Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Как узнать число оборотов электродвигателя

11 февраля 2013 23 января 2015 / 2 комментария

Как самостоятельно узнать число оборотов электродвигателя

Зачастую, покупая с рук электродвигатель, автовладелец (и не только) в последующем обнаруживает, что к нему нет никакой документации. В таком случае, как правило, приходится самостоятельно определять обороты электродвигателя, а многие, как свидетельствует практика, не знают, как это сделать. Данная статья расскажет, как определить обороты электродвигателя самостоятельно и, что следует при этом знать.

Пошаговая инструкция определения оборотов

1. На сегодняшний день асинхронные электродвигатели подразделяются на три группы, каждая из которых говорит об индивидуальном обращении ротора в минуту. Первая группа – электродвигатели, делающие 1000 оборотов в минуту. Стоит сразу заметить, что данная цифра немного преувеличена, так как двигатель асинхронный.

Он делает, как правило, около 950-970 оборотов, но для удобства специалисты такие цифры решили округлить. Ко второй группе относятся двигатели, количество обращений ротора которых составляет 1500 за минуту. Эта цифра так же округленная, на самом деле электродвигатель делает 1430—1470 оборотом в минуту.

Третья группа асинхронных электродвигателей – это группа, к которой относится деталь, ротор которой оборачивается вокруг себя три тысячи раз за одну минуту. Реальная цифра оборотов – 2900-2970.

2. Для того, чтобы определить обороты электродвигателя, вам сначала нужно выявить, к какой же именно из указанных выше групп он относится. Для этого откройте одну из его крышек и найдите под низом катушку обмотки. Помните, такая катушка может состоять, как из одной детали, так и из нескольких, в частности трех-четырех. Кроме всего прочего знайте, что подобных катушек в электродвигателе может быть несколько. Вам достаточно одной, до которой, чтобы рассмотреть, нужно меньше всего прикладывать усилий.

3. Внимание! Катушки между собой связаны определенными деталями, которые иногда мешают рассмотреть нужную информацию. Ни при каких обстоятельствах нельзя отсоединять ничего друг от друга. Внимательно приглядитесь к выбранной вами детали и попробуйте приблизительно определить размер катушки относительно кольца статора.

4. Данное расстояние, чтобы узнать обороты электродвигателя, вовсе не нужно определять до точности. Приблизительные расчеты подойдут вам.

Если размер катушки, примерно, закрывает собой половину кольца статора, то скорость вращения ротора – три тысячи оборотов в минуту.

Если размер катушки покрывает, приблизительно, треть самого кольца, электродвигатель будет относиться ко второй группе и, следовательно, число оборотов, которые он сможет совершать, не будет превышать отметки 1500 за минуту.

Когда размер катушки равен одной четвертой по отношению к кольцу – число оборотов электродвигателя будет 1000 оборотов за одну минуту и, соответственно, двигатель будет относиться к третьей группе.

Не забывайте, что указанные цифры – это всего лишь приблизительная картина вращения, в реальности они могут отличаться и это зависит от множества факторов.

Эти статьи вам тоже пригодятся:

♦ Супер-лупа со светодиодами

♦ Как получить электричество с помощью радиоволн

♦ Самый простейший МР3 усилитель

♦ Антенна для телевизора из пивных банок

Теперь посмотрите это полезное видео:

Как увеличить обороты электродвигателя – Евразийская Электротехническая Компания

Регулировка оборотов электродвигателя, в сторону увеличения, возможна, в пределах расчетной мощности двигателя.

Перед тем, как увеличить обороты электродвигателя, важно определить его тип:

  • Коллекторный;
  • Асинхронный;
  • Синхронный;
  • С электронным управлением.

Также, имеет значение область применения и условия эксплуатации агрегата. Все существующие способы сводятся к модификации параметров питания или изменении нагрузки на вал двигателя. Правило, справедливое для всех типов двигателей — увеличение числа оборотов должно осуществляться исключительно в рамках допустимых, для данной модели, значений.

Коллекторный электродвигатель

Повышение числа оборотов данного типа двигателя, достигается путем увеличения напряжения питания или уменьшения нагрузки на вал. В некоторых случаях, допустимо применение шунтирования обмотки, однако такой способ нередко приводит к перегреву аппарата. Перед тем, как повысить обороты электродвигателя коллекторного типа, следует учесть, что они имеют свойство разгоняться до скоростей недопустимо высоких, при работе без нагрузки. Особенно это касается агрегатов с последовательным возбуждением.

Асинхронный электродвигатель

Как увеличить обороты электродвигателя асинхронного типа? Как и в предыдущем варианте, приемлем метод увеличения напряжения питания. Однако эффективность данного способа не велика, учитывая нелинейность зависимости скорости и напряжения. При этом, существенно изменяется значение КПД. Более действенный способ — использование трехфазного инвертора. С его помощью можно изменять частоту вращения, путем уменьшения частоты. Существуют инверторы для однофазных и для двухфазных двигателей.

Для эффективной работы двигателя, без потерь, нужно изменять не только частоту, но и подаваемое напряжение. Выбирая инвертор, следует обратить внимание на модель, которая обеспечит не только уменьшение частоты, но и создаст условия для понижения напряжения. Таким образом, буде учитываться снижение индуктивное сопротивление обмоток.

Синхронный электродвигатель

Перечисленные способы абсолютно не подходят для наращивания оборотов синхронного двигателя. В данном случае, эффективно использование трехфазного преобразователя частоты. Прибор дает возможность регулировать число оборотов как асинхронного, так и синхронного электродвигателя.

Электродвигатель с электронным управлением

Двигатели этого типа, по своим характеристикам очень близки к коллекторным, за исключением того, что не допускают реверс методом переполюсовки. По этой причине, для увеличения оборотов двигателя с электронным управлением обмотками, применимы те же меры, что и для коллекторного. При этом, справедливы и все предостережения: риск перегрева двигателя, при шунтировании обмотки.

Работаем в следующих городах Казахстана: Алматы, Астана, Аксу, Актау, Актобе, Аксай, Атырау, Байконур, Балхаш, Жезказган, Караганда, Кокшетау, Костанай, Кызылорда, Павлодар, Петропавловск, Семей, Талдыкорган, Тараз, Уральск, Усть-Каменогорск, Шымкент, Экибастуз.

Как рассчитать число оборотов двигателя


При эксплуатации, контроле, ремонте или замене двигателя важно понимать его технические характеристики. Одним из важных измерений является число оборотов в минуту или RPM, которое описывает скорость двигателя. В этом руководстве мы обсудим, как рассчитать число оборотов двигателя и почему это так важно.

Что такое число оборотов двигателя?

Об/мин — это единица измерения, используемая для описания скорости двигателя. Он обозначает количество оборотов в минуту и ​​описывает скорость, с которой вращается ротор, то есть количество раз, которое вал ротора совершает полный оборот в минуту. Его можно использовать для измерения скорости двигателей, турбин, центрифуг, конвейеров и другого оборудования.

Почему важно рассчитывать число оборотов в минуту

Расчет числа оборотов двигателя, а также других измерений, таких как крутящий момент, напряжение и мощность, очень важен при выборе двигателя для конкретного применения. Расчет скорости двигателя может помочь вам выбрать правильный тип двигателя при замене компонентов и принять более взвешенные решения по ремонту. Вам также необходимо понимать число оборотов в минуту, чтобы эффективно контролировать и контролировать работу двигателя.

Запросить цену

Скорости асинхронного двигателя переменного тока

Двигатели переменного тока предназначены для работы на определенных скоростях. Эти скорости одинаковы даже для разных моделей и производителей. Скорость данного двигателя зависит от частоты сети источника питания, а не от напряжения, а также от количества полюсов, которые он имеет. Двигатели переменного тока часто имеют два или четыре полюса, но могут иметь и больше. Связь между полюсами и числом оборотов двигателя связана с магнитным полем, создаваемым полюсами статора. Это поле приводит к созданию магнитных полей в роторе, которые связаны с частотой поля в статоре.

Также необходимо учитывать проскальзывание, представляющее собой разницу между синхронной скоростью статора и фактической рабочей скоростью. Ротор всегда вращается немного медленнее, чем магнитное поле статора, и всегда пытается «догнать» его, что создает крутящий момент, необходимый для запуска двигателя.

Чтобы отрегулировать скорость трехфазного двигателя переменного тока, вы можете отрегулировать частоту источника питания двигателя переменного тока с помощью элемента управления. Многие устройства управления переменным током также имеют однофазный вход, что позволяет запускать трехфазные двигатели, даже если у вас нет трехфазного питания. С другой стороны, большинство однофазных двигателей переменного тока не регулируются, поскольку они подключаются непосредственно к стандартной розетке и используют доступную частоту.

Скорость двигателя постоянного тока

Как и асинхронные двигатели переменного тока, двигатели постоянного тока с постоянными магнитами также имеют полюса, но полюса не влияют на скорость, как у двигателей переменного тока. На скорость двигателей постоянного тока влияет несколько других факторов, в том числе рабочее напряжение двигателя, сила магнитов и количество витков провода в якоре. Двигатели постоянного тока могут работать только на скоростях, номинальных для доступного для них напряжения.

Если батарея, от которой работает двигатель, начинает разряжаться и подавать меньшее напряжение, скорость двигателя снижается. Если вы подключите двигатель к источнику питания, скорость увеличится, хотя это может вызвать дополнительный износ двигателя.

Вы также можете использовать элементы управления для регулировки скорости двигателя постоянного тока, который работает путем изменения напряжения, доступного для двигателя.

Услуги по ремонту двигателей переменного/постоянного тока

Как рассчитать число оборотов двигателя

Чтобы рассчитать число оборотов асинхронного двигателя переменного тока, вы умножаете частоту в герцах (Гц) на 60 — — для количества секунд в минуте — на два для отрицательные и положительные импульсы в цикле. Затем вы делите на количество полюсов двигателя:

  • (Гц x 60 x 2) / количество полюсов = об/мин без нагрузки

Вы также можете вычислить рейтинг проскальзывания, вычитая номинальную скорость при полной нагрузке из синхронной скорости, разделив результат на синхронную скорость и умножив его на 100:

  • ((синхронная скорость при номинальной скорости при полной нагрузке) / (синхронная скорость)) x 100 = коэффициент скольжения

Затем, чтобы найти число оборотов при полной нагрузке, вы конвертируете показатель скольжения в число оборотов в минуту, а затем вычитаете его из числа оборотов без нагрузки:

  • Для расчета оборотов при полной нагрузке: об/мин – проскальзывание оборотов = об/мин при полной нагрузке

Скорость вращения двигателя постоянного тока зависит от напряжения, подаваемого на двигатель. Как правило, производитель двигателя сообщает вам число оборотов в минуту, которое вы можете ожидать при различных напряжениях. Чтобы достичь желаемых оборотов, вы можете отрегулировать напряжение в соответствии с рекомендациями.

Примеры расчета оборотов двигателя по формуле

Рассмотрим несколько примеров расчета оборотов двигателя. Для двигателя переменного тока число полюсов и частота определяют число оборотов холостого хода. Для системы с частотой 60 Гц с четырьмя полюсами уравнение оборотов будет следующим:

  • (Гц x 60 x 2) / количество полюсов = число оборотов без нагрузки
  • (60 х 60 х 2) / 4
  • 7 200 / 4 = 1 800 об/мин

Величина скольжения незначительно зависит от конструкции двигателя. Разумная скорость при полной нагрузке для четырехполюсного двигателя с частотой 60 Гц составляет 1725 об/мин. Скольжение – это разница между скоростью без нагрузки и скоростью с полной нагрузкой. В данном случае это будет:

  • Обороты при полной нагрузке – Обороты без нагрузки = проскальзывание оборотов
  • 1800 – 1725 = 75 об/мин

При 60 Гц двухполюсный двигатель работает со скоростью 3600 об/мин без нагрузки и около 3450 об/мин с нагрузкой:

  • (Гц x 60 x 2) / число полюсов = об/мин без нагрузки
  • (60 х 60 х 2) / 4
  • 7 200 / 2 = 3 600 об/мин

При частоте 60 Гц шестиполюсный двигатель будет работать со скоростью 1200 об/мин без нагрузки и приблизительно со скоростью 1175 об/мин с нагрузкой.

Двигатель с восемью полюсами будет работать при 900 об/мин без нагрузки и около 800 об/мин под нагрузкой. 12-полюсные двигатели, которые встречаются даже реже, чем шестиполюсные и восьмиполюсные модели, работают со скоростью 600 об/мин без нагрузки, а 16-полюсные двигатели работают со скоростью 450 об/мин.

Ремонт двигателя от Global Electronic Services

Важно понимать технические характеристики вашего оборудования, чтобы вы могли лучше эксплуатировать и обслуживать его. Скорость вашего двигателя является неотъемлемой частью его производительности, а возможность расчета и контроля числа оборотов в минуту поможет вам получить максимальную отдачу от ваших машин.

Профессиональные услуги по ремонту и техническому обслуживанию также могут сыграть важную роль, помогая вам в полной мере использовать возможности вашего оборудования. В Global Electronic Services у нас есть большой опыт ремонта и обслуживания широкого спектра промышленного оборудования, включая двигатели переменного и постоянного тока, серводвигатели, промышленную электронику, гидравлику и пневматику и многое другое.

Чтобы узнать больше о ремонте двигателей переменного или постоянного тока или о наших услугах, свяжитесь с нами сегодня.

Запросить цену

Учебное пособие по контроллеру скорости двигателя

— инженерное мышление

Изучите основы регулятора скорости электродвигателя. В этой статье мы узнаем, как спроектировать простой ШИМ-регулятор скорости для двигателя постоянного тока, изучая, как протекает ток в цепи и что делает каждый компонент. Вы даже можете построить схему самостоятельно!

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.

Это простой контроллер скорости с широтно-импульсной модуляцией для двигателя постоянного тока, который использует один из них, таймер 555, и мы собираемся показать вам, как работает схема, как ее спроектировать и даже превратить в профессионала. ищу печатную плату. Вы даже можете скачать копию нашей печатной платы и собрать свою собственную ЗДЕСЬ.

Проектирование схемы

Сердцем нашей системы является таймер 555. Это компонент интегральной схемы, а это означает, что внутри него находится несколько более мелких компонентов, объединенных в один корпус, что значительно облегчает нашу работу как дизайнеров. Мы увидим, как этот компонент работает, когда будем строить схему.

Теперь мы собираемся использовать Altium Designer для этого проекта, который любезно спонсировал эту статью. Все наши зрители могут получить бесплатную пробную версию программы ЗДЕСЬ.

Мы начинаем новый проект и создаем нашу схему, а также файл платы. Затем нам нужно начать добавлять наши компоненты, мы можем использовать встроенный инструмент, но мы собираемся использовать надстройку, которая, по нашему мнению, немного упростит задачу. Находим компонент на сайте поставщиков, мы используем mouser, но вы можете использовать кого хотите.

Мы нашли таймер 555, поэтому мы берем номер детали, вставляем его в загрузчик библиотеки и нажимаем «Поиск», он находит компонент, поэтому мы нажимаем «Добавить в дизайн».

Таймер 555 может выдерживать максимальную нагрузку около 200 миллиампер. Мы собираемся управлять одним из этих двигателей постоянного тока от источника питания 12 В, и мы видим, что при 12 В он потребляет ток около 1,4 А, и это без нагрузки, что уже больше, чем может выдержать таймер 555. Поэтому нам нужно будет использовать полевой МОП-транзистор, который представляет собой тип электронного переключателя.

Кстати, мы подробно рассмотрели, как работают двигатели постоянного тока, в нашей предыдущей статье ЗДЕСЬ .

Мы собираемся использовать полевой МОП-транзистор IRFZ24N, потому что он может работать как с напряжением, так и с током, а также имеет низкое сопротивление сток-исток в открытом состоянии. Итак, мы находим этот компонент и добавляем его в схему. Двигатель будет подключен к выводу стока MOSFET, а вывод истока соединится с землей.

МОП-транзистор обычно блокирует ток, поэтому двигатель не вращается. Однако, если мы подадим небольшое напряжение на вывод затвора, это позволит протекать некоторому току. Чем выше приложенное напряжение, тем больший ток может протекать, и поэтому двигатель вращается быстрее.

Таймер 555 подает напряжение на контакт затвора MOSFET с контакта 3. Для изменения напряжения и управления скоростью двигателя он посылает его в виде импульсов. Каждый импульс длится определенный период времени, в течение которого будет сегмент, когда сигнал включен, поэтому подается напряжение, и сегмент, когда сигнал выключен, поэтому напряжение не подается. Таким образом, МОП-транзистор будет испытывать среднее напряжение для каждого периода времени. Чем шире импульс включения, тем выше будет среднее напряжение. Это широтно-импульсная модуляция, расчеты для которой вы можете увидеть далее в статье.

Ток на вывод затвора очень мал, но мы поместим резистор 1 кОм между выводом затвора MOSFET и выводом 3 таймера 555, это защитит компонент, ограничив ток, если MOSFET выйдет из строя, и пропустит ток вытекать из ворот.

Заряд электронов будет накапливаться на контакте затвора MOSFET, и нам нужно его разрядить, чтобы выключить, поэтому мы размещаем еще один резистор на 1 кОм и подключаем его к земле, что обеспечивает путь разряда.

Я хочу подключить двигатель и источник питания снаружи от печатной платы, поэтому теперь я добавлю клемму для входа и еще одну для подключения двигателя. Я также хочу, чтобы встроенный переключатель включал и выключал контроллер, поэтому я нашел подходящий переключатель и добавил его. Теперь мы подключим входную клемму к земле, а затем подключим источник питания к переключателю. Затем мы подключаем выход переключателя к клемме двигателя. Затем подключите клемму двигателя к сливному штырьку MOSFET.

Электродвигатель состоит из витков проволоки, поэтому мы можем считать его катушкой индуктивности. Когда катушки индуктивности включены, они накапливают энергию в своем магнитном поле, когда мощность отключается, это магнитное поле разрушается, и катушка индуктивности выталкивает электроны через цепь. Это вызывает очень большой и внезапный всплеск энергии, который может повредить нашу цепь. Поэтому мы добавляем обратноходовой диод, который обеспечивает путь для безопасной циркуляции и уменьшения энергии. Для этого мы используем диод 1N4007, который выдерживает большой пиковый ток. Итак, мы добавляем это в схему.

Мы подробно рассмотрели катушки индуктивности, диоды и транзисторы в наших предыдущих статьях ЗДЕСЬ – Катушки индуктивности, диоды, транзисторы.

Теперь мы можем подключить контакт 8 таймера 555, который является источником питания компонентов, и мы подключаем его к плюсу. Затем подключаем контакт 1 к земле.

Внутри таймера у нас есть три резистора по 5 кОм между выводами 1 и 8, напряжение уменьшается на треть (1/3) после каждого резистора. Поскольку у нас есть 12 вольт на контакте 8, напряжение уменьшится до 8 вольт после первого резистора, а затем до 4 вольт после второго резистора. Таймер 555 использует их в качестве эталона.

К резисторам подключены два компаратора. Компаратор имеет положительный и отрицательный вход, а также один выход. Первый компаратор подключен к резисторам через отрицательный вход. Положительный вход подключен к контакту 6, пороговому контакту. Компаратор 2 подключен к резисторам через положительный вход. Его отрицательный вход подключен к контакту 2, триггерному контакту.

Теперь компараторы подключены к двум разным напряжениям, поэтому он может их сравнивать. Если положительное входное напряжение выше отрицательного, он выдает высокий сигнал или положительное напряжение. Если отрицательное входное напряжение равно или выше положительного входного напряжения, на выходе будет низкий сигнал или нулевое напряжение.

Мы соединим контакты 2 и 6 вместе, чтобы напряжение было одинаковым. Выход компараторов подключается к другому внутреннему компоненту, называемому триггером. Первый компаратор подключается к входу «сброс», второй компаратор подключается к входу «установка». Существует также вывод с именем «не Q». Когда триггер получает высокий уровень сигнала от компаратора 1, он выдает высокий уровень сигнала. Когда триггер получает высокий сигнал от компаратора 2, он выдает низкий сигнал. Если оба компаратора обеспечивают низкий уровень сигнала, триггер остается неизменным и продолжает работу. Затем он проходит через другой компонент, называемый инвертором, который просто инвертирует полученный сигнал.

Если это кажется запутанным, не волнуйтесь, это станет понятным через мгновение, когда мы будем проходить схему.

Если мы подадим небольшое напряжение, скажем, 3,9 В на контакты 2 и 6, компаратор 1 выдаст низкий уровень сигнала, а компаратор 2 выдаст высокий сигнал. Это устанавливает временной интервал для начала. Триггер выдает низкий сигнал. Инвертор выдает высокий уровень сигнала.

Как повышаем напряжение, например до 6 вольт. Компаратор 1 и 2 будут выдавать сигнал низкого уровня, триггер остается неизменным, отсчет времени продолжается. Но при напряжении 8 вольт компаратор 1 выдает высокий сигнал, а компаратор 2 выдает низкий сигнал. Выход триггера теперь меняется на противоположный, и на выходе высокий уровень. Это сбрасывает время.

Выход триггера остается неизменным до тех пор, пока напряжение не упадет примерно до 4 вольт, где компаратор 1 выдает низкий уровень сигнала, а компаратор 2 выдает высокий сигнал, это снова запускает таймер.

Итак, мы видим, что по мере увеличения и уменьшения напряжения на контактах 2 и 6 изменяется выход таймера 555. Итак, чтобы контролировать напряжение и, следовательно, временной интервал, мы подключаем контакты 2 и 6 к конденсатору.

Когда мы подключаем конденсатор к источнику питания, он мгновенно достигает напряжения батареи. Но если мы подключим его через резистор, резистор замедлит время зарядки. Чем больше резистор, тем больше времени требуется, чтобы зарядить напряжение.

Итак, чтобы зарядить наш конденсатор, мы будем использовать фиксированный резистор на 1 кОм и потенциометр на 100 кОм. Потенциометр представляет собой переменный резистор, поэтому мы можем изменять время зарядки конденсатора. Нам также потребуется разрядить конденсатор, чтобы перезапустить таймер. Итак, мы добавим два диода, чтобы создать отдельный путь заряда и разряда. Ток в этой части цепи очень мал, так как резисторы находятся в килоомном диапазоне. Мы будем использовать два диода 1N4148, которые имеют прямой ток около 300 миллиампер, что подойдет для этого приложения.

Конденсатор будет керамическим конденсатором емкостью 10 нанофарад, через мгновение мы поймем, почему. Итак, мы добавляем эти компоненты в схему, затем подключаем диоды к постоянному резистору, а диоды к контактам 1 и 3 потенциометра. Затем подключаем конденсатор к земле, а также к контактам 2 и 6 таймера 555, а также к контакту 2 потенциометра.

Контакт 7 является разрядным контактом, который подключен к нашему конденсатору времени. Внутри таймера 555 выход триггера соединяется с выводом затвора внутреннего транзистора. Это контролирует поток тока от конденсатора к земле. Когда на выходе триггера низкий уровень, транзистор закрыт, поэтому конденсатор заряжается, и напряжение начинает увеличиваться. Когда напряжение увеличивается настолько, что на выходе триггера появляется высокий уровень, открывается транзистор, который разряжает конденсатор, и, таким образом, напряжение уменьшается. Когда оно достигает 4 Вольт, конденсатор снова начинает заряжаться, когда он достигает 8 Вольт, он разряжается.

Вы можете узнать, как работают конденсаторы в нашей предыдущей статье ЗДЕСЬ

У нас также есть контакт 5, который является управляющим напряжением. Мы можем использовать это, чтобы переопределить компаратор 1. Нам это не нужно для этой схемы, поэтому мы подключаем его к земле через керамический конденсатор емкостью 0,1 мкФ. Заземление этого вывода предотвращает случайное переопределение, а конденсатор отфильтровывает любой шум или частоту.

У нас также есть контакт 4, контакт сброса, который мы соединим с плюсом схемы. Мы могли бы использовать это, чтобы переопределить и сбросить триггер, отключив питание. Нам это не нужно для этой схемы, поэтому она подключена к плюсу.

Итак, при зарядке ток течет через резистор, диод и левую часть потенциометра к конденсатору. На выходе триггера низкий уровень, поэтому разрядный транзистор закрыт. Контакт 3 выводит высокий сигнал.

Как только конденсатор заряжается до 8 В, на выходе триггера появляется высокий уровень, который включает транзистор, и конденсатор разряжается через правую сторону потенциометра и диода. Контакт 3 выводит сигнал низкого уровня.

Транзистор остается открытым, поэтому конденсатор разряжается до тех пор, пока не достигнет 4 В, после чего триггер снова меняет направление, выключая транзистор и снова запуская отсчет времени. Этот цикл повторяется непрерывно. Конденсатор заряжается и разряжается, создавая пилообразную волну, а таймер 555 выдает прямоугольную волну с широтно-импульсной модуляцией.

Мы можем рассчитать производительность следующим образом.

Конденсатор заряжается через резистор R1 и левую часть потенциометра. Таким образом, время зарядки рассчитывается по этой формуле. Если предположить, что потенциометр был на 50%. Тогда мы получим 0,35 миллисекунды.

Конденсатор разряжается через правую часть потенциометра, поэтому время разрядки рассчитывается по этой формуле. Это дает нам 0,34 миллисекунды.

Каждый цикл представляет собой комбинацию времени включения и выключения, поэтому 0,35 плюс 0,34 дает нам 0,69.миллисекунды.

Частота равна 1, деленной на время цикла, что дает нам 1428 Гц.

Рабочий цикл рассчитывается таким образом, поэтому выход включен примерно 50% времени.

Мы используем конденсатор емкостью 10 нанофарад, потому что он обеспечивает очень высокую частоту, а двигатель постоянного тока лучше всего работает на высокой частоте. Если бы мы использовали очень большой конденсатор, например, 100 микрофарад, частота падала бы до 0,14 Герца, и каждый цикл выполнялся бы за 7 секунд. Таким образом, вы можете использовать конденсаторы других размеров, но учтите, как это повлияет на скорость двигателя.

Хорошо, теперь я создам простой прототип на макетной плате, чтобы проверить, все ли работает. Вроде нормально, скорость можно регулировать, так что будем доделывать дизайн печатной платы.

Добавляем аннотации. Затем мы импортируем компоненты в файл проекта печатной платы и тратим некоторое время на перестановку компонентов на плате. Когда все будет готово, мы обрисовываем доску и преобразуем ее в «защиту». Затем определите форму платы. Мы добавляем текст на клеммы, чтобы знать полярность цепи, когда будем ее использовать. Затем мы будем использовать функцию автоматического маршрута, чтобы соединить все. Как только он будет завершен, мы увеличим ширину маршрутов, которые будут нести более высокое напряжение и ток. Увеличение до 1 мм должно быть в порядке. Вероятно, нам нужно будет переместить некоторые маршруты в лучшее место, так что проверьте свой дизайн. После того, как мы удовлетворены, мы создаем наш полигон. И, наконец, мы можем экспортировать наши файлы gerber.

Изготовление печатной платы

Итак, теперь мы готовы к печати нашей печатной платы.

Мы собираемся использовать JLC PCB для печати нашей печатной платы, которая также любезно спонсировала это видео. Они предлагают исключительную ценность с 5 печатными платами всего за 2 доллара. Обязательно посмотрите их, я оставлю для вас ссылку в описании видео.

Не забудьте, что вы можете скачать мои файлы дизайна, снова ссылки в описании видео для этого.

Итак, мы просто авторизуемся и загрузим наш gerber-файл. Через несколько секунд он генерирует предварительный просмотр схемы на экране. Затем мы можем настроить дизайн с помощью различных цветов и материалов и т. д. Но я оставлю их по умолчанию и сохраню в корзину. Затем мы идем к кассе, заполняем наши почтовые данные, а затем выбираем вариант почтовых расходов. Я лично хочу, чтобы это было очень быстро, поэтому я выбираю экспресс-почту, которая дороже, вы можете выбрать более медленные методы, чтобы сэкономить на расходах. Затем отправляем заказ и оплачиваем.

Через несколько дней наша плата приходит по почте. Доски выглядят отлично, я очень доволен результатом.

Итак, начинаем припаивать компоненты к плате. Я начинаю с центра и продвигаюсь вперед. Я использую держатель для таймера 555, который предотвратит повреждение компонента от перегрева и позволит нам легко заменить компонент в случае неисправности. С такими сложными компонентами, как этот, мы можем использовать ленту, чтобы держать их на месте, пока мы их припаиваем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *