Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

cxema.org – Переделка электронного трансформатора

Электронный трансформатор – сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)». Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки. Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.

 Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль – почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством.

Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1


Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора. Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2


Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3


Теперь о главном – умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.

Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель.

В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.

Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания).

Можно использовать любые быстрые диоды с током 15-20 Ампер.

АКА КАСЬЯН

ПЕРЕДЕЛКА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

   Все больше и больше радиолюбители переходят на питание своих кострукций импульсыми источниками питания. На прилавках магазинов сейчас размещено очень много дешевых электронных трансформаторов (дальше просто ЭТ).

   При небольших размерах они обеспечивают большую выходную мощность, да и малые размеры хорошо — это на тот случай, если упадет на ногу:) Радиолюбители пытаются использовать эти ЭТ, но у них есть определённые недостатки, такие как: нежелание запуститься без нарузки, выход из строя при КЗ, и сильный уровень помех. В этой статье хочу поделиться с вами переделками электронных трансформаторов, чтобы избавитса от вышеуказанных недостатков. Вот типовая схема ЭТ: 

   Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях.

Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

   Итак, удаляем обмотку связи на коммутирующем трансформаторе и ставим вместо нее перемычку.

   Потом наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 1 ватта, чем выше сопротивление — тем меньше ток защиты от КЗ. 

   Если вас пугает нагрев резистора, вместо него можно использовать лампочку от карманного фонарика (2,5-6,3В). Но при этом ток срабатывания защиты будет очень мал, так как сопротивление горячей нити лампы довольно большое.

   Трансформатор теперь спокойно запускается без нагрузки, и есть защита от КЗ.

   При замыкании выхода ток на вторичке падает, соотвественно падает ток и на обмотке ОС — ключи запираются и срывается генерация, только во время КЗ очень сильно греются ключи, так как динистор пытаетса запустить схему, а ведь на ней КЗ и процес повторяетса. Поэтому данный электронный трансформатор может выдержать режим замыкания не болле 10 секунд. Вот видео работы защиты от КЗ в переделанном устройстве:

 

   Сорри за качество, снимал на мобильник. Вот еще одно фото переделки ЭТ:

   Но помещать фильтрующий конденсатор в корпус ЭТ не советую, я делал так на свой страх и риск, так как температура внутри и так немаленькая, да и места мало, может вздуть конденсатор и возможно вы услышите БА-БАХ:) Но не факт, пока что все работает отлично, время покажет… Позже мною были переделаны два трансформатора на 60 и 105 Вт, вторичные обмотки были перемотаны под свои нужды, вот фото, как разделить сердечник Ш-образного трансформатора (в блоке питания 105 Вт).

   Также можно передлать импульсный блок питания малой мощности под большую, заменив при этом ключи, диоды сетевого моста, конденсаторы полумоста и конечно же трансформатор на феррите.

   Вот немного фоток — переделан ЭТ на 60 Вт под 180Вт, транзисторы заменены на MJE 13009, конденсаторы 470 nF и трансформатор намотан на двух сложенных кольцах К32*20*6.

   Первичка 82 витка в две жилы 0,4 мм. Вторичка по вашим требованиям.

   И еще, чтоб не сжечь ЭТ при экспериментах или любой другой внештатной ситуации — лучше подключить его последовательно с ламой накаливания аналогичной мощности. В случае КЗ или другой поломки — загоритса лампа, а вы сбережёте радиодетали. С вами был AVG (Марьян).

Originally posted 2018-11-03 06:17:44. Republished by Blog Post Promoter

Переделка электронного трансформатора | all-he

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1


Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2


Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3


Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя  намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядное устройство для АКБ может понадобиться автовладельцу чаще, чем ему того хотелось бы. Например, длительный ремонт автомобиля нередко заканчивается разрядкой аккумулятора и поисками устройство для его зарядки. Поэтому устройство для зарядки аккумулятора не будет лишним в арсенале запасливого автолюбителя. Сделать зарядное устройство для автомобильного аккумулятора своими руками лучше всего из импульсного блока питания (ИБП), называемого еще электронным трансформатором.

Конечно, есть устройство для автозарядки и проще этого, но они, как правило, обладают более заметными недостатками, чем предлагаемое автозарядное устройство. Самое простое самодельное зарядное устройство можно собрать из резистора, гасящего напряжение и выпрямительного диода. Однако оно обладает недостатками, среди которых отсутствие двух нужных для работы вещей:

  1. стабилизации напряжения автозарядки;
  2. гальванической развязки с электрической сетью напряжением 220 В.

Если дефицит стабилизации не особенно помешает зарядке аккумуляторной батареи, то отсутствие гальванической развязки с электросетью может быть опасно для жизни, а при более благоприятном исходе – для «здоровья» аккумулятора.

Необходимые для изготовления компоненты

Чтобы сделать устройство для зарядки автомобильного аккумулятора, понадобится следующие составляющие:

  • Электронный трансформатор мощностью не менее 60 Вт.
  • Сетевой провод с вилкой на 220 В.
  • Медный эмалированный повод диаметром 0,8 мм.
  • Переменный резистор сопротивлением равным номиналу резистора обратной связи в электронном трансформаторе.
  • 4 диода КД 213.
  • Односторонний фольгированный текстолит толщиной 1 мм.
  • Провода с зажимами для подключения АКБ.
  • Корпус от старого компьютера. Если нет готового корпуса, его можно сделать самому из любых подходящих для этого материалов. При самостоятельном изготовлении корпуса предусмотрите вентиляцию устройства. Для этого вверху боковых стенок корпуса нужно сделать несколько отверстий. Не помешает и вентилятор внизу задней стенке корпуса. Сделать корпус своими руками лучше из диэлектрических материалов. Для этого подойдут даже тонкие листы МДФ. Крепить стенки корпуса между собой и к днищу можно на саморезы, вкручивая их в алюминиевые уголки. Такая конструкция хороша тем, что упрощает ремонт, так как легко разбирается и собирается. А при поломке стенки ремонт корпуса сводится к ее замене.

Доработка преобразователя

Заводской электронный трансформатор для наших целей не вполне готов, так как имеет несколько недостатков:

  1. Отсутствие регулировки выходного напряжения, а вместе с ним и зарядного тока.
  2. Импульсное выходное напряжения частотой 15 кГц.
  3. Низкое напряжение на выходе – не более 10 В.

Поэтому сначала некоторые из них нужно устранить. Ремонт устройства будет заключаться в следующих операциях:

  • Перемотка вторичной обмотки ВЧ трансформатора для увеличения выходного напряжения.
  • Добавление выпрямителя.
  • Замена постоянного резистора обратной связи на переменный такого же номинала.

Изготовление ЗУ

Снимите и разберите трансформатор. Смотайте вторичную обмотку. Сложенным вчетверо эмалированным поводом Ø 0,8 мм намотайте новую вторичную обмотку из 14 витков. Впаяйте трансформатор на место. При помощи паяльника и пинцета снимите с платы резистор обратной связи, подключите на его место переменный резистор, закрепленный на передней панели корпуса – это будет регулировка зарядного тока. Соберите диодный мост. Плату для него сделайте из текстолита. Так как ее топология очень проста, дорожки на ней можно не травить, а отделить друг от друга с помощью обломка полотна для ножовки по металлу. Подключите вход выпрямителя к выходу преобразователя. Припаяйте к мосту провода для подключения АКБ. Зарядное устройство готово. Для контроля тока зарядки подключайте аккумулятор последовательно с амперметром.

Для того чтобы суметь сделать ремонт импульсного блока питания в случае выхода последнего из строя, нужно как минимум знать его устройство.

Устройство импульсного блока питания

Работа ИБП принципиально отличается от функционирования трансформаторного блока питания и ремонт его сложнее, чем ремонт БП с силовым трансформатором.

Импульсный блок питания преобразовывает синусоидальное напряжение электрической сети частотой 50 Гц в последовательность прямоугольных импульсов частотой от 18 до 50 кГц. С этим импульсным напряжением он и производит дальнейшие преобразования. Рассмотрим работу упрощенной схемы такого блока питания. Преобразователь состоит из мощного транзистора VТ1 и высокочастотного трансформатора Т1. Напряжение питания, пройдя через сетевой фильтр (СФ), выпрямляется сетевым выпрямителем (СВ). После сглаживания пульсаций конденсатором Сф оно через первичную обмотку трансформатора подается на коллектор транзистора.

При появлении на базе VТ1 прямоугольного импульса, поступающего с выхода ШИМ-контроллера, транзистор откроется, отчего через него и через первичную обмотку трансформатора начнет идти возрастающий ток. От этого во вторичной обмотке трансформатора благодаря явлению самоиндукции тоже возникает импульс напряжения, который после выпрямления диодом VD преобразуется в постоянное напряжение на выходе устройства. Увеличение длительности импульса на базе транзистора приводит к увеличению выходного напряжения, и наоборот: уменьшение длительности снижает напряжение. Длительностью импульсов управляет напряжение обратной связи на входе ШИМ-контроллера.

Блок питания из электронного трансформатора: переделка своими руками

Сегодня многие электрические приборы и установки работают от аккумуляторов. Через определенное количество циклов зарядки ресурс батареи иссякает, и мощности для корректной работы прибора не хватает. В таком случае и возникает необходимость в замене батареи или переводе прибора на постоянное питание из сети. Для этого необходимо купить блок питания или сделать его самостоятельно. В этой статье рассказано, как сделать блок питания из электронного трансформатора.

Условия изготовления из электронного трансформатора

Переделка электротрансформатора в простой импульсный блок питания на практике выглядит гораздо сложнее, чем этот процесс описывается в теории. Кроме самого трансформатора, нужен выпрямительный мост для выходного тока и сглаживающий конденсатор. Если необходимо, то можно подключить и стабилизатор электрического напряжения и нагрузку.

Для получения БП трансформатор нужно переделывать

Важно! Подключение преобразователя напряжения не даст эффекта без нагрузки, или если ее будет недостаточно. Проверка этого факта осуществляется с помощью простого светодиода или лампы, подключенной к выпрямителю.

Чтобы светодиод не моргал, необходимо подключать выпрямительное устройство к дополнительной нагрузке, которая будет отбирать полезную мощность и выделять тепло. Такая схема используется только в том случае, когда нагрузка постоянна и подается через первичную цепь.

Если же для нагрузки требуются 12 В напряжения и более, то выходной электротрансформатор дополнительно перематывают. Есть и другие, менее ресурсозатратные и эффективные способы, не требующие разборки прибора.

Схема обычного электротрансформатора

Что можно сделать из электронного трансформатора

Электротрансформаторы активно применяются в:

  • электросетях. Установка такого устройства поможет контролировать перепады напряжения и повышать уровень безопасности;
  • источниках питания. Электротрансформатор часто применяется для питания электрических приборов, преобразуя напряжение сети в то, которое необходимо для работы техники;
  • импульсивных и измерительных приборах. С их помощью измеряют переменный ток и напряжение, а также передают неискаженные импульсы напряжения.
Красным показана дополнительная плата

Как переделать трансформатор в БП или зарядное устройство своими руками

Использовать обычный трансформатор в качестве блока питания нельзя, так как на его выходе получается переменное напряжение высоких частот. Кроме того, большинство подобных приборов не может функционировать без минимальных нагрузок, и им нужна доработка. Ниже рассказано, как сделать зарядное устройство из электронного трансформатора своими руками. При этом его не нужно разбирать, достаточно подключить к нему небольшую плату.

В основе платы лежит диод Шоттки, а также фильтрующий конденсатор. Также для запуска блока питания необходимо подключать к его выходу лампочку. Подбор диода выполняется по имеющимся параметрам выходного напряжения и максимального тока.

Важно! Максимальное обратное напряжение диода должно быть в несколько раз выше, чем напряжение выхода электрического трансформатора.

Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток. При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор.

Модернизация трансформаторного устройства

Как стабилизировать электронный трансформатор

Стабилизация происходит с помощью фильтров в виде фильтрующих конденсаторов. Также можно применять обычные проводные стабилизаторы, предназначенные для электронных трансформаторов высокой частоты. Подключаются они через триггеры вторичной обмотки. Можно подсоединять высокочастотный электронный трансформатор. Схема подключения предполагает использование триггеров с вторичной обмоткой. Электронные лампы нагрузки устанавливают на реле, а отрицательное сопротивление увеличивают фильтрами.

Двухполярный БП без усилителя

Сделать блок питания из простейшего электронного трансформатора не так просто, так как нужно определить все его характеристики, на которые следует опираться при выборе конденсаторов, фильтров и диодов. Но, если строго следовать схеме, что-нибудь до получится.

ЗАРЯДНОЕ ДЛЯ МОБИЛЬНОГО ИЗ ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА


   Электронный трансформатор – это ИБП, который в основном предназначен для питания галогенных ламп. Очень широко применялся и применяется для офисного освещения. Из магазина был куплен блок электронного трансформатора с мощностью 20 ватт. Производитель – китаец, фирма – TASCHIBRA (наверное, китайский бренд). Этот блок был куплен всего за пару долларов. Далее он был разобран, для оценки внутренней схемы. На сей раз китайцы потрудились на славу. Ну а если честно, все как в обычных блоках, только схема маломощная. По сути – двухтактный импульсный преобразователь, рабочая частота 17-25 кГц по заявлению производителя. Плата достаточно компактная. Выходная мощность устройства 50 ватт, в реальности не более 30. Схема оказалась более устойчивой, чем его дедушка с мощностью 150 ватт (тоже был куплен в том же магазине для испытаний). Принципиальная схема трансформатора.

   Теперь зададим себе такой вопрос – сколько стоит зарядное устройство для мобильного телефона? Оригинальные стоят достаточно дорого, в отдельных случаях до 10 – 20 долларов, китайские можно приобрести за 5$. Одновременно давайте не забудем, что этот блок мы купили за 1$, если брать оптом от 50 шт, то цена 0,7$, если заказать с Китая, то вообще копейки. Что нужно сделать, чтобы этот блок превратился в зарядное устройство для мобильника? Ровным счетом нужно добавить всего три компонента – диод, конденсатор и стабилизатор.

   На выходе трансформатора у нас образуется переменное напряжение с большой частотой, для начала его нужно выпрямить. В схеме можно использовать всего один диод, конечно на выходе напряжение будет не совсем постоянным, но такой метод применяется для выпрямления напряжения во всех ИБП. 

   Диод можно брать буквально любой импульсный с током 1 ампер и более – FR107, FR207 и им подобные. Конденсатор с напряжением 10 – 25 вольт от 47 до 1000 мкФ. Стабилизатор подойдет любой с напряжением 5 вольт, можно также использовать стабилитроны с напряжением стабилизации 5 – 6,5 вольт, оптимальное – 5,6 вольт.

   Как видите, схема устройства и технология переделки очень проста, с такой ничтожной доработкой мы получаем вполне хорошее ЗУ для своего мобильника.


Поделитесь полезными схемами


САМОДЕЛЬНЫЙ ИМПУЛЬСНЫЙ ПАЯЛЬНИК

    После нажатия на кнопку, паяльник разогревается в течении 5 секунд, то есть по принципу мы замкнули выводы вторичной обмотки трансформатора, в следствии которого проволока (жало) нагревается.




ШТЕКЕРНЫЕ НАКОНЕЧНИКИ
   Обзор полезного приспособления для проведения электромонтажных и ремонтных работ – штекерные наконечники для кабелей.

Зарядное устройство из электронного трансформатора своими руками

всем привет
вот решил переделать люстру с галогеновых лампочек на LED
причиной такого решения стало постоянное перегорание лампочек
в неделю менял 1-2 лампочки
а поскольку галогеновые лампочки еще и греются сильно
соответственно и патроны пришли в не годность
прикупил LED лампочек и патронов из поднебесной
снял люстру
заменил сперва патроны
вставил LED лампочки на место
включил иии… ничего не светится
начал разбираться в чем причина
и нашел причину
в таких люстрах на питание лампочек
стоят электронные трансформаторы

в таком виде как они есть не подходят для LED лампочек
так как у них на выходе переменное напряжение а надо постоянное
так же они не запускаются без нагрузки
и нет защиты от короткого замыкания
их надо менять (что не очень дешево) или дорабатывать (что стоит копейки)
и так начнем доработку
для начала нам нужна схема

Электронный трансформатор — регулировка мощности

Автор: Blaze, [email protected]
Опубликовано 30.10.2016
Создано при помощи КотоРед.

Электронный трансформатор — регулировка мощности.

В данной статье расскажу о давно набравшем популярность среди радиолюбителей устройстве, о котором упоминалось в радиожурналах ещё в 70-е годы. Уже в то время многие радиолюбители использовали для питания своих конструкций, таких как усилители мощности, автогенераторные импульсные источники питания (ИИП). Широкое распространение среди радиолюбителей получил автогенераторный полу-мостовой инвертор (Полумост). При использовании пропорционально-токового управления высоковольтными биполярными транзисторами, достигается хороший КПД преобразователя. В наше время такой автогенераторный полумост нашёл своё применение как замена крупногабаритного сетевого трансформатора. Данное устройство можно найти в любом хозяйственном или магазине электротоваров. Скрывается же наш простейший ИИП под названием –Электронный трансформатор.

Многие радиолюбителей конструируют на основе такого простейшего импульсника различные блоки питания, зарядные устройства, различные индукционные нагреватели, используют вместо привычного сетевого трансформатора для питания низковольтных паяльников и естественно для питания низковольтных ламп накаливания.

Чаще всего блок питания на основе такого устройства делается путём подключения к выходу электронного трансформатора двух-полупериодного или мостового выпрямителя на ультра-быстрых диодах, или диодах Шоттки.

После получения постоянного напряжения на выходе получившегося импульсного блока питания можно подключать различную нагрузку. Для запуска без нагрузки вводят ОС по напряжению, но не каждому хватает терпения и смекалки для настройки стабильной работы этой ОС.

Иногда может потребоваться регулировка выходного напряжения, например :

-регулировка оборотов микро-дрели

-регулировка температуры низковольтного паяльника

-регулировка яркости ламп накаливания (диммирование)

-регулировка тока заряда АКБ

Данные функции вполне реально осуществить на любом электронном трансформаторе (Feron, Taschibra и т.д.) и при любой мощности этого простого, дешёвого и компактного импульсника.

Давайте рассмотрим схему большинства таких электронных трансформаторов.

На транзисторах Q1 и Q2, конденсаторах C1, C2, также на силовом трансформаторе и коммутирующем T1, собран полу-мостовой автогенераторный инвертор. Выпрямленное сетевое напряжение поступает на делитель из конденсаторов C1,C2 и силовые транзисторы. Попеременно открываясь транзисторы поочерёдно проводят ток. Первичная обмотка силового трансформатора подключена к делителю из конденсаторов и к средней точке соединения транзисторов. При подаче запускающего импульса от цепи автозапуска, транзистор Q2 открывается и ток от конденсаторного делителя течёт через первичную обмотку силового трансформатора и транзистор Q2. После Q2закрывается, при этом открывается транзистор Q1, ток протекает от конденсаторного делителя, через первичную обмотку силового тр. И транзистор Q1. В конце каждого полупериода сети инвертор отключается и происходит перезапуск от дополнительной цепи.

На элементах R2,R3,D5,C3,D6 собрана цепь авто-запуска, которая в начале каждого полупериода сети запускает полу-мостовой автогенераторный ИИП. Конденсатор C3 заряжается до напряжения пробоя симметричного динистора D6, которое равно 32в. При достижении этого напряжения динистор DB3 открывается, C3 разряжается через динистор на базу Q2, происходит запуск схемы.

Изменяя время формирования запускающего импульса, можно добиться запуска инвертора как вначале, середине, так и к концу полу-периода . Тем самым становится возможной регулировка выходной мощности данного блока питания. Принцип регулировки здесь как и у симисторного регулятора мощности.(Фазовый метод регулировки).

В таком виде схема запуска не пригодна для корректной регулировки, её нужно немного изменить. Однако мне попался электронный трансформатор с более подходящей для регулировки схемой запуска. Потребовалось заменить резистор 470к на 100к и последовательно с ним припаял переменный резистор на 680к, конденсатор 10нф заменил на 68нф 250в.

Наткнулся случайно на данную схему, заработало всё с первого раза.

Жирным шрифтом указал используемые в своёт эл.трансе транзисторы и номинал используемого потенциометра.

Первый запуск как всегда делаем через лампу накаливания на 60вт и с мелкой нагрузкой. Без нагрузки страховочная лампа светиться недолжна.

Регулировка получилась плавной, галогенные лампочки можно регулировать от тусклого свечения нити, до максимума накала. Также переделка позволяет сделать простое зарядное устройство для автомобильного аккумулятора, с добавлением всего лишь выпрямителя на ультра-быстрых диодах или на сборке Шоттки.

Также есть видео, в котором переделываю данный электронный трансформатор под регулировку мощности + демонстрация данного устройства в работе (https://youtu.be/J7LbjTdBvAw).

Надеюсь многим придётся по душе данная переделка, которая совмещает в себе лёгкость и компактность электронного трансформатора,его мощьность и функцию симисторного регулятора мощности на борту.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Стоит такой трансформатор копейки — всего 2,5$, что в разы дешевле стоимости используемых в нем компонентов. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв. Трансформатор был довольно мощным (150 Ватт), поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, 105 и 150 ватт.

Планировалось доработать блок, поскольку это был ИБП — без каких-либо фильтров и защит.

После доработки должен был получиться мощный ИБП, основная особенность которого — компактность.
Для начала блок был снабжен сетевым фильтром.

Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных обмоток, каждая содержит по 35 витков провода 0.3мм. Только проходя через фильтр, напряжение подается на основную схему. Для сглаживания НЧ помех использовались конденсаторы на 0.1 мкФ (подобрать с напряжением 250-400 вольт). Светодиод показывает наличие сетевого напряжения.

На плате ничего не заменил, только на выходе стоит диодный выпрямитель с фильтрами. Диоды использовались Шоттки (от компьютерного блока питания). Для постройки моста нам нужны 4 диодные сборки, в схеме подключения ничего нового, она была приведена в одной из моих статьей (ссылка на статью http://cxem.net/sound/amps/amp180.php)

Регулятор напряжения

Была использована схема с применением всего одного транзистора. Эта самая простая схема из всех существующих, содержит пару компонентов и работает очень хорошо. Недостаток схемы — перегрев транзистора при больших нагрузках, но все не так уж и страшно. В схеме можно использовать любые мощные биполярные НЧ транзисторы обратной проводимости — КТ803,805,819,825,827 — рекомендую использовать последние три. Подстроечник можно брать с сопротивлением 1. 6.8к, дополнительный защитный резистор берем с мощностью 0,5-1 Ватт.
Регулятор готов, идем дальше.

Защита

Еще одна простая схема, по сути это защита от переплюсовки. Реле буквально любое на 10-15 Ампер. Диод тоже можно применить любой выпрямительный, с током 1 ампер и более (отлично справляется широко применяемый 1N4007). Светодиод сигнализирует о неправильной полярности. Эта система отключает напряжение, если на выходе КЗ или неправильно подключено проверяемое устройство. БП можно использовать для проверки работоспособности самодельных УНЧ, преобразователей, автомагнитол и т.п., при этом не нужно боятся, что вдруг перепутаете полярность питания.

В дальнейшем мы рассмотрим еще несколько простых переделок электронного трансформатора, ну а пока у нас есть простой, компактный и мощный ИБП, который можно использовать в качестве лабораторного блока для начинающего.

Часто задаваемые вопросы о трансформаторе преобразователя напряжения – трансформаторы преобразователя напряжения

14) Преобразователи напряжения преобразуют цикл (Гц)?

Все преобразователи напряжения преобразуют только напряжение, а не цикл, однако большинство приборов и электроники будут правильно работать с ними. В Северной Америке электричество на 110–120 вольт вырабатывается с частотой 60 Гц. (Циклы) Переменный ток. Большая часть зарубежной электроэнергии 220-240 Вольт вырабатывается при частоте 50 Гц.(Циклы) Переменный ток. Эта разница в циклах может привести к тому, что двигатель у вас будет 60 Гц. Североамериканский прибор работает немного медленнее при использовании на частоте 50 Гц. зарубежная электроэнергия. Эта разница в циклах также приведет к тому, что аналоговые часы и схемы синхронизации, которые используют переменный ток в качестве базы синхронизации, будут поддерживать неправильное время. На большую часть современного электронного оборудования, включая зарядные устройства, компьютеры, принтеры, стереосистемы, кассетные и CD-плееры, видеомагнитофоны / DVD-плееры и т. Д., Разница в циклах не повлияет.

15) Как выбрать трансформатор? На задней панели устройства вы должны найти этикетку с описанием его технических характеристик, включая мощность (Вт) или силу тока (A) устройства.

Пример. Если ваше устройство потребляет 80 Вт, вам потребуется трансформатор AC-100 (мощность 100 Вт) или выше.

Если вы хотите использовать 2 прибора на одном трансформаторе. Один из них потребляет 300 Вт, а другой 130 Вт, тогда вам понадобится AC-500 (мощность 500 Вт) или выше.

16) Как рассчитать мощность прибора? Если на этикетке не указана мощность, но вы знаете силу тока (А), вы можете рассчитать ее по следующей формуле:
А (А) x напряжение (В) = Ватт

Пример: 3 А x 220 В = 660 Вт
3 А x 110 В = 330 Вт

17) В чем разница между регуляторами напряжения серво и реле?

Регуляторы напряжения серво стабилизируют напряжение, регулируя трансформатор на желаемое выходное напряжение.Это обеспечивает высочайшую точность стабилизации напряжения. Тип реле все сделано электронным, поэтому точность меньше.

Бортовой преобразователь постоянного тока в постоянный ток электромобиля на основе синхронного выпрямления и анализа характеристик

Преобразователь постоянного тока в постоянный является основной частью двухступенчатого бортового зарядного устройства электромобиля. В настоящее время полномостовой преобразователь постоянного тока в постоянный с плавным переключением фаз со сдвигом фазы имеет такие проблемы, как трудности с коммутацией отстающего плеча, колебания напряжения на вторичной стороне трансформатора и низкий КПД.В данной статье предлагается полномостовой преобразователь постоянного тока в постоянный с двумя фиксирующими диодами и синхронным выпрямлением. Фиксирующие диоды используются для подавления колебаний напряжения вторичной обмотки трансформатора и обеспечения энергии коммутации отстающей ветви. Синхронное выпрямление снижает потери коммутирующего устройства. Анализируются принцип работы и способ управления преобразователем постоянного тока в постоянный, рассчитываются потери коммутирующего устройства. Результаты моделирования и экспериментов показывают, что по сравнению с традиционным преобразователем постоянного тока в постоянный импульс напряжения на вторичной стороне трансформатора меньше, КПД выше, а программный переключатель может быть реализован в широком диапазоне нагрузок, что удовлетворяет требованиям. требование быстрой зарядки автомобильных аккумуляторов.

1. Введение

Электромобили (электромобили) быстро развивались благодаря своей высокой эффективности и отсутствию загрязнения окружающей среды. Увеличение количества электромобилей увеличивает технические требования к бортовым зарядным устройствам [1]. Из-за ограниченного внутреннего пространства бортовое зарядное устройство (OBC) должно отвечать требованиям высокой плотности мощности, высокой эффективности зарядки и хорошего эффекта рассеивания тепла [2]. Двухступенчатый OBC включает преобразователь PFC и изолированный преобразователь постоянного тока в постоянный.Первый преобразует переменный ток в постоянный; последний обеспечивает широкий диапазон постоянного тока для зарядки автомобильных аккумуляторов. Цели исследования бортовых преобразователей электромобилей в основном сосредоточены на повышении эксплуатационной эффективности и сокращении объема [3]. Исследования PFC являются относительно зрелыми, а существующие исследования достигли эффективности более 98% [4]. Следовательно, его общий КПД и удельная мощность больше зависят от конструкции и работы преобразователя постоянного тока. В настоящее время высокочастотный импульсный преобразователь широко используется в преобразователе постоянного тока в постоянный.Частота переключения обычно находится на уровне десятков кГц [5]. Хотя увеличение частоты переключения значительно уменьшает объем оборудования, оно также вызывает такие проблемы, как увеличение потерь переключения, снижение эффективности и увеличение электромагнитных помех. Для решения этих проблем появились технологии мягкой коммутации, такие как ZVS, ZCS и LLC [6, 7]. Применение этой технологии в традиционной топологии импульсного источника питания может снизить коммутационные потери и шумовые помехи устройств переключения мощности в высокочастотном состоянии преобразователя, что может дополнительно повысить эффективность и плотность мощности, а также уменьшить объем и вес преобразователя.

Традиционные топологии преобразователей постоянного тока, используемых в OBC, включают полномостовую схему ШИМ и полномостовую резонансную схему (включая LLC-резонанс и последовательный резонанс) [8]. Преобразователь LLC имеет преимущества в виде скачков напряжения без отключения и небольшой мощности циркулирующего тока. В сочетании с кривой зарядки аккумуляторных батарей автомобиля диапазон выходного напряжения преобразователя постоянного тока в постоянный шире, частота переключения преобразователя будет сильно отклоняться от резонансной частоты, и потери в системе увеличатся [9].Схема полномостовой ШИМ может адаптироваться к широкому диапазону выходного напряжения и фиксированной частоте переключения, но традиционный полномостовой преобразователь ШИМ имеет большую циркуляцию реактивной мощности и не может обеспечить мягкое переключение при небольшой нагрузке [10]. По этой причине предлагается фазосдвигающий полномостовой преобразователь с регулируемым вспомогательным током, который реализует плавное переключение переключаемых транзисторов при полной нагрузке, но его стоимость высока, а управление затруднено [11]. Потери обратного восстановления выпрямительного диода можно уменьшить, используя фазосдвигающее управление вторичной обмоткой трансформатора, но эффективность при полной нагрузке низка [12].В этой статье предлагается усовершенствованный полномостовой преобразователь постоянного тока в постоянный с фазовым сдвигом ZVS. Два ограничивающих диода используются для устранения колебаний напряжения вторичного выпрямителя. Синхронный выпрямитель (SR) используется для уменьшения потерь в системе. Наконец, в лаборатории создается экспериментальный образец.

2. Бортовой способ зарядки электромобилей
2.1. Модель батареи

В настоящее время существуют трехкомпонентные литиевые батареи и литий-железо-фосфатные батареи для электромобилей.Трехкомпонентные литиевые батареи имеют высокую плотность энергии, но низкий ток заряда и быстрое затухание емкости, которые в основном используются в электромобилях Tesla. Литий-железо-фосфатные батареи широко используются во многих электромобилях из-за их высокого тока заряда-разряда, медленного затухания емкости и высокой безопасности. Модель эквивалентной схемы Тевенина литий-железо-фосфатной батареи показана на рисунке 1 [13], где В куб.см – напряжение холостого хода, R e – внутреннее сопротивление батареи, R p – поляризационное сопротивление, а C p – поляризационная емкость.Эквивалентное сопротивление Z o батарей составляет


2.2. Структура схемы

В соответствии с различной топологией преобразователя зарядного устройства, OBC имеет одноступенчатую структуру и двухступенчатую структуру. Одноступенчатая структура имеет характеристики простой конструкции и низкой стоимости, но имеет только одноступенчатое преобразование, которое ограничивает диапазон выходного напряжения, а влияние коэффициента мощности, подавления гармоник тока и эффективности преобразования не идеальны. [14].Учитывая подавление гармоник входного тока, повышение коэффициента мощности и способность обработки мощности, преобразователь переменного тока в постоянный делится на преобразователь переменного тока в постоянный и преобразователь постоянного тока в постоянный, как показано на рисунке 2. Прежний преобразователь переменного тока в постоянный обычно использует схему повышения мощности для коррекции коэффициента мощности, в то время как последний преобразователь постоянного тока обычно использует изолирующий преобразователь [15]. Обеспечивая безопасность преобразователя, он обеспечивает постоянный ток с малым коэффициентом пульсаций нагрузки. В статье исследуется двухступенчатое автомобильное зарядное устройство.


2.3. Стратегия зарядки

Аккумуляторы, установленные на транспортных средствах, являются источником энергии для электромобилей, поэтому для продвижения электромобилей очень важно использовать методы зарядки, которые могут обеспечить быструю зарядку и меньший ущерб для срока службы батарей [16]. В настоящее время методы зарядки аккумуляторов в основном включают метод зарядки постоянным током, метод зарядки постоянным напряжением и метод ступенчатой ​​зарядки [17]. Зарядка постоянным током проста в использовании и легко контролируется, но если зарядный ток слишком мал, время зарядки будет слишком большим.Если выбранный зарядный ток слишком велик, на более позднем этапе зарядки легко перезарядить, что окажет большое влияние на пластину аккумулятора, что повлияет на срок службы аккумулятора [18]. Метод зарядки с постоянным напряжением также прост в использовании и позволяет избежать проблемы перезарядки аккумулятора на более поздней стадии зарядки. Однако на ранней стадии зарядки из-за более низкой электродвижущей силы на обоих концах батареи зарядный ток больше. Электрический ток приведет к изгибу пластины аккумулятора и быстрому повышению температуры аккумулятора, что повлияет на срок его службы.Кроме того, если выбранное напряжение зарядки слишком низкое, это приведет к недостаточной зарядке аккумулятора и сокращению срока его службы [19]. Метод ступенчатой ​​зарядки обычно включает двухступенчатый метод зарядки и трехступенчатый метод зарядки [20]. Двухступенчатый метод зарядки означает зарядку постоянным током перед зарядкой аккумулятора. Когда напряжение на обоих концах батареи достигает определенной амплитуды, она переключается на зарядку с постоянным напряжением. Кривая зарядки показана на рисунке 3.Двухступенчатый метод зарядки сочетает в себе преимущества метода зарядки постоянным током и метода зарядки постоянным напряжением, позволяет избежать проблем, связанных с чрезмерным зарядным током на ранней стадии и легкой перезарядкой на более поздней стадии, и имеет высокую эффективность зарядки, которая может соответствовать зарядке. спрос на литий-железо-фосфатные батареи. В данной статье принят двухступенчатый метод зарядки.


При зарядке в режиме постоянного тока выходное напряжение DC / DC преобразователя автомобильного зарядного устройства изменяется в широком диапазоне.В режиме постоянного напряжения выходной ток преобразователя уменьшается от полной нагрузки до нуля. Таким образом, конструкция бортового блока питания должна отвечать следующим требованиям: регулировка выходного напряжения в широком диапазоне; плавное переключение в широком диапазоне нагрузок; высокие требования к удельной мощности и напряжению и току.

2.4. Метод управления переключением постоянного тока и постоянного напряжения

Метод управления зарядкой с переключением постоянного тока и постоянного напряжения показан на рисунке 4.В каскаде постоянного напряжения выходное напряжение сравнивается с опорным напряжением. Ошибка определяется ПИ-регулятором, и получается сигнал модуляции WCV. Аналогичным образом может быть получен сигнал модуляции WCV.


Режим переключения – «принять меньшее значение». На начальном этапе зарядки эквивалентное внутреннее сопротивление аккумулятора невелико, а зарядный ток велик. В это время WCC

3. Принцип действия ШИМ преобразователя постоянного тока в постоянный
3.1. Топология главной цепи

Традиционная полная мостовая топология главной цепи ZVS показана на рисунке 5. В в является входным источником питания постоянного тока. Коммутационные устройства (в том числе и) образуют инверторный мост, резонансный индуктор, T – высокочастотный трансформатор, D 1 и D 2 образуют мост выпрямителя высокой частоты, а L f и C f образуют фильтр высоких частот.Преобразователь имеет такие проблемы, как сложность коммутации отстающей ветви, колебания напряжения на вторичной стороне трансформатора и низкий КПД.


Улучшенная схема ZVS с фазосдвигающей полной мостовой схемой с ограничивающими диодами и рабочими формами сигналов показана на рисунке 6. Ограничивающие диоды D 5 и D 6 добавлены для подавления колебаний напряжения выпрямителя и увеличения диапазон мягкого переключения; синхронное выпрямление применяется ко вторичной обмотке трансформатора, сопротивление проводимости полевого МОП-транзистора меньше, чем у диода, и это может повысить эффективность схемы.

3.2. Анализ рабочего процесса

Рабочий процесс сдвинутого по фазе полного моста ZVS DC / DC преобразователя можно найти в [21], который здесь не обсуждается. Принцип подавления колебаний напряжения вторичной обмотки трансформатора подробно поясняется на Рисунке 7.

Во время [] эквивалентная схема показана на Рисунке 7 (a). При ток нагрузки весь протекает через Q 6 , а ток, проходящий через Q 5 , падает до нуля и одновременно заряжает переходной конденсатор C 5 из Q 5 .После, резонансная индуктивность и резонанс C 5 , напряжения SR устройства Q 5 и вторичной стороны трансформатора, соответственно, следующие:

Выражение показывает, что напряжение на Выходное выпрямительное устройство генерирует одинаковые колебания, когда не добавляются ограничивающие диоды. Его пиковое значение составляет 4/ n . Из-за эффекта демпфирования в процессе резонанса напряжение на выходном выпрямительном устройстве будет постепенно уменьшаться до 2/ n , а вторичное напряжение трансформатора будет постепенно уменьшаться до / n .

Во время [] эквивалентная схема показана на рисунке 7 (b). В, поскольку обратный зарядный ток переходного конденсатора Q 5 исчезает, ток больше, чем ток, преобразованный в первичный, поэтому быстро уменьшается, пока два не станут равными. Поскольку ток индуктивности не может изменяться,>. Напряжение нейтральной точки двух ограничивающих диодов равно нулю, D 6 включен, а напряжение C 5 ограничено до 2 / n ; то есть = 2 / n .По сравнению с выражением, колебания напряжения Q 5 подавлены. В этот момент крутизна нарастания составляет

At, =, ток, протекающий через ограничивающий диод D 6 , падает до нуля, и D 6 отключается естественным образом. Потом и увеличивайте на такой же крутизне. В это время мощность передается с первичной стороны на вторичную.

3.3. Выбор логики управления для устройств SR

В соответствии с формами управляющих сигналов Q 1 ~ Q 4 показаны текущие и управляющие формы сигналов Q 5 ~ Q 6 на рисунке 8.Управляющие сигналы Q 5 и Q 6 могут быть получены следующими тремя способами: (1) Та же логика управления, что и отстающая ветвь Q 3 ( Q 2 ) (2) И логика: управляющие сигналы Q 1 ( Q 4 ) и Q 3 ( Q 2 ) выполняются, и логика (3) Или логика: управляющие сигналы Q 1 ( Q 4 ) и Q 3 ( Q 2 ) выполняются или логические


Когда устройство SR не имеет управляющего сигнала, ток течет через его основной диод, но падение напряжения проводимости основного диода больше, чем падение напряжения проводимости в проводящем канале, что приводит к увеличению потерь проводимости.Следовательно, ток должен протекать по проводящему каналу как можно дальше, а не через основной диод. Для сравнения: отношение времени логики или является самым высоким, а общие потери проводимости – самыми низкими, поэтому логика используется для получения синхронных управляющих сигналов.

4. Расчет потерь фазосдвигающего преобразователя постоянного / постоянного тока ZVS с полным мостом

В соответствии с требованиями к применению встроенного зарядного устройства, параметры и модели устройства показаны в таблице 1.


Устройство Модель параметр

Переключающее устройство SPP20N60CFD 325A / 1.7 кВт
Цепь привода 56PR3362 100 кГц
Зажимной диод MURS360T3G 3A / 600V
SR устройство SR устройство -17 100 кГц

4.1. Модель потерь полевого МОП-транзистора

Потери в МОП-транзисторах в основном рассматриваются с четырех аспектов: коммутационные потери, потери проводимости, потери обратного восстановления и управляющие потери.Эквивалентная модель МОП-транзистора показана на рисунке 9, где – сопротивления затвора,, и, – конденсаторы между электродами МОП-транзистора, соответственно. Для упрощения анализа паразитная индуктивность МОП-транзисторов не рассматривается.


Поскольку процесс выключения противоположен процессу запуска, обсуждается только процесс запуска, как показано на рисунке 10. В, напряжение затвора добавляется к МОП-транзистору. В течение ~, заряжается, повышается и достигает порогового напряжения включения МОП-транзистора при.Во время этого МОП-транзистор включается, и ток стока начинает расти. При ток стока возрастает до номинального значения I d , а повышается до напряжения платформы Миллера. Во время зарядки начинается зарядка, напряжение стока уменьшается, а напряжение затвора остается неизменным. В течение этого времени напряжение затвора начинает заряжаться, и в то же время напряжение затвора продолжает расти. При, =, МОП-транзистор полностью открыт.


4.2. Расчет убытков
4.2.1. Предварительный расчет потери мощности

Потери полевого МОП-транзистора во время процесса запуска выглядят следующим образом:

Точно так же процесс выключения аналогичен процессу запуска, поэтому потери при переключении следующие:

Проводимость потеря полевого МОП-транзистора составляет

, где – сопротивление полевого МОП-транзистора в открытом состоянии.

Потери обратного восстановления полевого МОП-транзистора равны

, где – заряд обратного восстановления основного диода.

Потери управления полевым МОП-транзистором равны

, где – заряд затвора полевого МОП-транзистора.

4.2.2. Расчет потерь после каскада

Чтобы уменьшить потери проводимости в цепи синхронного выпрямителя после каскада, два транзистора SR соединены параллельно. Суммарные потери проводимости схемы синхронного выпрямителя после каскада составляют 1/2 для одиночного транзистора:

Потери проводимости тока, протекающего через основной диод, следующие: где и – падение напряжения в открытом состоянии и на- состояние сопротивления корпуса диода соответственно.

Тогда общие потери проводимости каждого полевого МОП-транзистора равны

. Согласно параметрам выбора в таблице 1 и приведенному выше анализу, потери предварительного и последующего каскада могут быть рассчитаны, как показано в таблице 2.

9029 DC преобразователь мощности Традиционный

Конфигурация цепи Потери Значение

Потеря диодного выпрямителя 36 Вт

Улучшенный преобразователь постоянного тока в постоянный Потеря мощности на предварительном каскаде 24 Вт

Согласно таблице 2, значения КПД двух преобразователей показаны на рисунке 11.Можно сделать вывод, что эффективность улучшенного преобразователя постоянного тока в постоянный на 5% выше, чем у традиционного преобразователя постоянного тока в постоянный.


5. Моделирование и эксперимент

Основные параметры полномостового преобразователя постоянного тока в постоянный ток со сдвигом фазы для OBC показаны в таблице 3.

5,1 . Моделирование

Основные формы сигналов преобразователя постоянного / постоянного тока показаны на рисунке 12, который, в свою очередь, представляет собой первичный ток трансформатора, ток резонансной индуктивности, токи двух ограничивающих диодов i D5 и i D6 , первичное напряжение трансформатора и вторичное напряжение трансформатора.Видно, что скачка вторичного напряжения трансформатора практически нет. В то же время фиксирующий диод может включаться только один раз за цикл, что снижает потери проводимости, вызванные фиксирующим диодом, это показывает рациональность конструкции параметров моделирования.


Частично усиленные формы сигналов с ограничивающими диодами и без них показаны на рисунке 13. По сравнению с рисунками 13 (a) и 13 (b), колебания напряжения на обоих концах вторичного напряжения трансформатора и трубки SR Q 5 подавляется добавлением ограничивающего диода.

Формы сигналов напряжения сток-исток, напряжения возбуждения и тока стока отстающего плеча Q3 при номинальной нагрузке и 1/5 номинальной нагрузки показаны на рисунках 14 (a) и 14 (b) соответственно. Можно видеть, что при номинальной нагрузке и 1/5 номинальной выходной мощности условия Q 3 были уменьшены до нуля до появления, и может быть реализовано мягкое переключение при нулевом напряжении.

5.2. Эксперимент

Согласно параметрам таблицы 3 испытательный стенд бортового зарядного устройства мощностью 600 Вт спроектирован так, как показано на рисунке 15.Контроллер полуфизического моделирования RT-LAB выполняет управление постоянным напряжением-постоянным током на сигнале, выбранном датчиком тока / напряжения Холла, выходной аналоговый управляющий сигнал В c подключен к клемме управления фазовым сдвигом фазы. Микросхема управления сдвигом UCC3895, и основная схема управления ШИМ-волной фазового сдвига.


Первичное напряжение В AB , первичный ток i p , и формы сигналов ШИМ Q 1 и Q 3 показаны на рисунке 16.Эти формы сигналов согласуются с теоретическим анализом и моделированием, которые подтверждают рациональность расчета параметров.


Напряжение возбуждения В GS и напряжение стока В DS Формы сигналов отстающего плеча Q3 при номинальной нагрузке и 1/5 номинальной нагрузки показаны на рисунках 17 (a) –17 (б) соответственно. Можно видеть, что Q 3 может обеспечить плавное переключение при номинальной нагрузке и нагрузке 1/5.

Формы сигналов выходного напряжения В o и выходного тока I o показаны на Рисунке 18 (a) при изменении тока нагрузки от 0 A до 40 A, а формы сигналов выходное напряжение В o и выходной ток I o показаны на Рисунке 18 (b), когда ток нагрузки изменяется с 40 A на 0 A. Анализ показывает, что значение люфта выходное напряжение меньше 0.4 В, который обладает хорошей защитой от помех и динамическими характеристиками.


(a) Мутация нагрузки 0% ~ 80%
(b) Мутация нагрузки 80% ~ 0%
(a) Мутация нагрузки 0% ~ 80%
(b) 80% ~ 0% мутация нагрузки

Взаимосвязь между КПД и нагрузкой при различных входных напряжениях показана на рисунке 19. Можно видеть, что КПД может достигать 95% в диапазоне номинальной нагрузки 20% -100%. На эффективность улучшенного OBC мало влияет изменение входного напряжения.


6. Заключение

Нацеленность на проблемы, существующие в двухступенчатом электромостовом преобразователе постоянного тока с плавным переключением фаз и полномостовом переключении OBC, полномостовом преобразователе постоянного тока в постоянный с фиксирующим диодом и синхронным выпрямлением предлагается. Добавлены фиксирующие диоды для реализации широкого диапазона мягкого переключения и устранения колебаний напряжения вторичного выпрямителя. Технология синхронного выпрямления вторичной обмотки трансформатора используется для уменьшения высокочастотных выпрямительных потерь.Проанализирован принцип работы и способ управления преобразователем постоянного тока в постоянный, рассчитаны потери коммутирующего устройства. Результаты моделирования и экспериментов показывают, что колебания напряжения вторичной стороны трансформатора удваиваются, а КПД OBC достигает 95% при номинальной нагрузке 20–100%, что соответствует требованиям к применению бортового зарядного устройства.

Доступность данных

Данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

Конфликты интересов

Авторы подтверждают, что содержание данной статьи не имеет конфликта интересов.

Выражение признательности

Авторы выражают признательность за помощь или поддержку со стороны коллег и финансовую поддержку со стороны группы инновационных технологий по устройству силовой электроники и управления шахтами провинции Хэнань, ключевые исследовательские проекты высших учебных заведений провинции Хэнань, грант №. 18A410001, и докторский фонд Хэнаньского политехнического университета, грант № B2017-19.

Преобразователи, адаптеры и трансформаторы, о боже! – Справочник по иностранной электроэнергии

В наш век проводной связи путешественники хотят, чтобы их подключили к электросети, будь то компьютер, MP3-плеер или просто фен.

И даже если большинство американцев знают, что им может потребоваться какой-либо адаптер, преобразователь или трансформатор для использования своих электрических устройств за границей, они могут не знать, когда именно использовать.

Начнем с терминов.

Есть два основных типа оборудования, которое может вам понадобиться за границей с точки зрения электричества.

Один – это переходник, а другой – преобразователь или трансформатор.

Штепсельный адаптер обычно небольшой, недорогой и простой: он в основном позволяет вашей американской вилке вставляться в розетку страны, которую вы посещаете, идея состоит в том, что в вашем электрическом приборе уже есть встроенный преобразователь или трансформатор, или что вы будете использовать отдельный преобразователь или трансформатор с адаптером.

ВЫБОР ПРАВИЛЬНОГО ПЕРЕХОДНИКА

К счастью для путешественников по всему миру, широкий выбор переходников (а также преобразователей) легко доступен в Интернете, а также в большинстве магазинов электроники, таких как Radio Shack, Best Buy и даже Wal-Mart. Поскольку для заграничных поездок вам почти всегда понадобится переходник, поэтому приятно знать, что они дешевые. Насколько дешево? Как насчет 99 центов?

Теперь имейте в виду, что цена указана за самый простой доступный адаптер, который работает только с одним типом вилки и розетки.Но если вы едете только в одно место и знаете, что встретите только один тип вилки, это определенно самый дешевый способ.

Если вы думаете, что ваши путешествия могут привести вас в более чем одно место (или, точнее, туда, где есть более одного типа вилок), универсальные адаптеры для вилок или наборы адаптеров по-прежнему довольно дешевы. Например, BestBuy, CompUSA и Circuit City предлагают различные типы универсальных адаптеров по цене 24,99 доллара США.

Теперь помните, что если ваше электронное устройство может работать с диапазоном напряжений или может переключаться между ними, переходник для вилки может быть всем, что вам нужно для разных стран.

Но если этого не произойдет, или если вы планируете пробыть там более недели или двух [длительное использование при напряжении, отличном от ожидаемого, может привести к ухудшению некоторых устройств], преобразователь напряжения – или для некоторого оборудования, трансформер – это то, что вам нужно.

Если вы собираетесь путешествовать в страну, где электроснабжение нестабильно, хорошей идеей может быть использование устройства защиты от перенапряжения в составе вашего адаптера или преобразователя. Это также может быть немного дополнительным спокойствием, если вы путешествуете с дорогой электроникой.

ПРЕОБРАЗОВАТЕЛИ V. ТРАНСФОРМАТОРЫ

Преобразователи и трансформаторы преобразуют или преобразуют электрическое напряжение, подаваемое в вилку, в любой уровень, подходящий для подключенного к электросети прибора. Разница между ними заключается в том, как устройство фактически преобразует ток напряжения. Например, чтобы снизить напряжение с 220 В до 110 В, преобразователь разрезает «синусоидальные волны» (форма всплесков переменного тока) пополам, в то время как трансформатор изменяет длину синусоидальных волн.

Это очень важное различие, потому что электронным устройствам, таким как компьютеры или принтеры, для работы требуется полная синусоида, и поэтому они могут работать только с трансформатором.

С другой стороны, электрические приборы, такие как фен, работают либо с полной, либо с полусинусоидальной волной, поэтому могут работать либо с преобразователем, либо с трансформатором. Имейте в виду, что трансформаторы обычно намного больше, тяжелее и дороже преобразователей.

Итак, если вы собираетесь приобрести электронное устройство, такое как компьютер, и знаете, что собираетесь путешествовать, вам следует подумать о покупке устройства с двойным напряжением, если это возможно, чтобы избежать необходимости таскать с собой массивный трансформатор за границу.

Помните, как электрические приборы, так и электронные устройства могут работать с трансформатором (но последний не работает с преобразователем), поэтому в случае сомнений используйте трансформатор.

В зависимости от устройства, которое вы хотите использовать, вам может вообще не понадобиться преобразователь или трансформатор, но, вероятно, вам всегда понадобится переходник. Посмотрите на заднюю или боковую часть устройства, которое хотите взять с собой. Если он указывает диапазон допустимых напряжений, например 110-240 В, он должен быть в состоянии выдерживать основные напряжения: 110 В и 220 В или новый европейский стандарт 230 В.

На некоторых предметах (даже на фене) может быть переключатель для переключения между двумя основными стандартами.

В другом электронном оборудовании, таком как большинство радиочасов, бритв и зарядных устройств для сотовых телефонов, будет указано только одно напряжение (или, возможно, вообще не будет), и для него потребуется трансформатор.

Список напряжений, частот и вилок для каждой страны см. На:
KROPLA.com

Вот два других списка, с которыми вы можете перепроверить:
VOLTAGE VALET.com

POWERSTREAM.com

Или для получения информации о напряжении, адаптерах и герцах, необходимых для конкретной страны, в которую вы путешествуете, посетите:

WHATPLUG.info

Кроме того, вы можете увидеть, что некоторые из этих сайтов продают бытовую технику с двойным напряжением, например утюги и фены, что может иметь смысл для тех, кто часто путешествует.

Вообще говоря, в Северной и Южной Америке (за исключением некоторых частей Латинской Америки) и большей части Карибского бассейна используется 120 В, в то время как в остальном мире используется 220–230 В.Просто помните, что источники питания могут отличаться в разных частях одной страны – вероятным ярким примером является Бразилия – с несколькими разными напряжениями и вилками, используемыми в разных частях страны.

Что касается напряжения, то небольшое отклонение допустимо и даже ожидаемо, поэтому, например, многие устройства на 220 В подойдут для розеток на 230 или 240 В. То же самое для 110 В, 115 В и 120 В.

ВЫБОР ПРАВИЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ / ТРАНСФОРМАТОРА

Если ваше электронное устройство не имеет двойного напряжения, вам понадобится преобразователь или трансформатор.Их можно найти в большом количестве в крупных розничных магазинах как в Интернете, так и за его пределами. Независимо от того, какой преобразователь или трансформатор вы в конечном итоге выберете, решающим фактором здесь является обеспечение того, чтобы тот, который вы выбрали, имел надлежащую мощность.

Здесь нужно иметь в виду компромисс. Как правило, чем выше мощность трансформатора, тем он больше, тяжелее и дороже. Так что вам захочется приобрести такой, который сможет выдерживать мощность выбранного вами прибора, но при этом не будет излишне большим.

Невозможно переоценить важность этой части процесса: уровень мощности, с которым работает преобразователь / трансформатор, имеет решающее значение для обеспечения безопасной работы вашей электроники. На всякий случай вам понадобится преобразователь, способный обрабатывать как минимум на 10-20% больше, чем устройство с максимальной мощностью, которое вы планируете использовать. Так что, если вы планируете взять с собой фен мощностью 1400 Вт, вам понадобится фен мощностью не менее 1600 Вт.

Имейте в виду, что если вы собираетесь в Японию, вам понадобится специальный японский трансформатор, так как это единственная крупная страна, использующая стандарт 100 В.

НА БОРТУ КРУИЗНЫХ СУДОВ

Большинство круизных лайнеров сегодня предлагают два стандартных типа напряжения и вилки (обычно американские и европейские), чтобы удовлетворить путешественников со всего мира. Это может не относиться к более экспедиционным видам путешествий (например, в Антарктиду), где корабли не были предназначены исключительно для размещения международных путешественников. Поэтому не забудьте заранее узнать о возможностях вашего конкретного корабля – вы можете узнать, что вам не понадобится ничего, включая переходники, преобразователи или трансформаторы.

ДОЛГОСРОЧНОЕ ИСПОЛЬЗОВАНИЕ

В зависимости от того, как долго вы планируете использовать электронику за границей, может иметь смысл пойти дальше и купить то, что вам нужно в самой стране, а не возиться с преобразователями, трансформаторами или адаптерами вообще.

Очевидно, это имеет больше смысла для одних устройств, чем для других. Новый ноутбук может быть немного дороже для трехнедельной прогулки по Европе, но новый фен может быть, например, дешевле, чем новый преобразователь.

Так что не бойтесь везти электронику за границу, просто будьте готовы.

Мэтью Калькара для PeterGreenberg.com .

Ознакомьтесь с нашим обзором туристических гаджетов: больше вещей в ручной клади.

И не пропустите весь наш раздел, посвященный гаджетам для путешествий.

Преобразователь напряжения

против дорожного адаптера: как они работают?

Поддержите TFG, используя ссылки в наших статьях для покупок. Мы получаем небольшую комиссию (без каких-либо дополнительных затрат для вас), чтобы мы могли продолжать создавать полезный бесплатный контент.Как партнер Amazon, мы зарабатываем на соответствующих покупках на Amazon в дополнение к другим розничным продавцам, указанным в блоге. Спасибо, мы ценим вашу поддержку!

Едете за границу? Для работы с электроникой вам понадобится дорожный адаптер. Однако попытка понять разницу между дорожными адаптерами, преобразователями и преобразователем напряжения чрезвычайно сбивает с толку. Мы здесь, чтобы помочь! Прочтите это простое руководство по преобразователям напряжения и дорожным адаптерам, чтобы получить упрощенное объяснение!



Есть две очень важные вещи, которые вам нужно знать о путешествиях с электроникой.Во-первых, вилка, которую вы используете дома, может не работать в розетке во время путешествий, потому что в разных странах разные формы вилок.

Во-вторых, вы не можете использовать часть своей электроники во время путешествий, если это не с двойным напряжением , потому что в таких странах, как США и Канада, есть электричество 120 В, а в европейских странах – 220 В.

Один считыватель прекрасно суммирует разницу: «Проще говоря, адаптер позволяет вашему устройству вставляться в отверстия.Преобразователь изменяет входящую в него электрическую мощность ». Просто помните, что это два разных устройства (нет такого понятия, как переходник для дорожного адаптера!) Вот когда вам нужно узнать разницу между адаптером и преобразователем. Здесь мы объясняем популярный вопрос об адаптере и конвертере.

Вот краткое руководство по дорожным адаптерам, преобразователям и напряжению:

Лучший адаптер для путешествий с портами USB: Международный адаптер для нескольких стран

Что такое напряжение?

Напряжение относится к электричеству; В разных странах есть разные типы электричества, а это значит, что вам нужно учитывать преобразование напряжения.Это означает, что ваша электроника имеет такое же напряжение, как и в той стране, в которой вы ее купили, поэтому, если вы перевезете ее в другую страну, она может не работать.

Если вы подключите устройство на 120 В к розетке, рассчитанной на 220 В (или наоборот), вы перегорите предохранитель в своем устройстве и, возможно, в здании.

Инструменты для волос, такие как фены, палочки, щипцы для завивки и выпрямители, потребляют большое количество электроэнергии, поэтому особенно важно, чтобы они использовались с правильным напряжением.

Чтобы путешествовать с электроникой (и инструментами для волос), вам понадобятся две вещи: , чтобы устройство было двойным напряжением и , вам также понадобится дорожный адаптер, чтобы ваша вилка могла вставляться в розетки другого страна. Или вам нужен преобразователь напряжения, о котором мы поговорим позже.

Посетите этот веб-сайт, чтобы увидеть полный список напряжений по странам.

Лучший выпрямитель для волос с двойным напряжением: Мини-выпрямитель BaBylissPRO Nano Titanium Mini

Что такое двойное напряжение?

Некоторые электронные устройства разработаны таким образом, чтобы их можно было использовать в разных странах.Это означает, что они будут обозначены как «двойное напряжение». Электроника с двойным напряжением имеет два варианта: 110–120 В и 220–240 В. Они идеально подходят для путешествий, потому что их можно использовать как дома, так и за границей.

В некоторых электронных устройствах, например в новых моделях Macbook и iPhone, имеется двойное напряжение, которое автоматически регулируется в зависимости от места назначения. Однако вам может потребоваться отрегулировать напряжение вручную, переместив внешний переключатель в определенных предметах, например, в инструментах для волос.

Если в вашем устройстве нет двойного напряжения, лучше оставить его дома.Однако большинство современных устройств, таких как телефоны и ноутбуки, уже имеют встроенную функцию двойного напряжения.

Лучший адаптер для путешествий с несколькими портами питания: Комплекты адаптеров питания Poweradd для путешествий

Как работают дорожные адаптеры?

Дорожный адаптер (иногда называемый переходником для дорожных вилок) позволяет подключать электронику к стене с помощью розеток, отличных от той, которая используется в вашей стране.Не во всех странах используются вилки одного и того же типа, поэтому я рекомендую вам купить международный адаптер.

В США используется вилка с двумя плоскими вертикальными штырями, тогда как в Великобритании используется вилка с одним верхним вертикальным штырем и двумя нижними горизонтальными штырями. Вам понадобится дорожный адаптер, чтобы вилка подходила к розетке другой страны.

Вы можете купить отдельные адаптеры для путешествий для каждой страны, которую планируете посетить, или просто купить один адаптер для путешествий за границу, который будет работать в большинстве стран мира.

Важно отметить, что люди часто путают термины «дорожный адаптер» и «дорожный преобразователь», но это , а не .

Посетите это руководство по розеткам для путешественников, чтобы увидеть полный список вилок и розеток по странам.

Дорожный адаптер только для USB: Дорожный USB-адаптер

Дорожный адаптер питания или европейский адаптер-преобразователь вставляет вилку в розетку, в то время как дорожные преобразователи изменяют электрический ток со 120 В на 220 В или наоборот.Единственный случай, когда вам понадобится международный преобразователь, – это если вы путешествуете с устройством, не имеющим двойного напряжения.

Лучший туристический конвертер с функцией адаптера: World Travel Adapter and Converter Combo

Как работают конвертеры?

Так что же такое преобразователь напряжения? Если это не то же самое, что дорожный адаптер, то что это?

Если ваша электроника не имеет двойного напряжения, можно использовать международный преобразователь питания (также называемый трансформатором, адаптером напряжения или международным преобразователем напряжения).Однако преобразователи напряжения, как правило, представляют собой большие и тяжелые устройства, поэтому они менее практичны для путешествий. Если в вашем устройстве нет двойного напряжения, ему требуется преобразователь , поэтому лучше оставить его дома, особенно если это инструмент для волос.

Поскольку фены и утюги требуют большого количества энергии, ищите продукты с двумя вариантами напряжения. Имейте в виду, что это не гарантирует, что ваш инструмент для укладки волос будет работать за границей так же хорошо, как дома, даже с настройкой двойного напряжения.

Как сказал один читатель: «Я бы не рекомендовал использовать фен с преобразователем мощности для путешествий. Скорее всего, вы все же перегорите предохранитель или, что еще хуже, отключите электричество в половине отеля! Вы также можете сжечь свое устройство, сделав это ».

Другой добавляет: «Лично я не рекомендую дорожный электрический преобразователь. Я видел слишком много устройств, которые выходили из строя из-за выхода из строя преобразователя напряжения питания. Либо принесите предметы с двойным напряжением, либо оставьте их дома ».

Хотя есть некоторые удобные для путешествий конвертеры, подобные этому, обычно они подходят только для продуктов мощностью до 50 Вт (инструменты для волос выше этого).

Лучшая дорожная сушилка с двойным напряжением: BaBylissPRO Nano Titanium Travel Dryer

Могу ли я использовать фен или выпрямитель для волос за границей?

Если это двойное напряжение, то да! Поскольку для фенов и утюгов (выпрямителей) требуется большое количество энергии, ищите продукты с двумя вариантами напряжения. Имейте в виду, что это не гарантирует, что ваш инструмент для укладки волос будет работать так же хорошо за границей, как и дома, даже с настройкой двойного напряжения.Утюжок может быть нормальным, но с феном, как правило, больше проблем.

Один из читателей говорит: «Вам определенно понадобится двойное напряжение для фена. Вы можете использовать щипцы для волос на 240 вольт при настройке 110. Просто это займет больше времени, но вы не можете сделать это наоборот. Фен просто взорвется и тоже оплавит место. Мой бывший сделал это, и это слило все шале! »

Если у вас нет фена для волос с двойным напряжением или выпрямителя для волос, оставьте его дома. Многие женщины предпочитают просто покупать инструменты для укладки волос по месту назначения, чтобы избежать проблем.Всегда сначала уточняйте у своего жилья, есть ли он у них, чтобы вам не понадобился универсальный адаптер и преобразователь.

Совет: ухоженная грива станет идеальным дополнением к вашему тщательно спланированному туристическому образу!

Прочтите эти сообщения, чтобы получить рекомендации по инструментам для путешествий:

Лучший адаптер для путешествий для ноутбуков Mac: Ceptics World Travel Adapter Kit

Могу ли я использовать свой ноутбук или планшет за границей?

Проверьте напряжение на вашем продукте.Если там указано 110–120 В, то для его использования вам понадобится выходной преобразователь (и наоборот), но дорожный преобразователь может оказаться большим тяжелым предметом, который нужно упаковать. В идеале, если ваш элемент показывает 100–240 В, все готово!

Большинство ноутбуков имеют такое напряжение, поэтому вы можете использовать их по всему миру. Чтобы быть уверенным, проверьте источник питания или выполните поиск в Интернете, чтобы прочитать подробные сведения о характеристиках вашего конкретного устройства. Если нет, помните, что вам нужен конвертер и адаптер.

Международный адаптер для путешествий с Два USB-разъема

Выберите такой адаптер для путешествий, который позволяет одновременно заряжать ноутбук, планшет и телефон!

Сравнительная таблица продуктов


Помните, что адаптер, подобный показанному выше, не преобразует напряжение, он просто позволяет вам подключить электронику к местной розетке.Всегда проверяйте напряжение вашей камеры и зарядных устройств телефона.

У вас есть вопросы о путешествии с адаптером для путешествий или преобразователем для путешествий? Комментарий ниже!


Чтобы узнать о других поездках, пожалуйста, прочтите:


Понравился этот пост? ПРИКЛЮЧИТЕ ЭТО ИЗОБРАЖЕНИЕ, ЧТОБЫ СОХРАНИТЬ ЕГО!


Надеюсь, вам понравился этот пост о дорожных адаптерах и дорожных конвертерах.Поделитесь им с друзьями на Facebook, Twitter или Pinterest. Спасибо за чтение!


DC to DC Converter Учебное пособие


Преобразователи постоянного тока преобразуют мощность от одного источника постоянного напряжения в другое постоянное напряжение, хотя иногда на выходе бывает такое же напряжение. Обычно это регулируемые устройства, принимающие возможно изменяющееся входное напряжение и обеспечение стабильного регулируемого выходного напряжения до до предела расчетного тока (силы тока).Блоки переключения режимов полагаются на микропроцессоры. для высокого коэффициента полезного действия, а также меньших потерь и тепла. Конвертеры обычно используются для обеспечения электрической шумоизоляции или преобразования напряжения, или обеспечения стабильный уровень напряжения для чувствительного к напряжению оборудования. Преобразователи постоянного тока доступны для повышающих и понижающих приложений, а также изолированных и неизолированных конструкций.

Устройства переключения режима, которые ChargingChargers.com предлагает, имеют преимущества по сравнению с линейными. конструкции.Эффективность переключения может быть выше, чем у линейного блока, что приводит к меньшему потери энергии при передаче, что означает меньшее количество тепла, меньшие компоненты и меньшее вопросы терморегулирования. Линейные типы могут использоваться в интегрированных конструкциях (встроенных в), и может быть дешевле в этом приложении, но режим переключения почти полностью заменены линейные блоки питания в большинстве ситуаций.

Понижающие преобразователи постоянного тока

Понижающие преобразователи постоянного тока в постоянный называются понижающими преобразователями.Типичный пример: быть преобразователем 24 в 12 вольт, имеющим диапазон входного постоянного напряжения от 20 до 30 вольт постоянного тока и выходное напряжение 13,8 вольт постоянного тока (В постоянного тока) при, скажем, 12 ампер (максимум). Вход Напряжение может быть просто некоторым доступным системным напряжением в этом диапазоне или 24-вольтовой батареей. система с колебаниями напряжения из-за степени заряда аккумулятора. Выход регулируется микропроцессором при 13,8 В постоянного тока в этом случае, что является типичным напряжением холостого хода для система батарей постоянного тока на 12 В и обычно приемлемый вход для устройства «12 В постоянного тока».


Некоторые примеры соотношений напряжений

параметры значение

Номинальное входное напряжение 400 В
Максимальное выходное напряжение 12 В
Максимальный выходной ток 50 A 21
Резонансная катушка индуктивности 26 μ H
Резонансный конденсатор 7.5 нФ
Дроссель выходного фильтра 2 μ H
Частота переключения 100 кГц
Максимальный входной ток 2 A
9307
ВХОД ВЫХОД
9–18 В постоянного тока 12,5 В постоянного тока
20–35 В постоянного тока 12,5 В постоянного тока
30-60 В постоянного тока 30-60 В постоянного тока В постоянного тока 12,5 В постоянного тока
9–18 В постоянного тока 24 В постоянного тока
20–35 В постоянного тока 24 В постоянного тока
30–60 В постоянного тока 24 В постоянного тока
24 В постоянного тока

Понижающие преобразователи постоянного тока используются в военных, жилых домах или на море. с системным напряжением постоянного тока 24 вольт, и требуется регулируемый источник постоянного тока на 12 вольт для радиосвязи, сонара, эхолота, компьютеров и, конечно, аудио или видеооборудование для развлечений.

Дисбаланс аккумуляторов и преобразователи постоянного тока

Почему бы не использовать ответвитель на 12 В, если система (например, 24 В) состоит из последовательное соединение низковольтных батарей (например, двух по 12 вольт)? Батареи может (вероятно) стать несбалансированным по статусу напряжения / заряда. В параллельной конфигурации (положительный подключен к положительному, отрицательный к отрицательному), батареи уравняют со временем и установятся на обычном напряжении.При последовательном подключении выравнивание состояние напряжения / заряда не является естественным состоянием. Система и любое зарядное устройство участвует, видит комбинированное выходное напряжение, и зарядное устройство пытается поднять напряжение до его уставки, которая указывает на полную зарядку, путем нажатия тока для выполнения это. Незадействованная батарея, которая изначально имеет более высокое напряжение, достигнет его “ полное напряжение заряда ” быстрее, но ток все еще проходит через зарядное устройство стремится поднять суммарное напряжение двух аккумуляторов до такого же полного заряда уровень.В крайних случаях может произойти газообразование и перезарядка.

Преобразователь постоянного тока в равной степени потребляет от родительского напряжения и обеспечивает регулируемое выходное напряжение. Аккумуляторная батарея остается сбалансированной, что обеспечивает надлежащую зарядку. цикл и максимальное время автономной работы.

Повышающие преобразователи постоянного тока

Повышающие преобразователи постоянного тока в постоянный называются повышающими преобразователями. Типичный пример: быть преобразователем с 12 вольт на 24 вольт, имеющим диапазон входного постоянного напряжения от 11 до 15 вольт постоянного тока и выходное напряжение 24 вольт постоянного тока (В постоянного тока) при, скажем, 5 ампер (максимум).Приложение может быть частью военной техники, разработанной для системы 24 В, используемой в система на 12 вольт.

Преобразователи с изолированной и неизолированной изоляцией

Неизолированные преобразователи имеют общий минус и обычно очень подходят для типичное электронное приложение (радио, стерео, сонар и т. д.). Определенная безопасность Требования или опасные приложения могут потребовать изоляции входа и выхода. В изолированные преобразователи соответственно дороже неизолированных преобразователей.

Размер преобразователя

Преобразователи постоянного тока рассчитаны на мощность в ваттах, а некоторые также имеют защиту от импульсных перенапряжений. Большинство устройств, используемых в приложениях постоянного тока, указывают свое потребление в ваттах или амперах. Устройства с двигателями или компрессорами, или при использовании конденсаторных пусковых цепей, может потребоваться скачок напряжения учет мощности. Большая часть электроники (радио, DVD, гидролокатор, GPS и т. Д.) Не работает. Для преобразования ватт и ампер можно использовать следующие основные электрические формулы:

P = E x I Мощность = Вольт, умноженное на ток
или
Ватт = Вольт x Ампер
Ампер = Ватт / Вольт
Вольт = Ватт / Ампер

Итак, учитывая любые два значения выше, вы можете рассчитать третье.Например, у вас есть стереосистема мощностью 60 Вт, рассчитанная на 12-вольтовую систему. Делим 60 ватт на 12 вольт дает потребляемый ток 5 ампер. Если вам дан только текущий розыгрыш, и вам нужно рассчитать мощность преобразователя постоянного тока в ваттах, вы можете умножить амперы на напряжение системы, дающее ватт. Для 5-амперной розетки и 12-вольтового стерео выше у вас есть 5 ампер х 12 вольт = 60 ватт.

Не пропустите другие наши уроки!

Дом | Учебники | Конвертеры

Зарядное устройство – обзор

Простое дешевое зарядное устройство для литий-ионных аккумуляторов

Зарядное устройство, запрограммированное на 300 мА в режиме постоянного тока с функцией контроля зарядного тока, показано на Рисунке 210.1. PNP необходим для источника зарядного тока, а резистор R1 используется для программирования максимального зарядного тока. Выводы I SENSE и BAT используются для контроля тока заряда и напряжения соответственно, а вывод DRIVE управляет базой PNP. Обратите внимание, что не требуется внешний резистор для измерения тока или диод для блокировки обратного тока. Для большинства других зарядных устройств требуется блокирующий диод, включенный последовательно с источником питания, для предотвращения разряда батареи, если вход источника питания без питания станет низким импедансом.Когда источник питания размыкается или замыкается на массу, зарядное устройство отключается, и от аккумулятора к зарядному устройству течет только несколько наноампер тока утечки. Эта функция продлевает срок службы батареи, особенно если портативное устройство выключено в течение длительного времени. Напряжение питания может находиться в диапазоне от 4,75 В до 8 В, но рассеиваемая мощность PNP может стать чрезмерной около верхнего предела, особенно при более высоких уровнях зарядного тока. Рассеивание мощности PNP потребует надлежащего теплоотвода. Требования к теплоотводу см. В паспорте производителя PNP.

Рисунок 210.1. Недорогое литий-ионное зарядное устройство, рассчитанное на 300 мА

Когда напряжение питания приближается к нижнему пределу, напряжение насыщения PNP становится важным. В этом случае может потребоваться транзистор CESAT с низким V , такой как показанный на рисунках, чтобы предотвратить сильное насыщение PNP и требование чрезмерного тока базы от вывода DRIVE.

Для поддержания хорошей стабильности переменного тока в режиме постоянного напряжения на батарее требуется конденсатор для компенсации индуктивности в проводке к батарее.Этот конденсатор (C2) может иметь диапазон от 4,7 мкФ до 100 мкФ, а его ESR может находиться в диапазоне от почти нуля до нескольких Ом в зависимости от компенсируемой индуктивности. Как правило, лучше всего подходит для компенсации емкость от 4,7 мкФ до 22 мкФ и ESR от 0,5 до 1,5 Ом. В режиме постоянного тока хорошая стабильность переменного тока достигается за счет поддержания емкости на выводе PROG на уровне менее 25 пФ. Более высокая емкостная нагрузка, например, от входного фильтра нижних частот к АЦП, может быть легко допущена путем изоляции емкости сопротивлением не менее 1 кОм.

Если входной источник питания подключен к «горячей» замене, следует избегать использования керамического входного конденсатора (C1), поскольку его высокая добротность может вызвать скачки напряжения в два раза превышающие уровень постоянного тока и, возможно, повредить зарядное устройство. Если используется конденсатор с таким низким ESR, добавление сопротивления от 1 до 2 Ом последовательно с конденсатором C1 будет достаточно для гашения этих переходных процессов.

Вывод программирования (PROG) выполняет несколько функций. Он используется для установки тока в режиме постоянного тока, контроля зарядного тока и ручного отключения зарядного устройства.В режиме постоянного тока LTC1734 поддерживает вывод PROG на уровне 1,5 В. Значение программного резистора определяется делением 1,5 В на требуемый ток R1 в режиме постоянного тока. Зарядный ток всегда в 1000 раз больше тока через R1 и, следовательно, пропорционален напряжению на выводе PROG. Напряжение на выводе PROG падает ниже 1,5 В при входе в режим постоянного напряжения и падении зарядного тока. При 1,5 В зарядный ток составляет 300 мА, а при 0,15 В – 1000 · (0.15/5100) или около 30 мА. Если на заземленной стороне R1 напряжение превышает 2,15 В или разрешается оставаться на плаву, зарядное устройство переходит в режим ручного отключения и зарядка прекращается. Эти функции поддерживают зарядку аккумулятора до полной емкости, позволяя микроконтроллеру контролировать ток зарядки и выключать зарядное устройство в соответствующее время. Внутренний подтягивающий ток 3 мкА подтянет плавающий вывод PROG вверх. По конструкции этот ток не добавляет ошибки, но устанавливает минимальный ток через программный резистор в 3 мкА.

Во время зарядки в режиме постоянного напряжения токи, создаваемые активными динамическими нагрузками, могут создавать чрезмерные переходные уровни на выводе PROG. При желании эти переходные процессы можно отфильтровать с помощью простого RC-фильтра нижних частот. Подключите резистор 1 кОм к выводу PROG, его противоположный конец подсоединен к конденсатору 0,1 мкФ, а его другой конец заземлен. Контролируйте отфильтрованное напряжение PROG на общем узле RC. Переходные процессы нагрузки не отражаются на выводе PROG, если зарядное устройство остается в режиме постоянного тока.

Руководство по покупке преобразователя напряжения

Ultimate Voltage Converter

Преобразователь напряжения и / или трансформатор напряжения необходимы в определенных электрических ситуациях. Если вы ничего не знаете о преобразователях напряжения и трансформаторах, выбор вариантов может оказаться огромным.

Перво-наперво: преобразователь напряжения и трансформатор напряжения – это не одно и то же! У них разные цели. В этой статье мы объясним, нужен ли вам преобразователь напряжения или трансформатор напряжения для определенных общих ситуаций.Мы также расскажем, как выбрать номинальную мощность преобразователя или трансформатора.

Как купить преобразователи напряжения и / или трансформаторы для путешествий

1. Понять мировое напряжение

Чтобы понять ваши потребности в напряжении, особенно если вы путешествуете, вам следует ознакомиться с мировым напряжением. Хотя точное напряжение в любом данном месте может варьироваться в пределах диапазона, сам диапазон в каждой стране высечен в камне.

Источник: Википедия.Изображение в свободном доступе.

КЛЮЧ:

  • Оранжевый: 100 – 127 В переменного тока, 60 Гц
  • Голубой: 220 – 240 В переменного тока, 50 Гц
  • Темно-синий: 220 – 240 В переменного тока, 60 Гц
  • Коричневый: 100 – 127 В переменного тока, 50 Гц

2. Разложите свои вещи по электрическим и электронным устройствам

Электрический прибор – это что-то с электронагревательным элементом, например щипцы для завивки. Электронное устройство – это что-то с микросхемой, т.е.г., сотовый телефон или ноутбук. Электронное устройство может работать ТОЛЬКО от трансформатора. Электрический прибор может работать от преобразователя напряжения ИЛИ трансформатора.

Отложите свои электронные устройства. Для них потребуется трансформатор напряжения.

3. Проверьте, работают ли ваши электрические приборы с одним напряжением

Многие современные приборы (например, фены, выпрямители для волос и т. Д.) Могут работать как от 110–120 В, так и от 220–240 В. Другие могут работать только от 110-120 В.Отсортируйте свои приборы по одному или двум параметрам напряжения.

4. Составьте список всего, что вам нужно для подключения к преобразователю напряжения

Независимо от того, произойдет ли это на самом деле, вы должны запланировать одновременное подключение всех ваших приборов с одним напряжением. Таким образом, вы можете рассчитать общую допустимую мощность преобразователя напряжения.

Помните, вы только что отсортировали свои вещи по электронным устройствам и электроприборам.После этого вы рассортировали свои электроприборы на одно и два напряжения. Нет необходимости включать в этот список приборы с двойным напряжением, потому что вам не нужно подключать их к преобразователю напряжения – , если только вы не хотите упростить работу с помощью всего лишь одной вилки адаптера. То есть, поскольку ваши устройства с двойным напряжением могут легко работать с напряжением, которое будет подавать ваш преобразователь напряжения, вы можете включить их в этот общий список, если хотите (поскольку это позволит вам получить только одну вилку адаптера).

Посмотрите на каждое устройство с одним напряжением, которое вы собираетесь подключить к преобразователю напряжения. Найдите номинальную мощность (Вт) каждого устройства. Это показатель того, сколько энергии потребуется устройству. Сложите номинальные мощности всех приборов, которые вы берете с собой. Это общая мощность, которая вам может понадобиться за один раз во время поездки. Но это НЕ номинальная мощность, которую вы должны искать в преобразователе напряжения.

5. Умножьте общую необходимую мощность на 3x

Некоторые типы более мощных устройств при включении вызывают гигантский временный всплеск энергопотребления.Хотя маловероятно, что вы привезете с собой настольную пилу своего отца во Францию, все же безопаснее всего купить преобразователь напряжения, который обеспечивает в 3 раза большую мощность, которая, по вашему мнению, вам понадобится. Дополнительная мощность трансформатора не повредит вашим устройствам.

6. Приобретите трансформатор напряжения для своей электроники

Если вам нужно запитать электронику в поездке, вам понадобится трансформатор напряжения. Помните, электронные устройства НЕ МОГУТ получать питание от преобразователя напряжения – только от трансформатора.

Как вариант, вы можете просто купить трансформатор напряжения, поскольку от него могут работать и электроника, и электрические приборы.

7. Приобретите переходники для преобразователя напряжения и / или трансформатора напряжения

Преобразование напряжения – не единственное, что вам нужно сделать. В разных странах используются разные розетки и вилки. Убедитесь, что у вас есть подходящий адаптер для работы вашего оборудования в стране, в которую вы собираетесь. Адаптеры вилки не преобразуют напряжение; они просто переводят вас из одного формата механического соединения в другой.

В этой таблице мировых стандартов поясняется тип вилки, который вам понадобится в каждой стране. Если вы берете с собой преобразователь напряжения и трансформатор напряжения, вам понадобится переходная вилка для каждого из них. Помните, что вы можете питать электрические приборы от преобразователя напряжения ИЛИ трансформатора напряжения, но электронные устройства могут работать ТОЛЬКО от трансформатора напряжения. Если вы все работаете от трансформатора напряжения, вам понадобится только одна вилка адаптера.

Как купить преобразователи напряжения и / или трансформаторы для бытового использования

Покупка преобразователя напряжения для домашнего использования аналогична покупке преобразователя для путешествий.Хотя вам не нужно беспокоиться о напряжениях в разных странах, вам, , нужно знать кое-что об устройствах, которые вы собираетесь подключать к преобразователю напряжения.

A) Для питания ваших бытовых приборов

8. Проверьте напряжение прибора

Это несложно. Посмотрите на табличку с техническими характеристиками на приборе и узнайте, какое напряжение ему нужно. Некоторые приборы могут работать от 110–120 В или 220–240 В. Если это ваш прибор, то вам повезло! Для его работы в США не нужен преобразователь напряжения.

Если ваше устройство работает только от 220-240 В, вам понадобится преобразователь напряжения, чтобы питать его от розетки 110 В. Это часто случается с мощными электроприборами, такими как плиты и электроинструменты. Если у вас нет розетки на 220 В, вам понадобится преобразователь напряжения для работы этих приборов в США.

9. Проверьте мощность устройства

Это критично. Вы не можете управлять мощным электроприбором через преобразователь напряжения, который не выдерживает такой большой мощности.В противном случае прибор либо не будет работать, либо вы повредите преобразователь напряжения, что может стать причиной возгорания.

10. Умножьте мощность устройства на 3x

Мощные электроприборы, особенно электроинструменты, при включении часто потребляют значительный скачок мощности. Это совершенно нормально, если с этим справится преобразователь напряжения. В целях безопасности ВСЕГДА используйте преобразователь напряжения, рассчитанный как минимум на 3-кратную номинальную мощность, указанную на вашем приборе.

11. Посмотрите, какие торговые точки вы будете использовать

Для некоторых преобразователей напряжения требуются 2 розетки 110 В, не совпадающие по фазе. Преобразователь напряжения Quick 220 ® является одним из таких устройств. Вы просто подключаете его два входных кабеля к 2 стандартным розеткам для США, которые подключены не в фазе и не имеют в своих цепях прерывателей GFI (прерывателей замыкания на землю).

12. Проверьте шнур питания устройства

В США существует несколько возможных типов вилок для устройств на 220 В.Вы должны проверить шнур питания вашего устройства и посмотреть, какой тип вилки он требует. Если эта вилка не подходит к розетке 220 В на преобразователе напряжения, вам понадобится переходник.

Фото любезно предоставлено HeatSync Labs. Под лицензией Creative Commons 2.0 SA.

Фото любезно предоставлено HeatSync Labs . Под лицензией Creative Commons 2.0 SA .

B) Для питания ваших электронных устройств с нечетным напряжением дома

В редких случаях, когда у вас дома есть несоответствие между напряжением в вашей стране и номинальным напряжением электронного устройства, вам понадобится трансформатор напряжения.Вы НЕ МОЖЕТЕ запускать электронное устройство от преобразователя напряжения – только от трансформатора.

13. Соберите все устройства, которые потребуются для отключения трансформатора напряжения

Опять же, вам необходимо суммировать требования к мощности (мощности) для всех устройств, которые будут получать питание через трансформатор.

14. Умножьте общую необходимую мощность на 3x

Это гарантирует, что ваш трансформатор напряжения сможет справиться с всплеском потребляемой мощности, которое некоторые устройства используют при запуске.

15. Приобретите соответствующий адаптер (-ы) для своей электроники

Вам может понадобиться адаптер для каждого устройства, которое вы надеетесь подключить к трансформатору напряжения. Сколько адаптеров вам понадобится, будет зависеть от 1) количества устройств, которые вам нужно подключить за один раз, и 2) количества выходных розеток у вашего трансформатора напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *