Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Альтернативная энергия | источники, виды, использование

Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.

В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.

 

Что такое альтернативная энергия?

альтернативные источники энергии

Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).

Альтернативные источники энергии – это обычные природные явления, неисчерпаемые ресурсы, которые вырабатываются естественным образом. Такая энергия ещё называется регенеративной или «зелёной».

Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.


Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.


Ресурсы возобновляемой энергии


  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

 

Альтернативные виды энергии


1. Солнечная энергия

альтернативный источник энергии солнца

Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.

Основные недостатки – зависимость от погоды и времени суток. Для северных стран извлекать солнечную энергию невыгодно. Конструкции дорогие, за ними нужно «ухаживать» и вовремя утилизировать сами фотоэлементы, в которых содержатся ядовитые вещества (свинец, галлий, мышьяк). Для высокой выработки необходимы огромные площади.

Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.

Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop.

 

2. Ветроэнергетика

ветряные мельницы

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

 

3. Гидроэнергия

гидроэлектростанция

Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.

Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.

 

4. Волновая энергетика

волновая электростанция wave star energy

Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.

Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.

Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.

 

5. Энергия приливов и отливов

приливная электростанция

Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.

Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.

 

6. Энергия температурного градиента (гидротермальная энергия)

гидротермальная станция

Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.

Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.

 

7. Энергия жидкостной диффузии

осмотическая станция

Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.

Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.

 

8. Геотермальная энергия

геотермальная станция в исландии

Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).

Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.

Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.

Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.

 

9. Биотопливо

дрова биотопливо

Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.

  • Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
  • Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
  • Третье поколение – биотопливо из водорослей.

Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.

Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.

 

Плюсы и минусы альтернативной энергии

работник изучает солнечные батареи

Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.


Преимущества:


  • Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
  • Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
  • Экономия – полученная энергия имеет низкую себестоимость.

Недостатки и проблемы:


  • Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
  • Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
  • Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
  • Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.

 

Возобновляемая энергия в мире

солнечные батареи в Китае

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.


Германия


40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.


Исландия


У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.


Швеция


После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.


Китай


В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

 

Альтернативная энергия в Россиисаяно-шушенская гэс

Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.

 

Виды возобновляемой энергии в России


Солнечная энергия


Используется и в промышленных масштабах, и у местного населения как резервный или основной источник тепла и электричества. Мощность всех солнечных установок – 400 МВт, из них самые крупные в Самарской, Астраханской, Оренбургской областях и Крыму. Самая мощная СЭС – «Владиславовка» (Крым). Ещё разрабатываются проекты для Сибири и Дальнего Востока.


Ветровая энергетика


Ветровая возобновляемая энергия в России представлена чуть хуже, чем солнечная, хотя и здесь есть промышленные установки. Общая мощность ветровых генераторов в нашей стране – 183,9 МВт (0,08 % от всей энергосистемы). Больше всего установок – в Крыму, а мощнейшая находится в Адыгее – «Адыгейская ВЭС».


Гидроэнергетика


Это самый популярный вариант альтернативного источника энергии в России. Около 200 речных ГЭС вырабатывают до 20% от всей энергии в стране. В заливе Кислая губа в Мурманской области с 1968 года есть приливная электростанция – «Кислогубская ПЭС». Самая крупная ГЭС стоит на реке Енисей – «Саяно-Шушенская».


Геотермальная энергетика


За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.


Биотопливо


Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.

Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.

 

Компании, которые занимаются возобновляемыми источниками энергии

монтаж солнечной батареи

Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.


First Solar Inc.


Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.


Vestas Wind Systems A/S


Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.


Atlantica Yield PLC


Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.


ABB Ltd. Asea Brown Boveri


Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.


Читайте: Персональный мир и полная автоматизация. Что такое четвёртая промышленная революция?


invlab.ru

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

recyclemag.ru

Альтернативная энергия: производство, использование, виды, плюсы и минусы

Альтернативная энергия для частного дома - мечта многих людей, которые желают избавиться от платы за коммунальные платежи. Но все ли мы понимаем, что это такое? Так вот, альтернативная энергия - это любой источник энергии, который является альтернативой традиционному виду топлива.

В основном они относятся к классу возобновляемых, а их цель - справиться с проблемами, возникающими от использования традиционных источников, а именно сильным загрязнением окружающей среды углекислым газом.

С течением времени понятие того, что представляет собой альтернативный источник, сильно изменилось, так же как и усилились противоречия в отношении их использования. Определение некоторых источников в качестве «альтернативных» считается весьма противоречивым. Причиной тому служит многообразие путей использования материалов и сильное отличие целей сторонников их применения. Таким образом, любители делать альтернативные источники энергии своими руками могут сильно навредить окружающей среде даже не осознавая это.

Содержание:

Виды альтернативных источников энергии

  • Гидроэнергетика: получение энергии из движения воды. К этому классу относятся традиционные ГЭС, а также приливные и волновые электростанции.
  • Ядерная энергетика: используется огромное количество энергии, которое высвобождается при ядерном делении тяжелых элементов.
  • Ветроэнергетика: генерация электричества за счет вращения ветром специальных установок.
  • Солнечная энергетика: получение полезной энергии из солнечного света и излучения. Термальные преобразователи задействуют тепло Солнца, а свет используется для генерации электричества фотогальваническими устройствами.
  • Геотермальная энергетика: использование горячих источников нашей планеты, чтобы прогревать строения или производить электричество.
  • Биотопливо: альтернатива нефти, применяемая в качестве топлива в машинах, мотоциклах и т. д.
  • Водород: носитель энергии, можно отнести к биотопливу. Существует множество способов получения материала, например из воды с помощью электролиза.

История

Некоторые ученые историки исследовали основные моменты смены традиционной энергетики на схожую по назначению. Они считают, что такие переходы оказали существенное влияние на экономическую обстановку. Типичным фактором данного процесса является снижение стабильности поставок основного вида энергии в совокупности с сильным ростом цен на него.

Уголь как альтернатива древесине

Одним из основных видов топлива в средние века была древесина. Чрезмерное пользование материалом привело к сильному обезлесиванию, а следовательно нехватке источника энергии. Именно тогда люди нашли для себя нового спасителя - мягкий уголь. Вот как рисует ситуацию того времени Норман Ф. Кантор:

В ранние средневековье население Европы существовало рядом с большими запасами леса. После 1250 года человечество имело такой существенный опыт в работе с деревьями, что к 1500 году н.э. у них отсутствовало достаточное количество материала для житейских нужд... Таким образом, в это время население оказалось на грани топливной и пищевой катастрофы. Найти выход из ситуации помогло применение мягкого угля, а также освоение таких растительных культур как кукуруза и картофель.

Нефть как альтернатива китовому маслу

На старте 19 века китовое масло было доминирующим источником топлива для ламп, а так же являлось основным видом смазки . Однако к середине века постоянное вырезание животного привело к резкому подъему стоимости масла. Именно это стало ключевым фактором, после которого люди начали смотреть в сторону нефти.

Этанол против ископаемого топлива

Еще в начале 20 века Александр Грэхем Белл предлагал заменить традиционные ископаемые источники топлива на этанол из растительных культур, таких как кукуруза или пшеница. Он говорил, что привычные нам материалы для топлива могут закончиться достаточно быстро, а их основной недостаток - они не возобновляются.

В конце 20 века Бразилия запустила этанольную программу. За счет ее реализации страна начала экспортировать данного топливо больше всех в мире, а так же заняла вторую строчку международного рейтинга по объему его производства. В качестве исходного материала они решили использовать сахарный тростник - это дешевый вид растения, к тому же его отходы можно отправить в топку на получение дополнительной энергии. Сейчас в Бразилии больше нет транспортных средств, работающих на старом виде топлива, а найти этанол на любой заправке страны можно было еще в 2008 году.

Специальный целлюлозный этанол можно получить из разного сырья, а его создание подразумевает задействование полного объема урожая. Такой подход должен повысить сбор растительной продукции и понизить уровень углерода, который появляется из-за удобрений, требующих много энергии при производстве.

Газификация угля вместо нефти

В конце 20 века правительство США хотела избавиться от зависимости в дорогостоящей нефти из-за границы. В качестве альтернативы власти выбрали газификацию угля, но вскоре из-за падения стоимости нефти программу пришлось закрыть. Также стоит отметить, что данный метод имеет сильные загрязняющие последствия.

Вспомогательные технологии

Вспомогательные технологии - любые виды разработок, которые помогают снизить НЕ эффективность систем. Например, большинство техники выделяет огромное количество энергии в никуда, в воздух. Ваш компьютер или телефон вырабатывает тепло, которое можно было бы направить в правильное русло, тем самым увеличив полезность работы устройства.

Запасание термальной энергии

Кондиционирование холода в виде замерзшей воды, сохранение жара в источнике - это пути запасать энергию. Специальными разработками можно сохранить термальную энергию как на сутки, так и на целые сезоны. Виды источников различны:

  • естественные - солнечные коллекторы способны использовать тепловую энергию солнца, а сухие градирни применяются для запасения холода;
  • выработанная энергия - например, от различного рода устройств, процессов или деятельности электростанций. Самым простым примером послужит обычный компьютер, вырабатывающий при работе тепло, которое можно было бы использовать;
  • избыточная энергия - например, сезонные превышение нормы выработки от гидроэнергетики или ветропарков.

Примером послужит сообщество Drake Landing (Альберта, Канада). Тепло, запасенное в скважине или любом изолированном источнике с помощью солнечных коллекторов, почти весь год обеспечивает их термальной энергией.

Рекуперация

Рекуперация - повторное задействование уже израсходованной энергии. Технологию часто еще называют регенерацией. В основном выделяют два пути рекуперации: тепла и кинетической энергии.

(Система рекуперации торможения bmw i3)

Компьютеры имеют свойство нагреваться во время работы, поэтому их необходимо постоянно охлаждать, дабы они не вышли из строя. Таким образом здесь описывается сразу два случая траты энергии: на понижение температуры устройства и нагрев воздуха, который в итоге и нужно охлаждать. Теперь представьте, что в одном месте собраны сотни и даже тысячи таких машин, и насколько большие затраты придется нести владельцу. А ведь именно с этой проблемой сталкиваются собственники дата-центров. Но некоторые фирмы находят пути снижения издержек - одним из них как раз и является рекуперация тепла. Дата-центр компании Яндекс в Финляндии использует естественный холод с улицы для охлаждения серверов, а выделяемое компьютерами тепло они отравляют на отопление домов близлежащего городка. Как все это работает, можно посмотреть в специальном ролике компании:

Но такие системы очень сложны и стоят больших денег, следовательно, могут позволить себе не все. Именно поэтому данной технологией пользуются лишь крупные фирмы, такие как Amazon, Facebook, Apple и некоторые другие.

Еще одним путем, помимо работы с теплом, является рекуперация энергии торможения. Транспортные средства, оборудованные системой регенерации при замедлении, способны поймать уходящую в никуда кинетическую энергию и направить ее в запасы аккумулятора.

«Автомобиль в сети» или V2G

Технология «автомобиль в сети» или V2G становится все более популярной с развитием электрических машин. Суть заключается в том, что электромобиль подключается к центральной сети, а запасом энергии батареи позволяется распоряжаться коммунальной службе. Таким образом, во время пиковых нагрузок из аккумулятора транспортного средства может быть извлечена необходимая мощность, а в любое другое время батарея заряжается.

Недавнее исследование показало, что в итоге электромобили с системой V2G позволят сэкономить огромные суммы денег даже если коммунальные службы будут платить собственникам за доступ к их машинам. К аналогичным выводом пришел BMW, который 3 года тестировал программу «ChargeForward» на автомобилях BMW i3. Автопроизводитель даже заявил, что машину можно превратить в «дойную корову». Стоит упомянуть компанию Tesla, которая в свое время отказалась от этой идеи, а сейчас думает поменять свою точку зрения. К тому же, данная технология улучшает использование возобновляемых источников энергии.

Виртуальные электростанции

Виртуальные электростанции начали появляться совсем недавно, и они никак не связаны с виртуальным миром. На самом деле, это лишь распределенные источники энергии подключенные в единую сеть. Их появлению способствовало широкое распространение домашних накопителей энергии в совокупности с солнечными установками.

Идея технологии проста. Солнечная система любого дома может быть подключена к центральной сети. Пиковые часы - проблема любой коммунальной электрической службы, так как нагрузка вырастает в разы. Однако, используя технологию виртуальной электростанции, недостающая мощность частично или полностью берется из домашних накопителей, которые сохранили излишки солнечной энергии. Владельцам жилищ на момент пика эта энергия может быть ни к чему, так как их дом питается от солнечных батарей или же просто нет необходимости в столь большом потреблении.

В темное время суток, когда солнечные панели не могут вырабатывать электричество, мощность берется из общей сети со скидкой или же за деньги, которые владельцы получили от взятой у них же энергии.

Примером реализации этой технологии служит Австралия. В мае 2018 года правительство страны договорилось с фирмой Tesla, что та поставит на 50 000 домов солнечные панели и систему запаса энергии Powerwall. Результатом должна получиться распределенная электростанция на 650 МВт-ч - это самая большая распределенная электростанция на текущий момент. Уже летом того же года первые 100 установок продемонстрировали свою пользу.

(Tesla Powerwall)

Другое интересное решение придумал дуэт фирм из Западной Австралии. Они создали альтернативу отдельным Powerwall для группы домов из одной мощной батареи Tesla Powerpack. Компании предоставляют энергетические возможности 52 семьям с солнечными установками в Медоу-Спрингс. Таким образом владельцы не тратятся на индивидуальные аккумуляторы и получают скидку на электричество из общей сети или того, что сохранил Powerpack.

Как видно, такие станции сильно способствуют распространению солнечной энергетики.

Балансировка сетей большими аккумуляторными батареями

Принципиально нового здесь ничего нет. Используется батарея в качестве резервного источника питания. Единственное исключение, что применяются такие аккумуляторы в крупных масштабах, начиная от небольших зданий/университетов и заканчивая целыми городами.

Одним из самых крупных представителей данной области является Tesla. Компания реализовала уже множество проектов различных масштабов:

Большинство клиентов отмечает превосходную работу техники Tesla и говорят, что их вложения быстро окупаются.

Видеоролик компании об установках Powerpacks в Бельгии:

Возобновляемая и не возобновляемая энергетика

Свет солнца, тепло земли, ветер - из всего этого мы можем получить энергию, которая постоянно пополняется за счет привычных нам закономерностей природы. Именно это отличает возобновляемые источники от не возобновляемых. Процессы получение этих двух разных типов энергии сильно отличаются. Добыча природных ископаемых, таких как нефть, уголь и газ - трудоемкие и высокотехнологичные процессы, которые требуют большого количества дорогого оборудования, сложных физических и химических процессов. С другой стороны, возобновляемую энергию можно широко использовать с применением естественных процессов и существующего оборудования.

Относительно новые концепции альтернативной энергетики

Углеродно-нейтральное и отрицательное топливо

Данный тип топлива является синтетическим. К нему относятся реактивное топливо, дизель, бензин и т. д. Такой вид топлива выделяют из источников, содержащих углерод, например дыма от электростанций или из автомобильных выхлопов. Компании рассчитывают, что у них получится сделать производство топлива коммерчески успешным при стоимости нефти на уровне $50-60.

Возобновляемый метанол - еще одно топливо, нейтральное по отношению к углеродным выбросам, так как его самого получают из данного элемента. Метанол используется как для питания различных машин, так и в качестве материала химических процессов.

Например, в Исландии есть перерабатывающий завод, первичным материалом которого является углекислый газ из дыма близлежащей электростанции. Его годовая выработка составляет более 5 млн. литров начиная с 2011 года.

Еще одним примером можно назвать фирму Ауди. Завод компании в Германии создает сжиженный природный газ, после использования которого остается только вода и кислород. Данное производство служит для получения облегченного источника энергии транспортных средств, таких как Audi A3 Sportback g-tron. Выпускаемое топливо выделяют из углеродосодержащих веществ, поэтому и выбросов в атмосферу фактически никаких нет.

Использование топлива не дает реального повышения содержания углекислого газа в окружающей среде, поэтому его и называют нейтральным. Оно облегчает ситуацию, связанную с заимствованием природных источников из-за рубежа, с поиском и разработкой аналогов и с другими проблемами, возникающими от использования ископаемого топлива. Также, отпадает большая необходимость в переходе на электромобили или альтернативный «чистые» машины, а следовательно нет необходимости замены существующих двигателей. Нейтральные к углероду топлива обеспечивают относительно низкое энергопотребление, уменьшают трудности падения активности ветровой и солнечной энергетики, а также в какой-то степени позволяют доставлять энергию возобновляемых источников по уже построенным газопроводам(энергия этих источников используется для производства газа, который передается по трубам).

Самая дешевая энергия получается благодаря ветру ночью. Вырабатываемое в это время электричество и направляют на синтез топлива. Это связано с тем, что кривая нагрузки на сеть резко возрастает, когда люди бодрствуют, а активность ветра в основном повышается в ночное время суток.

Водорослевое топливо

Еще одним источником биотоплива являются водоросли. Из школьного курса биологии нам известно, что растения во время фотосинтеза поглощают углекислый газ и солнечный свет, а в обмен создает кислород и биомассу. Во время фотосинтеза водоросли и другие фотосинтетические организмы захватывают углекислый газ и солнечный свет и превращают его в кислород и биомассу. Обычно процесс получения энергии начинается с того, что растение размещается между двумя стеклами, где оно выделяет три вида энергетического топлива: тепло (из его цикла роста), биотопливо (натуральное «масло») и биомасса (из самого растения, поскольку оно собирается после зрелости).

Тепло может использоваться для нагрева, например воды, или для производства энергии. Биотопливо - это масло, добытое из водорослей в зрелости и применяемое для создания топлива - аналогично биодизелю. Биомасса - это все то, что остается после извлечения масла и воды, и может быть выделено для получения горючего метана.

Кроме того, преимуществами биотоплива из водорослей будет то, что для его производства не нужно использовать пахотные земли и отбирать часть продовольственных культур, таких как соя, пальма и рапс.

Брикеты из биомассы

Брикеты из биомассы применяются в развивающихся странах в качестве альтернативы древесному углю. Данные подход подразумевает пресование разлиных растений в небольшие брикеты, содержащие более 65% энергетического запаса угля.

Найти примеры выпуска брикетов в крупных масштабах довольно тяжело. Одним из них служит Северный Киву, где уничтожение леса опасно для существования горной гориллы. Сотрудники Национального парка Вирунга успешно обучили местных жителей и оснастили более 3500 человек всем необходимым оборудованием для производства брикетов из биомассы. Таким образом удалось искоренить незаконное производство древесного угля в национальном парке, а также создать значительную занятость для людей, живущих в условиях крайней нищеты в районах, затронутых конфликтами.

Биогазовое расщепление

Биогаз получается из метанового газа, который выделяется, когда органические отходы разлагаются в анаэробной среде. Его можно обнаружить на мусорных свалках или в канализационных системах. Газ используется в качестве топлива для отопления или, чаще всего, для выработки электроэнергии.

Производство биологического водорода

Водородный газ является полностью чистым горючим топливом, а его единственный побочный продукт - вода. Он содержит высокое количество энергии по сравнению с другими видами топлива из-за его химической структуры. К сожалению, для получения газа требуется много энергии, что делает его коммерчески неэффективным. Однако есть вариант производства топлива с использованием биологических организмов, которые расщепляли бы воду на составляющие. К таким организмам относятся бактерии или чаще водоросли. Этот процесс известен как производство биологического водорода.

Теперь о самом процессе. Данный способ использует одноклеточных существ для создания газообразного водорода путем брожения. Без присутствия кислорода обычное клеточное дыхание невозможно, и тогда дело в свои руки берет ферментация или же просто брожение. Именно газообразный водород является основным побочным продуктом этого процесса.

Реализация данного метода в больших масштабах позволила бы получать достаточно водородного газа, чтобы считать его крупным источником энергии. Однако широкомасштабное производство оказалось трудным. Только в 1999 году получилось воссоздать необходимые анаэробные условия. Но брожение является эволюционным резервом, активизирующимся во время стресса, поэтому клетки умирали во время данного процесса уже через несколько дней. В 2000 году был разработан двухстадийный подход, позволяющий вводить клетки в анаэробное состояние, а затем выводить их из него, чтобы организмы оставались в живых.

В течение последних десятков лет поиски способа воссоздать данный процесс в крупном масштабе был главной целью исследований. До сих пор не получилось добиться каких-то значительных результатов в этой сфере, хотя многие ученые бьются над решением этой задачи. Некоторые считают, что как только мы найдем ключ к этой головоломке, то производство данного вида топлива сможет решить наши энергетические проблемы. Однако не стоит забывать, что сейчас мир активно переходит на электрические машины. Илон Маск когда-то уже делал заявление, что автомобили на водороде - глупость и опасная технология, к тому же добиться хорошей плотности энергии, как в случае литий-ионных аккумуляторов, тоже вряд ли получится. Но тогда можно использовать водород в качестве источника для подзарядки автомобильных батарей.

Малая гидроэнергетика

В 2015 году гидроэнергетика произвела 16,6% всей электроэнергии в мире и 70% от общего объема возобновляемой электроэнергии. Однако по статистике IRENA к 31 марта 2018 года доля данного источника по отношению к остальной возобновляемой электроэнергии снизилась до 53%. Несмотря на этот факт, выработка от гидроэнергетики увеличивается с каждым годом.

Популярной альтернативой крупным плотинам прошлого является русловая ГЭС(гидроэлектростанция), которая не требует хранения воды в дамбе, а выработка энергии варьируется в зависимости от осадков. Использование данной технологии во влажные сезоны в совокупности с солнечными станциями в засушливые времена может сбалансировать временные колебания для обоих. Альтернатива крупным плотинам также являются малые установки, которые ставят в начале притоке, где быстрое течение.

(Шексинская ГЭС - фотография русловой гидроэлектростанции)

Морской ветер

Морские(или оффшорные) ветровые электростанции подобны наземным, но расположены на берегу океана. Их погружают в воду на глубину до 40 метров, а плавучие турбины могут находиться в воде до глубины в 700 метров. Преимуществом таких станций является использование ветров из открытого океана, который не встречает на своем пути каких-либо препятствий, таких как холмы, деревья или здания. Морские ветра способны достигать в два раза большей скорости, чем в прибрежных районах.

(Схема крепления морских ветряков)

Сама по себе ветровая энергетика развивается огромными шагами во всем мире, с каждым годом отвоевывая все большую долю в выработке электроэнергии возобновляемыми источниками. Однако существенная генерация энергии на шельфе уже сейчас восполняет многие потребности Европы, Азии и Америки.

Традиционные оффшорные турбины прикрепляются к морскому дну в менее глубоких местах. По мере развития технологий, генерирующих энергию из океанского ветра, в более глубоких водах начинают все чаще использоваться плавающие структуры, где ветра еще сильнее.

(Плавучий морской ветряк)

В последнее время виден значительный рост данной отрасли в США и Европе. Но даже несмотря на это, до сих пор нет четкого понимания о том, как сильно ветроэнергетика влияет на природу и животных.

Морская и гидрокинетическая энергия

Сила океана или морская и гидрокинетическая (MHK) энергия относится к следующим проектам:

  • Использование силы волн - ветровые волны имеют огромный запас энергии, которую можно направить на выполнение полезной работы - например, на выработку электроэнергии или перекачивание воды в водоемы;
  • Энергия приливов - специальные турбины размещаются в прибрежных и устьевых районах, где суточные потоки воды достаточно сильны и вполне предсказуемы;
  • Расположение турбин в быстроходных реках;
  • Океанские турбины в районах сильных морских течений;
  • Океанские тепловые преобразователи энергии в глубоководных тропических водах.

Данная отрасль активно развивается и старается использовать новые технологи для повышения эффективности работы установок. Так к примеру, на приливную электростанцию Nova Innovation в Шотландии установили батарейный блок Tesla Powerpack, тем самым была создана первая приливная станция с базовой нагрузкой. Аккумулятор позволяет запасать излишки энергии и выдавать их, когда турбины бездействуют.

Управляемый термоядерный синтез

Термоядерный синтез - один из самых лучших вариантов выработки энергии. Это довольно безопасная технология, которая выделяет недолго живущие ядерные отходы. Однако есть одно большое НО. Чтобы управлять реакцией, необходимо поддерживать температуру в миллионы градусов. Именно поэтому реальный термоядерный реактор еще не был создан.

Попытки создать коммерчески успешную станцию есть. В настоящий момент на юге Франции продолжается создание огромного термоядерного реактора ITER. Однако до сих пор у них не получилось выработать больше энергии, чем ушло на ее создание. Если вам хочется узнать больше об этом проекте, посмотрите это видео:

Внедрение альтернативной энергии

Альтернативная энергетика не может быть принята просто так. Чтобы ее стали широко использовать, должны быть решены некоторые проблемы. Прежде всего, необходимо понять и добиться:

  1. насколько полезны эти альтернативы;
  2. системы и технологии для данных источников должны стать более доступны;
  3. время окупаемости необходимо уменьшать.

Сейчас большую популярность имеют электрические и гибридные транспортные средства. Будет ли отрасль развиваться зависит от инвестиций в общественную инфраструктуру, от взимания платы, а также от внедрения большего числа альтернативных источников энергии для будущих перевозок.

Во многих странах покупка чистых электрических машин субсидируется государством, а владение загрязняющей воздух машиной облагается дополнительными расходами. В России на текущий момент есть лишь отдельные группы, которые борются за принятие EV, а на правовом уровне данную тему лишь иногда вспоминают.

Законодательство в России не предусмотрено для чистого транспорта, ведь многие электрические машины имеют под капотом большую мощь. К примеру, у Tesla Model 3, самого дешевого на текущий момент автомобиля американской компании, 258 лошадиных сил, а в России самая большая налоговая наценка для машин с мощностью двигателя больше 250 л. с. А ведь транспортное средство не производит вредных выбросов, почему владельцы должны платить больше, непонятно.

Исследования и проекты в области альтернативной энергетики

В академическом, федеральном и коммерческом секторах существует множество организаций, проводящих широкомасштабные передовые исследования в области альтернативной энергетики. Эти работы охватывают несколько областей данной сферы, основная часть которых направлена на повышение эффективности технологий и снижения стоимости производства.

В последнее время внимание многих крупных организаций направлена на альтернативную энергию, например в США это Сандийские национальные лаборатории и Национальная лаборатория возобновляемых источников энергии. Обе организации получают деньги на свои нужды прямо от правительства страны в области энергетики, а так же от разных фирм-спонсоров.

Рост уровня расхода энергии прогнозирует, что к 2030 году потребление увеличится на 21%. Стоимость возобновляемых источников энергии дешевле примерно на 0,2 млн. долл. за 1 МВт. Это говорит о том, что их использование является отличным путем снижения затрат, к тому же не вызывающее проблем с окружающей средой.

Механическая энергия / сила человеческих мышц

Самый простой тип энергии - механическая. Она относится к такой деятельности человека как дыхание, ходьба, печатание и бег, вездесуща. К сожалению, обычно она просто теряется. Эта проблема привлекла огромное внимание исследователей со всего мира, которые пытаются найти методы для получения пользы от силы человеческих мышц.

Лучшим решением в настоящее время является использование пьезоэлектрических материалов, которые могут генерировать поток электронов при деформировании. Ключевую роль в производительности устройств на основе данной технологии играет пьезоэлектрическая постоянная материла. Вследствие этого, многие исследователи пытаются найти новый материал с большим пьезоэлектрическим показателем. Возможно, им окажется ниобат свинца-магния – титанат свинца (PMN-PT), представляющий собой пьезоэлектрический материал следующего поколения, который при достижении идеального состава и ориентации имеет сверхвысокое значение постоянной. В 2012 году даже были изготовлены PMN-PT-нанопроволоки с помощью гидротермического подхода, а затем собраны в единое устройство.

Многие пытаются задействовать механическую энергию для генерации чего-то полезного. Так в свое время в Лондоне появился тротуар, пройдя по которому, вы произведете некоторое количество электричества. Вот небольшой ролик об этом проекте:

А самым популярным решением использовать силу человека является выработка энергии при езде на велосипеде. На ютубе есть огромное количество видеозаписей о том, как сделать систему подзарядки для телефона на велосипеде своими руками, которую при желании можно с легкостью воспроизвести. Также есть умельцы, которые предлагают аналогичные решения, но для питания бытовых приборов. Таким образом, вы можете вырабатывать альтернативную энергию для дома без каких либо затрат, так еще и физическую форму подтяните. Вот один из таких примеров:

Солнечная энергетика

Солнечную энергию можно смело назвать самым массовым альтернативным источником. Она используется сразу несколькими путями: для отопления, кондиционирования или выработки электроэнергии.

Люди уже довольно давно научились использовать тепло солнца для нагревания необходимых объектов. Крупным примером централизованного теплоснабжения является уже упоминаемое нами солнечное сообщество Drake Landing Solar в Канаде: более 50 домов подключено к центральному теплоснабжению, которое использует тепло, создаваемое солнечными коллекторами на крышах сооружений и запасаемое в подземном термальном хранилище.

Если вам хочется понять, как работают солнечные коллекторы и узнать их эффективность, то вы легко можете найти множество видеозаписей на ютубе. К примеру вот довольно информативный ролик о производительности коллекторов зимой:

Что касается солнечной электроэнергии, то препятствиями для ее широкомасштабного внедрения называют недостаточную эффективность современных устройств преобразования света, а также высокую цену на них. На данный момент фотоэлектрические ячейки способны преобразовать около 17-20 % солнечного света.

В 2008 году сотрудники Массачусетского технологического института разработали метод хранения солнечной энергии, используя его для производства водородного топлива из воды. Такие работы нацелены на решение проблемы получения энергии в темное время суток, когда солнечные батареи бесполезны.

(новый фотоэлемент, вырабатывающий водород, помимо электричества)

В октябре 2018 года ученые из Германии и США сделали прототип необычного фотоэлемента. Так как огромное количество света просто-напросто не улавливается современными солнечными ячейками, они решили подключить к нижнему слою дополнительный электрод, который и будет отвечать за сбор водорода. Первый прототип сразу подтвердил теорию ученых и показал отличную эффективность. Принцип работы фотоэлемента показан на изображении выше.

(Изображение солнечной дороги в Китае)

Что касается проектов, то здесь тоже немало интересного. Например, Китай построил умную солнечную дорогу, которая будет заряжать электрические автомобили во время движения.

Внешность солнечных батарей тоже меняется. Многих людей раздражает видеть на домах уродливые и неказистые квадратные панели, которые абсолютно никак не вписываются в обстановку. Именно поэтому некоторые фирмы разработали специальные солнечные крыши, которые с привычной точки зрения ничем не отличаются от обычных. Самым популярным продуктом на данный момент является солнечная черепица Tesla, изображение которой можно найти ниже. На фото сразу становится заметно, как идеально вписывается крыша автопроизводителя в дизайн здания. Аналогичное решение предоставляет немецкая компания SolteQ. Принцип работы данной технологии на словах довольно прост, и его давно раскрыла Tesla, обнародовав свой патент. Кстати говоря, посмотреть, как выглядит Solar Roof вблизи, можно в нашей статье.

(Tesla Solar Roof - фото с официального сайта www.tesla.com)

Встроить фотоэлементы в транспортные средства давно пытаются многие компании. Например недавно Kia и Hyundai объединили усилия, чтобы создать солнечную крышу для зарядки батареи автомобиля.

Но куда интереснее проект Clean2Antarctica: голландская пара, ведущая образ жизни без вредных выбросов, решила доехать до южного полюса на машине, сделанной из пластиковых отходов и питаемая энергией солнца. В итоге, из их затеи получилась вот такая штука под названием Solar Voyager:

mbhn.ru

Альтернативная энергетика — Википедия. Что такое Альтернативная энергетика

Альтернати́вная энерге́тика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Направления альтернативной энергетики

Альтернативный источник энергии

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию»[1]. Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников
Источники энергии, используемые человеком
Способ использования Энергия, используемая человеком Первоначальный природный источник
Солнечные электростанции Электромагнитное излучение Солнца Солнечный ядерный синтез
Ветряные электростанции Кинетическая энергия ветра Солнечный ядерный синтез,

Движения Земли и Луны

Традиционные ГЭС

Малые ГЭС

Движение воды в реках Солнечный ядерный синтез
Приливные электростанции Движение воды в океанах и морях Движения Земли и Луны
Волновые электростанции Энергия волн морей и океанов Солнечный ядерный синтез,

Движения Земли и Луны

Геотермальные станции Тепловая энергия горячих источников планеты Внутренняя энергия Земли
Сжигание ископаемого топлива Химическая энергия ископаемого топлива Солнечный ядерный синтез в прошлом.
Сжигание возобновляемого топлива
традиционное
нетрадиционное
Химическая энергия возобновляемого топлива Солнечный ядерный синтез
Атомные электростанции Тепло, выделяемое при ядерном распаде Ядерный распад

Примечания

  1. Зелёным шрифтом обозначены нетрадиционные способы использования энергии.
  2. Зелёным цветом залиты возобновляемые источники энергии.
Ветроэнергетика

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра[2]

Биотопливо
Гелиоэнергетика

Солнечные электростанции(СЭС) работают более чем в 80 странах.

Альтернативная гидроэнергетика
Российский волновой генератор
«Ocean 160»
Геотермальная энергетика

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
  • Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)
Мускульная сила человека

Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования велосипеда.

Грозовая энергетика

Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings в 2006 году объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.[6][7]

Управляемый термоядерный синтез

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

Направления альтернативной энергетики помимо использования нетрадиционных источников энергии

Распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Водородная энергетика

На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

Космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения[8]. Может способствовать глобальному потеплению. До сих пор не применяется.

Перспективы

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП[9].

Перспективы в России

Россия может получать 10 % энергии из ветра[2]. По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Один из основных барьеров для строительства крупных электростанций на ВИЭ — отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff)[10].

В 2017 году администрация городского округа Химки запустила проект по созданию Центра альтернативной энергетики, который будет разрабатывать новые схемы обеспечения электроэнергией промышленных предприятий и городского хозяйства. Центр будет организован на базе расположенного на Ленинградском шоссе дилерского центра садово-парковой техники Юнисоо[11].

Инвестиции

Ambox outdated serious.svg

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в добычу угля и нефти было инвестировано $110 млрд.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд[12].

Распространение

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии. В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.[13]

На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.(без ГЭС)[13].

В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца[14].

В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников[15].

См. также

Примечания

Ссылки

Литература

wiki.sc

Просто о сложном: что такое альтернативная энергетика?

Экология потребления.Наука и техника:В то время как большинство концепций альтернативной энергетики не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла.

За последние годы альтернативная энергетика стала предметом пристального интереса и ожесточенных дискуссий. Под угрозой изменения климата и того факта, что средние мировые температуры продолжают расти с каждым годом, стремление найти формы энергии, которые позволят сократить зависимость от ископаемого топлива, угля и других загрязняющих окружающую среду процессов, естественным образом выросло.

В то время как большинство концепций альтернативной энергетики не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла. Что же такое альтернативная энергетика, если говорить простыми и понятными словами, и какова вероятность того, что она станет основной?

Очевидно, остаются некоторые споры касательно того, что означает «альтернативная энергия» и к чему эту фразу можно применить. С одной стороны, этот термин можно отнести к формам энергии, которые не приводят к увеличению углеродного следа человечества. Поэтому он может включать ядерные объекты, гидроэлектростанции и даже природный газ и «чистый уголь».

С другой стороны, этот термин также используется для обозначения того, что в настоящее время считается нетрадиционными методами энергетики — энергии солнца, ветра, геотермальной энергии, биомассы и других недавних дополнений. Такого рода классификация исключает такие методы добычи энергии, как гидроэлектростанции, которые существуют больше сотни лет и представляют собой довольно распространенное явление в некоторых регионах мира.

Просто о сложном: что такое альтернативная энергетика?

Другой фактор в том, что альтернативные источники энергии должны быть «чистыми», не производить вредных загрязняющих веществ. Как уже отмечалось, это подразумевает чаще всего двуокись углерода, однако может относиться и к другим выбросам — моноксиду углерода, двуокиси серы, окиси азота и другим. По этим параметрам ядерная энергия не считается альтернативным источником энергии, поскольку производит радиоактивные отходы, которые высоко токсичны и должны храниться соответствующим образом.

Во всех случаях, однако, этот термин используется для обозначения видов энергии, которые придут на смену ископаемому топливу и углю в качестве преобладающей формы производства энергии в ближайшее десятилетие.

Виды альтернативных источников энергии

Строго говоря, существует много видов альтернативной энергии. Опять же, здесь определения заходят в тупик, потому что в прошлом «альтернативной энергетикой» называли методы, использование которых не считали основным или разумным. Но если взять определение в широком смысле, в него войдут некоторые или все эти пункты:

Гидроэлектроэнергия. Это энергия, вырабатываемая гидроэлектрическими плотинами, когда падающая и текущая вода (в реках, каналах, водопадах) проходит через устройство, вращающее турбины и вырабатывающее электричество.

Ядерная энергия. Энергия, которая производится в процессе реакций замедленного деления. Урановые стержни или другие радиоактивные элементы нагревают воду, превращая ее в пар, а пар крутит турбины, вырабатывая электричество.

Солнечная энергия. Энергия, которая получается напрямую от Солнца; фотовольтаические ячейки (обычно состоящие из кремниевой подложки, выстроенные в крупные массивы) преобразуют лучи солнца напрямую в электрическую энергию. В некоторых случаях и тепло, производимое солнечным светом, используется для производства электричества, это известно как солнечная тепловая энергия.

Просто о сложном: что такое альтернативная энергетика?

Энергия ветра. Энергия, вырабатываемая потоком воздуха; гигантские ветряные турбины вертятся под действием ветра и вырабатывают электричество.

Геотермальная энергия. Эту энергию вырабатывает тепло и пар, производимые геологической активностью в земной коре. В большинстве случаев в грунт над геологически активными зонами помещаются трубы, пропускающие пар через турбины, таким образом вырабатывая электричество.

Энергия приливов. Приливное течение у береговых линий тоже может использоваться для выработки электричества. Ежедневное изменение приливов и отливов заставляет воду протекать через турбины назад и вперед. Вырабатывается электроэнергия, которая передается на береговые электростанции.

Биомасса. Это относится к топливу, которое получают из растений и биологических источников — этанола, глюкозы, водорослей, грибов, бактерий. Они могли бы заменить бензин в качестве источника топлива.

Водород. Энергия, получаемая из процессов, включающих газообразный водород. Сюда входят каталитические преобразователи, при которых молекулы воды разбиваются на части и воссоединяются в процессе электролиза; водородные топливные элементы, в которых газ используется для питания двигателя внутреннего сгорания или для вращения турбины с подогревом; или ядерный синтез, при котором атомы водорода сливаются в контролируемых условиях, высвобождая невероятное количество энергии.

Альтернативные и возобновляемые источники энергии

Во многих случаях альтернативные источники энергии также являются возобновляемыми. Тем не менее эти термины не полностью взаимозаменяемы, поскольку многие формы альтернативных источников энергии полагаются на ограниченный ресурс. К примеру, ядерная энергетика опирается на уран или другие тяжелые элементы, которые необходимо сперва добыть.

В то же время ветер, солнечная, приливная, геотермальная и гидроэлектроэнергия полагаются на источники, которые полностью возобновляемые. Лучи солнца — самый изобильный источник энергии из всех и, хоть и ограниченный погодой и временем суток, является неисчерпаемым с промышленной точки зрения. Ветер тоже никуда не девается, благодаря изменениям давления в нашей атмосфере и вращению Земли.

В настоящее время альтернативная энергетика все еще переживает свою юность. Но эта картина быстро меняется под влиянием процессов политического давления, всемирных экологических катастроф (засух, голода, наводнений) и улучшений в технологиях возобновляемых энергий.

Например, по состоянию на 2015 год, энергетические потребности мира по-прежнему преимущественно обеспечивались углем (41,3%) и природным газом (21,7%). Гидроэлектростанции и атомная энергетика составили 16,3% и 10,6% соответственно, в то время как «возобновляемые источники энергии» (энергии солнца, ветра, биомассы и пр.) — всего 5,7%.

Это сильно изменилось с 2013 года, когда мировое потребление нефти, угля и природного газа составило 31,1%, 28,9% и 21,4% соответственно. Ядерная и гидроэлектроэнергия составляли 4,8% и 2,45%, а возобновляемые источники — всего 1,2%.

Кроме того, наблюдалось увеличение числа международных соглашений относительно обуздания использования ископаемого топлива и развития альтернативных источников энергии. Например, Директиву о возобновляемой энергии, подписанную Евросоюзом в 2009 году, которая установила цели по использованию возобновляемой энергии для всех стран-участниц к 2020 году.

Просто о сложном: что такое альтернативная энергетика?

По своей сути, из этого соглашения следует, что ЕС будет удовлетворять не менее 20% общего объема своих потребностей в энергии возобновляемой энергией к 2020 году и по меньшей мере 10% транспортного топлива. В ноябре 2016 года Европейская комиссия пересмотрела эти цели и установила уже 27% минимального потребления возобновляемой энергии к 2030 году.

Некоторые страны стали лидерами в области развития альтернативной энергетики. Например, в Дании энергия ветра обеспечивает до 140% потребностей страны в электроэнергии; излишки поставляются в соседние страны, Германию и Швецию.

Исландия, благодаря своему расположению в Северной Атлантике и ее активным вулканам, достигла 100% зависимости от возобновляемых источников энергии уже в 2012 году за счет сочетания гидроэнергетики и геотермальной энергии. В 2016 году Германия приняла политику поэтапного отказа от зависимости от нефти и ядерной энергетики.

Долгосрочные перспективы альтернативной энергетики являются чрезвычайно позитивными. Согласно отчету 2014 году Международного энергетического агентства (МЭА), на фотовольтаическую солнечную энергию и солнечную тепловую энергию будет приходиться 27% мирового спроса к 2050 году, что сделает ее крупнейшим источником энергии. Возможно, благодаря достижениям в области синтеза, ископаемые источники топлива будут безнадежно устаревшими уже к 2050 году. опубликовано econet.ru 

 

econet.ru

Альтернативная энергетика - это... Что такое Альтернативная энергетика?

Альтернати́вная энерге́тика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования и, как правило, низком риске причинения вреда окружающей среде.

Направления альтернативной энергетики

Ветроэнергетика

Гелиоэнергетика

Альтернативная гидроэнергетика

  • Приливные электростанции
  • Волновые электростанции
  • Мини и микро ГЭС (устанавливаются в основном на малых реках)
  • Водопадные электростанции
  • Аэро ГЭС[1][2] (конденсация/сбор водяного пара из атмосферы и гидравлический напор 2-3 км)

Геотермальная энергетика

  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
  • Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)

Космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на орбите Земли. Электроэнергия будет передаваться на землю в форме микроволнового излучения[3]. Может способствовать глобальному потеплению.

Водородная энергетика и сероводородная энергетика

  • Водородные двигатели (для получения механической энергии)
  • Топливные элементы (для получения электричества)
  • Биоводород
  • На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

Квантовая энергетика

Энергетика, основанная на использовании предполагаемых квантов пространства-времени (квантон) и сверхсильного электромагнитного взаимодействия[4].

Управляемый термоядерный синтез

Распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Альтернативный источник энергии

Источники энергии — встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию[5]] Альтернативный источник энергии — заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников

Перспективы

На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.(без ГЭС)[6]. Речь идет прежде всего о геотермальных электростанциях (ГеоТЭС), которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае.

Солнечные электростанции (СЭС) работают более чем в 30 странах.

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра[7]

В качестве топлива в Бразилии и других странах все чаще используют этиловый спирт.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП[8].

Россия может получать 10 % энергии из ветра[7]

По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей, а также слабой озабоченностью экологической обстановкой в стране властей, бизнеса и населения. Один из основных барьеров для строительства крупных электростанций на ВИЭ — отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff)[9].

Инвестиции

Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в производство угля и нефти было инвестировано $110 млрд.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд[10].

Распространение

В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца[11].

В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников[12]. В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии.В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.[6]

См. также

Примечания

Ссылки

Литература

dic.academic.ru

Альтернативные источники энергии: виды, значение, преимущества и недостатки

Альтернативные, или нетрадиционные источники энергии - это ресурсы природы, которые можно использовать для получения электричества. Сюда относятся солнце, ветер, и даже энергия земли, биомасс, сточных вод и отходов. По прогнозам, с помощью биогенного горючего можно получать до 49% электроэнергии, а также 16-22% - от энергии ветра и воды.

Читайте также: Возобновляемые источники энергии

Виды, преимущества и недостатки разных альтернативных источников энергии

У каждого типа нетрадиционной энергетики есть свои плюсы и минусы, а также особенности организации процесса для получения электричества.

Солнечная энергия

Преобразование энергии солнца происходит с помощью особых технологий. Сложность обработки солнечной энергии выступает в качестве недостатка этого источника:

  • излучение имеет низкую плотность и непостоянно, поэтому существующие технологии имеют ряд ограничений;
  • в некоторых странах из-за низкого уровня солнечного излучения реализовать методику нецелесообразно.

Среди преимуществ можно выделить абсолютную экологическую безопасность солнечной энергии и отсутствие вмешательства в геологию Земли.

На солнечной энергии работают космические станции и спутники. Широкое распространение получили солнечные панели в некоторых странах – ими оснащают крыши домов.

Геотермальная энергетика

Геотермальный метод получения энергии построен на принципе преобразования тепла мантии и ядра Земли (чаще всего источником служат пароводяные резервы). Преобразование природного пара – процесс трудоемкий, так как требуется строительство труб и турбин, проводящих его с глубины от 2-3 км. Однако стоимость электроэнергии на выходе получается не слишком высокой.

Недостаток метода – вероятность оседания грунта и повышения сейсмической активности, поэтому в опасных районах этот источник альтернативной энергии неприменим.

Ветровая энергетика

Для реализации метода требуется ветряная электростанция. Одно из преимуществ такого источника энергии – это дешевое оснащение. Но недостаток – сильная зависимость от погодных условий, требуется постоянный контроль состояния. А еще ветровые электростанции могут создавать помехи для радиоволн.

Важно! Обширное использование ветряных электростанций может стать причиной недостаточной вентиляции промышленных районов, что приведет к ухудшению экологической обстановки.

Также для ветряных станций требуются большие площади, поэтому реализация в густонаселенных регионах затруднена. Однако ветряные источники энергии используются в некоторых странах Европы и Америки для снабжения небольших поселений.

Волновая энергетика

В этом способе для получения электричества используется энергия волн. В отличие от альтернативных источников, описанных выше, волновая энергия отличается большей ударной мощностью. Это самый многообещающий способ получения энергии в перспективе освоения океанов.

Важно! Все виды естественной энергии – ветер, солнце, волны – относятся к возобновляемым источникам.

Самый яркий пример традиционного использования волновой энергии – гидроэлектростанции, но он не единственный. Целесообразно строительство волновых станций в районах с мощными приливами (колебание больше 4 м).

Среди недостатков можно выделить небольшую мощность, строительство только возле побережья, а также цикличность работы – всего 2 раза в сутки. Экологическая безопасность такого способа получения энергии под вопросом, ведь станции нарушают баланс соленой и пресной воды, что несет угрозу морской жизни.

Новейшая технология получения энергии волновым путем – аэро ГЭС. Они работают по принципу конденсации влаги из атмосферы, однако до внедрения этой технологии в жизнь еще далеко.

Градиент-температурная энергетика

В основе этого метода лежит баланс температур. Для строительства станций требуется морское побережье. Поглощая до 70% солнечной энергии, мировой океан становится отличным источником температурных ресурсов. Однако нагрев и выделение углекислой кислоты при обработке морской воды нарушают экологическую обстановку. Среди преимуществ можно выделить только то, что ресурс крайне обширен.

Биомассовая энергетика

Под этим понятием скрывается процесс гниения биологических отходов и ресурсов – в результате выделяется биологический газ с большим содержанием метана. Его можно использовать для обогрева помещений и выработки электричества.

Больше всего такой источник энергии используется в сельскохозяйственных предприятиях. Это безотходное производство, так как гниющие продукты потом используются для удобрения. Кроме растений и навоза, можно использовать быстрорастущие водоросли.

Главный недостаток теплового источника – КПД не превышает 6% и для обеспечения нужд мегаполиса энергией такой метод не подойдет.

Энергия молнии

Один из самых новых альтернативных методов получения электричества – сбор энергии молний, попадающих в землю. Пока что проект находится на стадии разработки – установки для улавливания молнии еще не готовы.

Это дорогостоящий, но окупающийся метод, ведь 1 молния способна обеспечить целый район крупного города энергией на некоторое время. Но уже сейчас можно выделить главный недостаток – зависимость от частоты гроз.

Роль и значение альтернативной энергетики

Поиск альтернативных источников энергии – одна из самых актуальных задач, так как человечество чудовищными темпами поглощает газ, нефть и другие виды топлива, чтобы производить энергию. Научная «мечта» - получение альтернативы электричеству, но она пока что недостижима. Кризис топливных ресурсов неизбежен, и нетрадиционные источники энергии должны помочь предотвратить его.

Альтернативные источники энергии в России

В России в разных регионах интегрируется практическое использования следующих альтернативных источников энергии:

  • Солнечная энергия. Самая большая трудность – это законодательное и финансовое обеспечение станций, собирающих солнечную энергию. Наибольший потенциал такого способа получения энергии сосредоточен в южных регионах, а также на севере – в Якутии и Магаданской области.
  • Гидроэнергетика. ГЭС после АЭС занимают 2 место по способам производства электроэнергии, и перспективы у этого метода достаточно большие.
  • Геотермальная энергетика. Геотермальные ресурсы России в 10 раз богаче, чем залежи нереализованного угля. Самый перспективный край – Камчатка, где на глубине чуть больше 3 км заложен пар температурой 200 градусов. Большим потенциалом также обладает Кавказ и Краснодарский край.
  • Биогаз. Активно развивающаяся отрасль энергетики, востребованная в России. Есть даже предприятия, которые начали производство установок.
  • Приливная энергетика. Наиболее перспективны города, расположенные на побережье.
  • Ветроэнергетика. На территории России ветрогенные установки используются со времен СССР: на территории Калининграда, в заполярье, Башкортостане и Чувашии. Потенциал у этого метода в РФ обширен, поэтому ветроэнергетика активно развивается.

Альтернативные источники энергии – один из вопросов сохранения окружающей среды и ресурсов планеты, который изучается тысячами специалистов. Каждый день ищутся новые решения и разрабатываются методы для получения энергии из ветра, солнца, воды. Но сфера изучена недостаточно и многие задачи только предстоит решить.

Понравилась статья? Поделись с друзьями:

natworld.info

Отправить ответ

avatar
  Подписаться  
Уведомление о