и P-канальные устройства работают одинаково, хотя носители заряда инвертированы, то есть электроны в одном и дырки в другом. Случай для N-канального устройства будет описан, так как это наиболее часто используемый тип.

 JFET, Junction FET working below saturation JET FET, JFET работает ниже насыщения

Толщина этого слоя изменяется в соответствии с величиной обратного смещения на стыке.Другими словами, когда имеется небольшое обратное смещение, обедненный слой только немного распространяется в канал, и имеется большая площадь для проведения тока.

Когда большой отрицательный сдвиг наложен на затвор, слой истощения увеличивается, расширяясь дальше в канал, уменьшая область, по которой может проводиться ток.

При увеличении смещения обедненный слой в конечном итоге будет увеличиваться до такой степени, что он простирается прямо через канал, и говорят, что канал отрезан.

Когда ток течет в канале, ситуация становится немного другой. При отсутствии напряжения на затворе электроны в канале (при условии, что канал n-типа) будут притягиваться положительным потенциалом на стоке и будут течь к нему, позволяя току течь внутри устройства и, следовательно, во внешней цепи.

Величина тока зависит от ряда факторов и включает в себя площадь поперечного сечения канала, его длину и проводимость (т.е.е. количество свободных электронов в материале) и приложенное напряжение.

Из этого видно, что канал действует как резистор, и вдоль его длины будет падение напряжения. В результате это означает, что p-n-переход становится все более и более смещенным в обратном направлении при приближении к стоку. Следовательно, слой истощения становится толще ближе к стоку, как показано.

По мере увеличения обратного смещения на затворе достигается точка, где канал почти перекрыт слоем истощения.Однако канал никогда полностью не закрывается. Причина этого заключается в том, что электростатические силы между электронами заставляют их распространяться, давая противодействие увеличению толщины обедненного слоя.

После определенной точки поле вокруг электронов, протекающих в канале, успешно противостоит любому дальнейшему увеличению в обедненном слое. Напряжение, при котором обедненный слой достигает своего максимума, называется напряжением отсечки.

JFET схема приложений

JFET являются очень полезными электронными компонентами, и в результате они используются во многих конструкциях электронных схем.Они предлагают ряд явных преимуществ, которые можно использовать во многих цепях.

  • Простое смещение
  • Высокое входное сопротивление
  • Малошумный

Ввиду своих характеристик JFET встречаются во многих цепях, начиная от усилителей до генераторов, а также от логических переключателей до фильтров и многих других приложений.

JFET структура и производство

JFET могут быть N-канальным P-канальным устройством. Они могут быть сделаны очень похожими способами, за исключением того, что области N и P в структуре ниже взаимозаменяемы.

Зачастую устройства изготавливаются внутри более крупной подложки, а сам FET изготавливается, как показано на схеме ниже.

Typical JFET, Junction FET, structure Типичная структура JFET

Существует множество способов изготовления полевых транзисторов. Для кремниевых устройств сильно легированная подложка обычно выступает в качестве второго затвора.

Активную область n-типа затем можно выращивать с использованием эпитаксии или формировать путем диффузии примесей в подложку или путем ионной имплантации.

При использовании арсенида галлия подложка формируется из полуизолирующего внутреннего слоя.Это снижает уровни любых паразитных емкостей и позволяет получить хорошие высокочастотные характеристики.

Независимо от материала, используемого для полевого транзистора, расстояние между стоком и источником важно и должно быть минимальным. Это сокращает время прохождения, когда требуются высокочастотные характеристики, и дает низкое сопротивление, что жизненно важно, когда устройство используется для питания или коммутации.

Ввиду своей популярности JFET доступны в различных упаковках.Они широко доступны как свинцовые электронные компоненты в популярной пластиковой упаковке TO92, а также во многих других. Тогда как устройства поверхностного монтажа они доступны в упаковках, включая SOT-23 и SOT-223. Вероятно, в качестве устройств для поверхностного монтажа наиболее широко используются JFET. Наиболее крупномасштабное производство осуществляется с использованием технологии поверхностного монтажа и сопутствующих устройств поверхностного монтажа.

Хотя JFET менее популярен, чем MOSFET и содержит меньше JFET, он все равно остается очень полезным компонентом.Обладая высоким входным сопротивлением, простым смещением, низким уровнем шума и низкой стоимостью, он обеспечивает высокий уровень производительности, который может использоваться во многих ситуациях.

Больше электронных компонентов:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители РЧ разъемы Клапаны / Трубы батареи Выключатели Реле
Вернуться в меню компонентов., ,

.

Типы полевых транзисторов

A cluster of field effect transistor A cluster of field effect transistor Кластер полевых транзисторов

Полевой транзистор или полевой транзистор – это транзистор, выходной ток которого контролируется электрическим полем. Полевой транзистор иногда называют униполярным транзистором, поскольку он включает в себя работу с одним несущим. Основные типы транзисторов FET полностью отличаются от основ транзисторов BJT. FET – это трехполюсные полупроводниковые устройства с выводами истока, стока и затвора.

Носителями заряда являются электроны или дырки, которые текут от источника к стоку через активный канал.Этот поток электронов от источника к стоку контролируется напряжением, приложенным к клеммам затвора и источника.


Типы полевых транзисторов

Полевые транзисторы бывают двух типов – полевые транзисторы или полевые транзисторы.

Соединительный полевой транзистор

A Junction FET A Junction FET A Соединительный полевой транзистор

Соединительный полевой транзистор представляет собой тип полевого транзистора, который может использоваться в качестве переключателя с электрическим управлением. Электрическая энергия течет по активному каналу между источниками к сливным клеммам. При подаче напряжения обратного смещения на клемму затвора канал напрягается, поэтому электрический ток полностью отключается.

Транзистор с полевым транзистором имеет две полярности;

N-канальный JFET

PCBWay PCBWay
N channel JFET N channel JFET N-канальный JFET

N-канальный JFET состоит из стержня n-типа, по бокам которого легированы два слоя p-типа. Канал электронов составляет N канал для устройства. Два омических контакта выполнены на обоих концах N-канального устройства, которые соединены вместе, чтобы сформировать клемму затвора.

Клеммы истока и стока взяты с двух других сторон планки.Разница потенциалов между клеммами истока и стока обозначается как Vdd, а разность потенциалов между клеммой истока и затвора обозначается как Vgs. Поток заряда связан с потоком электронов от источника к стоку.

Всякий раз, когда на клеммы стока и истока подается положительное напряжение, электроны перетекают из источника «S» к клемме «D» стока, тогда как обычный ток Id стока течет через сток к источнику. Поскольку ток течет через устройство, он находится в одном состоянии.

Когда на клемму затвора подается напряжение отрицательной полярности, в канале создается область истощения. Ширина канала уменьшается, следовательно, увеличивается сопротивление канала между истоком и стоком. Поскольку соединение затвор-исток смещено в обратном направлении и ток не течет в устройстве, он находится в выключенном состоянии.

Таким образом, в основном, если напряжение, подаваемое на клемму затвора, увеличивается, меньшее количество тока будет течь от источника к стоку.

N-канальный JFET имеет большую проводимость, чем P-канальный JFET.Таким образом, N-канал JFET является более эффективным проводником по сравнению с P-каналом JFET.

P-канал JFET

trzvp2106 trzvp2106 P-канал JFET состоит из стержня P-типа, с двух сторон которого легированы слои n-типа. Терминал затвора образован соединением омических контактов с обеих сторон. Как и в N-канальном JFET, клеммы истока и стока взяты с двух других сторон панели. Канал P-типа, состоящий из отверстий в качестве носителей заряда, сформирован между истоком и стоком.

P channel JFET bar P channel JFET bar P-канал JFET bar

Отрицательное напряжение, приложенное к клеммам стока и истока, обеспечивает протекание тока от источника к клемме стока, и устройство работает в омической области. Положительное напряжение, приложенное к клемме затвора, обеспечивает уменьшение ширины канала, тем самым увеличивая сопротивление канала. Более положительным является напряжение на затворе; меньше ток, протекающий через устройство.

Характеристики транзистора полевого транзистора с каналом p-типа

Ниже приводится характеристическая кривая полевого транзистора с полевым эффектом p-канала и различных режимов работы транзистора.

Characteristics of p channel junction FET transistor Characteristics of p channel junction FET transistor Характеристики транзистора полевого транзистора с каналом p-типа

Область отсечки : Когда напряжение, подаваемое на клемму затвора, достаточно положительное, чтобы ширина канала была минимальной, ток не течет. Это приводит к тому, что устройство находится в отрезанной области.

Омическая область : ток, протекающий через устройство, линейно пропорционален приложенному напряжению, пока не будет достигнуто напряжение пробоя. В этой области транзистор демонстрирует некоторое сопротивление току.

Область насыщения : Когда напряжение сток-исток достигает значения, при котором ток, протекающий через устройство, является постоянным с напряжением сток-исток и изменяется только в зависимости от напряжения затвора, устройство считается находящимся в область насыщения.

Область пробоя : Когда напряжение истока-истока достигает значения, которое вызывает разрушение области истощения, вызывая резкое увеличение тока утечки, устройство считается находящимся в области пробоя.Эта область пробоя достигается раньше для более низкого значения напряжения сток-исток, когда напряжение затвор-исток более положительное.

МОП-транзистор

MOSFET transistor MOSFET transistor МОП-транзистор

МОП-транзистор, как следует из его названия, представляет собой полупроводниковую линейку p-типа (n-типа) (с двумя сильно легированными областями n-типа, рассеянными в нее) со слоем оксида металла, нанесенным на его поверхность и отверстия, взятые из слоя, чтобы сформировать исток и сливные терминалы. Металлический слой наносится на оксидный слой, чтобы сформировать клемму затвора.Одним из основных применений полевых транзисторов является использование MOSFET в качестве переключателя.

Этот тип полевого транзистора имеет три клеммы: исток, сток и затвор. Напряжение, приложенное к клемме затвора, контролирует поток тока от источника к стоку. Наличие изолирующего слоя оксида металла приводит к тому, что устройство имеет высокий входной импеданс.

Типы МОП-транзисторов на основе режимов работы

МОП-транзистор является наиболее часто используемым типом полевых транзисторов.Работа МОП-транзистора достигается в двух режимах, в зависимости от которых классифицируются МОП-транзисторы. Работа полевого МОП-транзистора в режиме улучшения состоит из постепенного формирования канала, тогда как в полевом МОП-транзисторе он состоит из уже рассеянного канала. Расширенное приложение MOSFET – CMOS.

Усовершенствованный МОП-транзистор

Когда на клемму затвора МОП-транзистора подается отрицательное напряжение, носители или отверстия, несущие положительный заряд, накапливаются в большей степени вблизи оксидного слоя.Канал формируется от истока до сливного терминала.

Enhancement MOSFET Transistor Enhancement MOSFET Transistor Усовершенствованный МОП-транзистор

По мере того, как напряжение становится более отрицательным, ширина канала увеличивается, и ток течет от источника к клемме стока. Таким образом, поскольку поток тока «усиливается» с приложенным напряжением затвора, это устройство называется MOSFET типа усиления.

МОП-транзистор с режимом обеднения

МОП-транзистор с режимом обеднения состоит из канала, рассеянного между стоком и выводом истока.При отсутствии напряжения на затворе ток течет от источника к стоку из-за канала.

Depletion mode MOSFET transistor Depletion mode MOSFET transistor Транзистор с МОП-транзистором в режиме истощения

Когда это напряжение затвора становится отрицательным, положительные заряды накапливаются в канале.
Это вызывает область истощения или область неподвижных зарядов в канале и препятствует протеканию тока. Таким образом, поскольку на течение тока влияет формирование области обеднения, это устройство называется MOSFET в режиме обеднения.

Применение с полевым МОП-транзистором в качестве переключателя

Управление скоростью двигателя BLDC

МОП-транзистор можно использовать в качестве переключателя для управления двигателем постоянного тока.Здесь транзистор используется для запуска MOSFET. ШИМ-сигналы от микроконтроллера используются для включения или выключения транзистора.

Controlling speed of BLDC motor Controlling speed of BLDC motor Управление скоростью двигателя BLDC

Логический сигнал низкого уровня с вывода микроконтроллера приводит к срабатыванию соединителя OPTO, генерирующего высокий логический сигнал на его выходе. Транзистор PNP отключается и, соответственно, MOSFET срабатывает и включается. Клеммы стока и истока закорочены, и ток течет к обмоткам двигателя, так что он начинает вращаться.Сигналы ШИМ обеспечивают контроль скорости двигателя.

Управление массивом светодиодов:

Driving an array of LEDs Driving an array of LEDs Управление массивом светодиодов

Работа MOSFET в качестве переключателя включает в себя применение управления интенсивностью массива светодиодов. Здесь транзистор, управляемый сигналами от внешних источников, таких как микроконтроллер, используется для управления МОП-транзистором. Когда транзистор выключен, полевой МОП-транзистор получает питание и включается, обеспечивая надлежащее смещение для светодиодной матрицы.

Лампа переключения с помощью MOSFET:

Switching Lamp using MOSFET Switching Lamp using MOSFET Лампа переключения с помощью MOSFET MOSFET

может использоваться в качестве переключателя для управления переключением ламп. Здесь также полевой МОП-транзистор запускается с помощью транзисторного переключателя. ШИМ-сигналы от внешнего источника, такого как микроконтроллер, используются для управления проводимостью транзистора, и, соответственно, МОП-транзистор включает или выключает, таким образом, управляя переключением лампы.

Мы надеемся, что нам удалось предоставить читателям лучшие знания по теме полевых транзисторов.Мы хотели бы, чтобы читатели ответили на простой вопрос – как FET отличаются от BJT и почему они более используются сравнительно.

Пожалуйста, ваши ответы вместе с вашими отзывами в комментариях ниже.

Photo Credits

Кластер полевого транзистора с помощью JFET
N-канала Alibaba
с помощью Ebaying
P-канала JFET с помощью Solarbotics 9-полосный JF-бар канала JFET с помощью wikimedia Кривая характеристик JFET
-P с помощью обучающей электроники
MOSFET транзистор МОП-транзистора Транзистор по схеме сегодня

.
Что такое полевой транзистор? – Определение, конструкция и классификация

Определение: FET – это сокращение, используемое для «полевого транзистора ». Это трехполюсное униполярное устройство, в котором проводимость управляется с помощью приложенного электрического поля . Само название дает краткое представление о его принципе работы, «эффект поля», эти два слова ясно указывают на то, что это транзистор, управляемый электрическим полем.

Таким образом, оно также называется устройством с контролируемым напряжением, в котором в проводящий механизм вовлечены только основные носители заряда.Он состоит из трех терминалов, то есть истока, затвора и стока. Символ схемы, описанный на приведенной ниже диаграмме, четко иллюстрирует три контакта полевого транзистора.

FET circuit symbol

История полевого транзистора

В 1926 году идея полевого транзистора (FET) была предложена Lilienfield. После этого в 1935 году Heil также пролил свет на полевой транзистор. Но к этому времени FET были не очень популярны.Именно в 1940 году значение полевых транзисторов набирает обороты. Это связано с тем, что в течение 1940-х годов исследования проводились в области полупроводников в лабораториях Белла .

Значение FET

Прежде чем обсуждать значение FET, я хотел бы поделиться важнейшей концепцией, касающейся FET. Транзистор в своем названии часто путают с биполярным транзистором. Но между FET и BJT, то есть биполярным транзистором, существует огромная разница.

Несмотря на то, что оба транзистора являются обоими, они имеют проводимость по току и оба имеют три контакта, но на этом сходство заканчивается.BJT использует инжекцию и сбор неосновных носителей заряда, и этот процесс инжекции и сбора выполняется во время прямого смещения P-N-перехода. Напротив, полевые транзисторы используют электрическое поле для изменения ширины обеднения при обратном смещении соединения.

Таким образом, проводимость в BJT включает в себя как основные, так и неосновные носители, но механизм проводимости в полевых транзисторах обусловлен только основными носителями заряда. По этой причине полевые транзисторы называются однополюсными.

Водная аналогия, чтобы понять концепцию FET

Чтобы понять, как работает FET, давайте воспользуемся аналогией. Аналогии часто упрощают понимание даже сложной концепции. Источником воды может быть истолкован как источник полевого транзистора, сосуд для сбора воды аналогичен сливному терминалу полевого транзистора. Давайте кратко рассмотрим приведенную ниже диаграмму, после чего понимание концепции FET станет идеальным ходом.

Water analogy

Теперь, вы можете угадать, какой терминал ворот является аналогом? Если вы думаете о водопроводном кране, то да, вы правы.Это не что иное, как контрольный кран, который контролирует поток воды. Теперь способ, которым управляющий отвод модулирует количество воды, поступающей из выходного отверстия, таким же образом, напряжение на клемме затвора управляет потоком тока от источника к клемме слива.

Строительство и работа FET

Полупроводник является основой всех полевых транзисторов. В зависимости от используемого канала, то есть N-канала или P-канала, будет использоваться образец полупроводника. Если мы разрабатываем N-канальные JFET, то канал будет из полупроводника N-типа.А в середине противоположных фаз образец будет рассеиваться с помощью полупроводника P-типа.

Field Effect transistor

Полупроводниковая шина P-типа будет действовать как клемма затвора. Противоположные концы полупроводника P-типа будут соединены вместе, чтобы сформировать общую клемму затвора. Таким образом, по обе стороны от ворот будет два P-N-перехода, которые будут называться истоком и стоком.

Компоненты полевых транзисторов

  1. Канал: Это область, в которой текут большинство носителей заряда.Когда большинство носителей заряда вводятся в FET, то с помощью этого канала только они перетекают от истока к стоку.
  2. Источник: Источником является терминал, через который в FET вводятся основные носители заряда.
  3. «Слив»: «Слив» – это сборная клемма, в которую входят основные носители заряда и, таким образом, участвуют в процедуре проводимости.
  4. Гейт: Гейт терминал формируется путем диффузии одного типа полупроводника с другим типом полупроводника.Это в основном создает область высокой примеси, которая контролирует поток носителя от истока к стоку.

Классификация полевых транзисторов

Классификация FET может быть понята с помощью диаграммы, описанной на рисунке ниже. Полевые транзисторы в основном описаны в двух типах: JFET (полевой транзистор с полевым контактом) и полевой транзистор с изолированным затвором.

chart

Транзистор с полевым эффектом соединения : Полевой транзистор перехода – это не что иное, как полевой транзистор, в котором проводимость определяется изменением ширины истощения, когда соединение смещено в обратном направлении.В зависимости от конструкции он состоит из двух типов: N-канал и P-канал.

Полевой транзистор с изолированным затвором : Полевой транзистор с изолированным затвором – это тот, в котором затвор изолирован изоляционным материалом из образца полупроводника. Они имеют два типа MESFET (полевой транзистор с металлическим полупроводниковым эффектом) и MISFET (полевой транзистор с металлическим изолятором и полупроводниковым эффектом).

В MESFET и MISFET используется переход металл-полупроводник, а не обычный переход P-N.Но отличительной чертой обоих является использование изоляционного материала в случае MISFET, в то время как в MESFET нет изоляционного материала.

MOSFET является подтипом MISFET, в котором оксидный слой играет решающую роль в обеспечении изоляции между затвором и другими клеммами. МОП-транзисторы работают в двух режимах: , режим истощения и , режим улучшения . В режиме истощения существует физический канал, а в режиме улучшения это не так.

МОП-транзистор с истощением и улучшением может быть снова спроектирован двумя способами с использованием N-канала или P-канала.Это было краткое описание о полевых транзисторах.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *