Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Альтернативные источники энергии: что надо знать

«Зеленую» энергию выбирают страны, города, компании и граждане. Рассказываем, как возобновляемые источники переходят из категории альтернативных в основные, как они развиваются в России и мире и какое будущее их ждет

Что такое альтернативные источники энергии

Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.

Доля источников энергии в мировом потреблении (Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 32)

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Ставка на солнце и уголь: два лица энергетики Китая

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Национальные цели по доле ВИЭ среди источников энергии (Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)

Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина

Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.

В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.

Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.

100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.

Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.

«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.

Как бизнес формирует положительный имидж, инвестируя в ВИЭ

Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.

Полная версия отчета Renewables 2019 в формате PDF (см. стр. 47)

Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.

IKEA запланировала производить больше электроэнергии на основе возобновляемых источников, чем она потребляет, к 2030 году. В 14 странах на магазинах размещены 920 тыс. солнечных панелей, а также более 530 ветряных турбин. Ingka, материнская компания IKEA, инвестировала около $2,8 млрд в различные проекты ВИЭ и стала владельцем 1,7 ГВт мощностей. Она также продолжит вкладывать средства в строительство ветропарков и солнечных электростанций.

Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.

Компания Intel получает энергию от ветра, солнца, воды и биомассы. С 2012 года Intel инвестировал $185 млн в 2 000 проектов по энергосбережению, а 100% электроэнергии, потребляемой корпорацией в США и ЕС, поступает из ВИЭ.

Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.

Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.

Альтернативные источники энергии

В условиях постоянного ухудшения экологической обстановки на планете человечество вынуждено искать альтернативные источники энергии. Все больше стран делают выбор в их пользу. Конечно, перестраивать энергетическую инфраструктуру — затратное дело, но стоит рассматривать этот процесс как вклад в будущее всей планеты.

Что такое альтернативная энергия?

Энергию можно разделить на два больших класса: невозобновляемая и возобновляемая. К первой категории относится использование таких энергоносителей, как нефть и каменный уголь. Рано или поздно из запасы на планете будут исчерпаны. К тому же, их применение связано с выбросами в атмосферу углекислого газа и глобальным потеплением. Возобновляемые, или альтернативные источники энергии — неисчерпаемые ресурсы, например, ветер или солнечный свет. Их применение имеет меньше «побочных эффектов», а риск истощения запасов отсутствует полностью. В наши дни большая часть энергии вырабатывается за счет сжигания нефти и газа, а также благодаря работе атомных электростанций. Все эти источники потенциально опасны для окружающей среды. Поэтому востребованной становится альтернативная энергетика, позволяющая получать энергию более экологичным способом, наносящим минимальный вред окружающей среде.

Энергия ветра

Ветровая энергетика — преобразование энергии движущихся воздушных масс в электричество, которое может быть использовано потребителем. Подсчитано, что запасов ветровой энергии в 100 раз больше, чем энергетических запасов всех рек нашей планеты. Основа установки для получения энергии — ветровые генераторы и ветровые мельницы. Особенно развит этот способ в Германии, Дании и Ирландии.
Основные плюсы ветровой энергетики — экологичность и низкая стоимость получаемой энергии. Но есть и существенный минус. Предсказать силу ветра невозможно, она непостоянна и зависит от множества факторов. Поэтому приходится использовать дополнительные источники получения энергии. Есть у ветрогенераторов еще одно неприятное свойство: они могут вызывать радиопомехи. Наконец, ветровая энергетика может потенциально оказывать влияние на климат планеты, так как ветрогенераторы забирают часть кинетической энергии движущихся воздушных масс. Однако ученые все еще не могут определить, насколько выраженным может быть это влияние и приведет оно к позитивным или негативным последствиям.

Сила воды

Основа гидроэнергетики — преобразование энергии водных масс в электричество. В качестве примера можно привести гидроэлектростанции, которые устанавливаются на крупных реках. Движущаяся вода воздействует на лопасти турбины, вращая их. Возникающая во время вращения энергия и преобразуется в электричество. Строительство ГЭС обходится государству очень дорого. Однако затраты быстро окупаются, так как цена полученной энергии получается сравнительно низкой (например, по сравнению с атомными электростанциями).
Строить гидроэлектростанции можно только на реках, которые никогда не пересыхают и имеют быстрое течение. Для возведения ГЭС необходимо обустроить плотину, позволяющую добиться определенного напора воды.
В России доля электрической энергии, вырабатываемой гидроэлектростанциями, составляет около 20% от всей энергетической генерации, а суммарная мощность всех ГЭС составляет 48085 МВт. В последние годы появилась идея использовать энергию приливов. Строятся приливные станции, преобразующие кинетическую энергию движущейся морской воды. В России самая крупная приливная электростанция функционирует в Мурманской области. Ее установленная мощность достигает 1,7 МВт. Наконец, есть способы генерации энергии из волн.

Эффективными оказались только три из них: поплавки, искусственные атоллы и подводные камеры. Такие электростанции передают кинетическую энергию по кабелю на станцию, где происходит выработка электричества. Есть у волновой энергетики два недостатка. Себестоимость полученное энергии довольно высока, а позволить себе обустройство станции могут только страны, имеющие продолжительную береговую линию. По этой причине этот вид используется редко.

Геотермальная энергетика

Наша планета вырабатывает большое количество тепла. Для получения энергии, в частности, используются геотермальные источники, располагающиеся в сейсмически опасных территориях и вулканических районах. Горячая вода может быть использована для непосредственного отопления зданий. Также ее перерабатывают в электроэнергию при вращении горячим паром турбины, идущей к генератору. Больше всего таких станций во Франции, Мексике и Америке.

Энергия осмотической диффузии

Этот вид альтернативной энергии стал разрабатываться сравнительно недавно. Осмотические электростанции устанавливаются в устьях рек и извлекают энергию из энтропии жидкостей в процессе взаимодействия соленой и пресной воды. Когда концентрация солей выравнивается, возникает избыточное давление, благодаря которому вращаются лопасти турбины. Пока в мире существует только одна осмотическая электростанция, функционирующая в Норвегии.

Биотопливо

Биотопливо производится из органических продуктов, в процессе переработки которых получается электрическая энергия. Выделяют твердое и жидкое биотопливо. К первой группе относятся дрова, топливные брикеты. Жидкое биотопливо — это биодизель, биобутанол, диметиловый эфир и т. д. Топливо можно получать непосредственно из биомассы (остатков растительного и животного происхождения), которые во время брожения выделяют горючий газ. Такие биогенераторы устанавливаются в сельских местностях. В России в последние годы построено множество заводов, которые перерабатывают древесные отходы в топливные брикеты и пеллеты, применяемые как топливо для различных видов котлов.

Гравитационная энергетика

Гравитационная энергетика — преобразование потенциальной энергии гравитационного поля планеты в электроэнергию. На данный момент уже разработан проект гравитационной электростанции, которая представляет собой подъемный кран со стрелами. Двигатели приходят в действие, когда опускаются блоки. Подъем блоков осуществляется, когда в сеть поступает избыток энергии.

Солнечная энергия, солнечные электростанции

Солнечную энергию преобразуют в электрическую посредством солнечный батарей. Удивительно, но всей планете на год хватило бы энергии, которую Солнце отправляет на Землю в течение одного дня. При этом выработка электроэнергии солнечными батареями не превышает 2% от общего количества. Однако солнечная энергия — одна из самых экологичных, безопасных и недорогих по себестоимости.

Пожалуй, единственным недостатком солнечной энергии является зависимость ее получения от времени суток и погодных условий. В северных странах строительство солнечных электростанция экономически невыгодно. По крайней мере, на данном этапе: ученые не исключают, что удастся создать солнечные батареи, которые будут улавливать фотоны даже в пасмурные дни.
Есть еще одна проблема: фотоэлементы необходимо вовремя утилизировать, так как в них содержатся мышьяк, галлий и свинец. Далеко не все страны могут позволить себе создание производств по переработке отработанных солнечных батарей. Наиболее широкое распространение солнечное электричество получает там, где оно обходится дешевле всех других видов. Например, солнечные электростанции устанавливаются на отдаленных фермерских участках, на комических станциях. Используется оно и в странах, где высока себестоимость других видов энергии. В качестве примера можно привести Израиль, где примерно 90% воды нагревается за счет энергии Солнца.
Солнечные батареи в последние годы активно используются для создания экологически безопасных автомобилей, самолетов и даже поездов. Солнечными батареями нередко оснащаются так называемые «умные дома», которые самостоятельно могут регулировать мощность установки в зависимости от потребностей обитателей жилья. В нашей стране солнечная энергетика получает все большее распространение в качестве резервного источника электрической энергии.
В России суммарная мощность электростанций, работающих на энергии Солнца, составляет 400,0 МВт. Проектируются новые станции, мощность которых будет составлять 850,0 МВт. Широко обсуждается проект создания космических солнечных электростанций. В открытом космосе преграды для солнечной радиации в виде атмосферного слоя отсутствуют. Поэтому возможен запуск на орбиту установок, оснащенных солнечными батареями, улавливающими энергию Солнца и пересылающих их на землю. КПД таких станций потенциально обещает быть приближенным к 100%, однако на данный момент их создание и запуск обойдется настолько дорого, что себестоимость энергии для потребителей получится слишком высокой.

Плюсы и минусы использования

Главными плюсами использования альтернативных источников энергии являются:

• возобновляемость ресурсов. Если поставить получение альтернативной энергии на поток, человечество никогда не столкнется с тем, что природные запасы исчерпают себя;
• экологическая безопасность. Альтернативная энергетика предполагает отсутствие опасных выбросов в окружающую среду;
• доступность по цене. На данный момент разработано множество способов получения альтернативной энергии. Поэтому любое государство может подобрать те варианты, которым наилучшим образом соответствуют его климатическим условиям.

Есть у альтернативной энергетики и минусы, затрудняющие ее широкое распространение:

• высокая стоимость необходимого оборудования. Не все государства могут позволить себе строительство и монтаж солнечных и ветровых электростанций;
• зависимость от внешних условий и климата. Солнечная энергия, которая признается наиболее перспективной, недоступна в странах с невысокой продолжительностью светового дня, сейсмическая и геотермальная энергия может быть получена лишь в вулканических, сейсмически нестабильных регионах и т.д.;
• небольшая мощность установок. Единственным исключением из этого правила являются гидроэлектростанции, мощность которых можно сравнить с аналогичным показателем АЭС;
• воздействие на климат. Даже альтернативные источники энергии оказывают воздействие на климатические условия. Например, высокий спрос на биотопливо может стать причиной уменьшения площади посевных площадей, а строительство плотин для гидроэлектростанций оказывает влияние на речные биотопы.

Перспективы в России

Россия может получать из ветра около 10% всей энергии и примерно 15% – за счет солнечного света. Однако широкого распространения альтернативные источники энергии в нашей стране не получают. Связано это с доступностью невозобновляемых ресурсов (нефти и газа). Отсутствует и экономическая стимуляция строительства альтернативных электростанций. Во многих странах Европы имеется стимулирующий тариф, по которому государство приобретает полученную альтернативными способами энергию. В России подобный тариф не введен. Тем не менее, в России успешно реализуется ряд проектов, связанных с альтернативной энергетикой. Например, в 2017 году в Химках был запущен проект по созданию Центра альтернативной энергетики. Задачей центра будет обеспечение энергией промышленных предприятий. В 2019 году в Мурманске начал строиться ветропарк, который начнет функционировать в 2021 году. Планируется, что мощность парка составит 201 МВт. Ученые уверены в том, что в ближайшие годы человечество вынуждено будет стремиться к полному переходу на альтернативные источники энергии. Это даст возможность сохранить планету для будущих поколений и избежать кризиса, связанного с исчерпанием невозобновляемых ресурсов. Согласно прогнозам, будущее энергетики связано с энергией Солнца и ветра. Остается надеяться на то, что людям удастся успеть научиться полностью обходиться возобновляемыми источниками энергии до момента, когда запасы нефти и газа на планете подойдут к концу.

© Компания “Реалсолар”. Все права защищены. Перепечатка документа запрещена. Статья занесена в поисковые системы как уникальный текст.

Альтернативные источники энергии: почему они нужны всем

МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива.  

Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба. 

К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.

САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ

Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.

Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
 

Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность. 

Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год. 

Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.

Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства. 

Что такое валютные войны и зачем их ведут

Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника. 

КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ

В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты. При правильной установке они не вредят окружающей среде, к тому же практически незаметны в море.

Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы. 

В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей. 

Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба. 

Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.

Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС. 

Зарабатываем и делимся: популярно о дивидендах

АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ

На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт. 

Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.

Альтернативные источники энергии

В современном мире, с растущими показателями потребления и как следствие – ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотеримальное тепло, энергия морских волн и приливов.

Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе.  Доступность технологий получения энергии из неисчерпаемых источников позволяет строить энергонезависимые дома с экологически чистой инфраструктурой в удаленных районах и решать проблемы энергоснабжения уже существующих объектов. 

Виды альтернативных источников энергии

Такие альтернативные источники энергии, как энергия солнечного света и ветра используются для энергоснабжения и нагрева воды, геотермальное тепло земли – для отопления и кондиционирования зданий. Преобразование солнечной энергии в электрическую происходит при помощи фотоэлектрических пластин из кремния – самого распространенного элемента на планете. Солнечные батареи, на основе кремниевых пластин имеют продолжительный ресурс жизни – более 25 лет и, в зависимости от технологии производства, сохраняют до 80% своей эффективности в течении всего ресурса. Количество энергии, получаемой от солнечных батарей, различается и напрямую зависит от месторасположения и солнечной активности в различные сезоны года. Эффективность преобразования энергии у солнечных батарей достигает 20% и зависит от технологии их производства и чистоты кремния. Технология стремительно развивается и показатель эффективности постоянно растет.

Эксплуатация ветро-установок (ветрогенераторов) для получения электричества, целесообразна в районах с высоким значением средней скорости ветра или в периоды низкой солнечной активности. Эффективность преобразования энергии ветра не уступает эффективности гелиоустановок, но зависит от точки расположения объекта и корректно рассчитанного потенциала местности.

Широко используется для отопления зданий и геотермальное тепло земли. Тепловые насосы позволяют получать тепло окружающей среды: земли, воды или воздуха. В зимний период геотермальное тепло используется для отопления зданий, а в летние месяцы позволяет эффективно отводить тепло, производя кондиционирование.

Альтернативные источники энергии и выгоды их использования

Эффективность использования тех или иных альтернативных источников энергии напрямую зависит от региона, в котором необходима установка. Качественный мониторинг энергопотенциала позволяет определять наиболее подходящую технологию и рассчитывать ее окупаемость на годы вперед, а так же исключает ошибки связанные с региональными особенностями.

Конечно, первоначальную цену энергонезависимого дома, с экологически чистыми, возобновляемыми источниками энергоснабжения, сегодня нельзя назвать низкой, но по истечении двух – пяти лет эксплуатации альтернативные источники энергии полностью окупают свою стоимость и приносят ощутимую финансовую выгоду в течении многих лет.  Не стоит забывать о экологичности альтернативных технологий добычи энергии. Солнечные, ветровые и гелиоустановки не производят вредных выбросов в атмосферу, не загрязняют воду и безопасны для человека.

 

Производство солнечных батарей набирает обороты

Нехватка ресурсов в удаленных регионах, в совокупности с быстрыми темпами развития технологии привело к ситуации, когда производство солнечных батарей быстро набирает обороты, а стоимость конечных изделий с каждым годом становится все более доступной для потребителей со средним уровнем доходов. И если вчера технология гелиоустановок была доступна лишь для космических программ, то уже сегодня мини-солнечные электростанции, как грибы после дождя, растут на крышах домов и садовых участках.

 

     

Набор по изучению альтернативных источников энергии «Renewable Energy Education Set 2.0»

Набор Renewable Energy Education Set 2.0 является компактной версией комплекта Horizon Energy Box и предназначен для ознакомления с основными технологическими решениями в области альтернативной энергетики.

В данном наборе представлены различные варианты источников и потребителей электроэнергии.

Функционал набора позволяет как изучить основы водородной, ветряной и солнечной энергетики, так и выполнять собственные проекты по перечисленным темам.

Примеры лабораторных и практических работ:

  • Определение зависимости энергоэффективности ветрогенератора от количества используемых лопастей
  • Определение зависимости энергоэффективности ветрогенератора от угла, под которым расположены лопасти
  • Использование ветрогенератора для снабжения различных потребителей электроэнергии
  • Определение зависимости напряжения и мощности выдаваемой солнечной панелью от освещенности ее поверхности
  • Определение зависимости напряжения и мощности выдаваемой солнечной панелью от спектральных характеристик падающего света
  • Определение зависимости напряжения и мощности выдаваемой солнечной панелью от угла падения света
  • Использование солнечной панели для снабжения различных потребителей электроэнергии
  • Определение зависимости напряжения и мощности, выдаваемой водородным ТЭ
  • Параллельное и последовательное соединение ТЭ, работающих на водороде

Спецификация:

  • Габаритные размеры (ДхШхВ): 440х330х110 мм
  • Масса: 1,3 кг
  • Модуль вентилятора
  • Ротор ветрогенератора, держатель для лопастей
  • Лопасть А (3 шт. ), лопасть В (3 шт.), лопасть С (3 шт.)
  • Лопасть вентилятора
  • Основание ветрогенератора
  • Мачта ветрогенератора
  • Электролизёр с протонно-обменной мембраной
  • Малый водородный топливный элемент
  • Резервуар для воды и накопления кислорода
  • Солнечная панель
  • Водородный топливный элемент обратимого действия
  • Блок батарей AA с соединительными выводами
  • Силиконовый водородопровод
  • Провода
  • Шприц

Альтернативные источники энергии: альтернативы нет – Энергетика и промышленность России – № 7 (11) июль 2001 года – WWW.EPRUSSIA.RU

Газета “Энергетика и промышленность России” | № 7 (11) июль 2001 года

Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

* Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI века.

* Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;

* Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную – постоянно растут;

* Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, – всё это увеличивает социальную напряженность.

* Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

Источники энергии

Сегодня суммарное потребление тепловой энергии в мире составляет >200 млрд. кВт/ч в год, (эквивалентно 36 млрд. т усл. топлива). В России сегодня общее потребление топлива составляет около 5 % мирового энергобаланса.

Геологические запасы органического топлива в мире более 80 % приходится на долю угля, который становится все менее популярным. А известные запасы топливных ресурсов к 2100 г. будут исчерпаны. По данным экспертов, в начале XXI в. добыча нефти и природного газа начнет сокращаться: их доля в топливно-энергетическом балансе снизится к 2020 г. с 66,6 % до 20 %. На долю гидроэнергетики приходится всего 1,5 % общего производства энергии в мире, и она может играть только вспомогательную роль. Таким образом, ни органическое топливо, ни гидроэнергия не могут решить проблемы энергетики в перспективе.

Что касается ядерной энергии, все известные запасы урана, пригодного для реакторов, действующих на тепловых нейтронах, будут исчерпаны в первом десятилетии XXI в. Создание и эксплуатация АЭС на реакторах-размножителях значительно дороже и не менее безопасны, чем на тепловых нейтронах. От населения до сих пор скрывают не только реальную опасность атомной энергетики, но и ее реальную стоимость. Учитывая все затраты на добычу топлива, нейтрализацию, утилизацию и захоронение отходов, консервацию отработавших реакторов (а их ресурс не более 30 лет), расходы на социальные, природоохранные нужды, то стоимость энергии АЭС многократно превысит любой экономически допустимый уровень. По оценкам специалистов, только затраты на вывоз, захоронение и нейтрализацию накопившихся на российских предприятиях отходов ядерной энергетики составят около 400 млрд. долл. Затраты на обеспечение необходимого уровня технологической безопасности составят 25 млрд. долл. С увеличением числа реакторов повышается вероятность аварий: по прогнозам МАГАТЭ, из-за увеличения количества реакторов в 2000 г. вероятность крупной аварии повысится до одной в 10 лет. В районах расположения АЭС, уранодобывающих и производящих предприятий постоянно растет уровень заболеваемости, особенно детской. АЭС служит одним из основных «нагревателей» атмосферы: в процессе деления 1 кг урана выделяется 18,8 млрд. ккал. Таким образом, тезис о безопасности и дешевизне атомной энергии – пустой и опасный миф, а атомная энергетика по причине огромной потенциальной опасности и низкой рентабельности не имеет долгосрочной перспективы.

Что касается электростанций на основе термоядерного синтеза, то, по оценкам специалистов, в ближайшие 50 лет они вряд ли будут технологически освоены, а пагубное тепловое влияние на климат планеты будет не меньшим, чем от ТЭС и АЭС.

К так называемым нетрадиционным источникам энергии относятся: тепло Земли (геотермальная энергия), Солнца (в том числе энергия ветра, морских волн, тепла морей и океанов), а также «малая» гидроэнергетика: морские приливы и отливы, биогазовые, теплонасосные установки и другие преобразователи энергии.

Но только возобновляемые источники энергии, могут представлять реальную альтернативу традиционным технологиям сегодня и в перспективе.

Солнечная энергия

Общее количество солнечной энергии, достигающее поверхности Земли в, 6,7 раза больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Севере технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Ветровая энергия

В России валовой потенциал ветровой энергии – 80 трлн. кВт/ч в год, а на Северном Кавказе – 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива.

Таким образом, потенциала солнечной радиации и ветровой энергии в принципе достаточно для нужд энергопотребления как страны, так и регионов. К недостаткам этих видов энергии можно отнести нестабильность, цикличность и неравномерность распределения по территории; поэтому использование солнечной и ветровой энергии требует, как правило, аккумулирования тепловой, электрической или химической. Однако возможно создание комплекса электростанций, которые отдавали бы энергию непосредственно в единую энергетическую систему, что дало бы огромные резервы для непрерывного энергопотребления.

Наиболее стабильным источником может служить геотермальная энергия. Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.

Таким образом, альтернативные возобновляемые источники энергии позволяют долгосрочно обеспечить всю страну.

Состояние АПЭ в мире

По прогнозу Мирового энергетического конгресса. в 2020 году на долю альтернативных преобразователей энергии (АПЭ) придется 5,8 % общего энергопотребления. При этом в развитых странах (США, Великобритании и др.) планируется довести долю АПЭ до 20 % (20 % энергобаланса США – это примерно все сегодняшнее энергопотребление в России). В странах Европы планируется к 2020 г. обеспечить экологически чистое теплоснабжение 70 % жилищного фонда. Сегодня в мире действует 233 геотермальные электростанции (ГеоТЭС) суммарной мощностью 5136 мВт, строятся 117 ГеоТЭС мощностью 2017 мВт. Ведущее место в мире по ГеоТЭС занимают США (более 40 % действующих мощностей в мире). Там работает 8 крупных солнечных ЭС модульного типа общей мощностью около 450 мВт, энергия поступает в общую энергосистему страны. Выпуск солнечных фотоэлектрических преобразователей (СФАП) достиг в мире 300 мВт в год, из них 40 % приходится на долю США. В настоящее время в мире работает более 2 млн. гелиоустановок горячего водоснабжения. Площадь солнечных (тепловых) коллекторов в США составляет 10, а в Японии – 8 млн. м2. В США и в Японии работает более 5 млн. тепловых насосов. За последние 15 лет в мире построено свыше 100 тыс.2, 3000 тепловых насосов (от 10 кВт до 8 мВт).

Итак, по всем видам АПЭ Россия находится на одном из последних мест в мире. В нашей стране отсутствует правовая база для внедрения АПЭ, нет никаких стимулов для развития этого направления. В стране отсутствует отрасль, объединяющая все разрозненные разработки в единый стратегический замысел. В концепции Минтопэнерго АПЭ отводится третьестепенная, вспомогательная роль. В концепциях РАН РФ, ведущих институтов, отраженных в программе «Экологически чистая энергетика» (1993 г.), практически отсутствует стратегия полномасштабного перехода к альтернативной энергетике и по-прежнему делается ставка на малую, автономную энергетику, причем в весьма отдаленном будущем. Что, конечно, скажется на экономическом отставании страны, а также на экологической обстановке как в стране, так и в мире в целом.

Курс «Альтернативные источники энергии»

АктуальностьПриостановлено
Стоимость19000 руб
Продолжительность72 часа
Группаот 8 до 10 человек
Начало занятийПо мере формирования группы