Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Асинхронные электродвигатели с короткозамкнутым ротором. Конструктивные особенности и области применения | Полезные статьи

Асинхронный электродвигатель с короткозамкнутым ротором состоит из двух основных элементов: статора (представляет собой неподвижную, внешнюю часть электродвигателя) и ротора (подвижная, расположенная внутри статора часть электрической машины). Каждый из этих элементов состоит, в свою очередь, из сердечника и обмотки. Обмотку статора, которую подключают к сети, можно считать первичной, а обмотку ротора — вторичной.

Сердечник статора собирается из совокупности листов, изготовленных из электротехнической стали и покрытых специальным лаком. Так уменьшаются потери на вихревые токи. В открытых пазах сердечника укладываются трехфазные обмотки, расположенные симметрично под углом 120 градусов.

Рис. 1. Короткозамкнутый ротор

Ротор представляет собой вал, опирающийся на подшипники, на котором укреплены сердечник и обмотки. Сердечник ротора также выполнен из набора штампованных листов.

Обмотка ротора изготовлена из медных или алюминиевых стержней (размещенных в пазах его сердечника), концы которых соединены накоротко с кольцами. Это и есть короткозамкнутая роторная обмотка, внешний вид которой напоминает беличье колесо (рис. 1).

Рис. 2. Электродвигатель серии АИР

Принцип работы двигателя данного типа состоит в следующем. После подачи напряжения на обмотку статора появляется магнитный поток. Он изменяется с частотой, равной частоте используемого переменного тока. Из-за сдвига потоков в обмотках по времени и в пространстве результирующее поле получается вращающимся. Оно индуцирует ЭДС в проводниках ротора. В результате чего возникают токи, которые взаимодействуют с этим полем. Их взаимодействие создает пусковой момент. Ротор начинает вращаться в направлении вращающегося поля, но с другой частотой. Величину, характеризующуюся относительную разность этих частот, называют скольжением.

Трехфазный асинхронный короткозамкнутый электродвигатель получил наибольшее распространение среди машин подобного типа благодаря своим качествам и конструктивным особенностям:

  • простоте конструкции;
  • высокой надежности и долговечности;
  • отсутствию подвижных контактов;
  • низкой стоимости и универсальности.

Вместе с тем асинхронный двигатель с короткозамкнутым контуром имеет и существенные недостатки:

  • ток, возникающий при пуске, по своему значению превышает номинальный почти в 5–7 раз, что приводит к значительному снижению напряжения в сети;
  • затруднено регулирование числа оборотов ротора;
  • сравнительно небольшой пусковой момент.

Асинхронные электродвигатели бывают различного технологического и конструктивного исполнения. В частности, электродвигатели АИР являются унифицированными для общепромышленных целей. Электродвигатель асинхронный трехфазный АИР имеет разные модификации. АИР представляет собой электродвигатель асинхронный трехфазный, характеристики которого аналогичны параметрам двигателей типа 5АМ, 5АИ, АМУ, 7АИ. Его устанавливают на вентиляторах, насосах, компрессорах и других электромеханических установках.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Принцип действия асинхронного двигателя ~ Электропривод

Самым распространенным электродвигателем, используемым в быту, промышленности, строительстве и сельском хозяйстве, на сегодняшний день, является асинхронный двигатель с короткозамкнутым ротором (АД с КЗ ротором). Основным его преимуществом, перед другими типами двигателей является простота, надежность и дешевизна.

Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором

Принцип действия трехфазного АД с КЗ ротором основан на взаимодействии вращающегося магнитного поля и расположенного в этом поле проводника. Вращающееся магнитное поле создается статором асинхронного двигателя, которая является неподвижной частью двигателя. Статор асинхронного электродвигателя представляет собой стальной сердечник, с пазами в которых расположена обмотки, намотанная медным изолированным проводом.

Это поле пересекая обмотку ротора наводит в ней ЭДС. Под действием этой ЭДС по обмотке будет протекать ток. Этот ток будет взаимодействовать с магнитным потоком. Взаимодействие вращающего магнитного поля статора с током в роторе создает вращающий момент, за счет которого ротор будет вращаться в ту же сторону, что и поле, но с небольшим отставанием.

Обмотки статора намотаны таким образом, что образуют три катушки, смещенные друг, относительно друга на 120°. Между собой их соединяют либо в «звезду», либо в «треугольник» и пропускают трехфазный переменный ток. При частоте тока 50 Гц, магнитное поле будет вращаться со скоростью 3000 об./мин. Магнитное поле, образованное тремя катушками, называется двухполюсным.

Особенностью асинхронного двигателя является то, что появление ЭДС в роторной обмотке ротора возможно только при различии частоты вращения магнитного поля ротора, обозначаемое букой n и магнитного поля статора n0. Разница n0 и n создает электромагнитный момента асинхронного двигателя. Характеризует эту разность скольжение S, определяемое по формуле:
S=( n0-n )/ n0,
где n0=60f/P синхронная частота вращения магнитного поля статора об/мин, f- частота питающей сети, Гц, p-число пар полюсов статора.

В такой конструкции двигателя, магнитное поле статора опережает скорость вращения ротора. Т.е. поле ротора вращается асинхронно со скоростью вращения поля статора. Отсюда и пошло название двигателя асинхронный двигатель переменного тока.

Если нагрузка на валу двигателя отсутствует, частота вращения поля ротора n, стремиться достичь частоты вращения поля ротора, но никогда не достигает ее, так как если n0-n=0, то и электромагнитный момент двигателя М будет равен 0.

В паспорте и на шильдике асинхронного электродвигателя производитель указывает номинальную частота вращения двигателя, замеряемую при номинальной мощности. При увеличении нагрузки на валу двигателя, частота вращения двигателя уменьшается, а ток статора увеличивается. Асинхронные двигатели могут изготовляться с 1,2,3 ,4,5,6 парами полюсов. Соответственно синхронная скорость вращения асинхронного двигателя соответственно будет составлять 3000, 1500, 1000, 750, 600 и 500 об/мин.

На смену классической конструкции асинхронного двигателя приходят энергоэффективные конструкции асинхронных двигателей обладающие более высоким КПД и технико-экономическими показателями. Применение частотно-регулируемого привода в тандеме с энергоэффективными двигателями, позволит существенно улучшить энергетические показатели и снизить затраты на электроэнергию.

Асинхронный электродвигатель с короткозамкнутым ротором: принцип работы, применение, виды

Электродвигатели являются составными компонентами самого разнообразного оборудования и используются во всех сферах промышленности, производства, сельского хозяйства. Асинхронные электродвигатели нашли самое широкое применение: оборудование низкой мощности устанавливается в бытовых приборах, а мощные модели монтируются на промышленные установки, например, краны, лебедки, дозаторы и многое другое.

Виды асинхронных электродвигателей

Асинхронные электродвигатели имеют схожую конструкцию, но в зависимости от модификации у них есть отличия. Одной из ключевых характеристик, по которой отличают асинхронные электродвигатели, является число фаз. Соответственно, электродвигатели бывают:

  • однофазные;
  • трехфазные.

Благодаря компактности, надежности и универсальности трехфазные электродвигатели получили максимальное распространение, хотя в некоторых сферах целесообразно использование однофазных модификаций.

По исполнению асинхронные электродвигатели с короткозамкнутым ротором могут быть:

  • универсальные;
  • взрывозащищенные.

Применение асинхронного электродвигателя с короткозамкнутым ротором

Асинхронные электродвигатели с короткозамкнутым ротором представляют собой многочисленную группу электрических моторов самых разных категорий. Примером такого электродвигателя является РД-09 (его технические характеристики можно посмотреть тут: https://amtorg.

com.ru/elektrodvigatel-rd-09). Аббревиатура «РД» обозначает «реверсивный двигатель». Другие значения используются для обозначения:

  • входной мощности — 9 Вт;
  • электродвигателей, предназначенных для полупроводниковых усилителей — П, П2;
  • варианта расположения осей редуктора по отношению к клеммовой панели — А.

Также в названии мотора может содержаться информация о его климатическом исполнении.

В зависимости от характеристик асинхронный электродвигатель с короткозамкнутым ротором может устанавливаться на следующем оборудовании:

  • всевозможных станках;
  • дозаторах для жидких и сыпучих веществ;
  • грузоподъемных установках;
  • насосах;
  • пассажирских и грузовых лифтах;
  • вентиляторных установках;
  • землеройной технике;
  • бытовых электроприборах.

Использование асинхронного электродвигателя с короткозамкнутым ротором типа РД-09 и других позволяет получить экономию потребления электроэнергии, а также продлить срок эксплуатации оборудования.

Ранее мы писали о том, как работает гидрофильтр для мангала. 

Тех. информация

КАК ПРАВИЛЬНО ВЫБРАТЬ ТАЛЬ

В качестве электропривода механизма подъема и механизма перемещения талей МЕХАНИКА используются асинхронные электродвигатели с короткозамкнутым ротором общего назначения выполненные по ГОСТ Р 52776-2007 (МЭК 60034-1-2004).

Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Для правильного выбора самого двигателя, как элемента механизма подъема или перемещения, необходимо понимать конструкцию и принцип его действия.

Асинхронный двигатель- это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный”означаетнеодновременный. Приэтомимеетсяввиду, чтоуасинхронныхдвигателейчастотавращениямагнитногополястаторавсегдабольшечастотывращения ротора. Работают асинхронные двигатели, как понятно из определения, от сетипеременного тока.

Статоримеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется “беличьей клеткой”. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

 

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь, взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

 

В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величиныsкр -критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Скорость двигателя переменного тока зависит от двух вещей: количества полю-сов обмотки статора и основной часто-ты. При частоте 50 Гц двигатель будет ра-ботать со скоростью, равной постоянной 6000, разделенной на число полюсов, при частоте 60 Гц постоянная величина будет равна 7200.

Выходит, что принцип работы асинхронного двигателя заключаетсяво взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

На графике показаны типовые моментные характеристики асинхронного электродвигателя с короткозамкнутым ротором. Как видно из графика, номинальный крутящий момент достигатеся в конце кривой и находится на «падающей» ее части. На данном участке работы, скольжение двигателя стремится к 0. При этом необходимо обратить внимание на показатели силы тока I. Основной особенностью двигателей с короткозамкнутым ротором являются высокие пусковые токи. Собственно говоря эта особенность и определяет основные трудности в выборе (или конструировании) электродвигателя. По мере достижения ротором синхронной скорости уменьшается крутящий момент на валу двигателя, тогда как его запаздывание относительно вращения магнитного поля статора вызывает рост тока в роторе, что в свою очередь создает тепловую нагрузку от его активного сопротивления.

Таким образовм, производителю электродвигателя необходимо определить «баланс», при котором конструкция будет обеспечивать стабильный тепловой режим

 

Электродвигатель асинхронный трехфазный – устройство и принцип работы

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижной части статора и вращающейся части ротора. Эти части имеют сердечник и обмотку.

Ввиду того, что обмотка статора включается в сеть, она является первичной, обмотка ротора — вторичной. Энергия в обмотку ротора поступает из обмотки статора за счет магнитной связи.

Конструктивно асинхронные двигатели делятся на два вида:
— двигатели с короткозамкнутым ротором;
— двигатели с фазным ротором.

Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором.

Рисунок 1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором: 1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов; 5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкнутой обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Статор состоит из корпуса 11 и сердечника 10 с трехфазной обмоткой.
Корпус двигателя изготавливается методом отлива из алюминиевого сплава или из чугуна. Двигатель изображенный на рисунке 1 имеет закрытое обдуваемое исполнение. Это можно определить по наличию на корпусе ряда продольных ребер, основным назначением которых является увеличение поверхности охлаждения двигателя.

В корпусе двигателя располагается сердечник статора 10. Он выполнен отштампованными листами из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрытых слоем изоляционного лака. Листы собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета.

Данная конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора в продольных пазах расположены пазовые части обмотки статора соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.
Ротор состоит из вала 1 и сердечника 9 с короткозамкнутой обмоткой.
Короткозамкнутая обмотка называется «беличье колесо». Беличья клетка представляет собой ряд металлических стержней (выполненных из алюминия или меди). Она располагаются в пазах сердечника ротора и замкнуты с двух сторон короткозамыкающими кольцами.

Рисунок 2. Короткозамкнутый ротор: а — обмотка «беличья клетка», б — ротор с обмоткой, выполненной методом литья под давлением; 1 — вал; 2 — короткозамыкающие кольца; 3 — вентиляционные лопатки.

Сердечник ротора имеет шихтованную конструкцию.

Короткозамкнутая обмотка ротора выполняется заливкой собранного сердечника ротора алюминиевым сплавом. Совместно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рисунок 2).

Вращение вала ротора осуществляется в подшипниках качения 2 и 6. Подшипники качения располагаются в подшипниковых щитах 3 и 7.
Охлаждение двигателя выполняется методом обдува поверхности корпуса. Поток воздуха нагнетается центробежным вентилятором 5, закрытого кожухом 8.
На обратной стороне кожуха располагаются отверстия для забора воздуха.

Концы обмоток фаз выводят на зажимы коробки выводов 4.

Рисунок 3. Расположение выводов об¬мотки статора (а) и положение перемычек при соединении обмотки статора звездой и треугольником (б)

Асинхронные двигатели предназначены для работы в трехфазной сети и могут работать на двух разных напряжениях, отличающиеся в √3 раз.
Выводы обмоток фаз в коробке выводов располагают таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания. Крепление двигателя к поверхности осуществляется посредством лап 12
В качестве защиты персонала от поражения электрическим током на двигателях предусмотрены болты заземления (как правило, менее двух).
Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рисунке 4.

Рисунок 4. Принципиальные схемы включения трехфазных асинхронных двигателей с
короткозамкнутым (а) и фазным (б) ротором

 

Трехфазный асинхронный двигатель с фазным ротором.

Рисунок 5. Устройство трехфазного асинхронного двигателя с фазным ротором: 1, 7 — подшипники, 2,6 — подшипниковые щиты, 3 — корпус, 4 — сердечник статора с обмоткой, 5 — сердечник ротора, 8 — вал, 9 — коробка выводов, 10 — лапы, 11 — контактные кольца.

Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с трехфазной обмоткой. Подшипниковые щиты 2 и 6 с подшипниками качения 1 и 7. Лапы для крепления 10. Коробка выводов 9.

Ротор асинхронного двигателя с фазным ротором имеет более сложную конструкцию. На валу 8 закреплен шихтованный сердечник 5 с трехфазной обмоткой, выполненной аналогично об¬мотке статора. Обмотку ротора соединяют звездой и ее выводы при¬соединяются к контактным кольцам 11, расположенным на валу. Контактные кольца изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 накладывают щетки 2, располагаемых в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.
Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке 4 б. Обмотка ротора асинхронного двигателя с фазным ротором соединена с пусковым реостатом ПР, который создает в цепи ротора добавочное сопротивление Rдоб.

Принцип работы и типы асинхронного двигателя

Асинхронные двигатели – наиболее часто используемые двигатели во многих областях. Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
В основном существует 2 типов асинхронных двигателей в зависимости от типа входного питания – (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.

Или они могут быть разделены по типу ротора – (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или намотанный тип

.

Основной принцип работы асинхронного двигателя

В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора. Но в асинхронном двигателе только обмотка статора питается переменным током.
  • Переменный поток создается вокруг обмотки статора из-за источника переменного тока. Этот переменный поток вращается с синхронной скоростью.Вращающийся поток называется «вращающимся магнитным полем» (RMF).
  • Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора согласно закону электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС. Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
  • Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
  • Поскольку причиной возникновения тока ротора является относительная скорость между магнитным потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора. Таким образом, ротор вращается в том же направлении, что и магнитный поток статора, чтобы минимизировать относительную скорость.Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный или трехфазный.
Синхронная скорость:

где, f = частота подачи

P = количество полюсов

Скольжение:

Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается. Но на практике ротор никогда не догоняет.Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.

Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.
Асинхронный двигатель

с короткозамкнутым ротором | Принцип работы асинхронного двигателя с короткозамкнутым ротором

Что такое асинхронный двигатель с короткозамкнутым ротором?

Асинхронный двигатель с короткозамкнутым ротором типа аналогичен трехфазному асинхронному двигателю. Какая функция выходит за рамки принципа электромагнетизма? Ротор внутри двигателя известен как ротор с короткозамкнутым ротором? Это называется асинхронным двигателем с короткозамкнутым ротором, поскольку вся его форма аналогична белковой клетке.

Таким образом, ротор представляет собой тип стального цилиндрического носика. В котором любой электрический ток может проходить по его поверхности, например, используется медь или алюминий. Когда переменный ток пропускается через обмотку статора, в ней создается магнитное поле. Благодаря этому в процессе намотки в роторе генерируется ток. Которая создает свое магнитное поле. Магнитное поле статора и ротора создает крутящий момент.

Самым большим преимуществом асинхронного двигателя с короткозамкнутым ротором является то, что вы можете легко изменять его скорость и крутящий момент.Это можно сделать, заранее отрегулировав форму стержней в роторе.

Также читайте: Лучший метод изменения полюса для регулирования скорости асинхронного двигателя

Принцип асинхронного двигателя с короткозамкнутым ротором:

При питании обмотки статора устанавливается вращающееся магнитное поле. Это движение вращающегося магнитного поля называется синхронной скоростью. Это вращающееся магнитное поле возбуждает напряжение в стержне ротора, так что ток короткого замыкания проходит через стержень ротора.Я постараюсь, чтобы ротор следовал за вращающимся магнитным полем.


В этот момент ротор вращает магнитное поле, притягивая ток ротора к нулю. Это связано с отсутствием относительного движения между вращающимся магнитным полем и ротором. В этот момент ротор испытывает нулевую касательную силу.

После того, как скорость ротора уменьшается, движение между ротором и вращающимся магнитным полем восстанавливается, из чего восстанавливается касательная сила для вращения ротора.Таким образом, ротор снова начинает вращать магнитное поле в следующем положении, и, таким образом, ротор поддерживает постоянную скорость, которая немного меньше скорости вращающегося магнитного поля или синхронного движения.

Скольжение – это мера разницы между скоростью вращающегося магнитного поля и скоростью ротора.

  Частота тока ротора = скольжение × частота питания.  

Также читайте: Что такое электродвигатель? | Различные типы электродвигателей

Конструкция асинхронного двигателя с короткозамкнутым ротором:

Асинхронный двигатель с короткозамкнутым ротором состоит из следующих частей:

  • Статор.
  • Ротор.
  • Вентилятор.
  • Подшипники.

№1. Статор:

Таким образом, использовался ламинированный сердечник и металлический корпус, включая трехфазную обмотку. Внутри обмотка расположена так, что угол между тремя фазами составляет 120 °.


№2. Ротор:

Ротор – это часть двигателя, которая будет находиться в обращении, чтобы обеспечить механическую мощность для заданного количества электрической энергии.Сколько номиналов у двигателя и его мощность указана на паспортной табличке? Вал, коротковращающийся стержень из меди / алюминия в комплекте.


Сердечник ротора многослойный, что снижает потери на вихревые токи и гистерезисные потери. Проводники пропускаются, чтобы предотвратить коагуляцию при запуске и обеспечить лучшее передаточное отношение между статором и ротором.

№ 3. Вентилятор:

Вентилятор установлен на задней части двигателя.Так что температуру двигателя легко контролировать.

№4. Подшипник:

Аккумуляторы являются основой скорости ротора, а подшипники обеспечивают плавное вращение двигателя.

Полезность асинхронного двигателя с короткозамкнутым ротором:

В целом, этот двигатель используется в промышленных установках чрезмерно. Это также разработано и подходит там, где скорость двигателя должна постоянно поддерживаться и должен быть самозапускаемым, или есть потребность в минимальном техническом обслуживании.

Общее использование индукционного двигателя с короткозамкнутым ротором

  • Центробежный насос.
  • Промышленные приводы (например, для привода конвейерных лент).
  • Большой удар и любители.
  • Станки.
  • Токарные станки и другой токарный инструмент.

Также читайте: Двухклеточный ротор асинхронного двигателя

Преимущества асинхронного двигателя с короткозамкнутым ротором:

Преимущества асинхронного двигателя с короткозамкнутым ротором следующие:

  • Это работает по низкой цене.
  • В знаниях особой необходимости нет.
  • Способен поддерживать постоянную скорость.
  • Обеспечивает высокую функциональность.
  • Маленький и легкий.
  • Взрывозащищенный.
  • Эффективность.
Недостатки асинхронного двигателя с короткозамкнутым ротором:

Асинхронный двигатель с короткозамкнутым ротором настолько же популярен, насколько у него есть свои достоинства и недостатки. Несмотря на то, что они плохо контролируют скорость и энергоэффективны при работе с полным током нагрузки, они потребляют много энергии при запуске.

Они более чувствительны к колебаниям напряжения питания. Когда напряжение питания уменьшается, асинхронный двигатель потребляет больше тока. Во время скачка напряжения увеличение напряжения удовлетворяет магнитные компоненты асинхронного двигателя
с короткозамкнутым ротором.

Также читайте: Что такое статор | Строительство статора | Принцип работы статора | Применения статора

Асинхронный двигатель с короткозамкнутым ротором Классификация:

Nema (Национальная ассоциация производителей электрооборудования) в США и МЭК в Европе классифицировали конструкцию асинхронных двигателей с короткозамкнутым ротором на несколько классов в зависимости от их скоростно-крутящих характеристик, таких как класс A, класс B, класс C, класс D, Класс E и класс F.

Класс A Конструкция:
  • Нормальный пусковой момент.
  • Нормальный начальный поток.
  • Низкое скольжение.
  • В этом классе крутящий момент отрыва всегда составляет от 200 до 300 процентов крутящего момента полной нагрузки, и это происходит при малом скольжении.
  • Для этого класса пусковой крутящий момент равен номинальному крутящему моменту для больших двигателей и примерно 200 процентов или более номинального крутящего момента для малых двигателей.
Класс B Конструкция:
  • Нормальный пусковой момент,
  • Нижний пусковой ток,
  • Низкое скольжение.
  • Асинхронный двигатель этого класса обеспечивает такой же начальный крутящий момент, что и асинхронный двигатель класса А.
Класс C Конструкция:
  • Высокий пусковой момент.
  • Низкий пусковой ток.
  • Низкое скольжение при полной нагрузке (менее 5%).
  • До 250% крутящего момента при полной нагрузке, начальный крутящий момент соответствует этому классу конструкции.

Понравился пост? Не могли бы вы поделиться им со своими друзьями?

Рекомендуемое чтение –

Трехфазный асинхронный двигатель

: конструкция и принцип работы

Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в промышленности.Они работают по принципу электромагнитной индукции.

Из-за схожести принципа действия трансформатора, он также известен как вращающийся трансформатор .

Они работают практически с постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко адаптировать для управления скоростью .

Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

Давайте разберемся в конструкции трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

Конструкция трехфазного асинхронного двигателя

Как и любой электродвигатель, трехфазный асинхронный электродвигатель имеет статор и ротор . Статор имеет 3-фазную обмотку (называемую обмоткой статора), в то время как ротор имеет короткозамкнутую обмотку (называемую обмоткой ротора).

От трехфазной сети питается только обмотка статора.Обмотка ротора получает свое напряжение и мощность от обмотки статора, находящейся под внешним напряжением, посредством электромагнитной индукции , отсюда и название.

Трехфазный асинхронный двигатель состоит из двух основных частей

  1. Статор
  2. Ротор

Ротор отделен от статора небольшим воздушным зазором , который составляет от 0,4 мм до 4 мм, в зависимости от мощности двигателя.

1. Статор трехфазного асинхронного двигателя

Статор состоит из стальной рамы, в которой заключен полый цилиндрический сердечник, состоящий из тонких пластин кремнистой стали для уменьшения гистерезиса и потерь на вихревые токи.

На внутренней периферии пластин имеется ряд равномерно расположенных прорезей. Изолированные проводники соединены в сбалансированную трехфазную цепь, соединенную звездой или треугольником.

Наружная рама и статор трехфазного асинхронного двигателя

Обмотка трехфазного статора намотана на определенное количество полюсов в соответствии с требованиями скорости. Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины.Это вращающееся поле индуцирует токи в роторе за счет электромагнитной индукции.

2. Ротор трехфазного асинхронного двигателя

Ротор, установленный на валу, представляет собой полый многослойный сердечник с прорезями на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

  1. Беличья клетка Тип
  2. Ротор с обмоткой Тип

Принцип работы Трехфазный асинхронный двигатель

Для объяснения принципа работы трехфазного асинхронного двигателя рассмотрим часть трехфазного асинхронного двигателя, как показано на рисунке.

Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

Когда трехфазная обмотка статора асинхронного двигателя питается от трехфазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N s ).

Часть вращающегося магнитного поля в трехфазном асинхронном двигателе

Synchronous Speed,

N с = 120 f / P

Где,

f = частота

P = количество полюсов

(Подробнее о вращающемся магнитном поле читайте в разделе «Создание вращающегося магнитного поля»).

Это вращающееся поле проходит через воздушный зазор и разрезает проводники ротора, которые неподвижны.

ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора замкнута накоротко, в проводниках ротора начинают течь токи.

Токоведущие проводники ротора помещены в магнитное поле, создаваемое статором. Следовательно, на проводники ротора действует механическая сила .Сумма механических сил на всех проводниках ротора создает крутящий момент , который стремится перемещать ротор в том же направлении, что и вращающееся поле.

Тот факт, что ротор вынужден следовать за полем статора (т. Е. Ротор движется в направлении поля статора), можно объяснить законом Ленца .

Согласно закону Ленца, направление токов ротора будет таким, что они будут иметь тенденцию противодействовать причине их возникновения.

Итак, причиной возникновения токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает вращаться в том же направлении, что и поле статора, и пытается его поймать. Так начинает работать трехфазный асинхронный двигатель.

Асинхронный двигатель скольжения

Выше мы видели, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

На практике ротор никогда не может достичь скорости магнитного потока статора. Если бы это было так, не было бы относительной скорости между полем статора и проводниками ротора, не было бы индуцированных токов ротора и, следовательно, не было бы крутящего момента для вращения ротора.

Трение и парусность немедленно приведут к замедлению ротора. Следовательно, частота вращения ротора (N) всегда меньше, чем частота вращения статора (N s ). Эта разница в скорости зависит от нагрузки на двигатель.

Разница между синхронной скоростью N s вращающегося поля статора и фактической скоростью N ротора в трехфазном асинхронном двигателе называется скольжением.

Скольжение обычно выражается в процентах от синхронной скорости i.е.,

Скольжение, s = (N с – N) / N с × 100%

Величину N s – N иногда называют скоростью скольжения .

Когда ротор неподвижен (т.е. N = 0), скольжение, s = 1 или 100%.

В асинхронном двигателе изменение скольжения от холостого хода до полной нагрузки едва ли составляет от 0,1% до 3% , так что это, по сути, двигатель с постоянной скоростью .

Видео: Работа трехфазного асинхронного двигателя

На видео от learnengineering в анимированной форме показана работа трехфазных асинхронных двигателей.

Принцип работы, конструкция и применение – pnpntransistor

здесь вы знаете все основные принципы асинхронного двигателя с короткозамкнутым ротором. Здесь вы познакомитесь с принципом работы асинхронного двигателя с короткозамкнутым ротором , конструкцией, применением и преимуществами асинхронного двигателя с короткозамкнутым ротором .

Введение

Существует два основных типа асинхронных двигателей. Их,

  1. Асинхронный двигатель с короткозамкнутым ротором
  2. асинхронный двигатель с контактным кольцом

Ранее мы видели полную информацию об асинхронном двигателе с контактным кольцом.Здесь мы знаем основные детали, относящиеся к двигателю с короткозамкнутым ротором.

Что такое асинхронный двигатель с короткозамкнутым ротором?

Простыми словами, асинхронный двигатель, в котором используется ротор с короткозамкнутым ротором, называется асинхронным двигателем с короткозамкнутым ротором. Причина названия «беличья клетка» связана с типом ротора, который используется в этих двигателях. В двигателях этого типа ротор самый простой и самый прочный по конструкции.

Эти двигатели имеют гораздо более высокий КПД, чем асинхронные двигатели с контактным кольцом.Большинство отраслей промышленности предпочитают этот тип двигателей из-за меньших затрат на техническое обслуживание, более высокой эффективности и их легкой конструкции. Давайте посмотрим на конструкцию асинхронного двигателя с короткозамкнутым ротором.

Конструкция асинхронного двигателя с короткозамкнутым ротором

Любой асинхронный двигатель состоит из двух основных частей: статора и ротора. Конструкция статора асинхронного двигателя практически такая же, как и у других двигателей. Но конструкция ротора зависит от типа двигателя. Асинхронный двигатель с контактным кольцом состоит из ротора с фазной обмоткой, а асинхронный двигатель с короткозамкнутым ротором состоит из ротора с короткозамкнутым ротором.

Статор

Статор – это видимый внешний компонент двигателя. Статор находится во всем двигателе, только обмотка статора зависит от типа двигателя.

источник

В асинхронном двигателе с короткозамкнутым ротором на пазах статора имеется трехфазная обмотка. Обмотки расположены таким образом, что они электрически и механически разнесены на 120 o от пространства. Эти обмотки соединены звездой или треугольником.Обмотка статора смонтирована таким образом, чтобы обеспечить низкое сопротивление для потока, генерируемого током переменного тока. Изоляция между обмотками обычно покрывается лаком или оксидом.

Теперь перейдем к конструкции ротора с короткозамкнутым ротором.

Беличья клетка Ротор

Почти 90% асинхронных двигателей оснащены ротором с короткозамкнутым ротором из-за его очень простой, прочной и почти удобной конструкции.

источник

В этом типе двигателя ротор представляет собой цилиндрический сердечник, который имеет многослойную конструкцию, чтобы избежать потерь мощности.Ротор с короткозамкнутым ротором состоит из алюминиевых или медных стержней, которые размещены параллельно друг другу, и все стержни (проводники) закорочены концевыми кольцами. Проводники ротора и концевые кольца образуют замкнутую цепь. Здесь сердечник ротора ламинирован, чтобы избежать потерь мощности из-за вихревых токов и гистерезиса.

Для двигателей мощностью до 100 кВт ротор с короткозамкнутым ротором изготовлен из литого алюминия. В этом типе ротора токопроводящие шины и концевые кольца постоянно закорочены, поэтому мы не можем подключить какое-либо внешнее сопротивление в цепи ротора для запуска.Ранее мы видели, что можем добавить внешнее сопротивление в ротор асинхронного двигателя с контактным кольцом.

Другие части двигателя: Вентилятор прикреплен к задней стороне ротора для обеспечения теплообмена, и, следовательно, он поддерживает температуру двигателя на низком уровне. Подшипники служат в качестве основы для движения ротора, а подшипники обеспечивают плавное вращение двигателя.

Кроме того, пускатель также снабжен двигателем для ограничения пускового тока. Для эффективного пуска асинхронного двигателя используются разные методы.Проверьте это – методы пуска асинхронного двигателя

А теперь давайте посмотрим, как работает асинхронный двигатель с короткозамкнутым ротором? Давайте посмотрим на принцип работы асинхронного двигателя с короткозамкнутым ротором ниже.

Принцип работы асинхронного двигателя с короткозамкнутым ротором

В двигателях постоянного тока необходимо подавать питание на статор и ротор для возбуждения. Но здесь, в асинхронном двигателе, для работы нам нужно только подать питание на обмотку статора. Собственно, что происходит, посмотрим.

На самом деле, когда мы подаем питание на обмотку статора, тогда в катушке начинает течь ток, что создает магнитный поток в катушке.Теперь здесь обмотки ротора замкнуты накоротко. Наведенный поток от обмотки статора будет разрезать катушки в роторе, и, поскольку закон электромагнитной индукции Фарадея заставит ток течь в катушке ротора из-за короткого замыкания катушки ротора.

Когда ток течет через цепь ротора, он создает магнитный поток ротора. Итак, здесь есть два потока, один – это поток статора, а другой – поток ротора, и поток ротора будет отставать от потока статора. Таким образом, ротор будет ощущать крутящий момент, который вращает ротор в направлении вращающегося магнитного потока.

Пусковой момент асинхронного двигателя с короткозамкнутым ротором очень низкий. Скорость ротора будет зависеть от мощности переменного тока, а скорость можно контролировать, изменяя входную мощность источника питания.

Некоторые функции

здесь мы знаем некоторые ключевые характеристики, связанные со скоростью, пусковым током, направлением вращения, скольжением и коэффициентом мощности асинхронного двигателя с короткозамкнутым ротором.

Скорость: Асинхронный двигатель с короткозамкнутым ротором обычно работает с постоянной скоростью. Или, можно сказать, в синхронной скорости.

Пусковой ток: Эти двигатели требуют высокого пускового тока и обеспечивают низкий пусковой момент.

Направление вращения: Направление вращения этих двигателей можно изменить, если поменять местами две линии электропередачи из трех.

Скольжение: Скольжение – это мера разницы между скоростью вращающегося магнитного поля и скоростью ротора. Частота тока ротора = скольжение × частота питания

Коэффициент мощности: Коэффициент мощности – это отношение фактической мощности к полной мощности.Выражается в процентах. Коэффициент мощности низкий, когда двигатель работает без нагрузки, и высокий, когда двигатель работает с полной нагрузкой.

Преимущества асинхронного двигателя с короткозамкнутым ротором

I.M с короткозамкнутым ротором имеет некоторые из основных преимуществ, поэтому почти 90% асинхронных двигателей оснащены ротором с короткозамкнутым ротором. Итак, преимущества беличьей клетки приведены ниже:

Беличья клетка I.M.

  • Дешевая
  • Прочный
  • Требуется меньше обслуживания

В этом двигателе ротор состоит из алюминиевых или медных стержней, поэтому для изготовления ротора требуется меньше материала. Это также снижает потери меди.

  • Высокая эффективность
  • Маленький и легкий
  • Из-за отсутствия щеток вероятность искры снижена.
  • Эти двигатели оснащены вентиляторами, поэтому выделяется меньше тепла.
  • Двигатели с короткозамкнутым ротором работают с почти постоянной скоростью, имеют высокую перегрузочную способность и более высокий коэффициент мощности.

Недостатки асинхронного двигателя с короткозамкнутым ротором

Основным недостатком асинхронного двигателя с короткозамкнутым ротором является плохое управление скоростью и низкий пусковой момент.Однако с помощью частотно-регулируемых приводов эти недостатки можно преодолеть.

⇒⇒ Асинхронные двигатели с короткозамкнутым ротором имеют низкий пусковой момент и высокие пусковые токи. Пусковой крутящий момент будет в 1,5–2 раза больше крутящего момента при полной нагрузке, а пусковой ток в 5–9 раз превышает ток полной нагрузки. В асинхронных двигателях с контактным кольцом более высокий пусковой крутящий момент может быть достигнут путем обеспечения внешнего сопротивления в цепях ротора во время периода пуска асинхронного двигателя с контактным кольцом.Такое расположение в асинхронных двигателях с контактным кольцом также снижает высокие пусковые токи во время пуска асинхронного двигателя.

⇒⇒ I.M. с короткозамкнутым ротором более чувствительны к колебаниям напряжения питания. Когда напряжение питания уменьшается, асинхронный двигатель потребляет больше тока. Во время скачков напряжения увеличение напряжения приводит к насыщению магнитных компонентов асинхронного двигателя с короткозамкнутым ротором.

⇒⇒ Регулировать скорость в этих двигателях непросто. Мы не можем подключить какое-либо внешнее сопротивление в цепи ротора, потому что проводники ротора постоянно закорочены концевыми кольцами.

Асинхронный двигатель с короткозамкнутым ротором Применение

I.M. с короткозамкнутым ротором

более широко используются в промышленности и дома, чем контактные кольца с контактным кольцом, благодаря стоимости обслуживания и более высокой эффективности. Асинхронные двигатели с короткозамкнутым ротором довольно распространены в промышленности. Вы найдете их почти в каждой машине, почти везде на конвейере.

Беличья клетка I.M обычно используется там, где требуется постоянная скорость и не используются приводы с регулировкой скорости.

Эти двигатели используются в

  • Вентиляторы и нагнетатели
  • Промышленные приводы
  • Станки и токарное оборудование
  • Насосы

Отличие беличьей клетки I.М и синхронный двигатель

Есть некоторые различия между короткозамкнутым ротором и синхронным двигателем.

Скорость работы:

Для данной частоты асинхронный двигатель всегда работает со скоростью меньше синхронной скорости (Нс).

Для заданной частоты синхронный двигатель всегда работает с постоянной скоростью, называемой синхронной скоростью, независимо от величины нагрузки, которую он может испытывать.

Влияние нагрузки на скорость вращения ротора

Скорость асинхронного двигателя всегда зависит от нагрузки, скорость будет уменьшаться с увеличением нагрузки.

Скорость синхронного двигателя не зависит от нагрузки, поэтому она остается постоянной при любой нагрузке.

Конструкция ротора

В клетке I.M. с короткозамкнутым ротором используется ротор с короткозамкнутым ротором.

В синхронном двигателе в качестве ротора используется явный, невыявленный или постоянный магнит.

Внешнее питание

Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора. Асинхронные двигатели не требуют дополнительного источника питания.

Стоимость

Асинхронные двигатели дешевле синхронных. Синхронные двигатели слишком дороги в производстве, чем асинхронные двигатели аналогичного номинала.

Пуск двигателя

Все асинхронные двигатели являются двигателями с самозапуском. Нам нужно только подать питание на обмотку статора.

В синхронном двигателе нам необходимо подать внешнее питание для вращения ротора, близкого к синхронной скорости.

Пусковой момент

Асинхронные двигатели имеют собственный пусковой момент.Синхронный двигатель не имеет пускового момента, нам нужно предоставить какое-то вспомогательное средство для создания требуемого пускового момента.

Регулировка скорости

Регулирование скорости возможно в случае асинхронного двигателя.

Мы не можем контролировать скорость синхронного двигателя.

Коэффициент мощности

Асинхронные двигатели всегда работают с отстающим коэффициентом мощности. Изменение коэффициента мощности невозможно.

Коэффициент мощности возбуждения постоянного тока может быть изменен с запаздывающего на опережающий в случае синхронного двигателя.

Вопросы и ответы

Что такое асинхронный двигатель с короткозамкнутым ротором?

Простыми словами, асинхронный двигатель, в котором используется ротор с короткозамкнутым ротором, называется асинхронным двигателем с короткозамкнутым ротором. Причина названия «беличья клетка» связана с типом ротора, который используется в этих двигателях. В двигателях этого типа ротор самый простой и самый прочный по конструкции.

Каковы характеристики асинхронного двигателя с короткозамкнутым ротором?

Короткозамкнутый ротор

IM имеет высокий пусковой ток и плохой пусковой момент (пусковой ток может в 5-9 раз превышать ток полной нагрузки; пусковой момент может быть равен 1.В 5-2 раза больше крутящего момента при полной нагрузке)

сколько контактных колец в асинхронном двигателе с короткозамкнутым ротором?

Асинхронный двигатель с короткозамкнутым ротором не имеет контактных колец .

Короткое замыкание стержней ротора через короткозамкнутую катушку или короткое замыкание обмотки ротора.

почему ротор асинхронного двигателя с короткозамкнутым ротором перекошен?

Беличья клетка IM перекошена, чтобы избежать зубцового эффекта в двигателе. Если ротор и проводники статора параллельны друг другу, существует большая вероятность магнитной блокировки между ротором и статором.Следовательно, пазов ротора перекошены .

как работает асинхронный двигатель с короткозамкнутым ротором?

Ответ на этот вопрос уже был дан в предыдущем разделе, посвященном принципу работы двигателя. пожалуйста, обратитесь к этому.

что такое асинхронный двигатель с двойной беличьей клеткой?

Асинхронный двигатель с двойным короткозамкнутым ротором состоит из ротора, который имеет две независимые обоймы , расположенные одна над другой в одном слоте.

Заключение

Надеюсь, вы знаете все, что связано с асинхронным двигателем с короткозамкнутым ротором.

Мы видели конструкцию асинхронного двигателя с короткозамкнутым ротором. Основное различие между контактным кольцом и асинхронным двигателем с короткозамкнутым ротором заключается в конструкции ротора. Двигатели состоят из двух основных частей: статора и ротора. В этих двигателях используется ротор с короткозамкнутым ротором. Этот ротор состоит из параллельных алюминиевых или медных стержней. Токопроводящие шины ротора закорочены двумя концевыми кольцами.

Мы видели принцип работы асинхронного двигателя с короткозамкнутым ротором, который одинаков для всех асинхронных двигателей.Когда мы подаем напряжение переменного тока на обмотку статора, поток создается в обмотке статора. Из-за этого потока в роторе индуцируется ток, а также создается магнитный поток в роторе. Поток ротора отстает от потока статора, поэтому создается крутящий момент, и ротор ощущает силу в направлении движения.

Мы увидели некоторые преимущества и недостатки асинхронного двигателя Squirrel. Эти двигатели имеют простую и прочную конструкцию. Эти двигатели имеют более высокий КПД и низкую стоимость из-за того, что в 90% асинхронных двигателях используется именно этот тип двигателя.

Мы видели применение асинхронного двигателя с короткозамкнутым ротором. Эти двигатели используются там, где требуется постоянная скорость и не требуется регулирование скорости.

Продолжить чтение

Принцип работы асинхронного двигателя

– StudiousGuy

Асинхронные двигатели – одно из величайших изобретений в истории человечества. На ее долю приходится около 45% от общего потребления электроэнергии во всем мире, это повсеместная технология в современном мировом оборудовании.Фактически, всемирно известная корпорация по производству электромобилей Tesla назвала свою организацию в честь изобретателя асинхронного двигателя Николы Тесла. Асинхронный двигатель – это электродвигатель с приводом от переменного тока (AC), который использует электромагнитную индукцию для преобразования электрической энергии в механическую. Он также известен как асинхронный двигатель, поскольку частота вращения двигателя обычно меньше и не синхронизируется с частотой входного переменного тока. Асинхронные двигатели имеют несколько преимуществ по сравнению с аналогичными двигателями постоянного тока, такие как более низкая стоимость конструкции и обслуживания, простота эксплуатации, более высокая скорость, долговечность и т. Д., что делает их более трудоспособными. Чтобы понять принцип работы асинхронного двигателя, давайте сначала разберемся, в каких частях он является отличной машиной.

Указатель статей (Нажмите, чтобы перейти)

Компоненты асинхронного двигателя

Асинхронный двигатель может быть разных форм и размеров, но чаще всего это цилиндрическое устройство с торчащим из него осевым валом. Вращательное действие вала осуществляется за счет особого расположения следующих компонентов.

Статор

Статор асинхронного двигателя представляет собой полый цилиндрический сердечник, состоящий из многослойных и многослойных тонких металлических листов. Это неподвижная часть с прорезями для намотки катушки электромагнитной цепи двигателя. Многослойная структура статора используется для предотвращения потерь на вихревые токи и гистерезиса, которые в противном случае возникли бы с твердым сердечником. Катушка статора, также известная как обмотка статора, сделана из медных проводов, изолированных эмалью, лаком или смолами, чтобы избежать короткого замыкания.

Ротор

Ротор – это вращающаяся часть асинхронного двигателя. Это цилиндрический блок, установленный на валу, который несет механическую нагрузку. При производстве асинхронных двигателей используются два типа роторов.

Ротор с беличьей клеткой

Ротор с короткозамкнутым ротором – один из наиболее широко используемых роторов в производстве асинхронных двигателей из-за его исключительных характеристик, таких как надежность, прочность и низкая стоимость производства.Он получил свое название от своей цилиндрической конструкции в виде клетки, которая состоит из продольных токопроводящих стержней, изготовленных из алюминия или меди, закороченных накоротко с кольцами, выполненными из того же материала на обоих концах. Стержни ротора слегка перекошены, чтобы они не блокировались зазорами между катушками статора, обеспечивая плавное и бесшумное вращение. Кроме того, количество стержней не должно равняться целому кратному числу пазов статора, так как это может вызвать магнитную блокировку обоих компонентов.

Ротор с обмоткой

Ротор с обмоткой, также известный как ротор с контактным кольцом, представляет собой цилиндрический блок, сделанный из тонких многослойных стальных листов, уложенных друг на друга, и на его периферии есть прорези для удержания вращающихся обмоток. Концы вращающихся обмоток соединены с тремя контактными кольцами, размещенными вокруг вала. Контактные кольца соединены с блоками переменного сопротивления мощности через щетки, что позволяет оператору изменять скорость двигателя, изменяя сопротивление.

Вал

Вал представляет собой длинный стержень из углеродистой стали, расположенный вдоль цилиндрической оси асинхронного двигателя. Это элемент, который обеспечивает преобразованную механическую энергию для конечного использования. Головка вала соединена с различными механическими нагрузками, такими как шкивы, шестерни и т. Д., Тогда как задняя часть соединена с вентилятором внутри двигателя.

Подшипники

Вал ротора удерживается подшипниками на обоих концах корпуса двигателя. Подшипники минимизируют трение вала, соединенного с корпусом, повышая эффективность двигателя.Корпус асинхронного двигателя содержит все компоненты двигателя, обеспечивает электрические соединения и обеспечивает вентиляцию деталей двигателя для уменьшения тепловыделения. Конструкция корпуса часто включает ребра для отвода тепла.

Вентилятор

Вентилятор в асинхронном двигателе действует как вытяжка и охлаждает асинхронный двигатель, рассеивая тепло. Он соединен с валом, который передает вращательное движение ротора на вентилятор.

Кожух

Корпус асинхронного двигателя содержит все компоненты двигателя, обеспечивает электрические соединения и обеспечивает вентиляцию деталей двигателя для уменьшения тепловыделения.Конструкция корпуса часто включает ребра для отвода тепла.

Принцип работы асинхронного двигателя

Асинхронный двигатель работает по принципу электромагнитной индукции. Это явление, при котором ЭДС индуцируется поперек проводника, когда он находится внутри переменного магнитного поля. Эта наведенная ЭДС в катушке задается законом электромагнитной индукции Фарадея, который гласит, что электродвижущая сила вокруг замкнутого пути равна отрицательной скорости изменения во времени магнитного потока, заключенного на этом пути.Математически это выражение можно записать как

ε = – \ frac {dΦ} {dt}

Где ε – наведенная ЭДС, Φ – магнитный поток, а t обозначает время.

Взаимодействие между двумя магнитными полями заставляет ротор вращаться. Чтобы понять концепцию более подробно, давайте посмотрим на работу асинхронного двигателя.

Работа асинхронного двигателя

Когда переменный ток течет через обмотки статора, он создает магнитное поле вокруг катушек обмоток.Катушки внутри статора расположены таким образом (пространственно разнесены на 120 °), что создаваемое ими магнитное поле начинает вращаться вследствие периодически меняющегося направления входного переменного тока. Вращающееся магнитное поле индуцирует ток, который течет через замкнутые обмотки ротора. Затем течение тока создает обратную ЭДС, которая противодействует изменению магнитного поля, создаваемого обмотками статора. Обратная ЭДС обмоток ротора отстает на 90 градусов (без нагрузки) от ЭДС обмоток статора.Эта разница в силе создает крутящий момент и заставляет ротор вращаться вокруг оси вала. Задержка также заставляет обмотки ротора вращаться немного медленнее, чем вращающееся поле. Разница между скоростью известна как «проскальзывание» в технических терминах и может варьироваться в зависимости от нескольких факторов, таких как нагрузка на двигатель, сопротивление цепи ротора и сила магнитного поля, создаваемого двигателем. статор. Асинхронный двигатель работает аналогично трансформатору, причем первичная и вторичная обмотки являются обмотками статора и ротора соответственно.Асинхронный двигатель также известен как вращающийся трансформатор из-за вращательного движения обмоток ротора. Работа асинхронных двигателей может различаться в зависимости от их типа.

Типы асинхронных двигателей

Асинхронные двигатели

в основном подразделяются на две категории в зависимости от источника питания, с которым они работают, то есть трехфазные асинхронные двигатели и однофазные асинхронные двигатели.

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель – один из наиболее часто используемых асинхронных двигателей в промышленных и коммерческих целях.Как следует из названия, трехфазные асинхронные двигатели – это те, которые работают от трехфазного источника переменного тока. Чтобы понять принцип работы трехфазного асинхронного двигателя, необходимо немного узнать о трехфазном источнике питания переменного тока. Направление тока в источнике питания переменного тока периодически меняется, генерируя синусоидальную форму волны, причем каждый цикл показывает величину тока, идущую от нуля до максимума в одном направлении, обратно до нуля, а затем до максимума в противоположном направлении.Трехфазный источник питания переменного тока содержит три различных синусоидальных сигнала переменного тока, так что, когда один из циклов проходит через ноль, два других могут компенсировать уменьшенную величину тока в цепи. Большинство наших бытовых электроприборов могут эффективно работать с частотой 50-60 Гц (циклов в секунду) одной синусоидальной формы волны переменного тока; однако в промышленных целях применяется трехфазный источник переменного тока для удовлетворения требований высокой мощности.

В трехфазном асинхронном двигателе статор состоит из трех наборов обмоток, на которые подается входной трехфазный переменный ток.Обмотки статора расположены по Y-образной схеме, образуя разность фаз в 120 градусов электрического угла. Эта конструкция обеспечивает вращающееся магнитное поле, и согласно закону Ленца ротор начинает вращаться в своем направлении, чтобы нейтрализовать эффект электромагнитной индукции. Тем не менее, из-за разницы между индуцированным магнитным потоком ротора и магнитным потоком статора, ротор никогда не достигает скорости вращающегося магнитного поля. Гипотетически, если ротор сможет достичь скорости, аналогичной скорости вращающегося магнитного поля, за счет приложения некоторой внешней силы, не будет никакого запаздывания между потоками, и электромагнитная индукция немедленно прекратится.В основном это два

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Как следует из названия, трехфазный асинхронный двигатель с короткозамкнутым ротором содержит ротор с короткозамкнутым ротором (описанный выше) и работает от трехфазного источника переменного тока. Вращающееся магнитное поле индуцирует ток через проводящие стержни, который дополнительно генерирует магнитный поток ротора и заставляет ротор вращаться. Цилиндрическая конструкция клетки имеет определенные преимущества, такие как прочная конструкция и низкие затраты на техническое обслуживание; однако наиболее важной особенностью роторов с короткозамкнутым ротором является простота конструкции для создания различных вариантов.Характеристики скорости-момента трехфазного асинхронного двигателя с короткозамкнутым ротором можно легко изменить, отрегулировав перекос и длину токопроводящих стержней внутри ротора. Это позволяет легко заменять двигатели разных производителей, что упрощает замену двигателей. Тем не менее, отсутствие контроля скорости в асинхронных двигателях с короткозамкнутым ротором является недостатком их уникальной конструкции. Короткозамкнутые кольца на концах ротора не дают места для добавления переменного сопротивления, и поэтому трехфазный асинхронный двигатель с короткозамкнутым ротором работает с постоянной скоростью после достижения установившегося состояния.

Трехфазный асинхронный электродвигатель с контактным кольцом

Трехфазный асинхронный двигатель с контактным кольцом, также известный как трехфазный асинхронный двигатель с обмоточным ротором, представляет собой асинхронный двигатель с регулируемой скоростью. Ротор этих двигателей состоит из цилиндрического блока, состоящего из многослойных стальных пластин, намотанных катушками из медной проволоки. Обмотки ротора имеют трехфазную конфигурацию, при этом выводы каждой фазы подключены к контактным кольцам. Контактное кольцо – это электромеханическое устройство, которое помогает передавать мощность и электрические сигналы от неподвижного компонента к вращающемуся.Когда источник переменного тока используется для возбуждения обмотки статора, создается магнитный поток. Вращающееся магнитное поле индуцирует ток через проводящие стержни, который создает дополнительный магнитный поток в роторе и заставляет его вращаться. Тем не менее, из-за большего количества витков в обмотках ротора индуцированное напряжение выше, чем индуцированный ток. Когда двигатель включен, внешнее сопротивление, приложенное к обмоткам ротора, заставляет ток ротора ослаблять вращающееся магнитное поле статора.Это означает, что как только двигатель достигает полной скорости, сопротивление можно регулировать для управления скоростью вращения, что дает операторам возможность выбирать пусковой момент и рабочие характеристики. Индуктивное реактивное сопротивление и разность фаз между I и V могут быть уменьшены, что позволяет двигателю обеспечивать высокий пусковой момент. По сравнению со стандартными двигателями с короткозамкнутым ротором сложность и необходимость обслуживания контактных колец и щеток высоки. Тем не менее, в приложениях с высокими инерционными нагрузками, таких как большие вентиляторы, насосы и мельницы, конструкция с фазным ротором позволяет постепенное ускорение нагрузки за счет управления скоростью и крутящим моментом.

Преимущества трехфазного асинхронного двигателя

  • Они имеют простую конструкцию и прочную конструкцию, что делает их долговечными и простыми в использовании.
  • Стоимость обслуживания трехфазных асинхронных двигателей значительно ниже по сравнению с однофазными асинхронными двигателями.
  • Наиболее важной особенностью, которая делает трехфазные асинхронные двигатели широко применяемыми в промышленности, является то, что они самозапускаются и не требуют какого-либо внешнего механизма для запуска вращения ротора.Вращающееся магнитное поле, создаваемое Y-образной структурой обмоток статора, достаточно эффективно для создания пускового момента, чего нет в однофазных асинхронных двигателях.
  • Разделение трехфазного входного переменного тока в трехфазном асинхронном двигателе вызывает распределение нагрузки и делает двигатель более эффективным с точки зрения характеристик скорости-момента.
  • Ротор трехфазного асинхронного двигателя с короткозамкнутым ротором не имеет физического электрического соединения, что позволяет избежать потерь тока, которые могут возникнуть во время передачи.
  • Трехфазный асинхронный двигатель работает во вращающемся магнитном поле с постоянной величиной, то есть крутящий момент постоянный, а не пульсирующий.
  • Устойчивое магнитное поле также снижает вибрацию двигателя.

Недостатки трехфазного асинхронного двигателя

  • Трехфазный асинхронный двигатель потребляет больше тока в условиях небольшой нагрузки из-за низкого коэффициента мощности. В результате происходит большая утечка меди и низкий КПД.
  • Чтобы получить контроль скорости в трехфазном асинхронном двигателе, требуется больше электрических компонентов, что приводит к сложному электрическому механизму.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

Приложения

Трехфазные асинхронные двигатели в основном используются в промышленных условиях. Асинхронные двигатели с короткозамкнутым ротором используются как в быту, так и в промышленности, особенно в приложениях, где не требуется регулирование скорости двигателя, таких как погружные насосы, прокатные прессы, шлифовальные машины, конвейеры, компрессоры напольных мельниц и т. Д.Двигатели с фазным ротором, напротив, используются в приложениях с высокими нагрузками, требующих высокого пускового момента, например, в лифтах, кранах, линейных валах, мельничных прессах и т. Д.

Однофазный асинхронный двигатель

Однофазные асинхронные двигатели почти идентичны трехфазным асинхронным двигателям; однако эти двигатели работают от однофазного источника переменного тока. Однофазные асинхронные двигатели широко используются в маломощных устройствах, например, в бытовых приборах. Они меньше по размеру и дешевле в производстве.Поскольку большинство этих двигателей имеют дробную мощность в киловаттах, они также известны как двигатели с дробной мощностью. Статор однофазного асинхронного двигателя представляет собой неподвижную часть с многослойной конструкцией, состоящей из штамповок, аналогичной таковой у трехфазного асинхронного двигателя. Обмотка статора поддерживается пазами на краю этих штамповок. Для активации этой обмотки используется однофазный источник переменного тока. Ротор состоит из пазов, заполненных токопроводящими алюминиевыми или медными стержнями. Индуцированное магнитное поле в роторе будет взаимодействовать с магнитным полем статора, образуя вращающееся поле.Даже с одной обмоткой это поле заставляет двигатель работать в том направлении, в котором он был запущен. Однако, когда двигатели подключены к нагрузке, невозможно обеспечить начало вращения. Чтобы обойти эту трудность, однофазный двигатель временно преобразуется в двухфазный двигатель, чтобы обеспечить вращающийся поток. Помимо основной обмотки статора предусмотрена пусковая обмотка. Пусковая или вспомогательная обмотка сделана очень резистивной, а основная или рабочая обмотка – очень индуктивной.Из-за огромной разницы фаз между этими двумя двигателями создается достаточный крутящий момент для вращения ротора.

Асинхронный двигатель с разделенной фазой

В однофазном асинхронном двигателе с расщепленной фазой, также известном как двигатель с резистивным пуском, вспомогательная или пусковая обмотки расположены на 90 ° от основных обмоток статора. Вспомогательные обмотки вместе с резистором подключаются к основным обмоткам последовательно и параллельно источнику переменного тока. Вспомогательная обмотка имеет несколько витков небольшого диаметра.Вспомогательные обмотки создают разность фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора. Когда двигатель развивает от 75 до 80% своей максимальной скорости, центробежный выключатель отключает эту обмотку, что неэффективно в рабочих условиях. В этом случае двигатель работает только от основной обмотки статора. Такой подход дает очень небольшую разность фаз, и, следовательно, пусковой момент в этих двигателях очень низкий. В результате они используются в приложениях, требующих умеренного начального крутящего момента, например, в вентиляторах, воздуходувках или шлифовальных машинах.

Конденсаторный асинхронный двигатель

Этот двигатель представляет собой более сложный вариант асинхронного двигателя с расщепленной фазой. Индукции с разделением фаз недостаточно для создания высокого крутящего момента, поскольку разность фаз, вызванная вспомогательными обмотками, мала. Этот недостаток устраняется в конденсаторном пусковом двигателе за счет последовательного включения конденсатора со вспомогательной обмоткой. Этот двигатель оснащен конденсатором сухого типа, работающим на переменном токе. Тем не менее, этот конденсатор не используется постоянно.В этой схеме также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости. Конденсатор потребляет большую разность фаз между током, протекающим через основные обмотки, и током, протекающим через вспомогательные обмотки. В результате, по сравнению с асинхронным двигателем с расщепленной фазой, пусковой крутящий момент этого двигателя чрезвычайно высок и даже на 300 процентов превышает полную нагрузочную способность асинхронного двигателя с разъемным торцом.Этот двигатель используется в приложениях, где требуется высокий пусковой крутящий момент, например, в токарных станках, компрессорах, сверлильных станках и т. Д.

Конденсаторный пусковой конденсатор Асинхронный двигатель

Конденсаторный пусковой конденсаторный двигатель имеет два конденсатора в параллельной конфигурации, подключенных последовательно к вспомогательной обмотке. Один из этих двух конденсаторов используется исключительно для инициирования (пусковой конденсатор) и имеет высокое значение емкости, а другой постоянно соединен с двигателем (рабочий конденсатор) и имеет низкое значение емкости.Пусковой конденсатор соединен последовательно с центробежным выключателем, который выключается, когда скорость двигателя достигает 70% от скорости. Рабочий конденсатор улучшает коэффициент мощности двигателя, обеспечивая дополнительный заряд переменного тока. В рабочем режиме к двигателю подключены как рабочая, так и вспомогательная обмотки. Пусковой момент и КПД этого двигателя очень высоки. Следовательно, это можно использовать в приложениях, где требуется высокий пусковой крутящий момент, например, в холодильнике, кондиционере, потолочном вентиляторе, компрессоре и т. Д.

Асинхронный двигатель с экранированными полюсами

Асинхронный двигатель с экранированными полюсами представляет собой однофазный асинхронный двигатель с самозапуском и медным кольцом, затеняющим полюса статора. Это медное кольцо служит вторичной обмоткой двигателя, и когда питание подается на статор, в медных кольцах индуцируется магнитный поток. Поток медного кольца взаимодействует с потоком обмоток статора, создавая вращающееся магнитное поле. Асинхронный двигатель с экранированными полюсами состоит из ротора с короткозамкнутым ротором, который взаимодействует с вращающимся магнитным полем.Это взаимодействие создает крутящий момент в роторе и вращает его. Важно отметить, что асинхронный двигатель с экранированными полюсами может вращаться только в одном направлении. Эти двигатели не обладают хорошим коэффициентом мощности и в основном используются в качестве реле в таких устройствах, как вентиляторы, фены, проекторы, проигрыватели и т. Д.

Преимущества однофазных асинхронных двигателей

Основным преимуществом однофазного асинхронного двигателя является простота сборки и сборки. Асинхронный двигатель работает независимо от состояния окружающей среды.В результате двигатель получается мощный и механически прочный.

Недостатки однофазных асинхронных двигателей

Хотя однофазные двигатели механически просты, известно, что они работают медленно или перегреваются при высокой нагрузке. Более того, поскольку однофазные двигатели не запускаются автоматически, они требуют дополнительных схем для запуска, что, в свою очередь, дает больше места для коротких замыканий и отказов.

Каков принцип работы трехфазного асинхронного двигателя?

Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок.Двигатели переменного тока работают от источника переменного тока и подразделяются на синхронные, однофазные, трехфазные асинхронные двигатели и двигатели специального назначения. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.

Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

Принцип действия трехфазного асинхронного двигателя основан на создании вращающегося магнитного поля (r.м.ф.).

Создание вращающегося магнитного поля

Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на электрический угол 120 °. Когда первичная обмотка или статор подключены к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

Направление вращения двигателя зависит от последовательности фаз линий питания и порядка, в котором эти линии подключены к статору.Таким образом, изменение мест подключения любых двух первичных клемм к источнику питания изменит направление вращения на противоположное.

Число полюсов и частота приложенного напряжения определяют синхронную скорость вращения статора двигателя. Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, термин, обозначающий скорость вращения поля, создаваемого первичными токами, определяется следующим выражением.

Синхронная скорость вращения = (120 x частота питания) / Число полюсов статора

Производство магнитного потока

Вращающееся магнитное поле в статоре – это первая часть работы.Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны пропускать некоторый ток. В асинхронных двигателях этот ток исходит от проводов ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает токопроводящие стержни ротора и индуцирует электродвижущую силу (ЭДС).

Обмотки ротора асинхронного двигателя либо замкнуты через внешнее сопротивление, либо напрямую закорочены. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к скручивающему движению или крутящему моменту в роторе.

Как следствие, скорость ротора не достигает синхронной скорости среднеквадратичного значения в статоре. Если бы скорости совпадали, ЭДС не было бы. индуцированный в роторе, ток не будет течь, и, следовательно, не будет создаваться крутящий момент. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.

Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

В результате получается мотор:
  • Самозапуск
  • Взрывозащищенный (из-за отсутствия контактных колец или коммутаторов и щеток, которые могут вызвать искрение)
  • Прочная конструкция
  • Недорого
  • Легче обслуживать

Каков принцип работы асинхронного двигателя | by Starlight Generator

Асинхронный двигатель

Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.

Статор – это не вращающаяся часть двигателя. Основная задача – создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.

Принцип работы

Вращающееся магнитное поле, создаваемое статором (частота вращения – это синхронная частота вращения n1), и относительное движение обмотки ротора, линия магнитной индукции, отсекающая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный крутящий момент также соответственно уменьшается. Когда асинхронный двигатель работает в режиме двигателя, скорость ротора меньше синхронной скорости.

Разница между синхронным двигателем и асинхронным двигателем

Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.

Маленькие синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости – это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.

Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]

В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.

Добавить комментарий

Ваш адрес email не будет опубликован.