Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Маркировка и обозначение аккумуляторных батарей

Все свинцовые стартерные аккумуляторные батареи, которые производят в России, должны соответствовать требованием ГОСТ Р 53165-2008. В соответствии с требованиями условное обозначение типов батарей устанавливают по следующей схеме:
       
Блок 1 – указывает на количество последовательно соединённых аккумуляторов в батарее.
Блок 2 –  характеризует батарею по её функциональному признаку ( СТ – стартерная).
Блок 3 – номинальная емкость батареи, указанная в ампер-часах, А/ч
Блок 4 – исполнение батареи

Исполнение батареи обозначается следующими символами:

  • N – открытая с нерегламентированным расходом воды
  • L – открытая с малым расходом воды
  • VL – открытая с очень малым расходом воды
  • VRLA – открытая с регулирующим клапаном.

Так, например, условное обозначение аккумуляторной батареи с 6СТ-60L указывает, что батарея состоит из 6 последовательно соединённых аккумуляторов общим напряжением в 12В, является стартовой с номинальной ёмкостью 60 А/ч, открытая с малым расходом воды.

Европейские производители присваивают стартерным батареям девятизначный номер – ETN (European Type Number). Схематично это можно изобразить так:

Блок А.     Содержит информацию о напряжении и ёмкости батареи.
Для 12-ти вольтовых батарей номинальную ёмкость можно получить вычитая из первых трёх цифр (от 501 до 799) число 500. Например, батарея с обозначением 555065042 имеет ёмкость 55 А/ч ( 555-500=55 А/ч) или батарея с номером 680032100 имеет ёмкость 180 А/ч (680-500=180 А/ч)

Блок B.     Три средние цифры ETN-номера указывают на геометрические размеры аккумуляторной батареи, тип газоотвода, конструкцию крышки и крепёжных элементов.

 

Блок C.     Последние три цифры ETN-номера численно равны 10% от тока холодной прокрутки аккумуляторной батареи. Например, если в обозначении АКБ последние три цифры 042, то ток холодной прокрутки равен 420 А.

Американские производители маркируют свои аккумуляторные батареи в соответствии с требованиями стандарта SAE. Где первые две цифры номера обозначают её типоразмерную группу и полярность, а последние три равны току холодной прокрутки при -18?С. Например аккумуляторная батарея с номером А27500 принадлежит к 27 размерной группе (306×173×225 мм), а ток холодной прокрутки, измеренный по методике SAE J537 при температуре -18?С равен 500 А. Или американский аккумулятор American c номером на корпусе 34R770 принадлежит к 34 размерной группе (260×173×225 мм) с обратной полярностью и с током холодной прокрутки 770 А.

Японские аккумуляторные батареи маркируются по внутреннему стандарту JIS. Маркировку японского аккумулятора можно схематично изобразить так:

Блок 1.  Ёмкость аккумуляторной батареи измеренная по японскому стандарту, она отличается от европейского и зависит от множества параметров.  Согласно этому стандарту ёмкость по японскому циклу измеряется  по 5-ти часовому разряду, а европейского по 20-ти часовому. Поэтому для перевода значений ёмкости японского цикла в европейский лучше пользоваться таблицей 1.

Таблица1. Характеристики АКБ японского стандарта.


Аккумулятор
 

Емкость
(Aч, 5ч/20ч)

Ток
холодного
запуска (-18)

Общая
высота,
мм

Высота,
мм

Длина,
мм

Масса,
кг

50B24R

36 / 45

390

55D23R

48 / 60

356

65D23R

52 / 65

420

75D26R

60 / 75

490/447

95D31R

64 / 80

622

30A19R(L)

24 / 30

178

162

197

9. 0

38B20R(L)

28 / 36

340

225

203

197

11.20

55B24R(L)

36 / 46

410

223

200

234

13.

70

55D23R(L)

48 / 60

525

223

200

230

17.80

80D23R(L)

60 / 75

600

223

200

230

18. 50

80D26R(L)

60 / 75

600

223

200

257

19.40

105D31R(L)

72 / 90

675

223

202

302

24. 10

120E41R(L)

88 / 110

810

228

206

402

28.30

40B19 R (L)

30 / 37

330

 

46B24 R (L)

36 / 45

330

 

55B24 R (L)

36 / 45

440

 

55D23 R (L)

48 / 60

360

 

75D23 R (L)

52 / 65

530

 

80D26 R (L)

55 / 68

590

 

95D31 R (L)

64 / 80

630

 

Блок 2. Указывает на размерную группу аккумуляторной батареи. Существует восемь размерных групп от А до Н.

Блок 3. Длина батареи в сантиметрах.

Блок 4. Обозначение полярности АКБ. Так если стоит буква R – полярность прямая, L – обратная.
Для примера расшифруем японский аккумулятор с маркировкой 55D23R. Пользуясь таблицей узнаём, что ёмкость батареи при пересчете на европейский стандарт численно равна 60 А/ч а ток холодного запуска равен 525 А. Также из таблицы узнаём её габаритные размеры. Полярность прямая.

Технология и компоненты в аккумуляторных батареях для электромобилей

Технология, инновации, Автомобильные аккумуляторные батареи 12 января 2021

Аккумуляторы являются подходящими системами хранения энергии в различных типах автомобилей, но они играют ключевую роль в случае электромобилей. Технологии, отвечающие за их работу, постоянно развиваются, и различные типы аккумуляторов отличаются друг от друга по применению и техническим характеристикам. Узнайте о типах батарей, используемых в электромобилях.

Технологии в аккумуляторах электромобилей – основные типы аккумуляторов

Аккумуляторы электромобилей (EV) отличаются используемыми в них химическим элементам. В основном мы различаем литий-ионные, никель-металл-гидридные и свинцово-кислотные аккумуляторы. Выбрать оптимальную аккумуляторную батарею для электромобиля сложно, потому что индивидуальные решения хорошо работают в разных ситуациях.

Ниже вы найдете краткое описание различных типов аккумуляторов, используемых в автомобильной промышленности, а также их применение.

Литий-ионная батарея – большая популярность и высокая производительность.

Несомненно, именно литий-ионные батареи в последние годы внесли наибольший вклад в передовое развитие электроэнергетического сектора. Они характеризуются эффективностью, низкой ценой и высоким уровнем производительности по отношению к весу элементов. Это лучшие батареи, если учитывать три параметра: оптимизация размера и веса батареи, соотношение массы к количеству накопленной энергии и выгодная цена. Литий-ионные батареи также можно найти во многих бытовых устройствах, таких как телефоны, компьютеры или пылесосы.

Никель-металл-гидридная аккумуляторная батарея – для специализированного использования.

Аккумуляторы являются подходящими системами хранения энергии в различных транспортных средствах, но они играют ключевую роль в случае электромобилей.

Это специальные аккумуляторные элементы, которые достаточно редки по своим химическим и физическим параметрам. Водород является сырьем, требующим особого контроля. Батарея теряет энергию, когда она не используется, но этот недостаток компенсируется длительным сроком службы элементов. Никель-металл-гидридные батареи используются в специализированных устройствах, таких как медицинское оборудование. Решения такого рода характеризуются высокой себестоимостью производства.

Свинцово-кислотные аккумуляторы – низкий срок службы и впечатляющая мощность.

Аккумуляторы этой категории характеризуются отличными параметрами мощности. В электромобиле, однако, приходится делать ставку на решение, которое характеризуется высокой эффективностью даже при низких температурах, где такие батареи работают плохо. Несмотря на то, что стандартные аккумуляторные батареи автомобиля также фиксируют снижение таких условий, свинцово-кислотные элементы демонстрируют худшие показатели в этом аспекте. К их преимуществам относятся низкая себестоимость и надежность.

Суперконденсаторы – поддержка производительности аккумуляторов.

Суперконденсаторы или ультраконденсаторы в первую очередь используются для обеспечения необходимого электропитания при временном отключении электричества. По этой причине они также полезны в электромобилях, где их роль заключается в обеспечении достаточной мощности, когда требуется больше энергии.

Многие электромобили используют аккумуляторные батареи – несколько элементов одновременно. Сочетая возможности суперконденсаторов с литий-ионными и никель-металлогидридными аккумуляторами, можно добиться лучших результатов, чем при использовании одиночных элементов. В настоящее время в автомобильном секторе доминируют литий-ионные аккумуляторы, чаще всего используемые в электромобилях.

Литиево-ионные или никель-металл-гидридные аккумуляторы – как выбрать лучшую батарею для электромобиля?

Из-за описанных выше параметров литий-ионная батарея используется чаще всего. Более того, технология, связанная с этими элементами, все еще развивается. Ведущие поставщики работают над тем, чтобы разрушить дальнейшие барьеры на пути к ассортименту транспортных средств, которые используют данный тип батареи в качестве источника энергии.

Никель-металл-гидридные батареи используются в гибридных транспортных средствах. Сектор EV редко использует свинцово-кислотные батареи, хотя они иногда дополняют литий-ионные батареи. На современном этапе развития эта технология еще не готова к использованию в более широком масштабе.

Суперконденсаторы находят свое место и в электромобилях, позволяя увеличить мощность автомобиля при высокой нагрузке. Благодаря этому во время разгона может поддерживаться стандартный аккумулятор. Суперконденсаторы также очень важны для рекуперативного торможения, что позволяет преобразовывать тепловую энергию в электричество.

См. также: Срок службы аккумуляторных батарей электромобилей – когда следует заменять аккумуляторные батареи электромобилей?

Какой тип батареи используется в электромобилях?

Использование конкретного элемента зависит не только от его производительности, но и от типа транспортного средства. В случае полностью электрических транспортных средств и plug-in гибридов, которые могут быть заряжены от розетки, мы, как правило, имеем дело с литий-ионными батареями. Традиционные гибриды используют в основном никель-гидридные батареи. Больший вклад двигателя внутреннего сгорания в работу транспортного средства позволяет обеспечить более высокий уровень потерь энергии, когда он не используется. Следует также помнить, что в случае гибридных автомобилей элементы долгое время не работают при максимальной нагрузке.

Электромобили намного эффективнее, чем автомобили внутреннего сгорания. Стоимость электроэнергии в большинстве случаев значительно ниже, чем цена топлива, необходимого для проезда по аналогичному маршруту. Наиболее эффективные решения на рынке в настоящее время позволяют преодолевать расстояние около 500 км на одной зарядке.

Партнерство с компанией “KNAUF AUTOMOTIVE” – получение всесторонней поддержки опытного партнера.

Для того чтобы обеспечить оптимальные решения в области электрических батарей, вы не можете работать в одиночку. В течение многих лет компания Knauf Industries работает над внедрением инноваций в автомобильной промышленности. Благодаря командам инженеров, работающих в лаборатории ID Lab, нам удалось превратить полученные за эти годы знания в потенциал на будущее. Мы разрабатываем новые решения по изоляции автомобильных аккумуляторов, компонентов аккумуляторов, электрических кабелей, фитингов для холодильных труб и сепараторов аккумуляторных элементов.

Мы хотим предоставлять нашим партнерам аккумуляторные батареи с гораздо более высокими эксплуатационными характеристиками и оптимизированным сроком службы. Чтобы предотвратить выход аккумулятора из строя при слишком низких или слишком высоких температурах, важно помнить об изоляции, которая при этом не будет существенно влиять на вес автомобиля. Наш взгляд на будущее сочетает в себе электромобильность с экологией – мы предлагаем такие материалы, как пенополипропилен и пенополистирол, которые на 100% пригодны для вторичной переработки. Мы приглашаем к сотрудничеству предприятия автомобильной отрасли, которые хотят всесторонне поддерживать свое производство.

Volkswagen станет партнером экосистемы аккумуляторов для электромобилей в Индонезии – министр

ДЖАКАРТА, 17 апреля (Рейтер) – Volkswagen построит экосистему аккумуляторов для электромобилей (EV) в Индонезии и станет партнером горнодобывающей компании Vale, Ford и китайского производителя минералов для аккумуляторов Zhejiang Huayou Cobalt , сказал министр инвестиций страны Юго-Восточной Азии.

Автопроизводители обращаются к Индонезии за ее сырьем, используемым для производства аккумуляторов для электромобилей, на долю которых приходится около 40% номинальной цены автомобиля, с целью сократить расходы и сократить отставание от лидера рынка электромобилей Tesla.

Министр Бахлил Лахадалиа заявил в воскресенье, что Volkswagen, крупнейший автопроизводитель Европы, будет работать с Vale, Ford, Huayou, французской горнодобывающей компанией Eramet и несколькими индонезийскими фирмами, такими как Merdeka Gold Copper, материнская компания Merdeka Battery, и энергетической компанией Kalla Group.

Партнерство будет состоять из совместных предприятий и поставок сырья, сказал он в видеообращении из Германии, где делегат Индонезии во главе с президентом Джоко Видодо посетил отраслевую выставку Hannover Messe и встретился с представителями компаний, включая немецкий химический гигант BASF, Eramet и Фольксваген.

Отдельно в заявлении, выпущенном офисом Widodo, говорится, что инвестиции Volkswagen будут осуществлены его аккумуляторным подразделением PowerCo.

Тем временем Бахлил сообщил, что BASF также выразила заинтересованность в строительстве завода по производству аккумуляторных материалов в партнерстве с Eramet в северной провинции Индонезии Малуку с общим объемом инвестиций около 2,6 млрд долларов.

BASF не сразу ответил на запрос о комментариях, но в январе компания заявила, что детали ее инвестиционного плана с Eramet будут объявлены после завершения оценки.

Бахлил сказал, что инвестиционный интерес со стороны европейских компаний развеет опасения, что управление индонезийскими шахтами «не соответствует международным стандартам».

Видодо, широко известный как Джокови, сообщил агентству Рейтер в прошлом месяце, что Индонезия улучшит мониторинг экологических стандартов добычи никеля на фоне опасений по поводу воздействия производства этого металла.

Volkswagen, Ford, Eramet, Kalla Group, Huayou и Merdeka Gold Copper не сразу ответили на запросы о комментариях. PT Vale Indonesia от комментариев отказалась.

Индонезия, обладающая крупнейшими в мире запасами никеля, пытается развивать перерабатывающие отрасли для производства металла, в конечном итоге стремясь производить аккумуляторы и электромобили.

В прошлом месяце Ford (F.N) подписал свои первые инвестиции в Индонезии, присоединившись к Vale Indonesia и Huayou к заводу по переработке никеля стоимостью 4,5 миллиарда долларов на юго-востоке Сулавеси.

В прошлом месяце Volkswagen заявил, что планирует инвестировать 180 миллиардов евро (193 миллиарда долларов) в течение пяти лет в такие области, как производство аккумуляторов и поиск сырья.

Репортаж Стэнли Видианто Под редакцией Эда Дэвиса

Наши стандарты: Принципы доверия Thomson Reuters.

Обнаружена большая емкость аккумуляторов на водной основе

Профессор химической инженерии доктор Джоди Латкенхаус и доцент кафедры химии доктор Дэниел Табор обнаружили значительную емкость аккумуляторов на водной основе. Фото: Texas A&M Engineering

Исследователи Texas A&M обнаружили значительное увеличение емкости аккумуляторных электродов на водной основе.

Ученые Техасского университета A&M обнаружили 1000-процентную разницу в емкости аккумуляторных электродов, не содержащих металлов, на водной основе.

Безметалловые батареи на водной основе уникальны по сравнению с батареями, в которых используется кобальт в литий-ионной форме. Внимание исследовательской группы к этому типу батарей связано с желанием усилить контроль над внутренней цепочкой поставок, поскольку кобальт и литий обычно поступают из-за пределов страны. Кроме того, более безопасный химический состав батарей может предотвратить возгорание.

Профессор химического машиностроения д-р Джоди Луткенхаус и доцент кафедры химии д-р Дэниел Табор опубликовали свои выводы о батареях, не содержащих лития, в журнале Nature Materials .

«Больше не будет возгораний батарей, потому что они на водной основе», — сказал Луткенхаус. «В будущем, если прогнозируется нехватка материалов, цена на литий-ионные батареи будет расти. Если у нас будет эта альтернативная батарея, мы можем обратиться к этой химии, где поставки гораздо более стабильны, потому что мы можем производить их здесь, в Соединенных Штатах, и материалы для их изготовления находятся здесь».

Lutkenhaus сказал, что водные батареи состоят из катода, электролита и анода. Катоды и аноды представляют собой полимеры, способные накапливать энергию, а электролит представляет собой воду, смешанную с органическими солями. Электролит является ключом к ионной проводимости и хранению энергии благодаря его взаимодействию с электродом.

«Если электрод слишком сильно набухает во время циклирования, он не может хорошо проводить электроны, и вы теряете все характеристики», — сказала она. «Я считаю, что существует 1000-процентная разница в емкости накопления энергии в зависимости от выбора электролита из-за эффекта набухания».

Согласно их статье, окислительно-восстановительные, несопряженные радикальные полимеры (электроды) являются многообещающими кандидатами для безметалловых водных батарей из-за высокого напряжения разряда полимеров и быстрой кинетики окислительно-восстановительного потенциала. Реакция сложна и ее трудно разрешить из-за одновременного переноса электронов, ионов и молекул воды.

«Мы демонстрируем природу окислительно-восстановительной реакции, исследуя водные электролиты разного хао-/космотропного характера с помощью электрохимических микровесов на кристалле кварца с мониторингом диссипации в различных временных масштабах», — говорится в статье исследователей.

Исследовательская группа Табора дополнила экспериментальные работы компьютерным моделированием и анализом. Моделирование дало представление о микроскопической молекулярной картине структуры и динамики.

«Теория и эксперимент часто работают вместе, чтобы понять эти материалы. Одна из новых вещей, которые мы делаем с помощью вычислений в этой статье, заключается в том, что мы фактически заряжаем электрод до нескольких состояний заряда и смотрим, как окружающая среда реагирует на эту зарядку», — сказал Табор.

Исследователи макроскопически наблюдали, работает ли катод батареи лучше в присутствии определенных видов солей, точно измеряя, сколько воды и соли попадает в батарею во время ее работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *