Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Трехфазный асинхронный электродвигатель

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей – статора и ротора. Статор – неподвижная часть, ротор – вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле – это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов
Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле
Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор “беличья клетка” наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый роторМагнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Трехфазные асинхронные электродвигатели | Электродвигатели

Компания Система снабжения предлагает высококачественные импортное оборудование для промышленных предприятий и производственных объединений. Одним из востребованных продуктов остается – электродвигатель асинхронный трехфазный. Мы поставляем моторы импортного производства Cantoni, ADDA и других лидеров производителей промышленной техники по конкурентным ценам.

Трехфазный асинхронный электродвигатель

Мотор предназначен для трехфазной электросети. Асинхронность означает различную скорость вращения ротора от магнитного поля.

Купить асинхронные электродвигатели поставляемые нашей компанией это надежное вложение, моторы прошли необходимую сертификацию и соответствуют европейским стандартам. Каждая представленная позиция имеет наиболее полное описание в каталоге электродвигателей. Вот только несколько преимуществ предлагаемой продукции:

  • Высокая степень устойчивости
  • Доступные запасные части
  • Высокое качество деталей и сборки
  • Надежность в работе, проверенная десятилетиями

Трехфазные электродвигатели у нас – это качество и доступность

Мы предлагаем качественный товар, известный на мировом рынке. Цена на асинхронный трехфазный двигатель в нашей компании ниже средне-московских благодаря особым условиям поставки. Компания “Система Снабжения” осуществляет бесплатную доставку техники по Москве и в Санкт-Петербурге. Доставка по России оплачивается согласно тарифам перевозчика. Почему стоит купить асинхронный электродвигатель у нас? Потом что мы предлагаем долговечное качество, низкие и цены и открытый диалог с покупателем. Позвоните нам – мы предложим вам лучшую цену, за лучшие электродвигатели.

Электродвигатели Cantoni

  • Асинхронные трехфазные двигатели с короткозамкнутым ротором.
  • Закрытая конструкция – с внешней вентиляцией.
  • Электродвигатели, охлаждаются благодаря внешней поверхности и системе вентиляции при воздействии короткозамкнутого ротора.
  • Моторы разработаны, изготовлены и испытаны в соответствии с CEI 2-3 стандартом и IEC 34-1 (международными рекомендациями и основными зарубежными стандартами).
  • Монтаж и установка электродвигателей универсальны – они стандартизированы в соответствии с UNEL стандартом, IEC 72 международными рекомендациями и в соответствии с принятой стандартизацией Европейских стран-содружеств.

Спецификация асинхронных трехфазных двигателей, описание в каталоге-приложении. По любой дополнительной информации или вопросам, с заявкой купить электродвигатель, вы можете обратиться в наш отдел продаж.

Спецификация двигателей Cantoni:
Скачать спецификацию электродвигатель серия 1А – от 63 до 315 – мощность 0,06 до 200 кВт.
Скачать спецификацию электродвигатель серия 1В – от 355 до 500 – мощность 160 до 1200 кВт.

Трехфазные электродвигатели серии Т

Асинхронные электродвигатели серии Т с размером кадра 56-:-132 были разработаны и изготовлены для обеспечения максимальной надежности в работе и безопасности. Трехфазные электродвигателей этой линейки имеют алюминиевые рамки. Щиты из алюминия под 56-:-132. Клеммная коробка из алюминия монтируется на мотор, что позволяет ему быть повернутым на 90 °. Для кадра 56-:-71 электродвигателя предусмотрены съемные подставки, для крепления на 80-:-132 подставки также могут быть демонтированы, распределительная коробка может быть размещена с обоих сторон корпуса. Крышка вентилятора выполнена в стальном обрамлении. Вентиляторы выполнены из пластика.

Скачать спецификацию электродвигатель серия Т – от 56 до 160 – мощность 0,06 до 18.5 кВт.

Электродвигатели ADDA

Неизменное немецкое качество и точность сборки позволяет смело утверждать что трехфазный асинхронный двигатель ADDA один из лучших представителей линейки моторов европейского производства.

Производство электродвигателей ADDA контролируется высокими стандартами и спецификациями, с которыми вы можете ознакомиться в каталоге. Мы предлагаем не только купить асинхронные электродвигатели ADDA, f полный спектр продукции производителя. Более подробно смотрите наш каталог электродвигателей – Electro ADDA .

Асинхронные трехфазные электродвигатели – по размеру высоты вала.

Для многих областей промышленности трехфазные электродвигатели остаются наиболее эффективным решением переработки электрической энергии в механическую. Именно трехфазные двигатели обеспечивают максимальный пусковой момент, что позволяет использовать их в приводах устройств, запускаемых при высоких нагрузках, а также в механизмах, требующих плавного изменения частоты вращения двигателя.

Каталог трехфазных электродвигателей.

Область применения трехфазных электродвигателей достаточно обширна. Оборудование с трехфазными двигателями применяется в строительстве, металлургии, в нефтедобывающей и горной промышленности. Установка трехфазных двигателей полностью оправдывается в приводах грузоподъемного оборудования, в системах промышленной вентиляции и компрессорных установках.

Питание трехфазного электродвигателя осуществляется от электрической сети переменного тока. Конструкция трехфазного электродвигателя представляет собой неподвижный статор с тремя сдвинутыми на 120° по отношению друг к другу обмотками. Благодаря разнице фаз в электродвигателе трехфазного типа образуется вращающееся магнитное поле, приводящее в движение ротор.

Современные трехфазные электродвигатели оборудованы надежными системами электрозащиты. При пропадании одной из фаз или возникновении перекоса напряжения защитные реле автоматически отключает электродвигатель. В нашем каталоге представлены трехфазные электродвигатели высокого качества, изготовленные в соответствии с действующими международными стандартами.

Исходя из потребности, вы можете приобрести как универсальные трехфазные электродвигатели, так и специфические модели, включая трехфазные двигатели морского исполнения, многоскоростные электродвигатели, двигатели с электромагнитным тормозом, а также бескорпусные и энергосберегающие варианты. На все электродвигатели дается гарантия от производителя.


Асинхронный 3-х фазный электродвигатель

Асинхронные трехфазные двигатели серии SM и SMX

Электродвигатель серии SM состоит из трехфазных асинхронных электродвигателей с диапазоном мощности от 0,09 кВт до 45,0 кВт, и имеют типоразмер от 56 до 225.
Серия SMX отличается от серии SM тем, обладают высокой эффективностью (IE2 или IE3 класс). Другие характеристики у двигателей серии SM и SMX совпадают.
Характеристики двигателей SMX-SM:
– Класс энергоэффективности IE2 или IE3 (серия SMX).
– Тип защиты IP 55.
– Мощность 0,04-132 kW кВт. Односкоростные 2-, 4-, 6-, 8-полюсные (SMX) или двухскоростные 2/4,4/8 (SMD), 2/8, 2/6, 2/12, 4/6, 4/12, 4/16 (SMDA).
– Класс изоляции F (H по запросу).
– Герметичные, с вентиляторным охлаждением (TEFC)
– Степень защиты IP 55.
– Алюминиевый корпус для типоразмеров до 132, чугунный корпус для типоразмера 160-225.
Чугунный фланец для типоразмеров 100 и более.

Двигатели серии SMX-SM также доступны со следующими параметрами:

– Специальное напряжение (230 / 460В 60Гц, 575В 60Гц; 400 / 690В 50Гц, 220 / 380В 60Гц, 440В 60Гц и т.д.)
– тепловой защиты (ВОМ) или термисторы (PTC)
– Нагреватели
– Принудительное охлаждение -AV (SMXAV серия)
– Встроенный кодировщик – E (SMXE серия)
– Двигатели с размерами NEMA
– Нестандартный вал или фланец
– Датчики подшипников
– Специальная среда исполнения (Wash-down, морская, тропическая)

6-и полюсный – 50 Гц

Power (kW)HEff. 100%Cos fEff. 75%Eff. 50%
0,75 90S 76,1 0,65 75,3 70,6
1,1 90L 78,3 0,61 78,0 73,1
1,5 100L 80,0 0,66 80,3 75,1
2,2 112M 82,0 0,68 82,3 78,3
3,0 132S 85,0 0,73 85,5 83,8
4,0 132M 84,8 0,75 85,0 83,6
5,5 132M 86,0 0,76 86,0 84,2

 

 

Асинхронные трёхфазные электродвигатели

У нас вы можете купить трёхфазные электродвигатели по доступной цене. Предлагаем широкий ассортимент серий SM и SMX, включая нестандартные модификации и модули. 
Асинхронные/индукционные электродвигатели получили своё название из-за разницы частот между магнитным полем, генерируемым статором и вращающейся частью электродвигателя (ротором). Они отличаются невысокой стоимостью, предельной простотой эксплуатации и выдающейся долговечностью.
Будучи основой для большинства современной электроники, такие двигатели оптимальны для использования в приводах промышленных станков (например, деревообработка и металлопрокат). Существуют модификации движков с усиленным пусковым моментом для использования в механизмах подъёмников и специализированной складской технике.

Достоинства трёхфазных двигателей

Поддержание стабильности механической нагрузки, что увеличивает срок жизни деталей;
Наличие вращающегося магнитного поля позволяет работать без подключения проводов, на этой основе работает асинхронный двигатель с короткозамкнутым ротором;
Поддержание вращающегося момента на валу при сбалансированной нагрузке;
Преимущество в цене, размере и содержании в сравнении с однофазными двигателями.

Асинхронные трёхфазные электродвигатели в M.G.M.

Мы предлагаем высочайшее европейское качество и более чем 60 лет деятельности компании как доказательство качества своей техники. Предлагаем вашему вниманию более 26 моделей под двух, четырёх и шестиполюсные двигатели, спроектированные под эксплуатацию в различных температурных условиях и работу в самых комплексных и требовательных промышленных сферах.

Мы фокусируемся на поддержании исключительной надёжности модулей. Все модели техники снабжены герметичным корпусом (IP55 – полная влаго и пылестойкость) с продвинутой вентиляционной системой для защиты от перегрева, классом изоляции проводов F + на основе капрона, с усилением до кремний карбидного покрытия H класса по требованию клиента. Вы можете положиться на них даже в самые ответственные и напряжённые моменты.


Если у вас возникли вопросы по детальным технических характеристикам моделей серий SM и SMX, интересует цена асинхронных трёхфазных двигателей, нестандартные модификации или модули под технику, запчасти или сроки их доставки, обращайтесь к нашему консультанту. Пишите, будем рады помочь.

 

Электродвигатель трехфазный АИР асинхронный 90 L2 380В 3/3000 IM1081 DRIVE DRV090-L2-003-0-3010 IEK

Здесь вы можете купить электродвигатель АИР 90 L2 380В 3/3000 IM1081 DRIVE DRV090-L2-003-0-3010 ИЭК. Мы продаем электрооборудование как в розницу, так и оптом по безналичному расчету. В каталоге представлены имеющиеся в наличии электродвигатели, а особо мощные или в специальном исполнении можно приобрести под заказ.

В интернет-магазине «Минимакс» действуют все способы оплаты и удобные схемы доставки в разные города России.

Применение электродвигателя АИР 90 L2

Электродвигатель – это сердце любого электромеханического устройства. Асинхронные трехфазные электродвигатели АИР 90 L2 относятся к самым востребованным, их используют для нужд промышленности, сельского хозяйства и для обеспечения работы городских коммунальных систем. Насосы, компрессоры, вентиляция, транспортёры, обрабатывающие станки, затворы и задвижки – все это может приводиться в действие электродвигателями типа АИР 90 L2.

Базовое исполнение предполагает работу этого двигателя от сети трехфазного переменного тока 50 Гц напряжением 380В, при необходимости он переключается на 220В.

Степень пыле- и водонепроницаемости двигателей АИР 90 L2 может быть IР54 или IР55, что достигается применением уплотнителей на наиболее уязвимых частях:

  • IР54 – корпус задерживает пыль и брызги воды, достаточно герметичен для обеспечения длительной работоспособности устройства.
  • IР55 – кроме пылезащиты и устойчивости к повышенной влажности двигатель выдерживает прямое попадание струй воды.

Основные характеристики

Электродвигатель АИР 90 L2 380В 3/3000 IM1081 DRIVE DRV090-L2-003-0-3010 ИЭК с короткозамкнутым ротором имеет режим работы S1. В этом режиме двигатель действует с постоянной нагрузкой и стабильным КПД, пока температура нагрева остается в пределах допустимых значений. Охлаждение обеспечивается пластинами на корпусе, поэтому двигатель должен располагаться свободно, без перекрытия преградами ближе 20 мм.

Климатическое исполнение У2 допускает эксплуатацию вне зданий, под навесами, но без прямого контакта с солнечным светом и осадками.

Маркировка электродвигателя АИР 90 L2 380В 3/3000 IM1081 указывает на следующие характеристики:

  • А – асинхронный электродвигатель;
  • И – тип Интерэлектро;
  • Р – мощность соответствует установочным размерам по ГОСТ Р 51689-2000;
  • 90 – габаритная высота оси вращения;
  • L – установочный размер по длине станины;
  • 2 – количество полюсов;
  • 380В – стандарт напряжение в сети;
  • 3 кВт – мощность;
  • 3000 – частота вращения вала;
  • IM1081– вариант монтажа.

Качество, длительность эксплуатации и бесшумность двигателя обеспечиваются сбалансированным ротором (балансировка проводится для каждого агрегата) и современными подшипниками, которые использует производитель.

Двигатель имеет 2 схемы подключения – «звезда» и «треугольник». Первый вариант является оптимальным для трехфазного оборудования и обеспечивает стандартный уровень КПД, без потерь. Если же необходимо включить электродвигатель АИР 90 L2 380В в сеть 220 вольт, то схема включения клемм «треугольник» позволит сделать это, но при обязательном использовании конденсаторов.

Как купить

Купить асинхронный электродвигатель АИР 90 L2 380В 3/3000 IM1081 DRIVE DRV090-L2-003-0-3010 ИЭК вы можете на нашем сайте. Актуальная цена указана в карточке товара. Если вы покупаете двигатель в розницу, добавьте его в корзину, после чего перейдите к выбору способов оплаты и доставки.

Коммерческие компании и оптовые покупатели по безналичному расчету могут запросить коммерческое предложение от компании «Минимакс» через форму «Купить в 1 клик».

Асинхронные трехфазные электродвигатели » Гиброид.ру

Асинхронные трехфазные двигатели нашли очень широкое применение в народном хозяйстве, в строительных механизмах, на различных станках, в прессовом оборудовании, в металлопрокатном оборудовании, в радиолокационных станциях и других отраслях. Дело в том, что конструкция и принцип работы позволяют такому электродвигателю максимально экономично и действенно отдавать свой ресурс.

Строение трехфазных асинхронных двигателей

Асинхронный трехфазный двигатель состоит из неподвижного ротора электродвигателя и статора. Существующие обмотки располагаются в специализированных пазах на внутренней части сердечника статора. В обмотке ротора отсутствует электрическое соединение с обмоткой статора и с сетью. Начало и концы обмоток статора присоединены зажимом к коробке выводов (за схемой треугольник либо звезда). Асинхронные двигатели различаются в основном устройством ротора, которое бывает либо короткозамкнутым, либо фазным. Наиболее широкого распространения приобрели именно короткозамкнутые трехфазные двигатели. Обмотка короткозамкнутого ротора делается на цилиндре из стержней, выполненных из меди, и имеет название “Беличья клетка”. Торцевые концы стержней всегда замыкаются металлическими кольцами, а пакет ротора собирают из электротехнической стали. В трехфазных электродвигателях стержни небольших мощностей обычно заливают алюминием или его сплавами.

Принцип получения вращающегося магнитного поля

В виде трех катушек обмотка статора уложена в пазы, которые расположены под углом 120 градусов. При подаче на катушку трехфазного напряжения в них устанавливаются соответствующие токи, а катушки при этом создают собственное магнитное поле. В любой катушке ток положительный, если он направлен от начала концов катушки, а отрицательный ток получается при противоположном направлении. Векторы, намагничивающие силы всегда совпадают с осями существующих катушек, а величина сил прямо пропорциональна значениям тока. Направление результирующего вектора всегда совпадает с осью катушки, а результирующий вектор намагничивающиеся силы поворачивает на 120 градусов, сохраняя величины и совпадая при этом с осью соответствующей катушки. Таким образом, за определенный период времени результирующее магнитное поле статора совершает полный оборот с неизменной скоростью. Именно таким образом получается вращающееся магнитное поле. Работа асинхронного трехфазного двигателя основана на взаимодействии вращающегося магнитного поля с токами в проводниках ротора.

Принцип работы трехфазных асинхронных двигателей

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя. В результате этого возникает электромагнитная пара сил, которые стремятся повернуть ротор в направлении движения магнитного поля статора. Ротор приходит во вращение, приобретая определенную скорость. При этом магнитное поле ротора вращается асинхронно, то есть с разными скоростями. Скорость вращения ротора всегда будет меньшей, чем скорость вращения магнитного поля статора. По такому принципу осуществляется работа трехфазного асинхронного двигателя.

Запуск типовых трехфазных двигателей

Двигателям с огромным моментом инерции требуется увеличение вращающего момента и одновременного увеличения пусковых токов. Для этого используют двигатели с фазным ротором. Для увеличения начального момента пуска в схеме ротора применяют трехфазный реостат. В самом начале пуска он введен полностью и при этом пусковой ток уменьшается. Во время работы реостат полностью выведен. Для пуска двигателей с короткозамкнутым ротором применяют несколько схем (схема с переключением со звезды на треугольник, с трансформатором и с реактивной катушкой). Рубильник последовательным методом соединяет реактивную катушку со статором двигателя. Когда скорость ротора приближается к номинальной скорости – замыкается рубильник. Он закорачивает катушку и статор переключается на полное обеспечение сети. При автотрансформаторном пуске (по мере разгона двигателя) автотрансформатор переводится в положение “работа”, в котором на статор подается полное напряжение сети. Запуск двигателя с предварительным включением обмотки статора звездой и ее последующим переключением на треугольник дает трехкратное уменьшение тока.

Изменения частоты вращение ротора

Параллельные обмотки пары фаз образуют пару полюсов, которые сдвинуты в пространстве на 120 градусов. Последовательное соединение обмоток образует 2 пары полюсов, что дает возможность уменьшить скорость вращения в 2 раза. Для регулировки скорости вращения ротора используют перемену частоты тока и применяют отдельный его источник.

Способы торможения двигателей

При торможении двигателя меняются два провода, соединяемых с обмоткой статора изменяя направление вращения магнитного поля всей установки. При этом наступает электромагнитное торможение. Для динамического торможения используют отключение обмотки статора от трехфазной сети и последующим ее включением в сеть постоянного тока. Из-за этого неподвижное поле статора заставляет ротор постепенно останавливаться.

Трехфазный асинхронный двигатель

: типы, работа и применение

Трехфазный асинхронный двигатель – конструкция, работа и типы трехфазных асинхронных двигателей

Двигатель используется для преобразования электрической формы энергии в механическую. По типу питания двигатели классифицируются как двигатели переменного и постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с рабочими и приложениями.

Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для выработки механической энергии в промышленных приложениях.Почти 80% двигателей – это трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Следовательно, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

Что такое трехфазный асинхронный двигатель?

Трехфазный асинхронный двигатель – это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный питающий ток создает электромагнитное поле в обмотке статора, которое приводит к возникновению крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

Конструкция трехфазного асинхронного двигателя

Конструкция асинхронного двигателя очень проста и надежна. Он состоит в основном из двух частей;

Статор

Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

  • Рама статора
  • Сердечник статора
  • Обмотка статора
Рама статора

Рама статора является внешней частью двигателя.Рама статора служит опорой для сердечника статора и обмотки статора.

Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

Рама отлита для малых машин и изготовлена ​​для больших машин. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия / алюминиевых сплавов или нержавеющей стали.

Сердечник статора

Сердечник статора передает переменный магнитный поток, который вызывает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник ламинирован штамповкой из высококачественной стали толщиной от 0,3 до 0,6 мм.

Эти штамповки изолированы друг от друга лаком. Все штамповки штампуются по форме сердечника статора и фиксируются его рамой статора.

Внутренний слой сердечника статора имеет несколько пазов.

Обмотка статора

Обмотка статора размещается внутри пазов статора, имеющихся внутри сердечника статора. Трехфазная обмотка размещена как обмотка статора.А на обмотку статора подается трехфазное питание.

Число полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет высокой. Полюса всегда попарно. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в уравнении ниже:

N S = 120 f / P

Где;

  • f = частота питания
  • P = общее количество полюсов
  • N s = синхронная скорость

Как конец обмотки, подключенный к клеммной коробке.Следовательно, в клеммной коробке шесть клемм (по две каждой фазы).

В зависимости от применения и способа пуска двигателей обмотка статора подключается по схеме звезды или треугольника, и это осуществляется путем соединения клемм в клеммной коробке.

Ротор

Как следует из названия, ротор – это вращающаяся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с фазной обмоткой / асинхронный двигатель с контактным кольцом

Конструкция статора одинакова в обоих типах асинхронных двигателей.Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

Типы трехфазных асинхронных двигателей

Трехфазные двигатели классифицируются в основном на две категории в зависимости от обмотки ротора (обмотки катушки якоря), то есть короткозамкнутого ротора и контактного кольца (двигатель с фазным ротором).

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или с обмоткой ротора

Связанная публикация: Бесщеточный двигатель постоянного тока (BLDC) – конструкция, принцип работы и применение

Индукция с короткозамкнутым ротором Двигатель

По форме этот ротор напоминает клетку белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

Конструкция этого типа ротора очень проста и надежна. Итак, почти 80% асинхронного двигателя – это асинхронный двигатель с короткозамкнутым ротором.

Ротор состоит из многослойного цилиндрического сердечника и имеет пазы на внешней периферии. Прорези не параллельны, но перекошены под некоторым углом. Это помогает предотвратить магнитную блокировку между статором и зубьями ротора. Это обеспечивает плавную работу и снижает гудение.Увеличивает длину проводника ротора, за счет чего увеличивается сопротивление ротора.

Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Штанги ротора изготовлены из алюминия, латуни или меди.

Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полностью закрытый путь в цепи ротора. Стержни ротора приварены или скреплены концевыми кольцами для обеспечения механической поддержки.

Короткое замыкание стержней ротора. Следовательно, невозможно добавить внешнее сопротивление в цепь ротора.

В роторах этого типа не используются контактные кольца и щетки. Следовательно, конструкция этого типа двигателя проще и надежнее.

Асинхронный двигатель с контактным кольцом или с фазным ротором

Асинхронный двигатель с контактным кольцом также известен как двигатель с фазным ротором . Ротор состоит из пластинчатого цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора совпадает с числом полюсов обмотки статора.Обмотка ротора может быть соединена звездой или треугольником.

Концевые выводы обмоток ротора соединены с контактными кольцами. Итак, этот двигатель известен как асинхронный двигатель с контактным кольцом.

Внешнее сопротивление может легко подключаться к цепи ротора через контактное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

Электрическая схема трехфазного асинхронного двигателя с контактным кольцом и внешним сопротивлением показана на рисунке ниже.

Внешнее сопротивление используется только для пусковых целей. Если он остается подключенным во время работы, это приведет к увеличению потерь в меди в роторе.

Высокое сопротивление ротора хорошо для начальных условий. Таким образом, внешнее сопротивление подключено к цепи ротора во время запуска.

Когда двигатель работает со скоростью, близкой к фактической, контактные кольца замыкаются металлическим хомутом. Благодаря такому расположению щетки и внешнее сопротивление удаляются из цепи ротора.

Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложна по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

Обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В противном случае асинхронный двигатель с короткозамкнутым ротором предпочтительнее асинхронного двигателя с контактным кольцом.

Принцип работы трехфазного асинхронного двигателя

Обмотки статора перекрываются под углом 120 ° (электрически) друг к другу.Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (RMF).

Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

Согласно закону Фарадея, ЭДС индуцируется в проводнике из-за скорости изменения магнитного потока (dΦ / dt). Схема ротора отсекает магнитное поле статора и ЭДС, индуцированную в стержне или обмотке ротора.

Цепь ротора – закрытый путь. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

Теперь мы знаем, что проводник с током индуцирует магнитное поле. Таким образом, ток ротора индуцирует второе магнитное поле.

Относительное движение между магнитным потоком статора и магнитным потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцированного статором.

Здесь ток ротора создается за счет индуктивности.Поэтому этот двигатель известен как асинхронный двигатель.

Скорость ротора меньше синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не улавливает. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

Синхронная скорость зависит от количества полюсов и частоты питания. Разница между фактической скоростью ротора и синхронной скоростью называется скольжением.

Почему скольжение в асинхронном двигателе никогда не бывает нулевым?

Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю.Для асинхронного двигателя этого никогда не будет.

Потому что, когда скольжение равно нулю, обе скорости равны и относительного движения нет. Следовательно, в цепи ротора не наведена ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

Асинхронный двигатель широко используется в промышленности. Потому что преимуществ больше, чем недостатков.

Преимущества и недостатки асинхронных двигателей

Преимущества

Ниже перечислены преимущества асинхронного двигателя:

  • Конструкция двигателя очень проста и надежна.
  • Асинхронный двигатель работает очень просто.
  • Может работать в любых условиях окружающей среды.
  • КПД мотора очень высокий.
  • Асинхронный двигатель требует меньшего обслуживания по сравнению с другими двигателями.
  • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
  • Асинхронный двигатель – это самозапускающийся двигатель. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для запуска.
  • Стоимость этого мотора очень меньше по сравнению с другими моторами.
  • Срок службы этого двигателя очень высок.
  • Реакция якоря меньше.

Связанное сообщение: Прямой онлайн-пускатель – схема подключения стартера прямого включения для двигателей

Недостатки

Недостатки двигателя перечислены ниже;

  • В условиях небольшой нагрузки коэффициент мощности очень низкий. И он потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность при небольшой нагрузке.
  • Пусковой момент этого двигателя (асинхронный двигатель с короткозамкнутым ротором) не меньше.
  • Асинхронный двигатель – это двигатель с постоянной скоростью. В приложениях, где требуется регулировка скорости, этот двигатель не используется.
  • Управление скоростью этого мотора затруднено.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

Применение трехфазных асинхронных двигателей

Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются в жилых и промышленных помещениях, особенно там, где не требуется регулирование скорости двигателей, например:

  • Насосы и погружные
  • Прессовый станок
  • Токарный станок
  • Шлифовальный станок
  • Конвейер
  • Мукомольные мельницы
  • Компрессор
  • И другие устройства с низкой механической мощностью

Электродвигатели с контактным кольцом используются в тяжелых нагрузках, где требуется высокий начальный крутящий момент, например:

  • Сталелитейные заводы
  • Подъемник
  • Крановая машина
  • Подъемник
  • Линейные валы
  • и другие тяжелые механические мастерские и т. Д.

Связанные сообщения:

Трехфазные, индукционные, электродвигатели для привода насоса

3-ФАЗНЫЕ, ИНДУКЦИОННЫЕ, ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ ПРИВОДА НАСОСА В листе технических данных 3

показано, как определить мощность двигателя, необходимую для привода гидравлического насоса, рассчитанного на (так много) галлонов в минуту на определенном уровне PSI.Дополнительная информация в этом выпуске касается других важных областей, которые могут повлиять на выбор лучшего типа двигателя для конкретной работы.

Корпуса двигателей, предохранители, защита от тепловой перегрузки и пускатели двигателей будут рассмотрены в одном из следующих выпусков.

Тип двигателя, который используется в большинстве приводов гидравлических насосов, – это трехфазный асинхронный двигатель с короткозамкнутым ротором, мощностью от 1 до 500 л.с. Информация в этом выпуске относится только к этому типу и может быть неприменима к другим типам.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Двигатель этого типа имеет ротор, состоящий из пластин железа, но не имеет обмотки на роторе; поэтому в нем нет щеток, коммутатора или контактных колец. Все обмотки находятся на статоре, который также состоит из металлических пластин с различным количеством северных и южных полюсов (попарно). Двигатель работает с постоянной скоростью, определяемой частотой сети (Герцы) и количеством пар магнитных полюсов, которые у него есть.За исключением небольшого пробуксовки скорости при полной нагрузке, он не будет работать на более низких скоростях без сильного перегрева.

Конструкция B Скорость вращения двигателя – синхронная и полная нагрузка

Число пар полюсов

Synchr. Об / мин @

60 Гц

Об / мин при полной нагрузке @

60 Гц

Synchr.Об / мин @

50 Гц

Об / мин при полной нагрузке @

50 Гц

1

3 600

3,490

3 000

2 900

2

1,800

1,745

1,500

1,450

3

1,200

1,160

1 000

970

4

900

875

750

725

Обороты при полной нагрузке в таблице были рассчитаны для снижения скорости (скольжения) примерно на 3% от теоретической или синхронной скорости.

Характеристики тока и напряжения

Motor Current. Крутящий момент создается потоком тока; чем выше ток, тем больше выходной крутящий момент. Ток также отвечает за повышение температуры обмоток. Любые рабочие условия, такие как низкое напряжение, неправильная частота или перегрузка по крутящему моменту, которые вызывают протекание тока, превышающего номинальный, указанный на паспортной табличке, вызовут ненормальное повышение температуры.

Двигатели

конструкции B (чаще всего используются в приводах насосов) могут запускаться при полной нагрузке, но если их необходимо запускать часто, насос следует разгружать до запуска двигателя, чтобы предотвратить перегрев двигателя большим пусковым током.

Последствия низкого напряжения. Паспортная табличка Номинальное значение HP основано на доступном полном напряжении. Выходная мощность HP представляет собой комбинацию напряжения, умноженного на ток. Если напряжение слишком низкое, то для получения номинальной мощности ток становится слишком большим, что вызывает ненормальное повышение температуры. Двигатели обычно выдерживают даже 90% номинального напряжения, и хотя будет аномальное повышение температуры, этого будет недостаточно, чтобы повредить изоляцию. Для постоянной работы от источника напряжения, заведомо известного низкого уровня, номинальное значение HP следует уменьшить на тот же процент, что и при низком напряжении.

Пример: 25-сильный 220-вольтметр на 208-вольтовой линии имеет только 94½% от номинального напряжения. Следовательно, его следует снизить до 0,945 × 25 = 23,6 л.с. (плюс коэффициент обслуживания, если применимо).

Эффекты высокого напряжения. Если двигатель не нагружен сверх номинальной мощности, указанной на паспортной табличке, ток полной нагрузки будет ниже номинального, и двигатель будет работать при более низкой температуре, чем его номинальное значение. Однако его пусковой ток и ток пробоя (при остановке) будут выше, чем обычно. Размеры проводки, предохранителя и защиты от тепловой перегрузки должны быть подобраны соответствующим образом.Кроме того, значительно возрастет шум двигателя и может быть нежелательным.

Проверка напряжения. В установках, в которых двигатель работает с полной или почти полной мощностью, дисбаланс всего 3½% между самым высоким фазным напряжением и средним значением всех трех напряжений может привести к повышению температуры примерно на 25% выше нормального номинального повышения. вызывая повреждение изоляции.

Если напряжение при полной нагрузке несимметрично между фазами, либо двигатель неисправен, либо линия питания несимметрична.Чтобы определить причину неисправности, сначала измерьте напряжение на всех фазах. Затем продвиньте все силовые линии на одну фазу и повторите измерения. Если более высокое напряжение увеличивается при повторном подключении, линия питания несимметрична. Корректирующие меры могут быть приняты следующим образом:

Проверьте асимметрию напряжений на каждой фазе, где линия электропередачи входит в здание. Если в этот момент дисбаланс превышает 3½%, обратитесь в коммунальное предприятие для проверки и принятия мер по исправлению.

Когда двигатель работает с полной нагрузкой, сравните напряжение каждой фазы на двигателе с показаниями напряжения, снятыми на входе линии питания.Если потеря напряжения в любой фазе превышает 3%, проверьте высокое сопротивление в проводке, соединениях, предохранителях, автоматическом выключателе или разъединителе.

Диапазон рабочего напряжения

Паспортная табличка Напряжение

Эксплуатация

Напряжение

Диапазон *

В наличии

л.с.

Диапазон

115

от 104 до 126

от 1 до 15

200

180 до 220

от 1 до 500

230

207 до 253

от 1 до 500

230/460

207 до 253

143T-445T

414 до 506

143T-445T

460

414 до 506

от 1 до 500

575

518 до 632

от 1 до 500

2 300

2070-2530

444T и выше

В этой таблице показано номинальное напряжение, для которого обычно производятся многофазные двигатели, и максимальный диапазон напряжения, в котором они могут работать (отклонение 10% от номинального значения).

* Перенапряжение (при более высоком уровне шума) переносится лучше, чем пониженное напряжение, при условии, что ток ограничен номиналом, указанным на паспортной табличке.

Проекты NEMA

Магнитная структура и обмотки двигателя предназначены для получения определенных требуемых характеристик крутящего момента и скорости. Доступны четыре исполнения NEMA:

Конструкция B. Этот тип наиболее часто используется для приводов гидравлических насосов, но имеет некоторые ограничения: пусковой момент, требуемый нагрузкой, не должен превышать 50% номинального момента двигателя; реакция нагрузки должна иметь небольшую пульсацию крутящего момента или отсутствовать; инерция нагрузки не должна превышать инерцию ротора двигателя; двигатель должен работать против довольно стабильной нагрузки с нечастыми запусками и остановками.

Конструкция D. Эта конструкция может быть предпочтительнее, если пусковой крутящий момент превышает 50% номинального крутящего момента двигателя. Также при сильных и частых изменениях крутящего момента нагрузки.

Существует несколько вариантов двигателей конструкции D, но все они имеют скольжение скорости более 5% (по сравнению с менее 3% на двигателе конструкции B). Те, которые имеют проскальзывание от 5 до 8%, доступны в разумных пределах, но те, у которых проскальзывание выше, до 13%, следует рассматривать как элементы специального заказа и могут потребовать продленного времени доставки.

Двигатели

конструкции D иногда используются для «пика» гидравлического насоса при давлении, которое может привести к серьезной перегрузке и повреждению двигателя конструкции B. Снижение скорости при полной нагрузке или перегрузке снижает входную мощность и линейный ток.

Конструкции A, C и E. Они редко используются для приводов насосов. Они способны запускать нагрузки с полным крутящим моментом, но сетевой ток может быть чрезвычайно высоким, что требует специального и дорогостоящего пускового оборудования.

Влияние неправильной частоты

Большинство гидравлических систем работают от линии электропередач коммунальной компании, частота которой строго контролируется.Если работа осуществляется от небольшого изолированного источника питания, частота должна быть с точностью до 5% от номинальной мощности двигателя, чтобы обеспечить полную мощность двигателя. Если двигатель 60 Гц должен работать от источника питания 50 Гц или наоборот, Значительные жертвы должны быть принесены в работу двигателя, как показано в этой таблице:

1) Двигатель 60 Гц в сети 50 Гц

2) Двигатель 50 Гц в сети 60 Гц

л.с. будет:

16-2 / 3 меньше

на 20% больше

Отрегулируйте напряжение на: *

16-2 / 3 меньше

на 20% больше

Момент при полной нагрузке

То же

То же

Пробивной момент

То же

То же

Момент заторможенного ротора

То же

То же

Ток заторможенного ротора

на 5% меньше

на 6% больше

Скорость, об / мин

16-2 / 3 меньше

на 20% больше

Макс.коэффициент обслуживания

1,00

1,00

Уровень шума

Меньше

Подробнее

* Регулировка напряжения предназначена для поддержания тока на номинальном значении для создания крутящего момента вала. Ток двигателя всегда является ограничивающим фактором при изменении номинальной частоты или напряжения.

Запуск двигателя

Любой трехфазный асинхронный двигатель может быть переключен непосредственно на полное сетевое напряжение для запуска, но это приводит к очень сильному скачку тока в линии. Коммунальные предприятия имеют правила, ограничивающие скачки тока и колебания напряжения, которые могут возникать в линии электропередач во время запуска двигателя. Обычно двигатели мощностью 50 или более л.с. должны запускаться при пониженном напряжении, чтобы ограничить переходный ток. Доступны несколько типов пускателей пониженного напряжения.

В дополнение к скачку тока, возникающему при подключении двигателя непосредственно к линии, пусковой удар может быть слишком сильным для некоторых типов нагрузок, и запуск с пониженным напряжением может потребоваться даже для небольших двигателей.

Коэффициент обслуживания

Опубликованный коэффициент эксплуатации (обычно 1,15 × паспортная мощность в непрерывном режиме для двигателей мощностью до 200 л.с.) может использоваться, но только при работе на правильной частоте и не более чем на 3% выше или ниже номинального напряжения, а также при работе под все нормальные условия окружающей среды следующие:

а. При температуре окружающей среды не выше 40 ° C и не ниже 0 ° C.

г. На высоте не выше 3300 футов и ниже уровня моря, а также в герметичном или вакуумированном пространстве, что приводит к выходу давления за эти пределы.

г. Устанавливается надлежащим образом на жесткое основание в месте, обеспечивающем свободную и неограниченную циркуляцию чистого, сухого охлаждающего воздуха, и где его можно периодически проверять на наличие смазки и обеспечивать надлежащее техническое обслуживание.

Эксплуатация двигателя в условиях, вызывающих превышение номинальной температуры обмоток, может сократить срок службы изоляции наполовину при дополнительном повышении на 10 ° C.

Безопасность

В дополнение к обычным мерам защиты от поражения электрическим током корпус двигателя должен быть заземлен. Если заземление не проходит через силовую проводку, отдельный заземляющий провод, подключенный к корпусу двигателя, должен быть проведен к внешнему заземляющему стержню. Заземление на водопроводную или газовую трубу – не лучшая практика.

Защитные ограждения

должны быть размещены на вращающихся частях, таких как муфты, шкивы или шестерни, соединенные с валом двигателя, чтобы предотвратить запутывание одежды персонала.

Перегрузка

Двигатель может быть перегружен на короткое время. Лист данных № 3 предлагает пределы для перегрузки. Чрезмерный линейный ток, несоразмерный увеличению выходных потоков высокого давления во время перегрузок. Например, двигатель конструкции B, перегруженный до 150% номинальной мощности, может потреблять ток, примерно в 4 раза превышающий нормальный ток полной нагрузки.

Поиск и устранение неисправностей

Перегрев. Это ток, протекающий через обмотки, вызывает повышение температуры. Двигатель не будет перегреваться, даже если он будет работать на слишком высоком или низком напряжении или на неправильной частоте, если ток поддерживается на максимальном уровне, указанном на паспортной табличке. Это означает, что если напряжение и частота выходят за установленные пределы, нагрузка высокого давления должна быть уменьшена настолько, насколько это необходимо, чтобы ограничить ток до значения, указанного на паспортной табличке.

Двигатель может перегреться из-за слишком частого запуска или «засорения» для быстрой остановки или реверсирования.

Прогорание обмотки: Изоляция преждевременно выходит из строя в условиях напряжения, частоты или нагрузки, которые вызывают аномально высокий рост температуры обмоток.

Механический. Двигатели с подшипниками скольжения или роликами должны устанавливаться таким образом, чтобы вал находился под углом от 5 до 10 градусов по горизонтали. Двигатели с вертикальным валом должны иметь шарикоподшипники. Необычно большие боковые нагрузки, особенно при использовании шестерен или шкивов малого диаметра, сокращают срок службы подшипников. Двигатели, несущие большие боковые нагрузки, должны иметь роликовые подшипники.

Опубликовано:

ЖЕНСКИЕ ОБРАЗОВАТЕЛЬНЫЕ ИЗДАНИЯ

Womack Machine Supply Co.

13835 Сенлак Др.

Фермерский филиал, Техас 75234

Тел .: 800-859-9801 Факс: 214-630-5314

www.womack-educational.com

Асинхронные двигатели | ARC Systems Inc

Мы производим однофазные и трехфазные асинхронные двигатели для удовлетворения разнообразных потребностей наших клиентов.Эти двигатели часто называют двигателями «рабочих лошадок», поскольку они используются во многих промышленных и тяжелых приложениях с высокими требованиями, таких как системы аэрокосмической обороны и транспортные средства, а также различные лифты, железные дороги, гидравлические машины, насосы, бензин. оборудование для бурения нефтяных скважин и многое другое.

Асинхронные двигатели

доступны с медными или алюминиевыми роторами. Мы предлагаем варианты на 400 и 60 циклов. Мы также можем предоставить редукторы или тормоза.

Они доступны в диапазоне скоростей от дробной до двух и трех лошадиных сил.Мы можем изготовить электродвигатели за пределами этого диапазона в соответствии с вашими уникальными требованиями.

Мы предлагаем комплекты двигателей, которые включают узел статора, узел ротора с роторами переменного тока и отливки ротора, вал и другие компоненты. Эти комплекты безрамных асинхронных двигателей предназначены для клиентов, которые хотят использовать свою собственную раму или корпус. Если вам нужны узлы статора, специальные обмотки и катушки с герметизацией, мы можем удовлетворить ваши потребности.



Добавить в цитату

Имя

Тип двигателя

# Фазы

Напряжение / фаза переменного тока

Частота Гц.

Скорость вращения вала, об / мин

Размер двигателя

Заметки

Мин-Кол-во

Асинхронные двигатели переменного тока

3

208

400

10200

10

Доступны также безрамные

Асинхронные двигатели переменного тока

3

115

400

15000

10

Доступны также безрамные

Асинхронные двигатели переменного тока

1

115

400

7800

10

Доступны также безрамные

Асинхронные двигатели переменного тока

3

120

400

10200

10

Доступны также безрамные

Асинхронные двигатели переменного тока

1

115

400

9800

11

Доступны также безрамные

Асинхронные двигатели переменного тока

3

200

400

7000

18

Доступны также безрамные

Асинхронные двигатели переменного тока

3

200

400

7800

18

Доступны также безрамные

Асинхронные двигатели переменного тока

3

108

400

7800

18

Доступны также безрамные

Асинхронные двигатели переменного тока

3

16

400

11900

18

Доступны также безрамные

Асинхронные двигатели переменного тока

1

115

60

3000

20

Доступны также безрамные


Трехфазные асинхронные двигатели

Эти двигатели предназначены для работы от трехфазного источника переменного напряжения.Статор представляет собой классический трехфазный статор со смещенным на 120 градусов узлом обмотки.

Мы производим их с использованием роторов с короткозамкнутым ротором с алюминиевыми и медными стержнями. Мы также предлагаем их с термозащитой и термоизоляцией. Эта функция защищает обмотку от чрезмерных рабочих температур или перегрузки по току.

Асинхронные двигатели переменного тока

Эти двигатели являются одним из двух основных типов двигателей переменного тока, которые мы разрабатываем и производим. Они питаются от переменного тока и состоят из двух основных частей: внешнего неподвижного статора с катушками и внутреннего ротора, прикрепленного к выходному валу.

Внешний статор создает вращающееся магнитное поле, в то время как внутренний ротор получает крутящий момент от этого поля. Эти двигатели также называют асинхронными двигателями.

Двигатели 400 Гц для аэрокосмической и оборонной промышленности

Для нужд авиакосмической и военной промышленности мы предлагаем высокоточные двигатели с исключительными характеристиками. К ним относятся асинхронные двигатели переменного тока 400 Гц, которые используются на коммерческих и военных самолетах. Они специально разработаны, чтобы выдерживать экстремальные температуры, сильную влажность, сильные удары, вибрацию и высоту, а также другие сложные условия.

Мы можем предоставить двигатели, соответствующие всем без исключения спецификациям NEMA, с такими функциями, как открытая рама, конструкция с вентиляторным охлаждением, встроенный генератор, редуктор, тормоз, вентилятор и / или нагнетатель. Мы также можем использовать различные системы установки, специальные конфигурации монтажа и конструкции из специального сплава.

Что отличает ARC Systems Inc.?

Благодаря нашим возможностям проектирования, разработки и производства, мы являемся уникальным производителем и поставщиком асинхронных двигателей.Если вам требуется индивидуальный асинхронный двигатель или другая система управления движением или срабатывания, наша команда опытных инженеров может спроектировать, разработать и произвести продукцию в соответствии с вашими потребностями.

Мы производим в соответствии с требованиями наших клиентов к частоте, напряжению и выходной мощности. Мы будем тесно сотрудничать с вами, чтобы создать дизайн или следовать вашим техническим чертежам и спецификациям, чтобы ваши двигатели соответствовали всем требованиям и надежно работали в вашей системе или приложении.Расскажите нам о своей мощности, скорости, нагрузке, приводе и других требованиях к оборудованию, и наши инженеры помогут вам выбрать лучшие варианты двигателей.

Мы можем помочь вам разработать эскизные чертежи на основе вашей идеи, чтобы вы могли предоставить своим инженерам технические характеристики для утверждения перед разработкой и производством двигателя. Мы работаем напрямую с инженерами и производителями комплектного оборудования, а также с консультантами и агентами по закупкам.

Вы можете просмотреть наш каталог стандартных двигателей, которые мы производим, каждый из которых может быть изменен в соответствии с особенностями вашей индивидуальной системы.Вы можете искать по номеру детали и другим деталям.

В наш ассортимент входят двигатели BLDC, синхронные двигатели, низкоскоростные двигатели с высоким крутящим моментом, а также генераторы, комплекты статора и ротора и многое другое. У нас есть электродвигатели, предназначенные для тяжелых и крупных применений, а также для малых и точных технологий.

Если вам нужен продукт для управления движением, который по своим характеристикам и качеству превосходит коммерческие стандартные варианты, мы предлагаем полный спектр решений.

Если вы хотите изготовить двигатель по индивидуальному заказу на основе новой конструкции, свяжитесь с нами напрямую, чтобы обсудить желаемую производительность и технические характеристики разработки.

Мы гордимся тем, что являемся производителем, сертифицированным по стандарту AS9100D / ISO 9001: 2015, и зарекомендовали себя благодаря исключительным конструкторским и инженерным возможностям. Работая с нами, вы можете рассчитывать на качественный результат. Доверьте нам эффективное и самоотверженное удовлетворение ваших потребностей.

Введение в трехфазный асинхронный двигатель

Здравствуйте, друзья, надеюсь, у всех у вас все хорошо. В сегодняшнем руководстве мы рассмотрим введение в трехфазный асинхронный двигатель . Трехфазный асинхронный двигатель – это тип машины, который в основном используется в промышленности. Существует 2 основных типа трехфазных асинхронных двигателей: первый – это беличья клетка, а другой – двигатель с фазным ротором. Мотор с короткозамкнутым ротором обычно используется в наших домашних хозяйствах и на производстве, поскольку он дешев, прост в ремонте и надежен. Асинхронный двигатель доступен в диапазоне от FHP (дробная мощность – это двигатель, выходная мощность которого составляет 746 или меньше) до нескольких мегаватт. Двигатели FHP бывают одно- и многофазными, например трехфазными.Трехфазные двигатели используются в тех случаях, когда необходим более высокий крутящий момент.

Асинхронный двигатель – это разновидность двигателя переменного тока, в котором мощность передается на ротор в соответствии с законом электромагнитной индукции Фарадея. Асинхронный двигатель вращается (вращается) за счет силы между статором и магнитным полем ротора. Ток в статоре создает поле, которое взаимодействует с полем ротора, и в роторе индуцируется крутящий момент, благодаря которому он вращается, таким образом, электрическая энергия преобразуется в механическую энергию.В сегодняшнем посте мы рассмотрим конструкцию, работу, скольжение, крутящий момент и другие параметры трехфазного асинхронного двигателя. Итак, приступим к работе с Знакомство с трехфазным асинхронным двигателем

Знакомство с трехфазным асинхронным двигателем
  • Трехфазный асинхронный двигатель – это машина, сконструированная для работы от трехфазного источника питания.
  • Асинхронный двигатель с тремя диаметрами также известен как асинхронный . Его работа зависит от принципа вращающегося магнитного поля.
  • Как мы обсуждали в статье об однофазном асинхронном двигателе, что он не самозапускающийся, но трехфазные двигатели являются самозапускающимся устройством, для этого двигателя нет необходимости в каком-либо отдельном пускателе.
  • Существует два основных типа этого двигателя, которые по конструкции ротора: первый – это двигатель с фазным ротором, а второй – ротор с короткозамкнутым ротором.
  • Конструкция этого двигателя очень скромная, прочная, менее дорогая, и его очень легко ремонтировать. Этот двигатель доступен во многих номинальных мощностях.
  • Этот двигатель работает с постоянной скоростью в условиях холостого хода или полной нагрузки
Развитие наведенного крутящего момента в трехфазном асинхронном двигателе
  • На приведенной схеме мы видим, что ротор обоймы трехфазного асинхронного двигателя.
  • На этот ротор мы поставили 3-фазные входы на ведущую часть двигателя, и мы можем видеть, что 3-х токи движутся в статоре.
  • Эти 3 тока создают вращающееся магнитное поле (Bs), которое вращается против часовой стрелки.
  • Скорость этого вращающегося магнитного поля может быть измерена по данной формуле.

n синхронизация = 120fe / p

  • В этом уравнении.
    • n sync показывает скорость вращающегося магнитного поля.
    • f e – частота системы.
    • (P) не соответствует полюсу двигателя.
  • Вращающееся поле (Bs), когда оно связано с ротором, индуцирует ЭДС в роторе, что объясняется как.

e ind = (v x B) x I

  • В этом уравнении:
    • В – вращение ротора относительно поля.
    • B – вращающееся магнитное поле.
    • L – длина ротора (можно сказать, что это длина стержней в поле).
  • Это сравнительное движение ротора, связанное с магнитным полем, которое индуцировало напряжение на стержнях ротора.
  • Направление скорости стержней ротора, которые расположены вверху, составляет девяносто градусов к магнитному полю, которое вызывает генерацию ЭДС в этих стержнях за пределами страницы, но в нижних стержнях направление ЭДС, индуцированное на странице.
  • Хотя, поскольку сборка ротора обладает индуктивными свойствами, самый высокий ток ротора (I) отстает от самого высокого напряжения ротора (V).
  • Ток, движущийся в роторе, вызывает создание магнитного поля ротора, которое обозначается как B R .

T ind = kB R x BS

  • Это индуцированный крутящий момент в двигателе.
  • Результирующий крутящий момент направлен против часовой стрелки. Направление вращения ротора зависит от направления индуцированного крутящего момента, поскольку направление крутящего момента – против часовой стрелки, поэтому ротор также движется против часовой стрелки.
  • Существует фиксированный верхний предел скорости двигателя, но. Если ротор двигателя движется с синхронной скоростью, стержни ротора будут статичными по отношению к полю, и в роторе не будет индуцированной ЭДС.
  • Если наведенная ЭДС равна нулю, то в роторе не будет тока и поля.

T ind = kB R x BS

  • В этом уравнении мы видим, что крутящий момент также зависит от ЭДС ротора, если нет ЭДС ротора, тогда не будет крутящего момента, поэтому двигатель замедлится и перестанет работать.
Что такое проскальзывание ротора
  • Индуцированная ЭДС в роторе зависит от скорости вращения ротора по отношению к вращающемуся полю.
  • Между тем, работа асинхронного двигателя зависит от напряжения (В) и тока (I), поэтому разумно поговорить об этой сравнительной скорости.
  • 3 параметра обычно используются для описания сравнительного движения ротора и магнитных полей (B).
  • Первая – это скорость скольжения (n скольжение ), она объясняет разницу между синхронной скоростью (n syn ) и скоростью ротора (n m ).
  • Скорость скольжения описывается данной формулой как:

(n скольжение ) = (n син ) – (n m )

  • В этом уравнении:
    • (n скольжение ) обозначается как скорость скольжения.
    • (n syn ) описывает синхронную скорость.
    • (n m ) – скорость вращения ротора.
  • Фактор, описывающий относительное движение между скоростью ротора и магнитным полем, – это скольжение.
  • Определяется как относительная скорость, выраженная в процентах. Его можно определить по данной формуле.

S = (nslip / nsync) x 100%

  • Если мы поместим в это уравнение скорость скольжения (n скольжение ), то она станет.

S = (nsync-нм) / (nsync) x 100%

  • Это уравнение также можно определить в терминах угловой скорости.

с = (Wsync -Wm) / (Wsync)

  • Из этого уравнения мы можем видеть, что если ротор движется с синхронной скоростью, то значение скольжения равно нулю, а если ротор находится в стационарном состоянии, значение скольжения равно единице.
 
Электрическая частота на роторе асинхронного двигателя
  • Асинхронный двигатель работает за счет ЭДС, индуцированной в роторе, по этой причине его также называют вращающимся трансформатором.
  • Как и в первичной обмотке трансформатора, индуцированное напряжение во вторичной обмотке, в случае асинхронного двигателя статор действует как первичная обмотка, а ротор – как вторичная обмотка.
  • Но в трансформаторе частота вторичной обмотки остается прежней, но в случае частоты двигателя не остается прежней.
  • Если мы заблокируем ротор двигателя, то его частота станет равной частоте статора.
  • Если ротор вращается с синхронной скоростью, то частота ротора будет 0.
  • По заданной формуле можно найти значение частоты ротора.

f r = (P / 120) x ((n syn ) – (n m ))

  • В уравнении:
    • f r представляется как частота ротора.
    • (n syn ) – синхронная скорость.
    • (n m ) – скорость ротора.
Детали трехфазного асинхронного двигателя
  • Трехфазный асинхронный двигатель состоит в основном из двух частей: первая – статор асинхронного двигателя, а вторая – ротор.
  • Это самые важные детали, поскольку они вызывают генерацию магнитного потока в двигателе и его работу.
  • Давайте обсудим оба подробно.
Статор трехфазного асинхронного двигателя
  • Статор асинхронного двигателя 3-ø создается комбинацией большого количества отверстий (пазов) для вставки схемы крылышек 3 ø, где предусмотрено входное питание 3 ø.
  • Трехфазная обмотка спроектирована таким образом, что при подаче питания на их клеммы они создают вращающееся магнитное поле.
Ротор трехфазного асинхронного двигателя
  • Ротор асинхронного двигателя 3 ø содержит покрытый сердечник цилиндрической формы с соответствующими пазами (пазами), в которых могут быть проводники.
  • Эти токопроводящие провода могут быть из меди (Cu) или алюминия (Al), закрепленные в каждой прорези (пазу), и они соединены с контактными кольцами на конце.
  • Прорези на роторе не точно эквивалентны оси вала, но расположены под небольшим наклоном, поскольку такое расположение снижает магнитный жужжащий звук и позволяет избежать флибустьерства двигателя.
Работа трехфазного асинхронного двигателя
  • Ведущая часть двигателя состоит из наложенных друг на друга трех обмоток, расположенных под углом один двадцать градусов друг к другу.
  • Когда статор подключен к источнику переменного тока с тремя диаметрами, он создает вращающееся магнитное поле, которое вращается с синхронной скоростью.
  • Согласно закону Фарадея напряжение, создаваемое в любой цепи, является причиной скорости изменения ассоциации магнитного потока через эту схему.
  • Как мы уже говорили, стержни ротора соединены с контактными кольцами, когда вращающееся поле статора взаимодействует с ротором, это поле вызывает индуцированное напряжение в роторе.Из-за этого в роторе возникает напряжение.
  • Сравнительная скорость вращающегося флюса и проводящего провода неподвижного ротора является источником текущего производства.
  • Следовательно, исходя из принципа работы асинхронного двигателя 3-ø, можно определить, что скорость ротора не должна равняться синхронной скорости, создаваемой неподвижной частью ротора.
  • Если скорость ротора равна скорости поля статора, тогда не будет сравнительной скорости, из-за этого не будет напряжения в роторе двигателя, если нет индуцированного напряжения в роторе, тогда нет в роторе не будет протекать ток.
  • Из-за отсутствия тока в двигателе не будет крутящего момента, и двигатель не будет работать.
Характеристики трехфазного асинхронного двигателя
  • Трехфазный асинхронный двигатель самозапускается, для этого двигателя не требуется специального пускателя.
  • В этом двигателе нет щеток, которые устраняют искрение двигателя.
  • Этот двигатель имеет мощную конструкцию.
  • Это менее дорогой мотор.
  • Ремонт этого двигателя очень прост, так как эта функция используется чаще всего.
Применение трехфазного асинхронного двигателя
  • Этот двигатель используется в лифтах.
  • Трехфазный асинхронный двигатель используется в кранах.
  • Этот двигатель также используется в вытяжных вентиляторах большого объема.
  • Используется в дополнительных винтах двигателя.
  • Он работает как двигатель вентилятора двигателя.
Преимущества асинхронного двигателя
  • Эти двигатели мощные и скромные по конструкции с очень ограниченными подвижными частями.
  • Эти моторы умело работают в суровых и суровых условиях, например, в морских контейнерах.
  • Цена ремонта асинхронного двигателя с тремя диаметрами меньше и отличается от стоимости ремонта двигателя постоянного тока или синхронного двигателя, асинхронный двигатель не имеет щеток и контактных колец.
  • Он может работать в естественной атмосфере, поскольку у них нет щеток, которые могут вызвать искрение и могут быть опасны для такой среды.
  • Асинхронный двигатель с тремя диаметрами не требует дополнительных пусковых устройств или устройств, так как они могут создавать пусковой крутящий момент при наличии переменного напряжения с тремя диаметрами.
  • Конечные результаты двигателя 3 ø примерно в (1,5) раза превышают номинальные характеристики двигателя 1 ø с такими же номинальными характеристиками.
Недостатки трехфазного асинхронного двигателя
  • В процессе запуска требуется более высокий предварительный начальный ток при подключении к тяжелой нагрузке.
  • Это вызывает потерю напряжения во время пуска двигателя.
  • Асинхронный двигатель
  • работает с запаздыванием P.F, что приводит к увеличению потерь (I 2 R) и снижению эффективности, особенно при небольшой нагрузке.Для восстановления P.F используются стационарные конденсаторные батареи с двигателем.
  • Регулятор скорости асинхронного двигателя 3 ø является сложной задачей по сравнению с двигателями постоянного тока. Преобразователь частоты можно комбинировать с асинхронным двигателем для регулирования скорости.

Все дело в трехфазном асинхронном двигателе, я стараюсь изо всех сил объяснить все, что связано с трехфазным асинхронным двигателем. Если у вас есть вопросы, задавайте их в комментариях.Надеюсь, вам понравился этот урок. Спасибо за прочтение. увидимся в следующем уроке об асинхронном двигателе. Хорошего дня.

Вы также можете прочитать некоторые статьи, связанные с асинхронным двигателем. Это описано здесь.

Автор: Генри
http://www.theengineeringknowledge.com

Я профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях. Я также пишу технический контент, мое хобби – изучать новые вещи и делиться ими с миром.Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.

Сообщение навигации

Завод высокоэффективных трехфазных асинхронных индукционных алюминиевых двигателей

Серия Wonder WEA – это три высокоэффективных фазные асинхронные электродвигатели с литым алюминиевым корпусом. Они соответствуют уровень эффективности IE2.

Роторы, выбранные Wonder, динамически сбалансирован полушпонкой в ​​соответствии с IEC 60034-14.Все моторы могут быть по запросу поставляется сбалансированный с полным ключом или без ключа. Собранный мотор соответствует классу вибрации «A» согласно стандарту IEC 60034-14. Вибрация марка «В» может поставляться как опция. Роторы защищены от коррозии.

Кроме того, Wonder применяет мониторинг подшипников. устройство к нашей продукции. SPM может быть установлен для непрерывного мониторинга рабочая температура подшипников. Это устройство важно в некоторых приложениях, потому что это напрямую влияет на срок службы смазки и подшипников.Отверстия ВОП сохранены для двигатели всех типоразмеров и SPM являются дополнительными по запросу. Ниппели SPM имеют оцинкованная сталь и пластиковые защитные колпачки, доступные на ND-конце без всякой разборки мотора.

Основные технические характеристики:

  • Размер рамы: 80-180 мм
  • Выходная мощность: 0,37-22 кВт
  • Скорость: 3000, 1500, 1000, 750 об / м
  • Поляки: 2, 4, 6, 8
  • Класс защиты: IP55 или выше
  • Класс изоляции: F или выше
  • Метод охлаждения: IC411 / IC416

Отрасли:

  • Очистка воды
  • Обработка воздуха
  • Текстиль
  • Химическая и металлургическая промышленность
  • Изготовление бумаги
  • Продукты питания, напитки и фармацевтика
  • Складская логистика
  • Строительство

Приложения:

  • Насосы Двигатели
  • Компрессоры Двигатели
  • Мотор-редукторы
  • Энергосберегающий двигатель для промышленного шитья Машина
  • Двигатели воздуходувки
  • Бумажные фрезерные двигатели
  • Двигатели для зерновых мельниц
  • Двигатели воздуходувки
  • Двигатели дробилки
  • Подъемные двигатели
  • Двигатели насосов для бассейнов и спа
Электродвигатель

– Принципы работы трехфазного двигателя – роторный, полевой, синхронный и магнитный

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока.Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а по существу являются короткозамкнутыми. Наиболее распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних животных песчанок .Когда двигатель изначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть проводники с током находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с расщепленной фазой, конденсатором , пуском, или заштрихованными полюсами.Синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. Д., Основаны на схемах сопротивления или гистерезиса.

Перемотка 3-фазного двигателя: 54 шага (с изображениями)

Введение: 3-фазный электродвигатель перемотки

Привет всем, я Нико, и в этой инструкции я покажу вам, как перематывать и обновлять старый трехфазный электродвигатель.

Если вы ищете перемотки однофазного двигателя , вы можете найти его здесь .

В этой статье я сделаю шаг вперед.В следующих шагах я покажу вам, как анализировать обмотку двигателя, разбирать двигатель, снимать подшипники, рассчитывать новую обмотку, перематывать двигатель, собирать его с новыми подшипниками и тестировать двигатель. Перемотка – очень долгий процесс. На его перемотку, замену всех старых деталей и сборку потребовалось около двух дней.

Если у вас есть какие-либо вопросы, вы можете легко написать мне.

Добавить TipAsk QuestionDownload

Шаг 1: Анализ двигателя

Я получил этот двигатель в моем университете.

Трехфазный асинхронный двигатель – самый распространенный двигатель в мире.Он имеет очень высокую эффективность и низкие затраты на производство и обслуживание. Две основные части двигателя – это ротор и статор. Ротор обычно выполнен в виде беличьей клетки и вставляется в отверстие статора. Статор выполнен из стального сердечника и обмотки.

Статор используется для создания магнитного поля. 3 фазы генерируют вращающееся магнитное поле, поэтому нам не нужен конденсатор на трехфазном двигателе. Магнитное поле вращения «режет» беличью клетку, где наводит напряжение. Поскольку клетка закорочена, напряжение генерирует электрический ток.Ток в магнитном поле создает силу.

Потому что магнитное поле должно вращаться быстрее, чем ротор, чтобы вызвать напряжение в роторе. Поэтому скорость двигателя немного меньше скорости магнитного поля ((3000 об / мин [Магнитное поле] – 2810 об / мин [Электродвигатель])). Вот почему мы называем их Трехфазным электродвигателем АСИНХРОННЫЙ .

Добавить TipAsk QuestionDownload

Шаг 2: Анализ двигателя

Двигатели Табло с надписью

На доске с надписью двигателей мы можем найти наиболее полезную информацию о двигателе:

  • Номинальное напряжение двигателя (для звезды (Y) и треугольник ( D) подключение двигателя) [В]
  • Номинальный ток двигателя (для подключения двигателя звездой (Y) и треугольника (D) ) [A]
  • Мощность электродвигателя [Вт]
  • Коэффициент мощности cos Fi
  • Скорость вращения [об / мин]
  • Номинальная частота [Гц]

Добавить TipAsk QuestionDownload

Шаг 3: Анализ обмотки

Откройте крышку распределительной коробки.

Перед измерением удалите все соединения в распределительной коробке. Измерьте сопротивление каждой обмотки, сопротивление между двумя разными обмотками и сопротивление между обмоткой и корпусом двигателя.

Сопротивления трех обмоток должны быть одинаковыми (+/- 5%). Сопротивление между двумя обмотками и рамой обмотки должно быть более 1,5 МОм.

Обгоревшие обмотки двигателей можно определить по уникальному запаху (запах горелого лака).

Добавить TipAsk QuestionDownload

Шаг 4: Разборка двигателя

Сделайте несколько снимков двигателя.Отметьте места между первой крышкой и статором и вторым корпусом и статором (нам понадобятся эти отмеченные точки при сборке двигателей).

Снимите крышки с двигателя. Обычно они крепятся к статору длинными винтами. Если не удается разделить крышку и статор, можно использовать резиновый молоток. Осторожно ударьте по крышке и попробуйте повернуть ее. Если это не сработает, нагрейте его.

Добавить TipAsk QuestionDownload

Шаг 5: Разборка двигателя

Снимите ротор со статора. Вы можете аккуратно ударить по оси роторов резиновым молотком.

Добавить TipAsk QuestionDownload

Шаг 6: Разборка двигателя

Снимите вентилятор с оси роторов. У меня был металлический вентилятор, поэтому я его нагрел. Я очень легко отделил его от оси.

Снимите зажим и предохранительное кольцо, если оно у вас есть. Затем снимите вторую крышку.

Добавить TipAsk QuestionDownload

Шаг 7: Снятие подшипников

Используйте съемник для снятия подшипников с обеих сторон. Будьте осторожны, так как вы легко можете повредить ось ротора.

Добавить TipAsk QuestionDownload

Шаг 8: Удаление старой обмотки

Сначала вам нужно отрезать старую обмотку статора. Для этой работы используйте молоток и зубила. Старайтесь не повредить ламели статоров.

Проделайте то же самое с обеих сторон статора.

Добавить TipAsk QuestionDownload

Шаг 9: Удаление старой обмотки

Снимите соединения и распределительную коробку со статора. На следующем этапе вам нужно будет нагреть старые змеевики, при этом распределительный короб должен быть пустым.

Добавить TipAsk QuestionDownload

Шаг 10: Удаление старой обмотки

Нагрейте обмотку пламенной горелкой, чтобы сжечь остатки лака.

Если вы прожгли старый лак, вы сможете вытолкнуть оставшуюся обмотку из зазоров статоров.

Добавить TipAsk QuestionDownload

Шаг 11: Пескоструйная очистка

Пескоструйная очистка – это процесс, при котором песок ударяется по поверхности заготовки с очень высокой скоростью и слегка повреждает ее.

Вы можете легко удалить мотор старой окраски формы с помощью пескоструйной обработки. При пескоструйной очистке нужно быть осторожным, чтобы не повредить слишком сильно поверхность, особенно края колпаков.

Добавить TipAsk QuestionDownload

Шаг 12: Покраска двигателя

Цвет должен выдерживать не менее 100 градусов Цельсия.Убедитесь, что вы не раскрашиваете доску для надписей.

Добавить TipAsk QuestionDownload

Шаг 13: Идентификация старой обмотки

Вы можете найти всю информацию о типе старой обмотки в «намоточной головке». Обмоточная головка – это часть обмотки, в которой выполняются все соединения.

По головке намотки (типу намотки), количеству проводов в каждом зазоре и толщине провода вы можете перемотать обмотку нового двигателя, не выполняя вычислений на следующем шаге.

Добавить TipAsk QuestionDownload

Шаг 14: Расчет параметров новой обмотки

Новая обмотка двигателя зависит от пакета статоров (размеров стального сердечника).Для лучшего представления я сделал 3D модель своего статора.

Необходимо измерить:

  • Длина пакета статоров: lp = 87мм;
  • Внешний диаметр пакета statros: Dv = 128мм;
  • Внутренний диаметр корпуса статоров: D = 75,5 мм;
  • Количество зазоров статоров: Z = 24;

Добавить TipAsk QuestionDownload

Шаг 15: Расчет параметров для новой обмотки

Теперь измерьте размеры паза статора.

  • Ширина паза статора: b1 = 6,621 мм; b2 = 8,5мм;
  • Высота паза статора: hu = 13,267 мм;
  • Открытие паза статора: b0 = 2мм;
  • Высота паза «горловина»: a1 = 0,641 мм;
  • Ширина зуба: bz = 3,981 мм;

Добавить TipAsk QuestionDownload

Шаг 16: Расчет параметров для новой обмотки

Если у вас другая форма прорези, посмотрите на верхний рисунок.

Я скопировал эту картинку из книги [Neven Srb; Электромоторы].

Добавить TipAsk QuestionDownload

Шаг 17: Расчет количества пар полюсов

Количество пар полюсов зависит от номинальных частот и скорости вращения магнитного поля. Вы можете получить скорость вращения магнитного поля, округлив скорость двигателя (2810) до ближайшего значения (3000, 1500, 1000, 750 …).

Добавить TipAsk QuestionDownload

Шаг 18: Расчет количества пар полюсов

Я подсчитал, что у моего двигателя 2 пары полюсов, и он генерирует магнитное поле, как вы можете видеть на верхнем рисунке.

Добавить TipAsk QuestionDownload

Шаг 19: Рассчитать шаг полюса

Шаг полюса – это расстояние по внутреннему кругу статора, и он отмечает размер каждого полюса.

Добавить TipAsk QuestionDownload

Шаг 20: Расчет поверхности полюса

Поверхность полюса отмечена красным на рисунке 2. Одна полюсная поверхность – это ровно половина поверхности статора, потому что у меня двухполюсный двигатель.

Добавить TipAsk QuestionDownload

Шаг 21: Расчет поверхности полюса

Поскольку железный сердечник статора не сделан из чистого железа, нам необходимо рассчитать реальную длину корпуса.Коэффициент наполнения железом указан в верхней таблице. Это зависит от типа изоляции.

Добавить TipAsk QuestionDownload

Шаг 22: Расчет длины зуба

Добавить TipAsk QuestionDownload

Шаг 23: Расчет высоты ярма статора

Ярмо статора является частью пакета статоров, который простирается от зуба статора до конец пакета.

Добавить TipAsk QuestionDownload

Шаг 24: Расчет поперечного сечения вилки

Добавить TipAsk QuestionDownload

Шаг 25: Расчет поперечного сечения зубьев одного полюса

Добавить TipAsk QuestionDownload

Шаг 26: Расчет слота Поверхность

Добавить TipAsk QuestionDownload

Шаг 27: Выбор типа обмотки

Я выбрал тип обмотки на основе технических характеристик двигателя.В намоточных книгах очень много разных типов схем намотки. Каждый утоплен для разного количества пар полюсов.

Обмотку по картинке взял из книжки. Моя новая обмотка была трехфазной однослойной концентрической обмоткой.

Добавить TipAsk QuestionDownload

Шаг 28: Расчет количества слотов на полюс и фазу

Добавить TipAsk QuestionDownload

Шаг 29: Расчет шага полюса (в слотах)

Добавить TipAsk QuestionDownload

Шаг 30: Winding Factor

На верхнем рисунке есть таблица.Вы не можете подобрать коэффициент намотки из таблицы, если у вас однослойная намотка.

Добавить TipAsk QuestionDownload

Шаг 31: Индукция в воздушном зазоре

Выберите соответствующее значение индукции в воздушном зазоре из таблицы. Это зависит от количества пар полюсов. Если двигатель старше, выберите столбец I , в противном случае выберите значение из столбца II .

Добавить TipAsk QuestionDownload

Шаг 32: Расчет индукции в зубцах статора

Добавить TipAsk QuestionDownload

Шаг 33: Расчет индукции в ярме статора

Добавить TipAsk QuestionDownload

Расчет

Шаг 34: Магнитный поток одной пары полюсов

Добавить TipAsk QuestionDownload

Шаг 35: Расчет расчетного числа витков в фазе

Добавить TipAsk QuestionDownload

Шаг 36: Расчет расчетного количества витков в слоте

Добавить TipAsk ВопросЗагрузить

Шаг 37: Определите коэффициент заполнения

Чтобы получить правильный коэффициент заполнения, вам необходимо иметь поверхность вашего гнезда.Тогда вы легко запишите коэффициент заполнения с верхнего графика. Коэффициент заполнения должен находиться между верхней и нижней рекомендованной линией.

Добавить TipAsk QuestionDownload

Шаг 38: Расчет поперечного сечения провода

Добавить TipAsk QuestionDownload

Шаг 39: Расчет толщины проволоки

В соответствии с результатом вы выбираете провод, который находится в +/- 2% диапазон результата. Выбрал провод 0,8мм.

Добавить TipAsk QuestionDownload

Шаг 40: Схема обмотки

Я переделал схему обмотки из книги, чтобы она соответствовала моему статору.Я рисую новую схему обмотки, которую использовал для намотки двигателя.

На втором рисунке показано магнитное поле, создаваемое обмоткой статора. O и X показывают направление электрического тока. Ток, протекающий внутри изображения, имеет направление магнитного поля по часовой стрелке. Если бы был 4-полюсный двигатель, у нас было бы 4 области вместо 2 областей магнитного поля.

Добавить TipAsk QuestionDownload

Шаг 41: Изоляция пазов статора

Измерьте длину паза и прибавьте около 16 мм (в зависимости от того, как вы будете скручивать бумагу).Вырежьте и скрутите, как я делал на гифках. Положите изолирующую бумагу на стол и поместите на нее линейку так, чтобы у вас получился зазор около 4 мм, когда вы вставляете изолирующую бумагу, а затем скручиваете ее. С помощью отвертки согните его и вставьте в щель. Он должен идеально подходить, чтобы вы не могли его вытащить.

Добавить TipAsk QuestionDownload

Шаг 42: Измерьте длину катушек

Сделайте модель катушки. Поместите модель в правые гнезда, оставив немного свободного места. Вы не должны оставлять слишком много места, потому что обмотка будет слишком узкой, и вы не должны делать ее слишком маленькой, потому что вы не сможете получить доступ ко всем слотам.

Добавить TipAsk QuestionDownload

Шаг 43: Намотка катушек

Поместите модель в специальный инструмент. Бесплатная 3д модель намоточного инструмента доступна в инструкции “Перемотка однофазного двигателя”. Убедитесь, что вы наматываете правильное количество оборотов. После того, как вы намотаете катушку, ее нужно перевязать куском проволоки. Затем вы можете взять его из намоточного инструмента.

Добавить TipAsk QuestionDownload

Шаг 44: Вставка катушек в пазы статора

Осторожно поместите катушки в пазы статоров.Это может занять много времени. Будьте осторожны, чтобы не повредить лак для проводов. Поверните катушки так, чтобы их концы проводов выходили сбоку, где находится отверстие от статора к электрическим зажимам. Вы можете использовать деревянную палку, чтобы вставить обмотку в пазы.

Пометьте концы катушек!

Добавить TipAsk QuestionDownload

Шаг 45: Соединение катушек

Соедините катушки вместе согласно схеме намотки. Спаяйте и изолируйте их. Конец каждого провода катушки к распределительной коробке и дополнительно изолируйте их.

Добавить TipAsk QuestionDownload

Шаг 46: Свяжите катушки

Свяжите катушки с помощью нити шнуровки статора. Пришейте нитку для проточки статора вокруг катушек, как вы можете видеть на картинках. Плотная намотка хорошо.

Добавить TipAsk QuestionDownload

Шаг 47: Покрытие двигателя лаком

1. Нагрейте духовку до 100 ° C. Поставил в него мотор.

2. Когда двигатель нагревается, на обмотки двигателя проливается лак, как вы видите на рисунках

3. Поверните двигатель и сделайте то же самое

4.Вы можете повторно использовать старый лак.

5. Поместите мотор в горячую духовку и готовьте около 4 часов.

6. Выньте мотор и очистите край (чтобы крышка подходила идеально).

НЕ ДЕЛАЙТЕ ЭТО ВНУТРИ ЗДАНИЯ ИЛИ КУХНИ!

Добавить TipAsk QuestionDownload

Шаг 48: Соберите двигатель

Установите новые подшипники. Смажьте ось ротора. Вы найдете тип подшипника на стороне подшипника. Если вы не можете найти его, вы можете измерить его и найти номер в каталоге в Интернете.

Добавить TipAsk QuestionDownload

Шаг 49: Соберите двигатель

Установите крышку на статор. Следите за отметками, чтобы поставить его в нужное место.

Добавить TipAsk QuestionDownload

Шаг 50: Соберите двигатель

Вставьте ротор в статор и закройте его второй крышкой. Прикрутите мотор.

Добавить TipAsk QuestionDownload

Шаг 51: Соберите двигатель

Подсоедините концы катушек к зажимам, как показано на изображении из анализируемого двигателя.

Добавить TipAsk QuestionDownload

Шаг 52: Соберите двигатель

Установите вентилятор и последнюю крышку на двигатель.Если у вас есть железный вентилятор, нагрейте его.

Добавить TipAsk QuestionDownload

Шаг 53: Измерение

Я отвез отремонтированный двигатель в университет для проведения измерений. Мы установили двигатель на специальное испытательное устройство и соединили его с измерительным оборудованием. Мы проверили следующее:

  • Сопротивление обмотки
  • Испытание электродвигателя в свободном режиме
  • Испытание нагруженного электродвигателя
  • Испытание оптимального напряжения
  • Испытание на короткое замыкание
  • Характеристика крутящего момента

* PF = Мощность factor

Добавить TipAsk QuestionDownload

Шаг 54: Заключение

Перемотка этого мотора заняла у меня около недели.Больше всего времени я потратил на расчет новой обмотки. У меня было много проблем с расчетом, но я их решил и получил те же параметры намотки, что и на старом.

У меня тоже было много проблем с намоткой новой обмотки. Сначала я сделал катушки слишком маленькими, и я не мог вставить последние катушки в пазы. Я не мог получить к ним доступ, потому что другие обмотки были слишком маленькими. Затем я решил увеличить размер, но снова обнаружил проблему. На этот раз обмотка была слишком большой, и я не мог закрыть крышку мотора.

Третий раз удачный двигатель перемотки.Поскольку зазор между статором и крышкой был очень маленьким, я решил сделать первые катушки побольше и последние катушки немного поменьше. Вы можете увидеть это при измерении сопротивления, когда сопротивления обмоток не идентичны. Но в следующем измерении мы увидим, что сопротивления не сильно влияют на работу электродвигателей.

Все тесты я провел с двумя разными напряжениями. Мотор был рассчитан на напряжение 380В, но сейчас у нас в ЕС 400В.

В верхней таблице данные от производителя в первой строке.Во второй строке – измерения при 380 В, а в третьей строке – 400 В. Если мы сравним все данные, то увидим, что мотор совсем неплох. Все параметры очень близки друг к другу.

Я взял все электрические уравнения и таблицы ориентации из книги: Neven Srb ELEKTROMOTORI

Надеюсь, вам понравилась моя презентация перемотки трехфазного двигателя. Если у вас есть вопросы, задавайте, и я постараюсь ответить как можно скорее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *