назначение, виды, классификация, технические характеристики, установка, особенности эксплуатации, настройки и ремонта
Аппараты защиты – это устройства, которые предназначены для защиты электрических цепей, электрооборудования, машин и других агрегатов от любых угроз, мешающих нормальной работе этих устройств, а также для их защиты от перегрузок. Здесь важно отметить, что они должны быть правильно установлены, а эксплуатация должна проводиться точно в соответствии с инструкцией, иначе аппараты защиты сами могут стать причиной выхода оборудования из строя, взрыва, пожара и прочего.
Основные требования к приспособлениям
Для того чтобы прибор мог успешно эксплуатироваться, он должен удовлетворять следующим требованиям:
- Аппараты защиты ни в коем случае не должны иметь температуру сверх допустимой для них под нормальной нагрузкой электрической сети или электрического оборудования.
- Прибор не должен отключать оборудование от питания во время кратковременных перегрузок, к которым часто относится пусковой ток, ток при самозапуске и т. д.
При выборе плавких вставок для предохранителей необходимо основываться на номинальном токе в участке цепи, который и будет защищать данное устройство. Это правило выбора аппаратов защиты актуально в любом случае при выборе любого приспособления для защиты. Также важно понимать, что при длительном перегреве защитные качества значительно снижаются. Это негативно сказывается на приборах, так как в момент критической нагрузки они могут, к примеру, просто не отключиться, что приведет к аварии.
Аппараты защиты должны обязательно отключать сеть при возникновении длительных перегрузок внутри этой цепи. При этом должна обязательно соблюдаться обратная зависимость от тока по времени выдержки.
В любом случае устройство защиты должно отключать цепь в конце при возникновении короткого замыкания (КЗ). Если КЗ происходит в однофазной цепи, то отключение должно происходить в сети с глухозаземленной нейтралью. Если короткое замыкание происходит в двухфазной цепи, то в сети с изолированной нейтралью.
У аппаратов защиты электрических цепей имеется отключающая способность I пр. Значение этого параметра должно соответствовать току короткого замыкания, который может возникнуть в начале защищаемого участка. Если же это значение будет ниже, чем максимально возможный ток КЗ, то процесс отключения участка цепи может не произойти вовсе или же произойти, но с задержкой. Из-за этого могут быть повреждены не только приборы, подключенные к этой сети, но и сам аппарат защиты электрической цепи. По этой причине коэффициент отключающей способности должен быть больше или же равен максимальному току короткого замыкания.
Предохранители плавкого типа
На сегодняшний день имеется несколько приборов для защиты электрических сетей, которые наиболее распространены. Одно из таких приспособлений – это плавкий предохранитель. Назначение аппарата защиты такого типа заключается в том, что он защищает сеть от перегрузок токового типа и от коротких замыканий.
На сегодняшний день существуют приборы разового применения, а также со сменными вставками. Эксплуатировать такие приспособления можно как в промышленных нуждах, так и в быту. Для этого есть приборы, которые используются в линиях до 1 кВ.
Кроме них есть высоковольтные устройства, применяющиеся на подстанциях, напряжение которых более 1000 В. Примером такого устройства может стать плавкий предохранитель на трансформаторах собственных нужд подстанций с 6/0,4 кВ.
Так как назначение этих аппаратов защиты – это защиты от КЗ и от токовых перегрузок, то они получили довольно широкое применение. Кроме того они очень просты и удобны в эксплуатации, их замена проводится также быстро и легко, а сами по себе они очень надежны. Все это привело к тому, что такие предохранители используются очень часто.
Для рассмотрения технических характеристик можно взять прибор ПР-2. В зависимости от номинального тока данный прибор выпускается с шестью видами патронов, которые отличаются по своему диаметру. В патроне каждого из них может устанавливаться вставка с расчетом на различный номинальный ток. К примеру, патрон, рассчитанный на ток 15 А, может быть снабжен вставкой и на 6 А, и на 10 А.
Кроме этой характеристики имеется также понятие нижнего и верхнего испытательного тока. Что касается нижнего значения испытательного тока, то это максимальное значение тока, при протекании которого в цепи на протяжении 1 часа не произойдет отключение участка цепи. Что касается верхнего значения, то это минимальный коэффициент тока, который при протекании в течение 1 часа в цепи расплавит вставку в аппарате защиты и управления.
Автоматические выключатели
Автоматические выключатели играют ту же роль, что и плавкие предохранители, но при этом их конструкция более сложная. Однако это компенсируется тем, что использовать выключатели гораздо удобнее, чем предохранители. К примеру, если в сети появится короткое замыкание по причине старения изоляции, то выключатель способен отключить от питания поврежденный участок электрической цепи. При этом же аппарат управления и защиты сам по себе достаточно легко восстанавливается, после срабатывания он не требует замены на новый, а после проведения ремонтных работ способен снова надежно защищать подконтрольный ему участок цепи. Использовать такого рода выключатели очень удобно, если необходимо провести какие-либо регламентные ремонтные работы.
Что касается производства данных приборов, то основной показатель – это номинальный ток, на который рассчитан прибор. В этом плане наблюдается огромный выбор, что позволяет подобрать под каждую цепь наиболее подходящее устройство. Если говорить о рабочем напряжении, то они, как и предохранители, делятся на два вида: с напряжением до 1 кВ и высоковольтные с рабочим напряжением выше 1 кВ. Здесь важно добавить, что высоковольтные аппараты защиты электрооборудования и электрических цепей производятся вакуумными, с инертным газом или маслонаполненными. Такое исполнение позволяет на более высоком уровне осуществлять расцепление цепи при возникновении такой необходимости. Еще одно существенное отличие автоматических выключателей от предохранителей состоит в том, что они изготавливаются для эксплуатации не только в однофазных, но и в трехфазных цепях.
К примеру, при возникновении короткого замыкания на землю одной из жил электрического двигателя автоматический выключатель отключит все три фазы, а не одну поврежденную. Это существенное и ключевое отличие, так как, если отключить лишь одну фазу, то двигатель будет продолжать функционировать на двух фазах. Такой режим работы является аварийным и сильно снижает срок эксплуатации прибора, а может и вовсе привести к аварийному выходу из строя оборудования. Кроме того, выключатели автоматического типа производятся для работы как с переменным, так и с постоянным напряжением.
Тепловое и токовое реле
На сегодняшний день среди аппаратов защиты электрических сетей имеется и множество разнообразных видов реле.
Тепловое реле – это одно из наиболее распространенных устройств, которое способно защищать электрические двигатели, нагреватели, любые силовые приборы от такой проблемы, как ток перегрузки. Принцип действия данного прибора очень прост, и основан он на том, что электрический ток способен нагревать проводник, по которому он протекает. Основная рабочая деталь любого теплового реле – это биметаллическая пластина. При нагреве до определенной температуры эта пластина изгибается, чем и разрывает электрический контакт в цепи. Естественно, что нагрев пластины будет происходить до тех пор, пока не достигнет критической точки.
Кроме тепловых, имеются и другие типы аппаратов защиты, к примеру токовое реле, которое контролирует величину тока в сети. Есть также реле напряжения, которое будет реагировать на изменение напряжения в сети и реле дифференциального тока. Последний прибор – это аппарат защиты от токов утечки. Здесь важно отметить, что автоматические выключатели, как и плавкие предохранители, не могут среагировать на возникновение утечки тока, так как это значение достаточно мало. Но при этом данного значения вполне хватит, чтобы убить человека при соприкосновении с корпусом прибора, подверженного такой неисправности.
Если наблюдается большое количество электрических приборов, которые нуждаются в подключении реле дифференциального тока, то часто используются комбинированные автоматы, чтобы уменьшить габариты силового щита. Такими устройствами стали приспособления, сочетающие в себе автоматический выключатель и реле дифференциального тока – автоматы дифференциальной защиты, или же дифавтоматы. При использовании таких устройств не только снижается размер силового щита, но и сильно облегчается процесс установки аппарата защиты, что, в свою очередь, делает их более экономичными.
Характеристики теплового реле
Основная характеристика для тепловых реле – это время срабатывания, которое зависит от тока нагрузки. Другими словами, данная характеристика называется время-токовой. Если рассматривать общий случай, то до подачи нагрузки через реле будет протекать ток I0. В таком случае нагрев биметаллической пластины будет составлять q0. Во время проверки данной характеристики очень важно учитывать, из какого состояния (перегретого или холодного) осуществляется срабатывание прибора. Кроме того, при проверке данных устройств очень важно помнить, что пластина не является термически устойчивой при возникновении тока короткого замыкания.
Выбор тепловых реле осуществляется следующим образом. Номинальный ток такого защитного устройства выбирается исходя из номинальной нагрузки электрического двигателя. Выбранный ток реле должен составлять 1,2-1,3 от номинального тока электродвигателя (тока нагрузки). Другими словами, такое устройство сработает в том случае, если в течение 20 минут нагрузка будет составлять от 20 до 30 %.
Очень важно понимать, что на работу теплового реле значительное влияние оказывает окружающая температура воздуха. Из-за роста температуры окружающей среды будет уменьшаться ток срабатывания данного приспособления. Если данный показатель будет слишком сильно отличаться от номинального, то нужно будет либо провести дополнительную плавную регулировку реле, либо же покупать новый прибор, но с учетом реальной температуры окружающей среды в рабочей зоне этого агрегата.
Чтобы уменьшить влияние окружающей температуры на величину срабатывания тока, необходимо приобретать реле с большим номинальным значением нагрузки. Для того чтобы добиться правильного функционирования теплого устройства, устанавливать его стоит в том же помещении, в котором находится и контролируемый объект. Однако нужно помнить, что реле реагирует на температуру, а потому располагать его вблизи концентрированных источников тепла запрещается. Таким источниками считаются котлы, источники отопления и прочие похожие системы и приборы.
Выбор устройств
При выборе оборудования для защиты электроприемников и электрических сетей необходимо основываться на номинальных токах, на которые рассчитаны эти приспособления, а также на ток, питающий сеть, где будут установлены такие агрегаты.
Во время выбора аппарата защиты очень важно иметь в виду возникновение таких ненормальных режимов работы, как:
- короткие замыкания междуфазного типа;
- замыкание фазы на корпус;
- сильное увеличение тока, которое может быть вызвано неполным коротким замыканием или же перегрузкой технологического оборудования;
- полное исчезновение или слишком сильное снижение напряжения.
Что касается защиты от короткого замыкания, то она должна выполняться для всех электрических приемников. Основное требование заключается в том, что отключение прибора от сети при возникновении КЗ должно быть минимальным из возможных. При выборе аппаратов защиты также важно знать, что должна быть предусмотрена полная защита от тока перегрузки, за исключением нескольких следующих случаев:
- когда перегрузка электрических приемников по технологическим причинам просто невозможна или же маловероятна;
- если мощность электрического двигателя меньше 1 кВт.
Кроме того, аппарат защиты электроустановок может не иметь функции защиты от перегрузки, если он устанавливается для слежения за электрическим двигателем, который эксплуатируется в кратковременном или же повторно-кратковременном режиме. Исключением является установка любых электрических приборов в комнатах с повышенной пожароопасностью. В таких помещениях защита от перегрузки должна устанавливаться на все приборы без исключения.
Защита минимального напряжения должна быть установлена в ряде следующих случаев:
- для электрических двигателей, которые не допускают включения в сеть при полном напряжении;
- для электрических двигателей, у которых самопуск не допускается по ряду технологических причин, или же он является опасным для сотрудников;
- для любых других электрических двигателей, отключение питания которых необходимо для того, чтобы снизить до допустимой величины суммарную мощность всех подключенных электрических приемников в этой сети.
Разновидности токов и подбор защитного устройства
Наиболее опасным является ток короткого замыкания. Основная опасность заключается в том, что он намного больше, чем нормальный пусковой ток, а также его значение может сильно отличаться в зависимости от участка цепи, где он возникает. Таким образом, при проверке аппарата защиты, который предохраняет цепь от КЗ, он должен максимально быстро производить разъединение цепи при возникновении такой проблемы. При этом он ни в коем случае не должен срабатывать при возникновении в цепи нормального значения пускового тока любого электрического прибора.
Что касается тока перегрузки, то здесь все довольно понятно. Таким током считается любое значение характеристики, которое превышает номинальное значение тока электрического двигателя. Но здесь очень важно понимать, что не при каждом возникновении тока перегрузки защитное устройство должно осуществлять отключение контактов цепи. Это важно еще и потому, что кратковременная перегрузка как электродвигателя, так и электрической сети в некоторых случаях допустима. Здесь стоит добавить, что чем более кратковременна нагрузка, тем больших значений она может достигать. Исходя из этого становится понятно, в чем заключается основное преимущество некоторых приборов. Степень защиты аппаратов с “зависимой характеристикой” в данном случае является максимальной, так как время их срабатывания будет уменьшаться с увеличением кратности нагрузки в этот момент. Таким образом, такие приборы является идеальными для защиты от тока перегрузки.
Если подвести небольшой итог, то можно сказать следующее. Для защиты от короткого замыкания должен быть выбран безынерционный аппарат, который будет настроен на срабатывание тока, который значительно выше пускового значения. Для защиты от перегрузки, наоборот, коммутационный аппарат защиты должен обладать инерцией, а также зависимой характеристикой. Он должен быть подобран таким образом, чтобы он не срабатывал за то время, пока происходит нормальный пуск электрического устройства.
Недостатки разных видов защитных устройств
Плавкие предохранители, которые ранее широко применялись в качестве аппаратов защиты распределительных устройств, обладают следующим рядом недостатков:
- довольно ограниченная возможность для применения в качестве защиты от тока перегрузки, так как отстройка от пусковых токов достаточно сложна;
- электродвигатель продолжит работу на двух фазах, даже если третью отключит предохранитель, из-за чего двигатель часто выходит из строя;
- в определенных случаях отключаемая предельная мощность является недостаточной;
- отсутствует возможность быстро восстановить подачу питания после отключения.
Что касается воздушных типов автоматов, то они более совершенны, чем плавкие предохранители, но и они не лишены недостатков. Основная проблема использования электрических аппаратов защиты заключается в том, что они не избирательны в плане действия. Особенно это заметно, если возникает нерегулируемый ток отсечки у установочного автомата.
Есть установочные автоматы, в которых защита от перегрузки осуществляется при помощи тепловых расцепителей. Чувствительность и задержка у них хуже, чем у тепловых реле, но при этом они действую на все три фазы сразу. Что касается универсальных автоматов для защиты, то здесь она еще хуже. Это обосновано тем, что в наличии имеются только электромагнитные расцепители.
Часто используются магнитные пускатели, в которые встроены реле теплового типа. Такие защитные средства способны защитить электрическую цепь от тока перегрузки в двух фазах. Но так как тепловые реле обладают большой инерционностью, они не способны обеспечить защиту от короткого замыкания. Если установить в пускатель удерживающую катушку, то можно обеспечить защиту от минимального напряжения.
Качественную защиту и от тока перегрузки, и от короткого замыкания могут обеспечить лишь индукционные реле или же электромагнитные реле. Однако они способны работать лишь через отключающий аппарат, из-за чего схема с их подключением получается более сложной.
Если подвести краткий итог вышесказанному, то можно сделать два следующих вывода:
- Для защиты электрических двигателей, чья мощность не превышает 55 кВт, от тока перегрузки чаще всего используются именно магнитные пускатели с плавкими предохранителями или же с воздушными аппаратами.
- Если мощность электрического двигателя более 55 кВт, то для их защиты используются электромагнитные контакторы с воздушными аппаратами или защитными реле. Здесь очень важно помнить о том, что контактор не допустит разрыва цепи при возникновении короткого замыкания.
При подборе нужного устройства очень важно проводить расчет аппаратов защиты. Наиболее важная формула – это расчет номинального тока двигателя, которая позволит подобрать средство защиты с подходящими показателями. Формула имеет следующий вид:
Iн=Рдв ÷(√3*Uн*cos ц*n), где:
Iн – это номинальный ток двигателя, который будет иметь размерность в А;
Рдв – это мощность двигателя, которая представляется в кВт;
Uн – это номинальное напряжение в В;
cos ц – это коэффициент активной мощности;
n – это коэффициент полезного действия.
Зная эти данные, можно без труда рассчитать номинальный ток двигателя, а далее без труда подобрать подходящий по назначению аппарат защиты.
Разновидности повреждений средств защиты
Основное отличие средств защиты электрический цепей от других приборов заключается в том, что они не только фиксируют дефект, но и разъединяют цепь, если значения характеристик выходят за определенные пределы. Наиболее опасной проблемой, которая часто выводит из строя средства защиты, стало глухое короткое замыкание. Во время возникновения такого КЗ показатели тока достигают наиболее высоких значений.
Когда происходит разрыв цепи при возникновении такой проблемы, часто возникает электрическая дуга, которая за короткий промежуток времени вполне способна разрушить изоляцию и оплавить металлические детали аппарата.
Если возникает слишком большой ток перегрузки, то он может привести к тому, что возникнет перегрев токопроводящих деталей. Кроме того, возникают механические силы, которые значительно увеличивают износ отдельных элементов у оборудования, что иногда может привести даже к поломке приспособления.
Есть быстродействующие выключатели, которые подвержены таким проблемам, как задевание подвижного рычага и подвижного контакта о стенки дугогасительной камеры, а также замыкание шины размагничивающего витка на корпус. Достаточно часто наблюдается слишком сильный износ контактных поверхностей, поршней и цилиндров приводов.
Ремонт быстродействующих аппаратов
Ремонт аппарата защиты быстродействующего типа любого вида необходимо выполнять в одной и той же последовательности. Быстродействующий выключатель, или БВ, продувается чистым сжатым воздухом под давлением не более 300 кПа (3кгс/см2). После этого прибор протирается салфетками. Далее необходимо снять такие элементы, как дугогасительная камера, блокировочное устройство, пневматический привод, якорь с подвижным контактом, индуктивный шунт и другие.
Непосредственно ремонт прибора осуществляется на специальном ремонтном стенде. Дугогасительная камера разбирается, ее стенки очищаются в специальной дробеструйной установке, после чего они протираются и осматриваются. В верхней части данной камеры могут быть допущены сколы, если их размеры не превышают показателей 50х50 мм.Толщина стенок в местах разрыва должна быть от 4 до 8 мм. Необходимо провести измерение сопротивления между рогами дугогасительной камеры. Для некоторых образцов показатель должен быть не менее 5 МОм, а для некоторых не менее 10 МОм.
Поврежденная перегородка должна быть срублена по всей ее длине. Все похожие места срубов должны быть тщательно зачищены. После этого смазывают склеиваемые поверхности при помощи клеящего раствора на основе эпоксидной смолы. Если были обнаружены изломанные веерные листы, то их заменяют. Если находятся изогнутые, то их необходимо выровнять и вернуть в эксплуатацию. Имеется также дугогасительная катушка, которая должна быть очищена от нагара и оплавлений, если таковые имеются.
fb.ru
Электрические аппараты защиты и управления
Вступление
Электрические аппараты защиты используются в силовых электрических цепях для защиты и управления.
электрические аппараты защитыК устройствам защиты можно отнести устройства плавного пуска электродвигателей. Они предназначены для плавного запуска асинхронных короткозамкнутых электродвигателей методом постепенного повышения напряжения на статоре двигателя. Посмотреть устройства плавного пуска можно на сайте https://instart-info.ru/.
Предохранитель с плавкой вставкой
Данный вид электрического аппарата, относится к самым простым. Назначение плавкого предохранителя в защите электрической цепи от сверхтоков коротких замыканий и перегрузки.
Конструкция предохранителя очень проста. В корпусе предохранителя есть проволока их металла с маленьким удельным сопротивлением и низкой температурой плавления.
В рабочем режиме ток свободно протекает через плавкую вставку. При возникновении сверхтоков в цепи, температура проводника увеличивается и вставка расплавляется. Расплавление вставки приводит к отключению электропитания, и цепь переходит в безопасный режим.
При сверхтоках, в месте разрыва цепи, обычно, появляется электрическая дуга. Чтобы дугу погасить, вокруг плавкой вставки создается специальная камера, называемая, дугогасительной. В предохранителях больших токов, эту камеру наполняют кварцевым песком. В цепях малых токов песка в камере нет, а гашение дуги производится давлением газа.
Для подбора плавкого предохранителя используют следующие расчёты:
- Расчёт по напряжению цепи. Ном. напряжение предохранителя должно быть равным ном. напряжению цепи.
- Вычисляют длительный расчётный ток цепи. Ток предохранителя должен быть равен или больше тока цепи;
- Особый расчёт по условиям запуска асинхронного двигателя. Асинхронный двигатель это электродвигатель с коротко замкнутым ротором.
Больше информации в статье Плавкие предохранители: описание, назначение, типы.
Автомат
Этот электрический аппарат правильно называть автоматический выключатель или автомат защиты. Он, также, защищает электрическую проводку цепи от сверхтоков.
Конструкция автоматов защиты более сложная и об неё лучше почитать отдельные статьи:
Реле максимального тока
Альтернативой плавким предохранителям является реле максимального тока. Это электрический аппарат, реагирующий на увеличение тока защищаемой электроцепи. С помощью РМТ можно создать максимальную защиту по току от сверхтоков перегрузки и короткого замыкания.
Контакторы
Название контактор, происходит от простого слова контакт. Контакторы предназначены для частого (!) дистанционного отключения/включение силовых электроцепей напряжением до 1000 Вольт.
В зависимости от привода различают следующие типы контакторов:
- электро-магнитные контакторы. Контакты отключений приводит в действие электрический магнит;
- пневматические, работают от сжатого воздуха;
- гидравлические, работают от давления жидкости.
Конструкция контакторов включает следующие элементы:
- Основная группа контактов. Служит для включения выключения электрической цепи;
- Дуго-гасительная камора. Гасит электродугу при работе контактов;
- Электрический магнит. Обеспечивают движение контактов;
- Вспомогательные клеммы. Для подключения других электрических аппаратов.
В нормальном положении основные контакты могут быть:
- Замкнуты;
- Разомкнуты;
- Находиться в смешанном положении.
Под нормальным положением, понимают положение основных контактов, при котором на втягивающую электромагнитную катушку не подается напряжение, а все механические защелки аппарата свободны.
Работа контакторов
Работу контакторов можно описать так:
- Напряжение подается на обмотку электрического магнита контактора, от чего якорь притягивается;
- Якорь приводит в движение основные контакты, которые либо замыкают, либо размыкают цепь;
- Дугогасительная камора гасит дугу замыкания/размыкания;
- К вспомогательным контактам подключаются другие электрические аппараты.
Пускатели
Это вид контактора, который используется в сетях переменного тока. С его помощью, дистанционно, через кнопки управления, можно безопасно включать/отключать электропитание установок.
Рабочим узлом пускателя служит электромагнит. Он приводит в действие, обычно, 3-х полюсную контактную группу. Кроме основной контактной группы пускатели оборудованы группой вспомогательных контактов.
Выбор магнитных пускателей осуществляется по:
- Ном. напряжению цепи;
- Ном. току нагрузки;
- Мощности асинхронного двигателя;
- Режиму работы;
- Количеству включений в единицу времени;
- Времени срабатывания.
Реле задержки
Это электрические аппараты для создания временной задержки в срабатывании других электрических аппаратов цепи.
Это очень полезные электрические аппараты, которые обеспечивают временную выдержку для срабатывания 2-х и более аппаратов, а также, при необходимости, обеспечения их очерёдности срабатывания.
Реле задержки бывают:
Электромагнитные. Очень практичный тип реле, который не боятся ударов, вибраций, имеют отличную износоустойчивость. Они могут обеспечить 600-650 включений в час, с погрешностью задержки не более 10 %. Однако, на них можно установить задержку не более 10 секунд.
Полупроводниковые. Очень популярные реле из-за возможности выставить задержки срабатывания от 0,1 секунды до 100 часов.
Цифровые.
Тепловое реле
Этот электрический аппарат, защищает электрическое оборудование от перегрева из-за длительных, но незначительных перегрузках механики асинхронного двигателя.
Рабочий элемент аппарата биметаллическая пластина, состоящая из 2-х металлов с различными коэффициентами линейного расширения.
Ток, протекая через биметаллическую платину, нагревает её. В нормальном режиме этот нагрев не значителен. Повышение тока приводит к дополнительному нагреву пластины. Один металл пластины расширяется сильнее второго металла. Это приводит к резкому прогибу пластины. Прогиб пластины «щелкает» по контактной группе рели и ТР размыкает электрическую цепь.
В ТР могут использоваться дополнительные нагреватели биметаллической пластины.
Тиристорный регулятор напряжений
ТРН сложный электрический аппарат, предназначенный для управления значением напряжения нагрузки, как следствие управление тока нагрузки за счёт управления углом отпирания тиристоров схемы аппарата.
Магнитный усилитель
Очень простой электрический аппарат для увеличения мощности нагрузки для повышения мощности нагрузки малыми мощностями управлений. Эти аппараты отличает высокая надёжность, высокая прочность, большой срок эксплуатации.
Не используется в силовых сетях, только в автоматике, вычислительной техники, бортовых устройствах.
Вывод про электрические аппараты защиты
В этой статье я показал основные электрические аппараты защиты и управления силовых электрических цепей, используемые в быту и промышленности, в жилых и офисных помещениях.
©Ehto.ru
Еще статьи
Похожие посты:
Поделиться ссылкой:
ehto.ru
Тема № 13. Аппараты защиты в электроустановках
АППАРАТЫ ЗАЩИТЫ В ЭЛЕКТРОУСТАНОВКАХ
Аппараты защиты предназначены для того, чтобы при возникновении аварийных режимов в работе электроприемников или электрических сетей автоматически отключить защищаемую электрическую цепь.
Аварийными режимами являются следующие:
•межфазное короткое замыкание;
•замыкание фазы на корпус;
•увеличение тока в сети, вызванное перегрузкой технологического оборудования;
•исчезновение напряжения или чрезмерное понижение напряжения (которое вызывает опасное увеличение потребляемого тока).
Во всех перечисленных случаях защитные аппараты должны предупредить возможность повреждения изоляции обмоток двигателя и поломок в механической части привода или рабочей машины, своевременно и надежно отключив электроустановку.
Наряду с этим аппараты электрической защиты должны быть рассчитаны на длительное протекание через них максимального тока нагрузки и на кратковременное действие пикового тока, который возникает при включении в сеть отдельных мощных электродвигателей.
Различают максимальную защиту, защиту от перегрузок и защиту минимального напряжения (или нулевую).
Максимальной защитой называется защита электропривода от токов короткого замыкания и кратковременной большой перезагрузки. Этот вид защиты осуществляется электромагнитными расцепителями автоматических воздушных выключателей, плавкими предохранителями, а также электромагнитными реле, включенными во вторичные цепи.
Защита от перегрузок электроустановок длительными токами, на 30—60% превышающих номинальные токи, осуществляется при помощи тепловых реле или реле
максимального тока с выдержкой времени.
При очень значительном снижении напряжения, а также при полном его исчезновении двигатель может остановиться. Если после этого напряжение сети будет внезапно восстановлено, то произойдет самозапуск двигателя, что в некоторых случаях может привести к серьезным авариям и несчастным случаям. Защита, срабатывающая при понижении напряжения в сети и тем самым исключающая возможность самозапуска (если он недопустим), осуществляется электромагнитными реле напряжения, магнитными пускателями и контакторами. Она называется защитой минимального напряжения.
Защита осуществляется автоматическим отключением поврежденного участка системы или подачей сигнала о нарушении нормального режима. Каждый элемент системы кроме основной защиты реагирующей на нарушения режима элемента системы может снабжаться резервной защитой, которая должна реагировать при отказах основной.
К защите предъявляются следующие требования:
•быстродействие;
•селективность;
•надежность;
•чувствительность.
Быстродействие определяется временем срабатывания tc. Различают защиты: мгновенного действия tc < 0,05с, быстродействующие 0,05<tc<0,5с и замедленного действия tc > 0,5с. Селективность обеспечивается соответствующим выбором типа защиты, ее параметрами и временем срабатывания. Чувствительность характеризуется коэффициентом Кч. Для максимальной защиты Kч=Xmin/Xc для минимальной Кч= Хс/Хмах. Хс – параметр срабатывания, Xmin и Хмах – соответственно, минимально и максимально возможные значения контролируемого параметра в аварийном режиме.
Для общепромышленного электрооборудования предусматриваются: максимально токовая защита (для быстрого отключения при коротком замыкании), защита от перегрузок для отключения цепи при длительном превышении номинального; защита минимального напряжения для отключения двигателей при опасном для них снижении напряжения; нулевая защита, предохраняющая от самозапуска двигателя, остановившегося после случайного перерыва в электроснабжении.
По назначению электрические аппараты делятся на четыре группы:
•коммутирующие, производящие отключение и включение силовых электрических цепей в системах, генерирующих, передающих и распределяющих электрическую энергию;
•аппараты управления (контакторы, пускатели, контроллеры, командоаппараты), управляющие работой электротехнического устройства;
•реле и регуляторы, осуществляющие защиту и управление работой устройств с использованием логических задач;
•датчики, создающие электрические сигналы (ток, напряжение), соответствующие определенным параметрам технологических процессов.
Вывод по вопросу: Защитные аппараты должны предупредить возможность повреждения изоляции обмоток двигателя и поломок в механической части привода или рабочей машины, своевременно и надежно отключив электроустановку.
ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ, АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ, ТЕПЛОВОЕ РЕЛЕ, УСТРОЙСТВО ЗАЩИТНОГО ОТКЛЮЧЕНИЯ
Каждая трансформаторная подстанция, каждая воздушная линия, каждая кабельная линия и распределительные внутридомовые сети, каждый электроприёмник имеют аппараты защиты, обеспечивающие их бесперебойную и надежную работу.
Таких аппаратов на данный момент в мире имеется огромный выбор. Их можно подобрать по типу, по способу подключения, по параметрам защиты. Аппараты защиты электрооборудования и электрических сетей очень обширная группа и включает в себя такие аппараты как:
плавкие вставки (предохранители), автоматические выключатели, разнообразные реле (токовые, тепловые, напряжения и т. п.).
Плавкие предохранители защищают участок цепи от токовых перегрузок и коротких замыканий. Разделяются на одноразовые предохранители и предохранители со сменными вставками. Используются и в промышленности и в быту. Существуют предохранители работающие на напряжении до 1кВ и так же высоковольтные предохранители установленные, работающие на напряжении выше 1000В (например, плавкие предохранители на трансформаторах собственных нужд подстанций 6/0,4 кВ). Удобство в эксплуатации, простота конструкции и легкость при замене обеспечили предохранителям очень большую распространенность.
Подробнее про плавкие предохранители и их использование для защиты электроустановок смотрите здесь:
Плавкие предохранители ПР-2 и ПН-2 – устройство, технические характеристики
Плавкие высоковольтные предохранители ПКТ, ПКН, ПВТ
Автоматические выключатели играют ту же роль, что и предохранители. Только по сравнению с ними имеют более сложную конструкцию. Но при этом пользоваться автоматическими выключателями гораздо удобнее. В случае возникновении, например, короткого замыкания в сети в следствии старения изоляции, автоматический выключатель отключит от питания повреждённый участок. При этом сам легко восстанавливается, не требует замены на новый и после проведения ремонтных работ будет снова защищать свой участок сети. Так же пользоваться выключателями удобно при проведении каких либо регламентных ремонтных работ.
Производятся автоматические выключатели с широким спектром номинальных токов. Что позволяет подобрать нужный практически под любую задачу. Работают выключатели на напряжении до 1 кВ и на напряжении свыше 1кВ (высоковольтные выключатели).
Высоковольтные выключатели, для обеспечения чёткого расцепления контактов и предотвращения появления дуги производятся вакуумными, наполненными инертным газом или маслонаполненными.
В отличии от плавких предохранителей автоматические выключатели производятся как для однофазных так и для трехфазных сетей. То есть существуют одно-, двух-, трех-, четырехполюсные выключатели контролирующие три фазы трехфазной сети.
Например, при появлении короткого замыкания на землю одной из жил питающего кабеля электродвигателя автоматический выключатель отключит питание на всех трех, а не на одной поврежденной. Так как после исчезновения одной фазы электродвигатель продолжил бы работу на двух. Что не допустимо, так как является аварийным режимом работы и может привести к преждевременному выходу его из строя. Автоматические выключатели производятся для работы с постоянным и переменным напряжением.
Подробнее про автоматические выключатели смотрите здесь:
•Устройство автоматического выключателя
•Расцепители автоматического выключателя
•Автоматические выключатели АП-50
•Электрогазовые выключатели 110 кВ и выше
Так же для защиты электрооборудования и электрических сетей разработано множество разнообразных реле. Под каждую задачу можно подобрать необходимое реле.
Тепловое реле – самый распространённый тип защиты электродвигателей, нагревателей, любых силовых приборов от токов перегрузки. Принцип его действия основан на возможности электрического тока нагревать проводник, по которому он протекает. Основная часть теплового реле – биметаллическая пластина. Которая при нагревании изгибается и тем самым разрывает контакт. Нагрев пластины происходит при превышении током его допустимого значения.
Токовые реле, контролирующие величину тока в сети, реле напряжения, реагирующие на изменения напряжения питания, реле дифференциального тока, срабатывающие при возникновения тока утечки.
Как правило такие токи утечки весьма малы, и автоматические выключатели совместно с предохранителями на них не реагируют, но могут вызвать смертельное поражение человека при контакте его с корпусом неисправного прибора. При большом количестве электроприёмников требующих подключения через дифференциальное реле, для уменьшения габаритов силового щита, питающего эти электроприёмники, используют комбинированные автоматы.
Сочетающие в себе устройства автоматического выключателя и дифференциального реле (автоматы дифференциальной защиты или дифавтоматы). Часто использование таких комбинированных защитных устройств бывает весьма актуально. При этом снижаются габариты силового шкафа, облегчается монтаж и следовательно уменьшаются затраты на установку.
На основе реле на производстве собирают шкафы релейных защит. Сборные шкафы релейных защит обеспечивают стабильную работу потребителей разных категорий. Примером подобной защиты является собранный на базе реле и цифровых блоков защит автоматический ввод резерва (АВР). Надежный способ обеспечения потребителей резервным электроснабжением, при потере основного.
Для работы АВР необходимо наличие хотя бы двух источников питания. Для потребителей первой категории наличие устройства АВР является обязательным условием. Так как перебои в электроснабжении для этой категории потребителей может привести к опасности для жизни людей, нарушению технологических процессов,
материальному ущербу.
Вывод по вопросу: Устройства защиты должны выбираться согласно параметрам потребителя, характеристике проводников, токов короткого замыкания, типа нагрузки.
ЗАЗЕМЛЕНИЕ, ЗАНУЛЕНИЕ, ВЫРАВНИВАНИЕ ПОТЕНЦИАЛОВ
Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.
Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение – защитить человека от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.
Защитное заземление – преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности. Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше. Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.
В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек – ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.
Есть два вида заземлителей – естественные и искусственные.
К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.
В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.
Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество исскуственных заземлителей.
Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.
Различают нулевой рабочий проводник и нулевой защитный проводник.
Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.
Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.
Системы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.
Первая буква в обозначении системы заземления определяет характер заземления источника питания:
– T — непосредственное соединения нейтрали источника питания с землёй.
– I — все токоведущие части изолированы от земли.
Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:
– T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.
– N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.
Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников: C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.
S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.
1. СИСТЕМА ЗАЗЕМЛЕНИЯ TN-C
К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.
2. СИСТЕМА ЗАЗЕМЛЕНИЯ TN-C-S
В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).
Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке). Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.
3. СИСТЕМА ЗАЗЕМЛЕНИЯ TN-S
В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. С подстанции приходит пяти жильный кабель. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.
4. СИСТЕМА ЗАЗЕМЛЕНИЯ TT
В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.
5. СИСТЕМА ЗАЗЕМЛЕНИЯ IT
В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства,
имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.
СХЕМА КОНТУРНОГО ЗАЗЕМЛЕНИЯ
1. Заземлители
2. Заземляющие проводники
3. Заземляемое оборудование
4. Производственное здание.
ПРИМЕР СХЕМЫ ЗАЗАМЛЕНИЯ ДОМА
1. Водонагреватель
2. Заземлитель молниезащиты
3. Металлические трубы водопровода, канализации, газа
4. Главная заземляющая шина
5. Естественный заземлитель (арматура фундамента здания)
МЕРЫ ДЛЯ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
Для защиты человека от поражения электрическим током применяют защитные средства – резиновые перчатки, инструмент с изолированными ручками, резиновые боты , резиновые коврики, предупредительные плакаты.
КОНТРОЛЬ ИЗОЛЯЦИИ ПРОВОДОВ
Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок. Состояние изоляции проводов проверяют в новых установках, после реконструкции, модернизации, длительного перерыва в работе. Профилактический контроль изоляции проводов проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0,5 Мом.
Вывод по вопросу: Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление.
ВЫВОД ПО ТЕМЕ: Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок.
mchsnik.ru
10.4. Виды и аппараты защиты, блокировок и сигнализации в электроприводе
Для обеспечения надежной работы ЭП и технологического оборудования в схемах управления предусматривается специальная защитная аппаратура. Этой же цели служат и различные блокировочные связи, обеспечивающие заданный порядок операций по управлению одним или несколькими ЭП и технологическим оборудованием, а также предотвращающие ошибочные действия оператора. Кроме того, во многих случаях целесообразно осуществлять контроль за состоянием и режимами работы отдельных узлов ЭП, что обеспечивается с помощью средств сигнализации, измерительных и регистрирующих приборов.
Аппараты максимальной токовой защиты. При работе ЭП может произойти замыкание электрических цепей между собой или на землю (корпус), а также увеличение тока в силовых цепях сверх допустимого предела, вызванное стопорением движения исполнительного органа рабочей машины, обрывом одной из фаз питающего АД или СД напряжения, резким снижением тока возбуждения ДПТ. Для защиты ЭП и питающей сети от появляющихся в этих случаях недопустимо больших токов (сверхтоков) предусматривается максимальная токовая защита, которая может реализовываться различными средствами – с помощью плавких предохранителей, реле максимального тока и автоматических выключателей.
Плавкие предохранители FU включаются в каждую линию (фазу) питающей двигатель сети между выключателем напряжения сети Q и контактами линейного контактора КМ, а также в цепи управления. На рис. 10.10, а, б, в показаны соответственно схемы защиты предохранителями АД, ДПТ и цепей управления
Рис. 10.10
Основными элементами предохранителя являются плавкая вставка и дугогасительное устройство. Выбор плавкой вставки предохранителей производится по току, который рассчитывается таким образом, чтобы она не перегорала от пускового тока двигателя.
Для защиты электрических цепей ЭП при напряжении до 1000 В применяются следующие типы предохранителей: трубчатые без наполнителя серии ПР2; быстродействующие серии ПНБ-5; с высокой разрывной способностью серии ПП 31; трубчатые разборные с закрытыми патронами и наполнителем серии ПН2; резьбовые серии ПРС. Плавкие вставки этих предохранителей калибруются на токи от 6 до 1000 А.
Реле максимального тока используются в основном в ЭП средней и большой мощности. Катушки этих реле FA1 и FA2 включаются в две фазы трехфазных двигателей переменного тока и в один или два полюса ДПТ между выключателем Q и контактами линейного контактора КМ (рис. 10.11, а, б). Размыкающие контакты этих реле включаются также в цепь катушки линейного контактора КМ (см. рис. 10.11, в). При возникновении сверхтоков в контролируемых цепях, превышающих токи срабатывания (уставки) реле FA1 и FA2, контакты этих реле размыкаются и силовые контакты линейного контактора КМ отключают двигатель от питающей сети.
Уставки реле максимального тока должны выбираться таким образом, чтобы не происходило отключения двигателей при их пуске или других переходных процессах, т.е. когда токи в силовых цепях в несколько раз превышают номинальный уровень.
Рис. 10.11
В качестве реле максимального тока в ЭП применяются реле мгновенного действия серии РЭВ 570 для цепей постоянного тока от 0,6 до 1200 А и серии РЭВ 571Т для цепей переменного тока от 0,6 до 630 А. Эти реле допускают регулировку своей уставки cooтветственнно в пределах (0,7-3)Iном и (0,7-2)Iном с точностью до ±10%. Время их срабатывания порядка 0,05 с. В схемах управления применяются также реле серий РЭ 70, РЭВ 830, РЭВ 302 и др.
Автоматические воздушные выключатели (автоматы). Эти комплексные многоцелевые аппараты обеспечивают ручное включение и отключение двигателей, их защиту от сверхтоков, перегрузок и снижения питающего напряжения. Кроме того, некоторые автоматы обеспечивают дистанционное отключение двигателей. Для обеспечения выполнения этих функций автомат имеет контактную систему, замыкание и размыкание которой осуществляется вручную с помощью рукоятки или кнопки, максимальное токовое реле и тепловое токовое реле.
Важной частью автомата является механизм свободного расцепления, который обеспечивает его отключение при поступлении управляющих или защитных воздействий, например при протекании токов перегрузки, коротком замыкании, снижении напряжения сети. а также при необходимости дистанционного отключения автомата
Упрощенное устройство автомата показано на рис. 10.12, а. Рабочий ток нагрузки
Рис. 10.12
Аналогично происходит отключение автомата при перегрузке цени, когда ток в ней больше номинального (расчетного), но меньше тока короткого замыкания. В этом случае ток, проходя по нагревателю 6 теплового реле, вызывает нагрев биметаллической пластины 7, в результате чего свободный конец этой пластины поднимается вверх и через рычаг 5 открывает защелку 4, вызывая этим отключение контактов автомата.
Часто в автоматах применяют тепловые расцепители без нагревателя, в этом случае контролируемый ток пропускается непосредственно через биметаллическую пластину. В маломощных автоматах такой расцепитель может выполнять также функции элемента максимальной токовой защиты.
Схема включения автомата QF с целью обеспечения подключения и защиты трехфазного АД приведена на рис. 10.12, б. Автоматические выключатели широко используются для коммутации и защиты силовых и маломощных цепей ЭП всех видов.
Применяемые в ЭП автоматические выключатели серий АП50, АК63, А3000, А3700, АЕ2000, ВА, ВАБ, «Электрон» различаются между собой числом контактов (полюсов), уровнями номинальных тока и напряжения, набором и исполнением реализуемых защит, отключающей способностью, быстродействием. Диапазон их номинальных токов составляет 10-10000 А, а предельных коммутируемых токов 0,3-100 кА. Время включения различных автоматов находится в пределах от 0,02 до 0,7 с.
Нулевая защита. При значительном снижении напряжения сети или его исчезновении эта защита обеспечивает отключение двигателей и предотвращает самопроизвольное их включение (самозапуск) после восстановления напряжения.
В тех случаях, когда двигатели управляются кнопками контакторов или магнитных пускателей, нулевая защита осуществляется самими этими аппаратами без применения дополнительных средств. Например, если в схемах рис. 10.11 исчезло или сильно понизилось напряжение сети, катушка линейного контактора КМ потеряет питание и он отключит двигатель от сети. При восстановлении напряжения включение двигателя возможно только после нажатия на кнопку управления SB2.
При управлении ЭП от командоконтроллера или ключа с фиксированным положением их рукояток нулевая защита (рис. 10.13) осуществляется с помощью дополнительного реле напряжения FV. В этой схеме реле FV включается при нулевом положении командоконтроллера (ключа) через контакт SM0, после чего оно начинает получать питание через свой собственный контакт. При переводе рукоятки командоконтроллера (ключа) в положение пуска 1 питание всей схемы управления будет осуществляться через этот контакт, поэтому при исчезновении напряжения реле FV отключится, прекратит питание схемы и линейный контактор КМ отключит двигатель от сети. При восстановлении напряжения питания повторное включение двигателя возможно лишь после установки рукоятки вновь в нулевое (среднее) положение, чем исключается возможность его самозапуска.
Рис.10.13
Отметим также, что в рассмотренной схеме реле FV является исполнительным элементом еще двух защит – от токов короткого замыкания (через контакты реле максимального тока FA) и тепловой (через контакты теплового реле FP), что часто практикуется в схемах управления.
Тепловая защита двигателей осуществляется с помощью тепловых, максимальных токовых реле и автоматических выключателей.
Тепловые реле FP включаются в две фазы трехфазных двигателей непосредственно (рис. 10.14, а) или через трансформаторы тока ТА (см. рис. 10.14, б), если ток двигателя превышает номинальный ток реле. Для защиты ДПТ тепловые реле включаются в один или два полюса цепи их питания (см. рис. 10.14, в). Размыкающие контакты тепловых реле включаются в цепи катушек главных (линейных) контакторов или в цепь защитного реле (см. рис. 10.13).
Действие теплового реле основано на эффекте изгибания биметаллической пластинки при нагревании из-за различных температурных коэффициентов линейного расширения образующих металлов (см. рис. 10.12, а).
Рис. 10.14
Номинальный ток теплового элемента реле должен быть равным или несколько большим номинального тока двигателя, т.е.
Iт.э. = (1,0-1,15) Iном
В ЭП применяются электротепловые двухполюсные реле серий ТРН на номинальные токи от 0,32 до 40 А, однополюсные реле серий ТРТП на токи от 1,75 до 550 А и трехполюсные реле серий РТЛ на токи от 0,17 до 200 А. Эти реле имеют регулируемую уставку тепловой защиты; при токе 1,2 Iном время их срабатывания 20 мин.
Тепловая защита двигателей может осуществляться также автоматическими выключателями и магнитными пускателями, если они имеют встроенные тепловые расцепители (см. рис. 10.12, а).
При повторно-кратковременных режимах работы ЭП, когда процессы нагрева реле и двигателя различны, защита двигателей от перегрузок осуществляется с помощью максимальных токовых реле FA1 и FA2 (см. рис. 10.11). Токи уставок этих реле выбираются на 20-30% выше номинального тока двигателя. Так как ток уставки реле в этом случае ниже пускового тока, то при пуске двигателя его контакты шунтируются контактами реле времени, имеющего выдержку времени несколько большую времени пуска двигателя.
Минимальная токовая защита применяется в ЭП с ДПТ и СД для защиты их цепей возбуждения от обрыва. Исчезновение тока возбуждения опасно тем, что, вызывая исчезновение противоЭДС двигателя, приводит к значительному возрастанию тока в его силовой цепи и резкому снижению развиваемого момента. Эта защита осуществляется с помощью минимального токового реле KF, катушка которого включается в цепь обмотки возбуждения двигателя, как это показано на рис. 10.15. При этом замыкающий контакт реле KF помещается в цепь катушки контактора КМ, что позволяет включать двигатель только при наличии тока возбуждения в его обмотке возбуждения ОВМ. При работе ЭП в случае исчезновения или резкого снижения тока возбуждения контакт реле KF разомкнется и контактор КМ, потеряв питание, отключит двигатель от сети. В качестве реле минимального тока в ЭП используется реле серии РЭВ 830.
Рис. 10.15
Специальные виды защит. К ним относятся защита от перенапряжения на обмотке возбуждения ДПТ; защита от повышения напряжения в системе «преобразователь-двигатель»; защита от превышения скорости ЭП; защита от затянувшегося пуска СД и ряд других.
Защита от перенапряжения на обмотке возбуждения ДПТ требуется при отключении ее от источника питания.
В этом случае вследствие быстрого падения тока возбуждения, а значит, магнитного потока в обмотке возникает значительная (до нескольких киловольт) ЭДС самоиндукции, которая может вызвать пробой ее изоляции.
Защита осуществляется с помощью так называемого разрядного резистора Rp, включаемого параллельно обмотке возбуждения ОВМ (см. рис. 10.15) с сопротивлением Rовм. Сопротивление резистора должно быть (4-5)Rовм при напряжении питания 220 В и (6-8)Rовм при напряжении 110 В. Для устранения потерь энергии в разрядном резисторе последовательно включается диод VD, который не пропускает через него ток при включенной обмотке возбуждения, но позволяет протекать току под действием ЭДС самоиндукции, возникающей при ее отключении. Выбор сопротивления Rр в указанных пределах позволяет снизить темп падения тока в обмотке возбуждения и тем самым ограничить ЭДС самоиндукции до допустимых пределов.
Защита от повышения напряжения применяется главным образом в системе «преобразователь-двигатель». Она реализуется с помощью реле напряжения, включаемого на выходе преобразователя и своими контактами воздействующего на цепи отключения напряжения ЭП. Эта защита косвенно защищает ДПТ и от чрезмерного увеличения скорости при появлении повышенного напряжения.
Защита от превышения скорости применяется в ЭП рабочих машин, для которых недопустимо превышение скорости движения исполнительных органов (лифты, подъемные лебедки, эскалаторы, шахтные подъемники). Такая защита обеспечивается с помощью тахогенератора или центробежных выключателей, соединенных с валом двигателя. Центробежные выключатели непосредственно воздействуют на цепь управления, а тахогенератор через реле напряжения, включаемое на его якорь.
Защита от затянувшегося пуска СД обеспечивает его прекращение, если к концу расчетного времени ток возбуждения СД не достигает заданного уровня. Осуществляется эта защита с помощью реле минимального тока KV, включаемого аналогично реле КF и цепь обмотки возбуждения СД (см. рис. 10.15), и реле времени KТ (рис. 10.16). Если за время выдержки реле КТ, равное времени нормального пуска СД, ток возбуждения оказывается недостаточным, то после замыкания контактов реле КТ срабатывает реле защиты KVF и дает команду на прекращение пуска.
Рис. 10.16
Путевая защита обеспечивает отключение ЭП при достижении исполнительным органом рабочей машины крайних положений. Она осуществляется с помощью конечных выключателей, устанавливаемых в этих положениях исполнительного органа и размыкающих в случае необходимости цепи реле защиты или непосредственно линейных контакторов.
Защита от выпадения СД из синхронизма применяется для ЭП с синхронными двигателями, работающих с резко изменяющейся нагрузкой на валу и питающихся от сети, в которой возможно снижение напряжения. Такая защита осуществляется с помощью реле напряжения KV (рис. 10.17), включаемого на напряжение сети, и реле (контактора) форсировки возбуждения KF, замыкающий контакт которого включается параллельно добавочному резистору Rд в цепи обмотки возбуждения ОВВ возбудителя В.
Рис. 10.17
При нормальном уровне напряжения в сети реле KV включено, а реле KF выключено, т.е. резистор Rд введен в цепь ОВВ, по которой протекает номинальный (или близкий к нему) ток. При снижении напряжения сети на 15-20% реле KV отключается и замыкает контакт в цепи катушки реле KF, которое, включаясь, своим контактом шунтирует резистор Rд. Ток возбуждения возбудителя, его напряжение и ток возбуждения СД Iвм при этом возрастают, а значит, увеличивается и ЭДС двигателя. Это приводит к увеличению максимального момента и перегрузочной способности СД и тем самым обеспечивает его синхронную работу с сетью при увеличении нагрузки на валу.
Электрические блокировки в схемах ЭП служат для обеспечения данной последовательности операций при управлении, предотвращения нештатных и аварийных ситуаций, а также для предотвращения последствий неправильных действий оператора, что значительно повышает надежность работы ЭП и технологического оборудования. Так, например, перекрестное включение размыкающих контактов контакторов КМ1 и КМ2 (рис. 10.18, а) в цепи катушек не допускает включения одного из них при включенном другом. Такая блокировка применяется в реверсивных ЭП, где недопустимо одновременное включение двух контакторов, или в ЭП с электрическим торможением двигателя, где торможение может начаться только после отключения двигателя от сети.
На рис. 10.18, б приведена схема некоторой технологической блокировки двух ЭП, работающих совместно в комплексе. Она допускает включение контактора КМ1 одного ЭП только после включения контактора КМ2 другого ЭП и при нажатом путевом выключателе SQ.
Некоторые другие виды блокировки будут рассматриваться далее в конкретных схемах управления
Рис. 10.18
.
Сигнализация в схемах управления ЭП. При контроле хода технологического процесса, последовательности выполнения операций, состояния защиты ЭП, наличия напряжения питания или какого-либо электрического сигнала, в случае отклонения от нормы применяется сигнализация, которая может быть световой (сигнальные лампы, табло), звуковой (звонок, сирена) и визуальной (указательные реле, измерительные приборы).
На рис. 10.19 показана возможная сигнализация в схеме управления ЭП. Здесь лампа НL1 сигнализирует о подаче напряжения на схему (включение автомата QF), лампа HL2 – о включении контактора КМ, лампа HL3 – о срабатывании реле максимальной токовой защиты FA, лампа HL4 – о срабатывании конечного выключателя SQ
Рис. 10.19
studfile.net
Выбор аппаратов защиты для жилого помещения
Вступление
В прошлой статье мы разобрали два типа аппаратов защиты – предохранители и автоматы защиты. Пора их выбирать по этим правилам.
Об автоматах и предохранителях
Для начала вспомним общие постулаты из прошлой статьи. Автоматы защиты и предохранители выполняют одну и ту же задачу – они защищают электрическую цепь от коротких замыканий и перегрузки. Конструкции, как и эффективность защиты у автоматов и предохранителях принципиально разная.
предохранители (пробки)В предохранителях привлекает невысокая цена, простая конструкция, высокая разрывная способность, моментальный разрыв цепи от коротких замыканий.
К недостаткам предохранителя заслуженно относят слабое восприятие малых перегрузок, невозможность повторного использования после аварии, худшие характеристики защиты (по сравнению с автоматами защиты).
автомат защиты однополюснойК недостаткам автоматов защиты субъективно относят высокую цену и сложный выбор из-за большого количества производителей.
Установка
Оба разбираемых аппарата защиты нужно устанавливать:
- На фазных (нормально не заземленных) линиях (проводниках) в начале электрической цепи;
- В местах цепи, где происходит снижение сечения фазного проводника;
- На всех ответвлениях фазных проводников;
- На участках цепи длиннее 3-х метров.
Так как при аварийном отключении происходит сильное искрение, с возможным разбрызгиванием металла, то ставятся аппараты защиты в специальных электрических щитах, сборках, шкафах. Вопрос IP защиты шкафов решается в зависимости от химических и влажностных характеристик помещения.
пример групповой сетиВыбор аппаратов защиты
Чтобы правильно выбрать аппарат защиты, вспомним технические требования к ним.
- Во-первых, в нормальном режиме работы аппараты защиты не должны нагреваться;
- Во-вторых, аппараты защиты должны «держать» и не отключаться от кратковременных перегрузок. Например, при пуске двигателя.
- В-третьих, номинальные токи срабатывания предохранителей и автоматов защиты отдельных цепей, выбирают по минимальным значениям из расчёта цепи по токам.
Чтобы аппараты не нагревались (первое условие), их номинальных ток, указанный в характеристиках, должен быть равен или больше расчётного тока цепи.
Для выполнения второго условия нужно заранее учитывать особенности работы устройств этой цепи. Например, если в цепи будет включаться двигатель, то у него есть токи пуска, на которые не должен сработать аппарат защиты.
Для этого: ток срабатывания автоматов защиты с электромагнитным, комбинированным и тепловыми расцепителем должен быть НЕ меньше 1,25 величины максимального тока кратковременной нагрузки.
Например, пусковой ток асинхронного двигателя 230 В, составляет 11,3 А. Значит минимальное значение тока расцепителя автомата защиты не может быть меньше 1,25×11,3 А=14 А.
Выбор аппаратов защиты по третьему условию, основывается на расчёте цепи по току. Из полученных значений максимальной токовой нагрузки выбирается минимальное значение.
Например, в группе розеток 220 В планируется максимальная мощность 3000 Вт. Реактивных нагрузок в цепи нет. Значит, максимальный ток нагрузки данной цепи будет 3000÷220=13,636 Ампер. Автоматов защиты с таким током нет. Значит, выбираем автомат защиты с меньшим значением тока отключения, то есть 10 А.
таблица расчётаВыбор аппаратов защиты по току короткого замыкания
Параметр для выбора аппарата защиты по току короткого замыкания, называется отключающей способностью аппарата.
Напомню, что для срабатывания на токи короткого замыкания у автомата защиты должен быть комбинированный или электромагнитный расцепитель.
Выбор автоматов защиты для жилых помещений по току короткого замыкания часто опускается за скобки, так как современные автоматы защиты имеют запас по этому значению, а само значение для жилых помещений минимально.
Если вы посмотрите на корпус автомата защиты, то увидите одно большое значение в тысячах. Скорее всего, вы увидите одну из трех цифр: 4500, 6000, 10000. Они могут быть с параметром – А. Это и есть характеристика автомат защиты по току короткого замыкания.
- Автоматы 4500 А подходят для жилых помещений;
- 6000 А для общественных зданий;
- 10000 А для промышленных зданий.
Как видите для жилого помещения, априори подойдет любой выпускаемый автомат защиты.
Автомат 4500 АВыбор автоматов защиты по классу
Похож на выбор по току КЗ, выбор автоматов по классу. Классы автоматов есть, но для быта, на них мало кто обращает внимание.
Всего три класса автоматов защиты: B, C, D.
- B – для электропроводки квартир и домов, в группах бытовые приборы и свет.
- C – то же применение, но время отключения меньше (лучше) и токи срабатывания больше, что тоже лучше.
- D – для трех-четырех полюсных автоматов, используются в промышленности.
Как видите, однополюсные автоматы защиты могут быть, только классов B и C и они оба подходят для жилых помещений.
Если вы задались вопросом выбора по классу, выбирайте класс C.
Выбор по напряжению и полюсам
Этот выбор аппаратов защиты и не выбор вовсе.
- По умолчанию понятно, что для цепей 220 Вольт, нужно выбирать автоматы защиты на 220 Вольт.
- Для отдельных цепей и ответвлений используют однополюсные автоматы защиты.
- Для отключения всей цепи помещения, на вводе, ставим двух полюсные автоматы защиты. Они отключат и ноль и фазу.
- Трех-четырех полюсные автоматы защиты используются в сетях 380 Вольт.
Вывод
Как видите, в теории, выбор аппаратов защиты можно делать по 6-7 параметрам. На практике для жилого помещения без мощных двигателей, выбирают автоматы защиты с комбинированным расцепителем, по минимальному расчётному току нагрузки, учитывая авторитетность производителя.
©Ehto.ru
Еще статьи
Похожие посты:
Поделиться ссылкой:
ehto.ru
Аппараты электрической защиты: автомат и предохранитель
Аппараты электрической защиты
Аппараты электрической защиты устанавливаются для разрывания низковольтной электрической цепи при возникновении аварийных ситуаций коротких замыканий и превышение расчетной нагрузки. В квартирах и частных домах мы чаще имеем дело с аппаратами защиты типа предохранителя с плавящейся вставкой и воздушным автоматическим выключателем.
Автоматические выключатели
Про автоматические выключатели написано немало статей, в том числе на этом сайте:
Здесь напомню кратко.
аппараты электрической защиты автомат защитыАвтоматы используются в электрических установках до 1000 Вольт. Предназначение автоматов это автоматическое отключение электропитания установки при превышении расчетной нагрузки и аварийных коротких замыканий.
Конструкция АВ включает: корпус, крышку, дугогасительное устройство, устройство взвода, механизм расцепления с расцепителем.
В номенклатуре автоматов вы можете встретить следующие их типы по варианту срабатывания. Есть варианты электромагнитного, теплового и комбинированного расцепления.
Первые (М-тип) используются для защиты от коротких замыканий, вторые (Т-тип) от перегрузок, третьи (МТ-тип) универсальные.
Основной характеристикой автомата, помимо номинального напряжения, рабочего тока, является величина тока уставки. Это ток срабатывания расцепителя автомата защиты.
Все характеристики автоматов защиты указаны на его корпусе.
Предохранитель
Это электроаппарат, который последовательно внедряется в электрическую цепь и в рабочем режиме, является её частью. При возникновении аварийной ситуации, вставка перегорает и аппарат разрывает аварийный участок цепи.
Для защиты окружающего пространства от искрения и расплавленного металла, вставки, чаще, закрывают оболочкой. Для лучшего гашения дуги некоторые аппараты имеют специальную камеру, называемую дугогасительной.
Параметры
Перечислю базовые параметры этих защитных аппаратов:
- Ном. напряжение: напряжение цепи, на которое аппарат рассчитан. 0,22; 0,38; 0,66 кВ.
- Ном. ток вставки. Это величина тока, при котором вставка не плавится. Здесь можно встретить номиналы от 2 до 2500 Ампер.
- Ток расплавления вставки. Величина тока, при котором плавкая вставка начинает плавиться.
- Ток неплавления вставки. Величина кратковременного увеличения тока, сверх номинального, не вызывающее плавление вставки.
- Условное время ПВ — t, в часах/минутах в течение, которого вставка не перегорит при токе неплавления или перегорит при токе плавления.
Как вы видите из таблицы 1, взятой из ГОСТ 17242-86 время плавкой вставки, а это время экстремального режима работы вставки, немалое 1 или 2 часа.
Из-за этого, считается, что предохранители с плавками вставками могут защитить электрическую цепь лишь от сверхтоков короткого замыкания или токов перегрузки, величина которых в 1,6 раза больше рабочего тока.
Выбор металла для вставки
Улучшить защитные характеристики предохранителя с плавкой вставкой может правильный выбор металла для вставки.
Есть понятная таблица, по которой можно подобрать диаметр проволоки плавкой вставки предохранителя.
Характеристика предохранителя в графике
Если построить график зависимости времени перегорания вставки от значений тока в цепи получим, так называемую времятоковую характеристику предохранителя.
Пример времятоковой характеристики предохранителей типа ППН.
Этот график выбран для примера и не может показать, как выбирать предохранитель по материалу вставки. Однако если сравнить различные ВТХ вставок, мы обнаружим:
- Оловянные, свинцовые, цинковые вставки могут долго не плавиться, из-за высокой тепловой инерции. Поэтому они используются для защиты от токов перегрузки.
- Тугоплавкие вставки из Cu, Fe быстрее перегорают, поэтому используются для защиты от коротких замыканий.
Типы плавкого предохранителя
В электрических установках жилых помещений (≤ 1000 Вольт), применяются следующие типы предохранителей:
В виде пластин (пластинчатые). Не используются в жилых помещениях. Это одна или несколько открытых проволок припаянных к плоским медным или латунным наконечникам. Незащищенность такой вставки ограничивает их применение
Резьбовые пробки. Хорошо знакомые предохранители с вворачивающейся плавкой вставкой. Типы ПРС (резьбовой).
В виде трубок (трубчатые). В них вставка защищена трубчатой колбой. Для повышения защиты от пожаров, колба может быть наполнена специальным наполнителем. Типы трубчатых предохранителей НПН2 (с наполнителем), ПР2 (разборный), ПН2 (неразборный).
Вывод
В этой статье мы познакомились с двумя типами, самых используемых, особенно в жилых помещениях, аппаратов защиты. Эти аппараты электрической защиты предохранители и автоматы защиты. Наверное, лишнее, но всё-таки стоит напомнить, что применение аппаратов защиты обязательно, а выбор аппаратов защиты зависит от характеристик электрической цепи.
©Ehto.ru
Еще статьи
Похожие посты:
Поделиться ссылкой:
ehto.ru
Аппараты защиты электрических сетей | Выбор и монтаж низковольтного оборудования
Страница 4 из 5
Плавкие предохранители.
Аппараты защиты служат для ограничения времени действия токов короткого замыкания и перегрузки, т. е. для ликвидации опасных последствий этих явлений. Наиболее распространенными аппаратами защиты являются плавкие предохранители и автоматические выключатели (автоматы).
Плавкий предохранитель состоит: из корпуса (патрона), контактного устройства и плавкой вставки. Некоторые виды плавких предохранителей имеют специальное устройство для гашения дуги. Обычно плавкие вставки находятся внутри корпуса. Принцип действия основан на выделении тепла током, проходящим по плавкой вставке.
К основным параметрам плавких предохранителей относятся:
инпр – напряжение, указанное на предохранителе, на которое он рассчитан.
Ib.bct. – номинальный ток плавкой вставки, который она выдерживает длительное время, не перегорая.
Iпр. – номинальный ток предохранителя, равный наибольшему из номинальных токов плавких вставок для данного предохранителя, на который рассчитаны его токоведущие части.
Зависимость полного времени отключения цепи tотк плавким предохранителем от отношения протекающего по вставке тока I к номинальному току плавкой вставки Iнвст называется защитной характеристикой:
Защитная характеристика плавких вставок является неустойчивой. Поэтому защита электрических сетей и токоприемников от перегрузок с помощью плавких предохранителей недостаточна надежна. С их помощью осуществляется надежная защита лишь от токов коротких замыканий и больших (60% и выше) перегрузок. Улучшение защитных характеристик плавких вставок предохранителей достигается: выбором материала вставок; их конструкцией; применением вставок из тугоплавкого металла (с металлургическим эффектом).
Материал плавких вставок.
Плавкие вставки из легкоплавких металлов (олово, свинец, цинк) обладают большой теплоемкостью и тепловой инерцией, поэтому применяются в тех случаях, когда электроустановки надо защищать от токов перегрузки, так как они плавятся с некоторой выдержкой времени. Вставки из тугоплавких металлов (например, из меди) имеют малую теплоемкость и высокую проводимость. Они быстродействующие с малой тепловой инерцией. Дают меньшую выдержку времени при перегрузках, что ухудшает их защитные характеристики.
Типы плавких предохранителей.
Плавкие предохранители, применяемые в электроустановках с напряжением до 1000 В, по своей конструкции делятся на три типа.
Пластинчатые предохранители представляют собой открытую одну или несколько параллельных проволок, впаянных в медные или латунные плоские наконечники. При перегорании таких предохранителей происходит
разбрызгивание расплавленного металла, что создает опасность возникновению пожара, взрыва. Применение пластинчатых предохранителей может быть допущено только в специальных помещениях (закрытых распределительных устройствах, электрощитовых).
Пробочные предохранители. К ним относятся однополюсные резьбовые предохранители типов Ц27, Ц33, ПД, ПДС.
Трубчатые предохранители. Выпускаются нескольких типов: с закрытыми фибровыми разборными трубками без наполнителя; закрытые с мелкозернистым наполнителем; с открытыми фарфоровыми трубками.
При перегорании плавкой вставки и образовании внутри фибровой трубки электрической дуги фибра разлагается. Продукты разложения фибры (около 40% водорода) обладают высокими дугогасящими свойствами, что способствует улучшению защитных характеристик. К таким предохранителям относятся предохранители типа ПР.
К предохранителям с мелкозернистым наполнением относятся предохранители типа: МПН, МПР, ПН2, КП, НПН. Внутри трубок находятся медные плавкие вставки с металлургическим эффектом. Наполнитель (кварцевый песок) способствует интенсивному охлаждению и деионизации газов, появляющихся при горении дуги. Такие предохранители уменьшают пожарную опасность и повышают безопасность обслуживания предохранителей.
Автоматические выключатели.
Автоматические воздушные выключатели применяются в электроустановках с напряжением до 1000 В. Они предназначены для автоматического отключения электроустановок при возникновении в них перегрузок и коротких замыканий.
Автоматы состоят из следующих основных частей: корпуса, крыши, дугогасительной камеры, механизма управления, механизма свободного расцепления и расцепителя.
По принципу автоматического срабатывания автоматы подразделяются на автоматы с электромагнитным расцепителем и с тепловым расцепителем.
Автоматы с электромагнитным расцепителем (М) служат для защиты электроустановок от последствий коротких замыканий.
Автоматы с тепловым расципителем (Т) служат для защиты электроустановок от перегрузок. При перегрузке цепи биметаллическая пластина нагревается и, изгибаясь, освобождает защелку, что и приводит к отключению расцепителя.
Автоматы с комбинированным расцепителем (МТ) обеспечивают автоматическую защиту электроустановок от последствий перегрузок и коротких замыканий. Отключение автоматов происходит при срабатывании любого расцепителя. Многие автоматы имеют специальные приспособления для регулирования величины тока срабатывания расцепителей, т. е. величины тока уставки Iуст. Током уставки Iуст. называется значение величины тока срабатывания, на который отрегулирован расцепитель автомата: для автоматов с тепловыми расцепителями
для автоматов с электромагнитными расцепителями
номинальные токи расцепители автоматов и токи срабатывания (уставки) их указаны на автоматах.
Выбор аппаратов защиты.
Достоинство плавких предохранителей: просты по конструкции, надежно защищают электроустановки от токов коротких замыканий, обладают большой разрывной способностью, недороги по стоимости. Недостатки: имеют устойчивые защитные характеристики и хуже, чем автоматы, защищают электроустановки от небольших перегрузок, позволяют применять нестандартные плавкие вставки (жучки), необходимость замены сгоревших вставок усложняет обслуживание.
Автоматы дороже, сложнее по конструкции, но имеют более устойчивые защитные характеристики, обеспечивают более надежную и селективную защиту
от токов перегрузки, быстрое восстановление питания, дистанционное управление.
При срабатывании предохранителей и автоматов возникающие искры, брызги расплавленного металла, дуги и раскаленные газы должны быть изолированы от окружающей среды.
Аппараты защиты следует устанавливать на всех нормально незаземленных полюсах вначале сети, при уменьшении сечения проводников и на всех ответвлениях. Длина незащищенного участка ответвления должна быть не более 3 м. В труднодоступных местах аппараты защиты можно устанавливать на расстоянии до 30 м от ответвления.
По условиям пожарной безопасности аппараты защиты устанавливают на панелях сборок, щитов и пультов так, чтобы возникающие в аппаратах искры, брызги металла, дуги не угрожали обслуживающему персоналу и не были бы причиной воспламенения и взрыва горючих и взрывоопасных веществ.
В помещениях сырых, особо сырых, пыльных, с химически активной средой аппараты защиты желательно не устанавливать или располагать их в шкафах специального исполнения со степенью защиты IP44, IP54, IP55.
В пожароопасных зонах степень защиты аппаратов должна быть не ниже IP44, IP54. Установка аппаратов защиты во взрывоопасных зонах не допускается.
Требования к аппаратам защиты.
Аппараты защиты должны удовлетворять следующим условиям:
- Не нагреваться сверх допустимой для них температуры в условиях нормальной эксплуатации.
- Не отключать электроустановки при кратковременных перегрузках (пусковые токи, «пики» токов технологических нагрузок, токи при самозапуске и т. п.)
Номинальные токи плавких вставок предохранителей и токи уставок автоматов, служащих для защиты отдельных участков сети, следует выбирать по возможности минимальными по расчетным токам этих участков.
Для удовлетворения первого условия необходимо выбирать аппарат защиты так, чтобы номинальный ток самого аппарата и плавкой вставки или расцепителей были равны расчетному току сети, т.е.: для предохранителей
для автоматов и тепловых реле магнитных пускателей
Для удовлетворения второго условия необходимо учитывать режим работы установки и расчетные токи сети.
Выбор плавких вставок может производиться по защитным характеристикам предохранителей (графически).
При защите автоматами с электромагнитным или комбинированным расцепителем необходимо, чтобы ток срабатывания Iсррасц превышал максимальный кратковременный ток линии Iмакс и соответствовал условию: для автоматов АЗ 120, АЗ 130, АЗ 140 и АП-50
для автоматов АЗ110
Ток срабатывания теплового расцепителя автомата и основных реле определяется по условиям:
для автоматов АЗ310, АП-50 и Б-25
для тепловых реле магнитных пускателей при легких условиях пуска электродвигателя (длительность пуска до 10 с)
для тепловых реле магнитных пускателей при затяжных пусковых режимах электродвигателей
- Аппараты защиты должны отключать сеть при длительных перегрузах с обратно зависимой от тока выдержкой времени.
- Во всех случаях аппараты защиты должны обеспечивать отключение аварийного участка при КЗ в конце защищаемой линии:
при защите сетей во взрывоопасных зонах
при защите сетей невзрывоопасных зонах
* 1,25 – для автоматов на номинальные токи свыше 100 А; 1,4 – до 100 А.
- Отключая способность 1пр аппарата защиты должна соответствовать токам КЗ в начале защищаемого участка сети.
Если она оказывается меньше величины возможного тока КЗ, отключения аварийного участка может не произойти или время отключения будет недопустимо большим и сам аппарат повредится. Поэтому нужно, чтобы 1пр был больше или равен наибольшему возможному току КЗ в начале защищаемого участка сети, т.е.
leg.co.ua