Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ом [Ом] в килоом [кОм] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ом [Ом] в килоом [кОм] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ом [Ом] в килоом [кОм] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ом [Ом] в килоом [кОм] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Преобразовать кОм в Ом (килоом в ом)

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+kiloom+v+om.php

Сколько ом в 1 килоом?

1 килоом [кОм] = 1 000 ом [Ом] – Калькулятор измерений, который, среди прочего, может использоваться для преобразования килоом в ом.), скобки и π (число пи), уже поддерживаются на настоящий момент.

  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘килоом [кОм]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘ом [Ом]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘944 килоом’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘килоом’ или ‘кОм’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрическое сопротивление’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’12 кОм в Ом‘ или ’91 кОм сколько Ом‘ или ’26 килоом -> ом‘ или ’82 кОм = Ом‘ или ‘4 килоом в Ом‘ или ’64 кОм в ом‘ или ’75 килоом сколько ом‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(39 * 46) кОм’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 3,526 049 350 629 ×1028. В этой форме представление числа разделяется на экспоненту, здесь 28, и фактическое число, здесь 3,526 049 350 629. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 3,526 049 350 629 E+28. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 35 260 493 506 290 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    як перевести 1.5кОм в Ом і 12кОм в Ом

    В системе, показанной на рисунке, все нити невесомы и находятся в вертикальном положении. Верхний груз в два раза легче нижнего. Верхняя нить натянута … с силой T1=19 Н, нижняя — с силой T3=10 Н. Определите силу натяжения средней нити T2 .

    28. На полиці стоять дві бронзові статуетки, одна з яких є учетверо зменшеною копією другої. У скільки разів відрізняються тиски, що створюють ці стат … уетки на полицю? 29. Знайти максимальну висоту колони, яку можна збудувати з каменю, що має межу міцності на стискання 5 МПа і густину 5000 кг/м3. Вважати g = 10 м/с2. 30. Який тиск чинить вода на нижню поверхню плоскої крижинки площею 20 см2 та масою 500 г?

    Визначити омічний опір коливального контуру, індуктивність якого 1 Гн, якщо за час 0,01 с амплітуда напруги на конденсаторі зменшуєтся в 4 рази

    Решите пожалуйста 3 задачи​

    Решите пожалуйста эти 3 задачи)​

    решите пожалуйста задачу 18 даю 20 баллов

    решите пожалуйста задачу 11 даю 20 баллов

    решите пожалуйста задачу 10 даю 20 баллов

    ДАМ 100 БАЛЛОВ! ПОЖАЛУЙСТА! Сосуд содержит смесь воды и льда при температуре 0 °С. Масса воды равна 0,8 кг, масса льда равна 100 г. После введения вод … яного пара при температуре 100 °С установилась температура, равная 30 °С. Найдите массу пара. Потерями тепла пренебречь. С высоты девятиэтажного здания упал молоток массой 900 г на железную пластину массой 3 кг и остановился. На сколько градусов нагрелась пластина, если на её нагревание израсходовалось 25 % выделившегося при ударе количества теплоты? Высоту этажа принять равной 3 м. Полезная мощность дизельного двигателя 500 л.с., КПД 35%. Сколько тонн топлива необходимо такому двигателю на 10 дней бепрерывной работы? Удельная теплота сгорания дизельного топлива 42 МДж/кг.

    К однородной нерастяжимой верёвке массой 50 г подвешен груз массой 400 г. Найдите силу натяжения в центре верёвки . Ответ дайте в Н, округлив до со … тых. Ускорение свободного падения примите равным =10 Определите в рамках модели невесомой нити. Ответ дайте в Н, округлив до сотых. Найдите абсолютную погрешность определения . Ответ дайте в Н, округлив до сотых. Найдите относительную погрешность определения . Ответ дайте в процентах, округлив до целого числа.

    Сопротивление

    Подобно тому, как труба тормозит и ограничивает протекающий через нее поток воды, так электрическое сопротивление ограничивает протекающий через него электрический ток. Сопротивление R измеряется в омах (условное обозначение Ом).

     

    Единицы

    Основными единицами для измерения тока, напряжения и сопротивления являются ампер, вольт и ом. Существуют также производные от этих единиц, большие или меньшие основных во много десятков раз. Соотношения этих единиц приведены в табл. 1.1.

    Таблица 1.1

    Величина

    Обозна­чение

    Единицы

    Ток

    I

    ампер, А

    Напряжение

    V

    вольт, В

    Сопротивление

    R

    ом, Ом

    миллиампер

    мА

    = 1/1000 А = 10-3 А

    микроампер

    мкА

    = 1/1000 мА = 10-3 мА, или 1/1000000 А = 10-6 А

    милливольт

    мВ

    = 1/1000 В = 10-3 В

    микровольт

    мкВ

    = 1/1000 мВ = 10-3 мВ, или 1/1000000 В = 10-6 В

    киловольт

    кВ

    = 1000 В = 103 В

    килоом

    кОм

    = 1000 Ом = 103 Ом

    мегаом

    МОм

    = 1000 кОм = 103 кОм, или 1000000 Ом = 106 Ом

     

    Закон Ома

    Итак, по определению сопротивление ограничивает плектр и чески и ток. Значение тока, протекающего через резистор, зависит как от его сопроти­вления, так и от разности потенциалов, или напряжения, приложенного к резистору (рис. 1.3). Чем больше сопротивление, тем меньше протекаю­щий ток. С другой стороны, чем выше напряжение, тем больше ток. Эта зависимость известна как закон Ома:

     

    Ток (амперы) = Напряжение (вольты) / Сопротивление (омы),

    или I = V/R

    Отсюда

    R = V/I и V = IR

     

     

     Полное напряжение
    (а)

     

     

    Полное напряжение
    (б)

     

    Рис. 1.4. Два последовательно соединенных резистора (а)

    и их эквивалентное сопротивление (б)

     

     

    Рис. 1.3. Резистор в схеме

     

     

     

    Последовательное соединение резисторов

    R1 и R2 – два резистора, соединенных последовательно (рис. 1.4(а)). Весь ток, который протекает через R1, протекает и через R2, т. е. последовательно включенные резисторы имеют общий ток. А вот напряжения на них различны.


    Пример 1

    Если R1 = 2 Ом, R2 = 6 Ом и I = 3 А, то
    Напряжение на R1: V = 6 В и
    Напряжение на R2: V = 18 В.

    Полное напряжение между точками А и В равно сумме напряжений на резисто¬рах R1 и R2
    V = V1 + V2 = 6 B + 18 B = 24 B

     

    Общее сопротивление

    R1 и R2 можно заменить одним сопротивлением. при котором между точ¬ками А и В будет протекать тот же ток при условии, что напряжение между точками А и В будет прежнее (рис. 1.4(б)). Такое эквивалентное сопротивление называется общим сопротивлением RТ.

    Полное сопротивление RТ = R1 + R2.
    Определим общее сопротивление для схемы в примере 1:
    RТ = R1 + R2 = 2 + 6 = 8 Ом.
    При токе I = 3 А определим напряжение
    V = IR = 3 * 8 = 24.
    Как видим, это то же значение напряжения, которое мы получили сло¬жением V1 и V2.

     

    Последовательное соединение трех резисторов

    Пример 2

    На рисунке 1.5 R1 = 1 кОм, R2 = 4 кОм, R3 = 10 кОм и напряжение батареи
    Общее сопротивление RТ = R1 + R2 + R3 = 15 кОм;
    Ток I = V / RТ = 1 мА;
    Напряжение на R1: V1 = I R1 = 1 В;
    Напряжение на R2: V2 = I R2 = 4 В;
    Напряжение на R3: V3 = I R3 = 10 В.

     

    Делитель напряжения

    Как видно из вышеприведенного примера, если два или более резистора соединены последовательно и на них подано напряжение постоянного тока, то на всех резисторах появляются разные напряжения.

     

    Рис. 1.5. Последовательное соеди­нение трех резисторов

     

     

    Рис. 1.6. Делитель напряжения

     

    Такая схема называется делителем напряжения и применяется для получения раз­ных напряжений от одного источника питания. В простейшем делителе напряжения, изображенном на рис. 1.6, R1 = 2 кОм, R2 = 1 кОм и на­пряжение источника питания V = 30 В. Напряжение в точке А равно полному напряжению источника, т. е. 30 В. Напряжение VB в точке В равно напряжению на R2.

    Ток в цепи I = 10 мА

    Напряжение на R2: V2 = IR2= 10В.

    Напряжение в точке В можно вычислить другим способом:

    Напряжение на R2: V2 = VR2 / (R1 + R2) = 10 B.

    Второй способ применим для любого делителя напряжения, состоящего из двух и более резисторов, включенных последовательно. Напряжение в любой точке схемы можно вычислить с помощью калькулятора за один прием, минуя вычисление тока.

     

    Последовательное включение двух резисторов с равными сопротивлениями

    Если делитель напряжения состоит из двух одинаковых резисторов, то приложенное напряжение делится на них пополам.

     

    Последовательное включение трех резисторов с равными сопротивлениями

    Пример 3

    На рис. 1.7 изображен делитель напряжения, состоящий из трех одинаковых резисторов сопротивлением в 1 кОм каждый. Вычислить напряжение в точках А и В относительно точки Е.

    Общее сопротивление RТ = R1 + R2 + R3 = 3 кОм;

    VAE = 10 B;

    VBE = 20 B.

    Рис. 1.7. Делитель напряжения из трех одинаковых резисторов

     

    Рис. 1.8.

     

    Видеоурок о понятии сопротивления проводников

     

    Добавить комментарий

    Килоом в Ом Преобразование (кОм в Ом)

    Введите ниже электрическое сопротивление в килоомах, чтобы получить значение, переведенное в Ом.

    Как преобразовать киломы в омы

    Чтобы преобразовать значение килоом в измерение в оме, умножьте электрическое сопротивление на коэффициент преобразования.

    Поскольку один килоом равен 1000 Ом, вы можете использовать эту простую формулу для преобразования:

    Ом = килоом × 1000

    Электрическое сопротивление в омах равно килоомам, умноженным на 1000.

    Например, вот как преобразовать 5 кОм в Ом по приведенной выше формуле.

    5 кОм = (5 × 1000) = 5000 Ом

    Сколько Ом в киломе?

    В килооме 1000 Ом, поэтому мы используем это значение в приведенной выше формуле.

    1 кОм = 1000 Ом

    И килом, и ом – единицы измерения электрического сопротивления.Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Один килоом равен 1000 Ом, которое представляет собой сопротивление между двумя точками проводника с током в один ампер и напряжением в один вольт.

    Килоом кратно ому, который является производной единицей измерения электрического сопротивления в системе СИ. В метрической системе «килограмм» является префиксом для 10 3 . Килоом можно обозначить как кОм ; например, 1 кОм можно записать как 1 кОм.

    Ом – это сопротивление между двумя точками электрического проводника, пропускающего ток в один ампер, когда разность потенциалов составляет один вольт. [1]

    Ом – это производная единица измерения электрического сопротивления в системе СИ в метрической системе. Ом можно обозначить как Ом ; например, 1 Ом можно записать как 1 Ом.

    Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить сопротивление в омах как выражение, используя ток и напряжение.

    R Ом = В В I A

    Сопротивление в омах равно разности потенциалов в вольтах, деленной на ток в амперах.

    Преобразование килоом в ом – Перевод единиц измерения

    ›› Перевести килоом в ом

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация в конвертере величин

    Сколько килоом в 1 оме? Ответ – 0,001.
    Мы предполагаем, что вы конвертируете кОм и кОм .
    Вы можете просмотреть более подробную информацию по каждой единице измерения:
    кОм или ом
    Производной единицей в системе СИ для электрического сопротивления является ом.
    1 кОм равен 1000 Ом.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать килоом в ом.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица преобразования килоом в ом

    1 кОм в Ом = 1000 Ом

    2 кОм в Ом = 2000 Ом

    3 кОм в Ом = 3000 Ом

    4 кОм в Ом = 4000 Ом

    5 кОм в Ом = 5000 Ом

    6 кОм в Ом = 6000 Ом

    7 кОм в Ом = 7000 Ом

    8 кОм в Ом = 8000 Ом

    9 кОм в Ом = 9000 Ом

    10 кОм в Ом = 10000 Ом



    ›› Хотите другие юниты?

    Вы можете произвести обратное преобразование единиц измерения из Ом в килоом, или введите любые две единицы ниже:

    ›› Преобразование общего электрического сопротивления

    кОм на вольт / ампер
    кОм на 1 Ом
    кОм на статом
    кОм на нано
    кОм на гигом
    кОм на мкОм
    кОм на миллиом
    кОм на тером
    кОм от 613 кОм до мегаом от
    кОм от 613 кОм до мегаом
    кОм до мегаом

    ›› Определение: Kiloohm

    Префикс СИ “килограмм” представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

    Итак, 1 кОм = 10 3 Ом.

    Ом имеет следующее определение:

    Ом (символ: Ω) – это единица измерения электрического сопротивления в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома. Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


    ›› Определение: Ом

    Ом (символ: Ω) – это единица измерения электрического сопротивления в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома. Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


    ›› Метрические преобразования и др.

    КонвертироватьUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    Закон

    Ома | Клуб электроники

    Закон Ома | Клуб электроники

    Следующая страница: Power and Energy

    См. Также: Напряжение и ток | Сопротивление

    Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением

    Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение.Закон Ома показывает взаимосвязь между тремя величинами: напряжением, током и сопротивлением.

    Закон Ома можно записать в виде словарного уравнения :

    напряжение = ток × сопротивление

    Или используя символы для обозначения величин напряжения (В), тока (I) и сопротивления (R):

    На самом деле это можно записать тремя способами, и вы можете выбрать версию, которая лучше всего подходит для ваших целей:

    Треугольник ВИР – способ запомнить закон Ома

    Вы можете использовать треугольник VIR, чтобы помочь вам запомнить три версии закона Ома.

    • Для расчета напряжения, В : поместите палец на V, это оставляет I R, поэтому уравнение V = I × R
    • Чтобы рассчитать ток , I : положите палец на I, это оставляет V над R, поэтому уравнение I = V / R
    • Чтобы рассчитать сопротивление , R : положите палец на R, это оставляет V над I, поэтому уравнение R = V / I



    Расчеты по закону Ома

    Используйте этот метод для проведения расчетов:

    1. Запишите значения , при необходимости конвертируя единицы.
    2. Выберите необходимое Equation (используйте треугольник VIR).
    3. Введите числа в уравнение и вычислите ответ.

    Должно быть V ery E asy N ow! См. Примеры ниже:

    Пример 3:

    Резистор 1,2 кОм пропускает ток 0,2 А, какое напряжение на нем?

    Пример 4:

    9 В подается на резистор 15 кОм, какой ток?

    • V alues: V = 9V, I =?, R = 15k
    • E предложение: I = В / R
    • N umbers: Ток, I = 9 / 15 = 0.6 мА
      (использование k для сопротивления означает, что расчет дает ток в мА)

    Следующая страница: Энергетика | Исследование


    Политика конфиденциальности и файлы cookie

    Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

    клуб электроники.инфо © Джон Хьюс 2021

    Удельное сопротивление и проводимость – температурные коэффициенты для обычных материалов

    Удельное сопротивление равно

    • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

    Калькулятор сопротивления электрического проводника

    Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.

    Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

    Площадь поперечного сечения проводника (мм 2 ) – Калибр провода AWG

    x 10 -8

    903 43 x 10 -8 903 3.35K) 1 x 10 13 и

    х 10 -8

    10 -4 PALI Калий.01 x 10 -8 70-70 x 10 70

    70

    x 10 -8

    Алюминий 2 .65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
    Алюминиевый сплав 3003, прокат 3,7 x 10 -8
    Алюминиевый сплав 2014, отожженный 3,4 x 10 -8
    Алюминиевый сплав 360 7,5 x 10 -8
    Алюминиевая бронза 12 x 10 -8
    Животный жир 14 x 10 -2
    Животный мускул 0.35
    Сурьма 41,8 x 10 -8
    Барий (0 o C) 30,2 x 10 -8 9017ll
    9017ll
    Бериллий медь 25 7 x 10 -8
    Висмут 115 x 10 -8 Латунь – 58% Cu 5.9 x 10 -8 1,5 x 10 -3
    Латунь – 63% Cu 7,1 x 10 -8 1,5 x 10 -3
    Кадмий 7,4 x 10 -8
    Цезий (0 o C) 18,8 x 10 -8
    Кальций (0 o C) 3,11 x 10 -8
    Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
    Чугун 100 x 10 -8
    Церий (0 o C) 73 x 10 -8 9017
    Хромель (сплав хрома и алюминия) 0,58 x 10 -3
    Хром 13 x 10 -8
    Кобальт -8
    Константан 49 x 10 -8 3 x 10 -5 0.20 x 10 7
    Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
    Мельхиор 55-45 (константан)
    Диспрозий (0 o C) 89 x 10 -8
    Эрбий (0 o C) 81 x 10 -8
    Эврика 0.1 x 10 -3
    Европий (0 o C) 89 x 10 -8
    Гадолий 126 x 10 -8
    Галлий (1,1K) 13,6 x 10 -8
    Германий 1) 1 – 500 x 10 -3 -50 x 10 -3
    Стекло 1 – 10000 x 10 9 10 -12
    Золото 2.24 x 10 -8
    Графит 800 x 10 -8 -2,0 x 10 -4
    Гафний (0,35K) – 30,4 x 10 8
    Hastelloy C 125 x 10 -8
    Гольмий (0 o C) 90 x 10 -8

    34
    8 x 10 -8
    Инконель 103 x 10 -8
    Иридий 5,3 x 10 -8 Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
    Лантан (4,71K) 54 x 10 -8 903
    Свинец 20.6 x 10 -8 0,45 x 10 7
    Литий 9,28 x 10 -8
    Лютеций 54 x 10 -8
    Магний 4,45 x 10 -8
    Магниевый сплав AZ31B 9 x 10 -8
    Марганец 9003 1.0 x 10 -5
    Mercury 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
    Mica (Glimmer)
    Низкоуглеродистая сталь 15 x 10 -8 6,6 x 10 -3
    Молибден 5,2 x 10

    3-8
    Монель 58 x 10 -8
    Неодим 61 x 10 -8
    Нихром (сплав) 100-1503 из хрома 0.40 x 10 -3
    Никель 6,85 x 10 -8 6,41 x 10 -3
    Никелин 50 x 10 -8
    Ниобий (Columbium) 13 x 10 -8
    Осмий 9 x 10 -8 10.5 x 10 -8
    Фосфор 1 x 10 12
    Платина 10,5 x 10 -8 3,93 x 10

    3
    3,93 x 10

    3 -3 900 x 10 7
    Плутоний 141,4 x 10 -8
    Полоний 40 x 10 -8
    Празеодим 65 x 10 -8
    Promethium 50 x 10 -8 903 K) 17,7 x 10 -8
    Кварц (плавленый) 7,5 x 10 17
    Рений (1,7K) 17.2 x 10 -8
    Родий 4,6 x 10 -8
    Твердая резина 1-100 x 10 13
    903 Рубидий 11,5 x 10 -8
    Рутений (0,49K) 11,5 x 10 -8
    Самарий 91,4 x 91,4 x 10
    Скандий 50.5 x 10 -8
    Селен 12,0 x 10 -8
    Кремний 1) 0,1-60
    Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
    Натрий 4,2 x 10 -8 32
    Грунт, типичный грунт 10 -2 -10 -4
    Припой 15 x 10 -8
    Нержавеющая сталь 10 6
    Стронций 12.3 x 10 -8
    Сера 1 x 10 17
    Тантал 12,4 x 10 -8
    Таллий (2,37K) 15 x 10 -8
    Торий 18 x 10 -8 Тулий 67 x 10 -8
    Олово 11.0 x 10 -8 4,2 x 10 -3
    Титан 43 x 10 -8
    Вольфрам 31 5,65 x 900 4,5 x 10 -3 1,79 x 10 7
    Уран 30 x 10 -8
    Ванадий 25 x 1032
    Вода дистиллированная 10 -4
    Вода пресная 10 -2
    Вода соль Иттербий 27.7 x 10 -8
    Иттрий 55 x 10 -8
    Цинк 5,92 x 10 -8 3,7 x 10

    3 -3 900
    Цирконий (0,55K) 38,8 x 10 -8

    1) Примечание! – удельное сопротивление сильно зависит от наличия примесей в материале.

    2 ) Примечание! – удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

    Электрическое сопротивление в проводе

    Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

    R = ρ L / A (1)

    , где

    R = сопротивление (Ом, ). Ω )

    ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

    L = длина провода (м)

    A = площадь поперечного сечения провода (м 2 )

    Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления проволоки заданной геометрии при различных температурах.

    Обратное сопротивление называется проводимостью и может быть выражено как:

    σ = 1 / ρ (2)

    где

    σ = проводимость (1 / Ом · м)

    Пример – сопротивление алюминиевого провода

    Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

    R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

    = 0,09 Ом

    Сопротивление

    Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

    R = U / I (3)

    , где

    R = сопротивление (Ом)

    U = напряжение (В)

    I = ток (A)

    Закон Ома

    Если сопротивление постоянно в течение значительного диапазон напряжения, затем закон Ома,

    I = U / R (4)

    можно использовать для прогнозирования поведения материала.

    Зависимость удельного сопротивления от температуры

    Изменение удельного сопротивления от температуры можно рассчитать как

    = ρ α dt (5)

    где

    dρ = изменение удельного сопротивления ( Ом м 2 / м)

    α = температурный коэффициент (1/ o C)

    dt = изменение температуры ( o C)

    Пример – изменение удельного сопротивления

    Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

    dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) – (20 o C))

    = 0.8 10 -8 Ом м 2 / м

    Окончательное удельное сопротивление можно рассчитать как

    ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом · м 2 / м)

    = 3,45 10 -8 Ом · м 2 / м

    Калькулятор коэффициента удельного сопротивления в зависимости от температуры

    использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

    ρ – Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

    α Температурный коэффициент (10 -3 1/ o C)

    dt изменение температуры ( o C)

    Сопротивление и температура

    Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

    dR / R с = α dT (6)

    , где

    dR = изменение сопротивления (Ом)

    R

    R с = стандартное сопротивление согласно справочным таблицам (Ом)

    α = температурный коэффициент сопротивления ( o C -1 )

    dT = изменение температура от эталонной температуры ( o C, K)

    (5) может быть изменена на:

    dR = α dT R s (6b)

    «Температурный коэффициент сопротивления» – α – материала – это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0033 1 или С .

    Пример – сопротивление медного провода в жаркую погоду

    Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

    dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) – (20 o C) ) (0.5 кОм)

    = 0,13 (кОм)

    Результирующее сопротивление медного провода в жаркую погоду будет

    R = (0,5 кОм) + (0,13 кОм)

    = 0,63 ( кОм)

    = 630 (Ом)

    Пример – сопротивление угольного резистора при изменении температуры

    Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 или С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) – сопротивление уменьшается с повышением температуры.

    Изменение сопротивления можно рассчитать как

    dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) – (20 o C) ) (1 кОм)

    = – 0,048 (кОм)

    Результирующее сопротивление резистора будет

    R = (1 кОм) – (0.048 кОм)

    = 0,952 (кОм)

    = 952 (Ом)

    Калькулятор зависимости сопротивления от температуры

    Этот счетчик можно использовать для расчета сопротивления проводника в зависимости от температуры.

    R с сопротивление (10 3 (Ом)

    α температурный коэффициент (10 -3 1/ o C)

    dt Изменение температуры ( o C)

    Температурные поправочные коэффициенты для сопротивления проводника

    703 708 9017
    Температура проводника
    (° C)
    Коэффициент Преобразовать в 20 ° C Обратно преобразовать в 20 ° C
    5 1.064 0,940
    6 1,059 0,944
    7 1.055 0,948
    8 1.050
    10 1,042 0,960
    11 1,037 0,964
    12 1,033 0.968
    13 1,029 0,972
    14 1,025 0,976
    15 1,020 0,980
    1,012 0,988
    18 1,008 0,992
    19 1,004 0,996
    20 1.000 1.000
    21 0.996 1.004
    22 0.992 1.008
    23 0.98812 703 703 703 703 703
    25 0,980 1,020
    26 0,977 1,024
    27 0,973 1.028
    28 0,969 1.032
    29 0,965 1.036
    30 0,962 1.040 1.040 0,954 1,048
    33 0,951 1,052

    Пример закона Ома Проблемы с решениями для средней школы

    Экспериментально обнаружено, что когда напряжение или разность потенциалов $ \ Delta V $ прикладывается к концам определенных проводников, ток через них пропорционален приложенному напряжению, равному $ I \ propto \ Delta V $.

    Константа пропорциональности называется сопротивлением этого проводника.

    Другими словами, сопротивление определяется как отношение напряжения на проводнике к току через него. \ [R \ Equiv \ frac {\ Delta V} {I} \] Это простое соотношение между разностью потенциалов и током известный как закон Ома .

    Единицы измерения сопротивления в системе СИ – вольт на ампер , которые называются Ом ($ \ Omega $).

    Проводник, который обеспечивает определенное сопротивление в электрической цепи, называется резистором .

    Например, если резистор 10 Ом подключен к клеммам аккумулятора с напряжением 240 В, то через него проходит ток $ \ frac {240} {10} = 24 \, {\ rm A} $.

    Напротив, в электронике также есть проводники или материалы, которые выше простой линейной зависимости между напряжением и током не соблюдаются, такие как диоды, транзисторы или люминесцентные лампы.

    В таких материалах существует нелинейная зависимость напряжения от тока. Эти проводники называются безомными материалами .


    Ниже приведены некоторые простые вопросы и ответы о законе Ома с подробными объяснениями. Все задачи подходят старшекласснику.

    Примеры закона Ома

    Пример (1): Электронное устройство имеет сопротивление 20 Ом и ток 15 А. Какое напряжение на устройстве?

    Решение : сопротивление, ток и напряжение связаны законом Ома как $ V = IR $. Таким образом, напряжение устройства получается как \ begin {align *} V & = IR \\ & = 15 \ times 20 \\ & = 300 \ quad {\ rm V} \ end {align *}


    Пример (2): к резистору $ 6 \, {\ rm \ Omega} $ приложена разность потенциалов 3 В.Какой ток протекает через резистор?

    Решение : Закон Ома гласит, что разность потенциалов на резисторе равна сопротивлению, умноженному на ток, поэтому мы получаем \ begin {align *} I & = \ frac VR \\ & = \ frac {3} {6} \\ & = 0.5 \ quad {\ rm A} \ end {align *}


    Пример (3): Ток 0,2 А проходит через резистор $ 1,4 \, {\ rm k \ Omega} $. Какое напряжение на нем?

    Решение : используя закон Ома, $ V = I R $, мы имеем \ begin {align *} V & = IR \\ & = (0.2 \, {\ rm A}) (1,4 \ times 1000 \, {\ rm \ Omega}) \\ & = 280 \ quad {\ rm V} \ end {align *}



    Пример (4): В схеме, показанной ниже, какой ток показывает амперметр?

    Решение : лампа представляет собой электронный компонент с высоким сопротивлением. На рисунке напряжение на нем такое же, как у батареи $ V = 20 \, {\ rm V} $. Проходящий через него ток связан с сопротивлением и падением напряжения согласно закону Ома \ begin {align *} I & = \ frac VR \\ & = \ frac {20} {8} \\ & = 1.25 \ quad {\ rm A} \ end {align *}



    Пример (5): В цепи падение потенциала на резисторе 10 кОм составляет 100 В. Каков ток через резистор?

    Решение : подставьте все известные значения в уравнение Ома, $ V = IR $. \ begin {align *} I & = \ frac VR \\ & = \ frac {100 \, {\ rm V}} {10000 \, {\ rm \ Omega}} \\ & = 0,01 \ quad {\ rm A} \ end {align *}


    Пример (6): в следующих схемах найдите неизвестные.

    Решение : В каждой из схем используйте закон Ома $ V = IR $ и решите неизвестное. В левой цепи ток через резистор запрашивается в миллиамперах. Таким образом, \ begin {align *} I & = \ frac VR \\ & = \ frac {120} {100} \\ & = 1. {- 3}} \\ & = 40 \ quad {\ rm \ Omega} \ end {align *}




    Пример (7): Кривая напряжение-ток для омического проводника построена, как показано на рисунке ниже.Какое сопротивление резисторов 1 и 2?

    Решение: Закон Ома говорит нам, что сопротивление – это наклон кривой зависимости напряжения от тока $ R = \ frac {\ Delta V} {I} $. Напомним, что наклон прямой $ m $ линии между двумя точками $ A (x_1, y_1) $ и $ B (x_2, y_2) $ определяется как \ [m = \ frac {\ Delta y} {\ Delta x} = \ frac {y_2-y_1} {x_2-x_1} \] Таким образом, наклон кривой напряжение – ток, который является сопротивлением, получается следующим образом:
    Точки $ A (0,0) $ и $ B (2,20) $ находятся на линии (1): \ [R_1 = \ frac {20-0} {2-0} = 10 \ quad {\ rm \ Omega} \]
    Точки $ A (0, 0) $ и $ B (4,10) $ находятся в строке (2): \ [R_2 = \ frac {10-0} {4-0} = 2.5 \ quad {\ rm \ Omega} \]



    Пример (8): Поменяйте местами падение потенциала на проводнике и ток, проходящий через него в предыдущей задаче, чтобы получить вольт-амперную кривую. Теперь найдите сопротивление резисторов 1 и 2?

    Решение: если мы изменим закон Ома как $ I = \ frac {1} {R} \ Delta V $, мы увидим, что наклон кривой вольт-амперной характеристики в этом случае дает обратное значение сопротивления . Следовательно, как и в предыдущей задаче, наклон
    линии (1) равен \ [\ frac {1} {R_1} = \ frac {20-0} {2-0} = 10 \], что дает $ R_1 = 0.1 \, {\ rm \ Omega} $, а наклон линии (2) равен \ [\ frac {1} {R_2} = \ frac {10-0} {4-0} = 2,5 \], что дает $ R_2 = 0,4 \, {\ rm \ Omega} $.


    Пример (9): Студент проводит эксперимент и измеряет ток и напряжение на двух неизвестных резисторах. Затем она строит свое открытие в координатах ток-напряжение, как показано на рисунке. Что можно сказать о резисторах А и В?

    Решение : омические материалы – это материалы, которые имеют постоянное сопротивление в широком диапазоне приложенных напряжений.Другими словами, в омическом проводнике отношение напряжения на нем к току через него, которое определяется как сопротивление, всегда является постоянным.

    Таким образом, омические материалы имеют линейную зависимость тока от напряжения, и ее кривая проходит через начало координат. Напротив, материалы, имеющие сопротивление, которое изменяется при падении потенциала или токе, называются неомическими.

    Кривая неомического материала не является линейной. Примерами неомных материалов, нарушающих закон Ома, являются диод и транзистор.

    С этими пояснениями, поскольку кривая (A) линейна и проходит через начало координат, значит, это омический проводник, наклон которого дает обратное сопротивление. Как и в предыдущей задаче, его сопротивление рассчитывается как $ R_A = 5 \, {\ rm \ Omega} $.

    Резистор (B) имеет нелинейную зависимость между напряжением на нем и током, поэтому это неомический проводник с переменным сопротивлением.


    Закон Ома: практические проблемы с решением

    Теперь мы хотим решить некоторые практические задачи, чтобы показать вам, как использовать закон Ома для решения проблем с электричеством.

    Практическая задача (1): будильник потребляет ток 0,5 А при подключении к цепи 120 В. Найдите его сопротивление.

    Решение : заданы ток $ I = 0,5 \, {\ rm A} $ и падение напряжения $ V = 120 \, {\ rm V} $. Решите закон Ома для неизвестного $ R $ как \ begin {align *} R & = \ frac VI \\ \\ & = \ frac {120} {0.5} \\ \\ & = 240 \ quad {\ rm \ Omega} \ конец {align *}


    Практическая проблема (2): сабвуферу требуется домашнее напряжение 110 В, чтобы протолкнуть ток 5.5 А через катушку. Какое сопротивление сабвуфера?

    Решение : Известны разность напряжений $ V = 110 \, {\ rm V} $ и ток $ I = 5.5 \, {\ rm A} $. Закон Ома связывает их следующим образом: \ begin {align *} R & = \ frac VI \\ \\ & = \ frac {110} {5.5} \\ \\ & = 20 \ quad {\ rm \ Omega} \ end {align *}

    Проблема (3): Сколько тока потребляет цепь с резистором на 1000 Ом при питании от батареи с напряжением 1,5 В.

    Решение : Сопротивление $ R = 1000 \, {\ rm \ Omega} $ и напряжение $ V = 1.5 \, {\ rm V} $ известны, поэтому у нас есть \ begin {align *} I & = \ frac VR \\ \\ & = \ frac {1000} {1.5} \\ \\ & = 667 \ quad {\ rm \ Omega} \ end {align *}


    Проблема (4): Электрический нагреватель имеет спиральный металлический провод, который потребляет ток 100 А. Сопротивление провода составляет 1,1 Ом. Рассчитайте напряжение, которое необходимо на нем установить.

    Решение : Ток $ I = 100 \, {\ rm A} $ и сопротивление $ R = 1.1 \, {\ rm \ Omega} $ связаны как \ begin {align *} V & = IR \\ & = 100 \ раз 1.1 \\ & = 110 \ quad {\ rm V} \ end {align *}


    Проблема (5): Максимальный ток, который проходит через лампочку с сопротивлением 5 Ом, составляет 10 А. Какое напряжение должно быть приложено к ее концам, прежде чем лампа сломается?

    Решение : Максимальное напряжение можно найти с помощью закона Ома, как показано ниже \ begin {align *} V & = IR \\ & = 10 \ times 5 \\ & = 50 \ quad {\ rm V} \ end {align *} Если на цепь будет подано напряжение выше этого значения, лампа перегорит.


    Проблема (6): В цепи мы заменяем предыдущую батарею на 1,5 В на новую батарею на 3 В. Что происходит с этой схемой?

    Решение : Закон Ома говорит нам, что, когда большее напряжение устанавливается в цепи, более высокий ток будет течь через резисторы в цепи, такие как электрические нагреватели, лампочки и т. Д.

    Более высокий ток может вызвать повреждение или выход из строя бытовой техники. Например, лампочка с сопротивлением $ R = 1.5 \, {\ rm \ Omega} $ потребляет ток $ I = \ frac {1.5} {1.5} = 1 \, {\ rm A} $ с батареей на 1,5 В и током $ I = \ frac {3 } {1.5} = 2 \, {\ rm A} $ с заменой новым. В этих случаях лампочка, скорее всего, перегорит.


    Проблема (7): В схеме удален резистор $ 10 \, {\ rm \ Omega} $ и заменен резистором $ 20 \, {\ rm \ Omega} $. Что происходит с током в цепи.

    Решение : Поскольку ничего не сказано о падении напряжения в цепи, мы предполагаем, что оно постоянное, скажем, $ V = 120 \, {\ rm V} $.Следовательно, используя формулу закона Ома, $ I = \ frac VR $, ток $ I = \ frac {120} {10} = 12 \, {\ rm A} $ течет через $ 10 \, {\ rm \ Omega} $ резистор и $ I = \ frac {120} {20} = 6 \, {\ rm A} $ через резистор $ 20 \, {\ rm \ Omega} $.

    Мы видим, что для того же напряжения удвоение сопротивлений приводит к уменьшению, точнее, к уменьшению вдвое токов.


    Страница Создана: 12/6/2020

    Последнее обновление: 19.01.2021

    Автор: Али Немати

    3.4: Закон Ома (снова) – рабочая сила LibreTexts

    Принцип «текущее убивает» по существу верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы заставить электроны проходить через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

    Принимая закон Ома для напряжения, тока и сопротивления и выражая его через ток для заданных напряжения и сопротивления, мы получаем следующее уравнение:

    Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно, чтобы заставить электроны течь, тем легче они будут проходить через любое заданное сопротивление. Следовательно, опасность высокого напряжения: высокое напряжение означает возможность протекания через ваше тело большого количества тока, который может повредить или убить вас. И наоборот, чем большее сопротивление тело оказывает току, тем медленнее электроны будут течь при любом заданном напряжении. Насколько опасно напряжение, зависит от того, какое полное сопротивление в цепи препятствует потоку электронов.

    Сопротивление тела не является фиксированной величиной. Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме дает разное сопротивление: всего одна переменная, влияющая на электрическое сопротивление в теле человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

    Сопротивление тела также варьируется в зависимости от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д.? Пот, богатый солями и минералами, является отличным проводником электричества, будучи жидкостью. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

    Измеряя электрическое сопротивление чувствительным измерителем, я измеряю сопротивление приблизительно 1 миллион Ом (1 МОм) двумя руками, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я сильно сжимаю щупы, и большее сопротивление, когда я держу их слабо. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

    А какой ток вреден? Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за ударов статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

    Таблица воздействия электричества на тело

    «Гц» означает единицу герц , меру того, насколько быстро меняется переменный ток, мера, также известная как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда электроны текут в одном направлении, а затем в другом) в секунду.Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

    Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному. Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных.Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Исходит из испытаний на животных.

    Предположим, я положил обе руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов, или чередование назад и вперед, в секунду). Сколько напряжения потребуется в этом чистом, сухом состоянии кожи, чтобы произвести ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома (E = IR), чтобы определить это: необходимо ли в этом чистом, сухом состоянии кожи производить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома (E = IR), чтобы определить это:

    E = IR

    E = (20 мА) (1 МОм)

    E = 20 000 вольт или 20 кВ

    Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности, и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Также имейте в виду, что физиологические эффекты любого конкретного количества тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками только .

    Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

    E = IR

    E = (20 мА) (17 кОм)

    E = 340 вольт

    В этом реалистичном состоянии потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии гораздо более низкого сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, обеспечивает отличную точку контакта для поражения электрическим током) или полный контакт с большим металлическим предметом, таким как труба или металл рукояткой инструмента сопротивление корпуса может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение будет представлять потенциальную опасность:

    E = IR

    E = (20 мА) (1 кОм)

    E = 20 вольт

    Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы вызвать ток в 20 миллиампер через человека: достаточно, чтобы вызвать столбняк.Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт:

    E = IR

    E = (17 мА) (1 кОм)

    E = 17 вольт

    Для электрических систем семнадцать вольт – это не так уж и много. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

    Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом). Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок – ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

    Research предоставило приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях (информацию об источнике этих данных см. В конце главы):

    • Провод, касающийся пальцем: от 40 000 Ом до 1 000 000 Ом в сухом состоянии, от 4 000 Ом до 15 000 Ом во влажном состоянии.
    • Провод, удерживаемый рукой: от 15 000 Ом до 50 000 Ом в сухом состоянии, от 3 000 Ом до 5 000 Ом во влажном состоянии.
    • Металлические плоскогубцы в руке: от 5000 Ом до 10 000 Ом в сухом состоянии, от 1000 Ом до 3000 Ом во влажном состоянии.
    • Контакт ладонью: от 3000 Ом до 8000 Ом в сухом состоянии, от 1000 Ом до 2000 Ом во влажном состоянии.
    • 1,5-дюймовая металлическая труба, захваченная одной рукой: от 1000 Ом до 3000 Ом в сухом состоянии, от 500 Ом до 1500 Ом во влажном состоянии.
    • 1,5-дюймовая металлическая труба, захватываемая двумя руками: от 500 Ом до 1500 кОм в сухом состоянии, от 250 Ом до 750 Ом во влажном состоянии.
    • Рука, погруженная в токопроводящую жидкость: от 200 Ом до 500 Ом.
    • Опора, погруженная в проводящую жидкость: от 100 Ом до 300 Ом.

    Обратите внимание на значения сопротивления в двух условиях для металлической трубы диаметром 1,5 дюйма. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления, когда одна рука держит трубу.

    Двумя руками площадь соприкосновения с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Когда две руки держат трубку, электроны имеют два параллельных путей, по которым они проходят от трубки к телу (или наоборот).

    Как мы увидим в более поздней главе, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

    В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. При этом, по-прежнему, держать руки в чистоте и сухости и снимать все металлические украшения при работе с электричеством – это отличная идея. Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи.Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

    Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью. Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора.Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь при напряжении 12 вольт.

    К счастью, ничего страшного не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не в ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора ( выдача больших величин тока через гаечный ключ с большим количеством сопутствующих искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

    Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и смертельного исхода.

    Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

    Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему меньше всего комфортно, даже если электрический ток через эту руку может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

    Лучшая защита от ударов цепи под напряжением – это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что у электронов есть только один путь:

    Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

    Поскольку электрический ток должен проходить через ботинок и тело и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует потоку электронов в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

    Безопасность – одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем, кто или что-либо может с ним контактировать. К сожалению, было бы непомерно дорого заключать проводники линии электропередачи в достаточную изоляцию, чтобы обеспечить безопасность в случае случайного контакта, поэтому безопасность поддерживается за счет того, что эти линии держат достаточно далеко вне досягаемости, чтобы никто не мог случайно прикоснуться к ним.

    Обзор

    • Вред для тела зависит от силы электрического тока.Более высокое напряжение позволяет производить более высокие и опасные токи. Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
    • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи.
    • Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
    • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током. Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
    • Когда необходимо работать в «живой» цепи, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).

    резисторов последовательно и параллельно

    Цели обучения

    К концу этого раздела вы сможете:

    • Нарисуйте цепь с резисторами, включенными параллельно и последовательно.
    • Рассчитайте падение напряжения тока на резисторе, используя закон Ома.
    • Сравните способ вычисления общего сопротивления для резисторов, включенных последовательно и параллельно.
    • Объясните, почему полное сопротивление параллельной цепи меньше наименьшего сопротивления любого из резисторов в этой цепи.
    • Рассчитайте общее сопротивление цепи, которая содержит смесь резисторов, включенных последовательно и параллельно.

    Большинство схем имеет более одного компонента, называемого резистором , который ограничивает поток заряда в цепи.Мера этого предела расхода заряда называется сопротивлением . Простейшие комбинации резисторов – это последовательное и параллельное соединение, показанное на рисунке 1. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

    Рис. 1. (a) Последовательное соединение резисторов. (б) Параллельное соединение резисторов.

    Когда резисторы в серии ? Резисторы включены последовательно всякий раз, когда поток заряда, называемый током , должен проходить через устройства последовательно.Например, если ток течет через человека, держащего отвертку, в землю, тогда R 1 на рисунке 1 (а) может быть сопротивлением вала отвертки, R 2 сопротивлением ее ручки , R 3 сопротивление тела человека и R 4 сопротивление его обуви. На рисунке 2 показаны резисторы, последовательно подключенные к источнику напряжения . Кажется разумным, что полное сопротивление является суммой отдельных сопротивлений, учитывая, что ток должен проходить через каждый резистор последовательно.(Этот факт был бы преимуществом для человека, желающего избежать поражения электрическим током, который мог бы уменьшить ток, надев обувь с высоким сопротивлением на резиновой подошве. Это могло бы стать недостатком, если бы одно из сопротивлений было неисправным шнуром с высоким сопротивлением. прибор, уменьшающий рабочий ток.) ​​

    Рис. 2. Три резистора, подключенных последовательно к батарее (слева), и эквивалентное одиночное или последовательное сопротивление (справа).

    Чтобы убедиться, что последовательно включенные сопротивления действительно складываются, давайте рассмотрим потерю электроэнергии, называемую падением напряжения , в каждом резисторе на Рисунке 2.Согласно закону Ома падение напряжения В на резисторе при протекании через него тока рассчитывается по формуле В = IR , где I равно току в амперах (А) и R – сопротивление в Ом (Ом). Другой способ представить это: В, – это напряжение, необходимое для протекания тока I через сопротивление R . Таким образом, падение напряжения на R 1 составляет В 1 = IR 1 , что на R 2 составляет В 2 = IR 2 и что через R 3 составляет V 3 = IR 3 .Сумма этих напряжений равна выходному напряжению источника; то есть

    В = В 1 + В 2 + В 3 .

    Это уравнение основано на сохранении энергии и сохранении заряда. Электрическая потенциальная энергия может быть описана уравнением PE = qV , где q – электрический заряд, а В, – напряжение. Таким образом, энергия, подаваемая источником, составляет кв.кв. , а энергия, рассеиваемая резисторами, составляет

    .

    qV 1 + qV 2 + qV 3 .

    Установление связей: законы сохранения

    Вывод выражений для последовательного и параллельного сопротивления основан на законах сохранения энергии и сохранения заряда, которые утверждают, что общий заряд и полная энергия постоянны в любом процессе. Эти два закона непосредственно участвуют во всех электрических явлениях и будут многократно использоваться для объяснения как конкретных эффектов, так и общего поведения электричества.

    Эти энергии должны быть равны, потому что в цепи нет другого источника и другого назначения для энергии.Таким образом, qV = qV 1 + qV 2 + qV 3 . Плата q отменяется, давая V = V 1 + V 2 + V 3 , как указано. (Обратите внимание, что одинаковое количество заряда проходит через батарею и каждый резистор за заданный промежуток времени, поскольку нет емкости для хранения заряда, нет места для утечки заряда и заряд сохраняется.) Теперь подстановка значений для отдельных напряжений дает

    В = IR 1 + IR 2 + IR 3 = I ( R 1 + R 2 + R 3 ).

    Обратите внимание, что для эквивалентного сопротивления одной серии R s , мы имеем

    В = ИК с .

    Это означает, что полное или эквивалентное последовательное сопротивление R с трех резисторов составляет R с = R 1 + R 2 + R 3 .Эта логика действительна в общем для любого количества резисторов, включенных последовательно; таким образом, полное сопротивление R s последовательного соединения составляет

    R с = R 1 + R 2 + R 3 +…,

    , как предлагается. Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а последовательно соединенные сопротивления просто складываются.

    Пример 1. Расчет сопротивления, тока, падения напряжения и рассеиваемой мощности: анализ последовательной цепи

    Предположим, что выходное напряжение батареи на рисунке 2 равно 12.0 В, а сопротивления равны R 1 = 1,00 Ом, R 2 = 6,00 Ом и R 3 = 13,0 Ом. а) Каково полное сопротивление? (б) Найдите ток. (c) Рассчитайте падение напряжения на каждом резисторе и покажите, как они складываются, чтобы равняться выходному напряжению источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия и решение для (а)

    Общее сопротивление – это просто сумма отдельных сопротивлений, определяемая следующим уравнением:

    [латекс] \ begin {array} {lll} {R} _ {\ text {s}} & = & {R} _ {1} + {R} _ {2} + {R} _ {3} \ \ & = & 1.00 \ text {} \ Omega + 6.00 \ text {} \ Omega + 13.0 \ text {} \ Omega \\ & = & 20.0 \ text {} \ Omega \ end {array} \\ [/ latex].

    Стратегия и решение для (b)

    Ток определяется по закону Ома: В = IR . Ввод значения приложенного напряжения и общего сопротивления дает ток для цепи:

    [латекс] I = \ frac {V} {{R} _ {\ text {s}}} = \ frac {12.0 \ text {V}} {20.0 \ text {} \ Omega} = 0.60 \ text {A }\\[/латекс].

    Стратегия и решение для (c)

    Напряжение – или IR падение – на резисторе определяется законом Ома.Ввод значения тока и значения первого сопротивления дает

    .

    В 1 = IR 1 = (0,600 A) (1,0 Ом) = 0,600 В.

    Аналогично

    В 2 = IR 2 = (0,600 A) (6,0 Ом) = 3,60 В

    и

    V3 = IR 3 = (0,600 A) (13,0 Ом) = 7,80 В.

    Обсуждение для (c)

    Три капли IR добавляют к 12.0 В, прогноз:

    В 1 + В 2 + В 3 = (0,600 + 3,60 + 7,80) В = 12,0 В.

    Стратегия и решение для (d)

    Самый простой способ рассчитать мощность в ваттах (Вт), рассеиваемую резистором в цепи постоянного тока, – это использовать закон Джоуля , P = IV , где P – электрическая мощность. В этом случае через каждый резистор протекает одинаковый полный ток.Подставляя закон Ома V = IR в закон Джоуля, мы получаем мощность, рассеиваемую первым резистором, как

    P 1 = I 2 R 1 = (0,600 A) 2 (1,00 Ом) = 0,360 Вт

    Аналогично

    P 2 = I 2 R 2 = (0,600 A) 2 (6,00 Ом) = 2,16 Вт

    и

    P 3 = I 2 R 3 = (0.{2}} {R} \\ [/ latex], где В, – это падение напряжения на резисторе (а не полное напряжение источника). Будут получены те же значения.

    Стратегия и решение для (e)

    Самый простой способ рассчитать выходную мощность источника – использовать P = IV , где В, – напряжение источника. Это дает

    P = (0,600 A) (12,0 В) = 7,20 Вт.

    Обсуждение для (e)

    Обратите внимание, что по совпадению общая мощность, рассеиваемая резисторами, также равна 7.20 Вт, столько же, сколько мощность, выдаваемая источником. То есть

    P 1 + P 2 + P 3 = (0,360 + 2,16 + 4,68) W = 7,20 Вт.

    Мощность – это энергия в единицу времени (ватты), поэтому для сохранения энергии требуется, чтобы выходная мощность источника была равна общей мощности, рассеиваемой резисторами.

    Основные характеристики резисторов серии

    1. Последовательные сопротивления добавить: R с = R 1 + R 2 + R 3 +….
    2. Один и тот же ток последовательно проходит через каждый резистор.
    3. Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.

    На рисунке 3 показаны резисторы , подключенные параллельно , подключенные к источнику напряжения. Резисторы включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения с помощью соединительных проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника. Каждый резистор потребляет такой же ток, как если бы он один был подключен к источнику напряжения (при условии, что источник напряжения не перегружен).Например, автомобильные фары, радио и т. Д. Подключены параллельно, так что они используют полное напряжение источника и могут работать полностью независимо. То же самое и в вашем доме, или в любом другом здании. (См. Рисунок 3 (b).)

    Рис. 3. (a) Три резистора, подключенных параллельно батарее, и эквивалентное одиночное или параллельное сопротивление. (б) Электроснабжение в доме. (Источник: Dmitry G, Wikimedia Commons)

    Чтобы найти выражение для эквивалентного параллельного сопротивления R p , давайте рассмотрим протекающие токи и их связь с сопротивлением.Поскольку каждый резистор в цепи имеет полное напряжение, токи, протекающие через отдельные резисторы, равны [латекс] {I} _ {1} = \ frac {V} {{R} _ {1}} \\ [/ latex] , [латекс] {I} _ {2} = \ frac {V} {{R} _ {2}} \\ [/ latex] и [латекс] {I} _ {3} = \ frac {V} {{R} _ {3}} \\ [/ латекс]. Сохранение заряда подразумевает, что полный ток I , производимый источником, является суммой этих токов:

    I = I 1 + I 2 + I 3 .

    Подстановка выражений для отдельных токов дает

    [латекс] I = \ frac {V} {{R} _ {1}} + \ frac {V} {{R} _ {2}} + \ frac {V} {{R} _ {3}} = V \ left (\ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3}} \ справа) \\ [/ латекс].

    Обратите внимание, что закон Ома для эквивалентного одиночного сопротивления дает

    [латекс] I = \ frac {V} {{R} _ {p}} = V \ left (\ frac {1} {{R} _ {p}} \ right) \\ [/ latex].

    Члены в скобках в последних двух уравнениях должны быть равны. Обобщая для любого количества резисторов, общее сопротивление R p параллельного соединения связано с отдельными сопротивлениями на

    .

    [латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ гидроразрыв {1} {{R} _ {\ text {.} 3}} + \ text {.} \ Text {…} \\ [/ latex]

    Это соотношение приводит к общему сопротивлению R p , которое меньше наименьшего из отдельных сопротивлений. (Это видно в следующем примере.) При параллельном подключении резисторов от источника течет больше тока, чем протекает по любому из них по отдельности, поэтому общее сопротивление ниже.

    Пример 2. Расчет сопротивления, тока, рассеиваемой мощности и выходной мощности: анализ параллельной цепи

    Пусть выходное напряжение батареи и сопротивления в параллельном соединении на Рисунке 3 будут такими же, как в ранее рассмотренном последовательном соединении: В = 12.0 В, R 1 = 1,00 Ом, R 2 = 6,00 Ом и R 3 = 13,0 Ом. а) Каково полное сопротивление? (б) Найдите полный ток. (c) Рассчитайте токи в каждом резисторе и покажите, как они складываются, чтобы равняться общему выходному току источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия и решение для (а)

    Общее сопротивление для параллельной комбинации резисторов находится с помощью следующего уравнения.Ввод известных значений дает

    [латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3}} = \ frac {1} {1 \ text {.} \ text {00} \ text {} \ Omega} + \ frac {1} {6 \ text {. } \ text {00} \ text {} \ Omega} + \ frac {1} {\ text {13} \ text {.} 0 \ text {} \ Omega} \\ [/ latex].

    Таким образом,

    [латекс] \ frac {1} {{R} _ {p}} = \ frac {1.00} {\ text {} \ Omega} + \ frac {0 \ text {.} \ Text {1667}} {\ текст {} \ Omega} + \ frac {0 \ text {.} \ text {07692}} {\ text {} \ Omega} = \ frac {1 \ text {.} \ text {2436}} {\ text { } \ Omega} \\ [/ латекс].

    (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.) Мы должны перевернуть это, чтобы найти полное сопротивление R p . Это дает

    [латекс] {R} _ {\ text {p}} = \ frac {1} {1 \ text {.} \ Text {2436}} \ text {} \ Omega = 0 \ text {.} \ Text { 8041} \ text {} \ Omega \\ [/ latex].

    Суммарное сопротивление с правильным количеством значащих цифр составляет R p = 0,804 Ом

    Обсуждение для (а)

    R p , как и предполагалось, меньше наименьшего индивидуального сопротивления.

    Стратегия и решение для (b)

    Полный ток можно найти из закона Ома, заменив полное сопротивление R p . Это дает

    [латекс] I = \ frac {V} {{R} _ {\ text {p}}} = \ frac {\ text {12.0 V}} {0.8041 \ text {} \ Omega} = \ text {14} \ text {.} \ text {92 A} \\ [/ latex].

    Обсуждение для (б)

    Ток I для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.

    Стратегия и решение для (c)

    Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом,

    [латекс] {I} _ {1} = \ frac {V} {{R} _ {1}} = \ frac {12.0 \ text {V}} {1.00 \ text {} \ Omega} = 12.0 \ text {A} \\ [/ латекс].

    Аналогично

    [латекс] {I} _ {2} = \ frac {V} {{R} _ {2}} = \ frac {12.0 \ text {V}} {6.00 \ text {} \ Omega} = 2 \ text {.} \ text {00} \ text {A} \\ [/ latex]

    и

    [латекс] {I} _ {3} = \ frac {V} {{R} _ {3}} = \ frac {\ text {12} \ text {.} 0 \ text {V}} {\ text {13} \ text {.} \ Text {0} \ text {} \ Omega} = 0 \ text {.} \ Text {92} \ text {A} \\ [/ latex].

    Обсуждение для (c)

    Общий ток складывается из отдельных токов:

    I 1 + I 2 + I 3 = 14,92 A.

    Это соответствует сохранению заряда.{2}} {13.0 \ text {} \ Omega} = 11.1 \ text {W} \\ [/ latex].

    Обсуждение для (d)

    Мощность, рассеиваемая каждым резистором при параллельном подключении, значительно выше, чем при последовательном подключении к тому же источнику напряжения.

    Стратегия и решение для (e)

    Общую мощность также можно рассчитать несколькими способами. Выбрав P = IV и введя полный ток, получим

    P = IV = (14,92 A) (12,0 В) = 179 Вт.

    Обсуждение для (e)

    Суммарная мощность, рассеиваемая резисторами, также 179 Вт:

    P 1 + P 2 + P 3 = 144 Вт + 24,0 Вт + 11,1 Вт = 179 Вт

    Это соответствует закону сохранения энергии.

    Общее обсуждение

    Обратите внимание, что как токи, так и мощность при параллельном подключении больше, чем для тех же устройств, подключенных последовательно.

    Основные характеристики параллельных резисторов
    1. Параллельное сопротивление определяется из [latex] \ frac {1} {{R} _ {\ text {p}}} = \ frac {1} {{R} _ {1}} + \ frac {1} { {R} _ {2}} + \ frac {1} {{R} _ {3}} + \ text {…} \\ [/ latex], и оно меньше любого отдельного сопротивления в комбинации.
    2. На каждый параллельно включенный резистор подается такое же полное напряжение источника. (В системах распределения электроэнергии чаще всего используются параллельные соединения для питания бесчисленных устройств, обслуживаемых одним и тем же напряжением, и для того, чтобы они могли работать независимо.)
    3. Параллельные резисторы не получают суммарный ток каждый; они делят это.

    Сочетания последовательного и параллельного

    Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Они часто встречаются, особенно если учесть сопротивление провода. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно. Комбинации последовательного и параллельного подключения можно свести к одному эквивалентному сопротивлению, используя технику, показанную на рисунке 4.Различные части идентифицируются как последовательные или параллельные, уменьшаются до их эквивалентов и далее уменьшаются до тех пор, пока не останется единственное сопротивление. Процесс занимает больше времени, чем труден.

    Рис. 4. Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.

    Самая простая комбинация последовательного и параллельного сопротивления, показанная на рисунке 4, также является наиболее поучительной, поскольку она используется во многих приложениях.Например, R 1 может быть сопротивлением проводов от автомобильного аккумулятора к его электрическим устройствам, которые подключены параллельно. R 2 и R 3 могли быть стартером и светом салона. Ранее мы предполагали, что сопротивление провода незначительно, но, когда это не так, оно имеет важные последствия, как показывает следующий пример.

    Пример 3. Расчет сопротивления,

    IR Падение, ток и рассеиваемая мощность: объединение последовательных и параллельных цепей

    На рис. 5 показаны резисторы из двух предыдущих примеров, подключенные другим способом – комбинацией последовательного и параллельного подключения.Мы можем считать R 1 сопротивлением проводов, ведущих к R 2 и R 3 . (а) Найдите полное сопротивление. (b) Что такое падение IR в R 1 ? (c) Найдите текущие значения от I 2 до R 2 . (d) Какую мощность рассеивает R 2 ?

    Рис. 5. Эти три резистора подключены к источнику напряжения, так что R 2 и R 3 параллельны друг другу, и эта комбинация включена последовательно с R 1 .

    Стратегия и решение для (а)

    Чтобы найти полное сопротивление, отметим, что R 2 и R 3 находятся параллельно, а их комбинация R p находится последовательно с R 1 . Таким образом, полное (эквивалентное) сопротивление этой комбинации составляет

    .

    R до = R 1 + R p .

    Сначала находим R p , используя уравнение для параллельных резисторов и вводя известные значения:

    [латекс] \ frac {1} {{R} _ {\ text {p}}} = \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3 }} = \ frac {1} {6 \ text {.} \ text {00} \ text {} \ Omega} + \ frac {1} {\ text {13} \ text {.} 0 \ text {} \ Omega} = \ frac {0.2436} {\ text {} \ Омега} \\ [/ латекс].

    Инвертирование дает

    [латекс] {R} _ {\ text {p}} = \ frac {1} {0,2436} \ text {} \ Omega = 4.11 \ text {} \ Omega \\ [/ latex].

    Таким образом, общее сопротивление равно

    .

    R до = R 1 + R p = 1,00 Ом + 4,11 Ом = 5,11 Ом.

    Обсуждение для (а)

    Общее сопротивление этой комбинации является промежуточным между значениями чистой серии и чистой параллели (20.0 Ом и 0,804 Ом соответственно), найденные для тех же резисторов в двух предыдущих примерах.

    Стратегия и решение для (b)

    Чтобы найти падение IR в R 1 , отметим, что полный ток I протекает через R 1 . Таким образом, падение IR составляет

    .

    В 1 = ИК 1

    Мы должны найти I , прежде чем сможем вычислить V 1 .Полный ток I находится с помощью закона Ома для схемы. То есть

    [латекс] I = \ frac {V} {{R} _ {\ text {tot}}} = \ frac {\ text {12.0} \ text {V}} {5.11 \ text {} \ Omega} = 2.35 \ text {A} \\ [/ latex].

    Вводя это в выражение выше, мы получаем

    В 1 = IR 1 = (2,35 А) (1,00 Ом) = 2,35 В.

    Обсуждение для (б)

    Напряжение, приложенное к R 2 и R 3 , меньше полного напряжения на величину В 1 .Когда сопротивление провода велико, это может существенно повлиять на работу устройств, представленных R 2 и R 3 .

    Стратегия и решение для (c)

    Чтобы найти ток через R 2 , мы должны сначала найти приложенное к нему напряжение. Мы называем это напряжение В p , потому что оно приложено к параллельной комбинации резисторов. Напряжение, приложенное как к R 2 , так и к R 3 , уменьшается на величину В 1 , и поэтому оно составляет

    .

    В p = V V 1 = 12.0 В – 2,35 В = 9,65 В.

    Теперь ток I 2 через сопротивление R 2 находится по закону Ома:

    [латекс] {I} _ {2} = \ frac {{V} _ {\ text {p}}} {{R} _ {2}} = \ frac {9.65 \ text {V}} {6.00 \ текст {} \ Omega} = 1,61 \ text {A} \\ [/ latex].

    Обсуждение для (c)

    Ток меньше, чем 2,00 А, которые протекали через R 2 , когда он был подключен параллельно к батарее в предыдущем примере параллельной цепи.

    Стратегия и решение для (d)

    Мощность, рассеиваемая R 2 , определяется

    P 2 = ( I 2 ) 2 R 2 = (1,61 A) 2 (6,00 Ом) = 15,5 Вт

    Обсуждение для (d)

    Мощность меньше 24,0 Вт, рассеиваемых этим резистором при параллельном подключении к источнику 12,0 В.

    Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение IR в проводах также может быть значительным.

    Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    Что происходит в этих сильноточных ситуациях, показано на рисунке 6. Устройство, обозначенное номером R 3 , имеет очень низкое сопротивление, поэтому при его включении протекает большой ток. Этот увеличенный ток вызывает большее падение IR в проводах, представленных R 1 , уменьшая напряжение на лампе (которое составляет R 2 ), которое затем заметно гаснет.

    Рис. 6. Почему гаснет свет при включении большого прибора? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.

    Проверьте свое понимание

    Можно ли любую произвольную комбинацию резисторов разбить на последовательную и параллельную? Посмотрите, сможете ли вы нарисовать принципиальную схему резисторов, которые нельзя разбить на комбинации последовательно и параллельно.

    Решение Нет, есть много способов подключения резисторов, которые не являются комбинациями последовательного и параллельного, включая петли и переходы. В таких случаях правила Кирхгофа, которые будут включены в Правила Кирхгофа, позволят вам проанализировать схему.

    Стратегии решения проблем для последовательных и параллельных резисторов
    1. Нарисуйте четкую принципиальную схему, пометив все резисторы и источники напряжения. Этот шаг включает список известных проблем, поскольку они отмечены на вашей принципиальной схеме.
    2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
    3. Определите, включены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно.Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные. Есть один список для серий, а другой – для параллелей. Если ваша проблема представляет собой комбинацию последовательного и параллельного соединения, уменьшайте ее поэтапно, рассматривая отдельные группы последовательных или параллельных соединений, как это сделано в этом модуле и примерах. Особое примечание: при обнаружении R необходимо соблюдать осторожность.
    5. Проверьте, являются ли ответы разумными и последовательными. Единицы и числовые результаты должны быть разумными. Общее последовательное сопротивление должно быть больше, а общее параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.

    Сводка раздела

    Концептуальные вопросы

    1. Переключатель имеет переменное сопротивление, которое почти равно нулю в замкнутом состоянии и очень велико в разомкнутом состоянии, и он включен последовательно с устройством, которым он управляет.Объясните влияние переключателя на рис. 7 на ток в разомкнутом и замкнутом состоянии.

    Рис. 7. Переключатель обычно включается последовательно с источником сопротивления и напряжения. В идеале переключатель имеет почти нулевое сопротивление в замкнутом состоянии, но имеет чрезвычайно большое сопротивление в разомкнутом состоянии. (Обратите внимание, что на этой диаграмме скрипт E представляет напряжение (или электродвижущую силу) батареи.)

    2. Какое напряжение на разомкнутом переключателе на Рисунке 7?

    3. На разомкнутом переключателе есть напряжение, как на Рисунке 7.Почему же тогда мощность, рассеиваемая разомкнутым переключателем, мала?

    4. Почему мощность, рассеиваемая замкнутым переключателем, как на Рисунке 7, мала?

    5. Студент в физической лаборатории по ошибке подключил электрическую лампочку, батарею и выключатель, как показано на рисунке 8. Объясните, почему лампочка горит, когда выключатель разомкнут, и гаснет, когда выключатель замкнут. (Не пытайтесь – батарея сильно разряжается!)

    Рис. 8. Ошибка подключения. Включите этот переключатель параллельно устройству, обозначенному [латекс] R [/ латекс].(Обратите внимание, что на этой диаграмме скрипт E представляет напряжение (или электродвижущую силу) батареи.)

    6. Зная, что сила удара зависит от величины тока, протекающего через ваше тело, вы бы предпочли, чтобы он был включен последовательно или параллельно с сопротивлением, таким как нагревательный элемент тостера, если он потрясен им? Объяснять.

    7. Были бы ваши фары тусклыми при запуске двигателя автомобиля, если бы провода в вашем автомобиле были сверхпроводниками? (Не пренебрегайте внутренним сопротивлением батареи.) Объяснять.

    8. Некоторые гирлянды праздничных огней соединены последовательно для экономии затрат на проводку. В старой версии использовались лампочки, которые при перегорании прерывали электрическое соединение, как открытый выключатель. Если одна такая лампочка перегорит, что случится с остальными? Если такая цепочка работает от 120 В и имеет 40 одинаковых лампочек, каково нормальное рабочее напряжение каждой? В более новых версиях используются лампы, которые при перегорании закорачивают, как замкнутый выключатель. Если одна такая лампочка перегорит, что случится с остальными? Если такая цепочка работает от 120 В и в ней осталось 39 идентичных лампочек, каково тогда рабочее напряжение каждой?

    9.Если две бытовые лампочки мощностью 60 и 100 Вт подключить последовательно к бытовой электросети, какая из них будет ярче? Объяснять.

    10. Предположим, вы проводите физическую лабораторию, в которой вас просят вставить резистор в цепь, но все прилагаемые резисторы имеют большее сопротивление, чем запрошенное значение. Как бы вы соединили доступные сопротивления, чтобы попытаться получить меньшее запрошенное значение?

    11. Перед Второй мировой войной некоторые радиостанции получали питание через «шнур сопротивления», который имел значительное сопротивление.Такой резистивный шнур снижает напряжение до желаемого уровня для ламп радиоприемника и т.п., и это экономит расходы на трансформатор. Объясните, почему шнуры сопротивления нагреваются и тратят энергию при включенном радио.

    12. У некоторых лампочек есть три уровня мощности (не включая ноль), получаемые от нескольких нитей накала, которые индивидуально переключаются и соединяются параллельно. Какое минимальное количество нитей необходимо для трех режимов мощности?

    Задачи и упражнения

    Примечание. Можно считать, что данные, взятые из цифр, имеют точность до трех значащих цифр.

    1. (а) Каково сопротивление десяти последовательно соединенных резисторов сопротивлением 275 Ом? (б) Параллельно?

    2. (a) Каково сопротивление последовательно соединенных резисторов 1,00 × 10 2 Ом, 2,50 кОм и 4,00 кОм? (б) Параллельно?

    3. Какое наибольшее и наименьшее сопротивление можно получить, соединив резисторы на 36,0 Ом, 50,0 Ом и 700 Ом?

    4. Тостер на 1800 Вт, электрическая сковорода на 1400 Вт и лампа на 75 Вт подключены к одной розетке в цепи 15 А, 120 В.(Три устройства работают параллельно, если подключены к одной розетке.) а) Какой ток потребляет каждое устройство? (b) Перегорит ли эта комбинация предохранитель на 15 А?

    5. Фара мощностью 30,0 Вт и стартер мощностью 2,40 кВт обычно подключаются параллельно в систему на 12,0 В. Какую мощность потребляли бы одна фара и стартер при последовательном подключении к батарее 12,0 В? (Не обращайте внимания на любое другое сопротивление в цепи и любое изменение сопротивления в двух устройствах.)

    6.(a) Для батареи 48,0 В и резисторов 24,0 Ом и 96,0 Ом найдите для каждого из них ток и мощность при последовательном соединении. (b) Повторите, когда сопротивления включены параллельно.

    7. Ссылаясь на пример комбинирования последовательных и параллельных цепей и рисунок 5, вычислите I 3 двумя следующими способами: (a) по известным значениям I и I 2 ; (б) используя закон Ома для R 3 . В обеих частях явно показано, как вы следуете шагам, описанным в описании стратегии решения проблем для последовательных и параллельных резисторов выше.

    Рис. 5. Эти три резистора подключены к источнику напряжения, так что R 2 и R 3 параллельны друг другу, и эта комбинация включена последовательно с R 1 .

    8. Ссылаясь на рисунок 5: (a) Вычислите P 3 и обратите внимание на его сравнение с P 3 , найденным в первых двух примерах задач в этом модуле. (b) Найдите полную мощность, отдаваемую источником, и сравните ее с суммой мощностей, рассеиваемых резисторами.

    9. См. Рисунок 6 и обсуждение затемнения света при включении тяжелого прибора. (а) Учитывая, что источник напряжения составляет 120 В, сопротивление провода составляет 0,400 Ом, а номинальная мощность лампы составляет 75,0 Вт, какая мощность будет рассеиваться лампой, если при включении двигателя через провода пройдет в общей сложности 15,0 А? Предположите незначительное изменение сопротивления лампы. б) Какая мощность потребляет двигатель?

    Рис. 6. Почему гаснет свет при включении большого прибора? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.

    10. Линия электропередачи на 240 кВ, имеющая 5,00 × 10 2 , подвешена к заземленным металлическим опорам с помощью керамических изоляторов, каждая из которых имеет сопротивление 1,00 × 10 9 Ом (рис. 9 (а)). Какое сопротивление на землю у 100 изоляторов? (b) Рассчитайте мощность, рассеиваемую 100 из них. (c) Какая доля мощности, переносимой линией, составляет это? Ясно покажите, как вы следуете шагам, описанным выше в стратегии решения проблем для последовательных и параллельных резисторов .

    Рис. 9. Высоковольтная (240 кВ) линия электропередачи 5,00 × 10 2 подвешена к заземленной металлической опоре электропередачи. Ряд керамических изоляторов обеспечивает сопротивление 1,00 × 10 9 Ом каждый.

    11. Покажите, что если два резистора R 1 и R 2 объединены, и один из них намного больше другого ( R 1 >> R 2 ): (a ) Их последовательное сопротивление почти равно большему сопротивлению R 1 .(б) Их параллельное сопротивление почти равно меньшему сопротивлению R 2 .

    12. Необоснованные результаты Два резистора, один с сопротивлением 145 Ом, подключены параллельно, чтобы получить общее сопротивление 150 Ом. а) Каково значение второго сопротивления? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?

    13. Необоснованные результаты Два резистора, один из которых имеет сопротивление 900 кОм, соединены последовательно, чтобы получить общее сопротивление 0.500 МОм. а) Каково значение второго сопротивления? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?

    Глоссарий

    серия:
    последовательность резисторов или других компонентов, включенных в цепь один за другим
    резистор:
    компонент, обеспечивающий сопротивление току, протекающему через электрическую цепь
    сопротивление:
    вызывает потерю электроэнергии в цепи
    Закон Ома:
    соотношение между током, напряжением и сопротивлением в электрической цепи: В = IR
    напряжение:
    электрическая потенциальная энергия на единицу заряда; электрическое давление, создаваемое источником питания, например аккумулятором
    падение напряжения:
    потеря электроэнергии при прохождении тока через резистор, провод или другой компонент
    ток:
    поток заряда через электрическую цепь мимо заданной точки измерения
    Закон Джоуля:
    взаимосвязь между потенциальной электрической мощностью, напряжением и сопротивлением в электрической цепи, определяемая следующим образом: [latex] {P} _ {e} = \ text {IV} [/ latex]
    параллельно:
    разводку резисторов или других компонентов в электрической цепи, так что каждый компонент получает одинаковое напряжение от источника питания; часто изображается на диаграмме в виде лестницы, где каждый компонент находится на ступеньке лестницы

    Избранные решения проблем и упражнения

    1.(а) 2,75 кОм (б) 27,5 Ом

    3. (а) 786 Ом (б) 20,3 Ом

    5. 29,6 Вт

    7. (а) 0,74 А (б) 0,742 А

    9. (а) 60,8 Вт (б) 3,18 кВт

    11. (a) [латекс] \ begin {array} {} {R} _ {\ text {s}} = {R} _ {1} + {R} _ {2} \\ \ Rightarrow {R} _ {\ text {s}} \ приблизительно {R} _ {1} \ left ({R} _ {1} \ text {>>} {R} _ {2} \ right) \ end {array} \\ [/ латекс]

    (b) [латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2} } = \ frac {{R} _ {1} + {R} _ {2}} {{R} _ {1} {R} _ {2}} \\ [/ latex],

    , так что

    [латекс] \ begin {array} {} {R} _ {p} = \ frac {{R} _ {1} {R} _ {2}} {{R} _ {1} + {R} _ {2}} \ приблизительно \ frac {{R} _ {1} {R} _ {2}} {{R} _ {1}} = {R} _ {2} \ left ({R} _ {1 } \ text {>>} {R} _ {2} \ right) \ text {.} \ end {array} \\ [/ latex]

    13. (a) –400 кОм (b) Сопротивление не может быть отрицательным. (c) Считается, что последовательное сопротивление меньше, чем у одного из резисторов, но должно быть больше, чем у любого из резисторов.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *