Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

1.2. Прямое и обратное включение p-n-перехода

При использовании p-n-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрический ток. Если положительный полюс источника питания подключается к p-области, а отрицательный – к n-области, то включение p-n-перехода называют прямым. При изменении указанной полярности включение p-n-перехода называют обратным.

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю, рисунок 2. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.

е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Рисунок 2 – Прямое включение p-n-перехода

Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя, рисунок 3. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителей поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Рисунок 3 – Обратное включение p-n-перехода

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремится к предельному значению

IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

Зависимость тока через p-n-переход от приложенного к нему напряженияI = f(U)называют вольтамперной характеристикойp-n-перехода, рисунок 4.

Рисунок 4 – Теоретическая и реальная ВАХ

р-n-перехода

Вольтамперная характеристика электронно-дырочного перехода описывается уравнением Эберса-Молла:

, (1)

где I– ток через переход при напряженииU;

IS– ток насыщения, создаваемый неосновными носителями заряда.IS называется также тепловым током, так как концентрация неосновных носителей зависит от температуры;

qe – заряд электрона;

k– постоянная Больцмана;

Т– абсолютная температура;

– температурный потенциал перехода, примерно равный при комнатной температуре 0,025 В = 25 мВ.

Если р-n-переход включен в прямом направлении, напряжениеU берут со знаком плюс, если в обратном – со знаком минус.

При прямом приложенном напряжении можно пренебречь единицей по сравнению со слагаемым, и ВАХ будет иметь чисто экспоненциальный характер.

При обратном (отрицательном) напряжении слагаемымможно пренебречь по сравнению с единицей, и ток оказывается равным.

Однако уравнение Эберса-Моллавесьма приблизительно совпадает с реальными вольтамперными характеристиками, так как не учитывает целого ряда физических процессов, происходящих в полупроводниках. К таким процессам относятся: генерация и рекомбинация носителей в запирающем слое, поверхностные токи утечки, падение напряжения на сопротивлении нейтральных областей, явления теплового, лавинного и туннельного пробоев.

Если ток, протекающий через переход, незначителен, то падением напряжения на сопротивлении нейтральных областей можно пренебречь.

Однако при увеличении тока этот процесс оказывает все большее влияние на ВАХ прибора, т.е. его реальная характеристика идет под меньшим углом и вырождается в прямую линию, когда напряжение на запирающем слое становится равным контактной разности потенциалов.

При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем перехода. Существует три вида пробоев: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.

Туннельный эффект (эффект Зенера) заключается в прямом переходе валентных электронов из одного полупроводника в другой (где они уже будут являться свободными носителями заряда), что становится возможным при высокой напряженности электрического поля на переходе. Такая большая напряженность электрического поля на переходе может быть достигнута при высокой концентрации примесей в

p– иn-областях, когда толщина перехода становится очень маленькой.

В широких p-n-переходах, образованных полупроводниками со средней либо малой концентрациями примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой.

Лавинный пробой возникает, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины перехода. Если за время свободного пробега электроны накапливают кинетическую энергию, достаточную для ионизации атомов в переходе, то наступает ударная ионизация, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток перехода.

Тепловой пробой обусловлен значительным ростом количества носителей зарядов в p-n-переходе за счет нарушения теплового режима. Подводимая к переходу мощностьPобр=IобрUобррасходуется на его нагрев. Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности кристаллической решетки. При плохих условиях отвода теплоты от перехода, а также при повышении обратного напряжения на переходе выше критического значения, возможен его разогрев до температуры, при которой происходит тепловая ионизация атомов. Образующиеся при этом носители зарядов увеличивают обратный ток через переход, что приводит к его дальнейшему разогреву. В результате такого нарастающего процесса переход недопустимо разогревается и возникает тепловой пробой, характеризующийся разрушением кристалла.

Увеличение числа носителей зарядов при нагреве перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на обратной ветви ВАХ при тепловом пробое появляется участок с отрицательным дифференциальным сопротивлением.

Ответы на вопросы “Электромагнетизм. § 45. Полупроводниковый диод”

1. Какой контактный слой называют p-n-переходом? Как он получается технологически?

Контактный слой, состоящий из двух примесных полупроводников p- и n-типа, называется p-n-переходом. Для его получения кристалл полупроводника с примесью p-типа нагревают до температуры около 1000 К, направляют на поверхность кристалла пар примеси n-типа, который диффундирует. На поверхности кристалла образуется область, которая является полупроводником n-типа. Снаружи его покрывают защитной окисной пленкой. В монокристалле образуются два контактирующих полупроводника p- и n-типа.

2. Какой слой называется запирающим в p-n-переходе? Как образуется запирающий слой в p-n-переходе?

Запирающим слоем называют двойной слой разноименных электрических зарядов, который создает на p-n-переходе электрическое поле, препятствующее свободному разделению зарядов.

При p-n-переходе свободные электроны из n-области начинают диффундировать в p-область благодаря тепловому движению, а дырки, наоборот, диффундируют из p-области в n-область. При этом p-область приобретает отрицательный заряд, а n-область -положительный. Поэтому в p-n-переходе образуется двойной электрический (запирающий) слой.

3. Какое присоединение внешнего напряжения к p-n-переходу называют прямым (обратным) включением? Какие носители тока называют основными, а какие неосновными?

Прямое включение: плюс подключается к p-полупроводнику, а минус – к n-полупроводнику.

Обратное подключение – наоборот. Основными носителями называются заряженные частицы, которые имеют максимальную концентрацию. Неосновные носители – это заряженные частицы, у которых концентрация значительно меньше, чем концентрация основных носителей.

4. Объясните ход вольт-амперной характеристики p-n-перехода

При обратном включении ток через p-n-переход пренебрежительно мал, он протекает вследствие движения не основных носителей. При прямом включении p-n-перехода ток протекает в прямом направлении. Чем больше приложенное напряжение, тем больше сила тока.

Когда приложенная разность потенциалов превосходит напряжение на запирающем слое, сила тока резко возрастает.

5. Приведите электрические схемы и объясните различие одно- и двухполупериодного выпрямления

При включении полупроводникового диода для однополупериод-ного выпрямления ток через диод проходит только в половине периода, когда напряжение приложено в прямом направлении. При двухполупериодном выпрямлении ток через сопротивление нагрузки протекает при любой полярности напряжения.

Источник:

Решебник по физике за 11 класс (Касьянов В.А., 2002 год),
задача №47
к главе «Электромагнетизм. § 45. Полупроводниковый диод».

Все задачи

← Ответы на вопросы “Электромагнетизм. § 44. Примесный полупроводник — составная часть элементов схем”

Ответы на вопросы “Электромагнетизм. § 46. Транзистор” →

Компоненты электроники: диоды – макеты

Диод представляет собой электронный компонент, изготовленный из комбинации полупроводниковых материалов P-типа и N-типа, известный как p-n переход, с выводами, прикрепленными к двум концам. Эти выводы позволяют легко включать диод в электронные схемы.

Вывод, присоединенный к полупроводнику n-типа, называется катодом . Таким образом, катод является отрицательной стороной диода. Положительная сторона диода, то есть вывод, присоединенный к полупроводнику p-типа, называется 9.0003 анод .

Когда источник напряжения подключается к диоду таким образом, что положительная сторона источника напряжения находится на аноде, а отрицательная сторона на катоде, диод становится проводником и пропускает ток. Напряжение, подаваемое на диод в этом направлении, называется прямым смещением .

Но если вы измените направление напряжения, приложив положительную сторону к катоду, а отрицательную сторону к аноду, ток не будет течь. Фактически диод становится изолятором. Напряжение, подводимое к диоду в этом направлении, называется обратное смещение .

Прямое смещение позволяет току течь через диод. Обратное смещение не позволяет току течь. (Во всяком случае, до определенного предела. Как вы обнаружите через несколько мгновений, существуют пределы того, какое напряжение обратного смещения диод может выдерживать.)

Это условное обозначение диода:

Анод слева, катод справа. Вот два полезных приема для запоминания того, какая сторона символа является анодом, а какая катодом:

  • Думайте об анодной стороне символа как о стрелке, указывающей направление обычного тока — от положительного к отрицательному. Таким образом, диод позволяет току течь в направлении стрелки.

  • Думайте о вертикальной линии на стороне катода как о гигантском знаке минус, указывающем, какая сторона диода является отрицательной для прямого смещения.

Прямое и обратное смещение можно проиллюстрировать двумя очень простыми схемами, которые соединяют лампу с батареей с диодами. В схеме слева диод смещен в прямом направлении, поэтому по цепи протекает ток и лампа загорается. В схеме справа диод смещен в обратном направлении, поэтому ток не течет, и лампа остается темной.

Обратите внимание, что в типичном диоде требуется определенное прямое напряжение, прежде чем потечет какой-либо ток. Эта сумма обычно очень мала. В большинстве диодов это напряжение составляет около половины вольта. До этого напряжения ток не течет. Однако, как только прямое напряжение достигнуто, ток легко протекает через диод.

Этот минимальный порог напряжения в прямом направлении называется прямым падением напряжения на диоде . Это потому, что схема теряет это напряжение на диоде. Например, если бы вы поместили вольтметр между выводами диода в цепи с прямым смещением, вы бы прочитали прямое падение напряжения на диоде.

Тогда, если вы поместите вольтметр на клеммы лампы, напряжение будет представлять собой разницу между напряжением батареи (9 В) и прямым падением напряжения на диоде.

Например, если прямое падение напряжения на диоде составляет 0,7 В, а напряжение батареи равно 9 В, напряжение на лампе будет 8,3 В.

Диоды

также имеют максимальное обратное напряжение, которое они могут выдержать, прежде чем они сломаются и позволят току течь в обратном направлении через диод. Это обратное напряжение (иногда называемое PIV , для пикового обратного напряжения или PRV для пикового обратного напряжения ) является важной спецификацией для диодов, которые вы используете в своих схемах, так как вам необходимо убедиться, что ваши диоды не будут подвергаться воздействию более их рейтинг PIV.

Помимо прямого падения напряжения и пикового обратного напряжения, диоды также рассчитаны на максимальный номинальный ток. Превысьте этот ток, и диод будет поврежден без возможности восстановления.

Этот артикул находится в категории:

  • General Electronics,

Диодный ток: функциональность и характеристики

Ключевые выводы

● Узнайте о функциональных возможностях диодов.

● Получите более полное представление о характеристиках протекания тока через диоды.

● Узнайте, как изменения смещения диодов определяют, работают ли они как изоляторы или проводники.

 

Смещение диода влияет на протекание тока.

По сравнению с множеством электронных компонентов, с которыми мы сталкиваемся в области электроники, диод является относительно простым компонентом. По сути, диод — это компонент, который позволяет току течь в одном направлении и блокирует его в другом направлении. Диоды позволяют току течь в одном направлении без влияния какого-либо импеданса, полностью блокируя весь поток тока в другом. Кроме того, существует четкое обозначение между этими двумя состояниями работы.

Диод

Как уже говорилось, ток, протекающий через диод, может течь только в одном направлении, и мы называем это состояние прямым смещением. Поскольку ток может течь только в одном направлении (прямое смещение), мы неофициально считаем диоды односторонними электронными вентилями. Если напряжение на диоде отрицательное, ток не течет; таким образом, идеальный диод выглядит как разомкнутая цепь.

Условия или состояния, в которых может находиться типичный диод, — прямое или обратное смещение. В электронике мы определяем смещение или смещение как метод установления набора токов или напряжений в различных точках электронной схемы, чтобы установить надлежащие условия работы в электронных компонентах. Хотя это упрощенная версия ответа, в целом она верна.

Диод представляет собой электронный компонент, состоящий из полупроводникового материала P-типа и N-типа; мы называем p-n переход. Он также имеет выводы, подключенные к этим двум концам, что упрощает внедрение практически в любую электронную схему.

Функциональность диода

Мы называем вывод, прикрепленный к полупроводнику N-типа, катодом. Таким образом, катод является отрицательной стороной диода. Напротив, мы называем вывод, подключенный к полупроводнику P-типа, анодом, что делает его положительной стороной диода.

Когда мы подключаем источник напряжения к диоду так, что положительная сторона источника напряжения соединяется с анодом, а отрицательная сторона соединяется с катодом, диод действует как проводник, позволяя течь току. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это прямым смещением.

Однако, если мы изменим это направление напряжения, т. е. подключим отрицательную (-) сторону к аноду, а положительную (+) сторону к катоду, ток не будет течь. В это время диод действует как изолятор. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это обратным смещением.

Примечание. Хотя при прямом смещении ток течет, а при обратном — нет, существует максимальный предел уровня тока, который диод может эффективно блокировать.

Две области диода

Мы кратко обсудили две полупроводниковые области в диоде (P и N). Однако также важно различать стороны или полупроводниковые области.

Во-первых, о символе, который схематически изображает диод, катод находится справа, а анод – слева. Анодную сторону условного обозначения, как правило, рассматривают как стрелку, изображающую стандартное направление протекания тока, т. е. от положительного (+) к отрицательному (-). Следовательно, диод допускает протекание тока в направлении стрелки. А затем рассмотрите вертикальную линию на стороне катода как огромный знак минус (-), показывающий, какая сторона диода является отрицательной для прямого смещения.

Функциональность протекания тока через диод

Стандартному диоду требуется определенное прямое напряжение, прежде чем он позволит протекать току. Как правило, указанное количество напряжения, которое требуется диоду, прежде чем позволить протекать току, составляет минуту. Обычно это 0,5 вольта. Пока он не достигнет этой величины напряжения, ток не будет течь. Однако при достижении прямого напряжения ток легко протекает через диод.

Мы называем этот минимальный порог напряжения в прямом направлении прямым падением напряжения на диоде. Причина этого в том, что цепь теряет или падает это напряжение на диоде. Мы можем проверить это, используя мультиметр и измерив выводы диода, когда он находится в прямом смещении. Полученное показание будет прямым падением напряжения на диоде.

Для дополнительной иллюстрации мы можем использовать приведенную выше принципиальную схему. Когда мы используем мультиметр для измерения на клеммах лампы, напряжение будет представлять собой разницу между напряжением батареи (12 вольт) и прямым падением напряжения на диоде в цепи. Например, если прямое падение напряжения на нашем диоде составляет 0,8 вольта, а напряжение батареи точно равно 12 вольтам, то напряжение на лампе будет 11,2 вольта.

Характеристики диода

Диод имеет максимальное обратное напряжение, которое он может выдержать до того, как выйдет из строя, что позволяет протекать обратному току через диод. Мы называем это обратное напряжение пиковым обратным напряжением (PIV) или пиковым обратным напряжением. Кроме того, это важная характеристика диода с точки зрения функциональности схемы. Крайне важно, чтобы ни один диод в вашей схеме не подвергался напряжению, превышающему этот предел.

Наряду с номинальным значением PIV и прямого падения напряжения диод также получает максимальный номинальный ток. Как следует из этого рейтинга, это пиковый рабочий ток диода, и его превышение приведет к непоправимому повреждению диода и, возможно, всей схемы.

Диод как компонент относительно прост, но он сочетает в себе функциональность двух различных компонентов. Широкий спектр приложений для диода включает практически бесконечный список приложений для электрических устройств. Таким образом, диод является действительно адаптивным компонентом, который дает разработчикам оптимальный контроль над тем, какую функцию диод будет играть в их схемотехнике.

Набор диодов различных форм и размеров, но все они имеют одинаковые характеристики протекания тока.

Для успешного внедрения диода в вашу конструкцию с соответствующими характеристиками протекания тока через диод необходимо использовать высококачественное программное обеспечение для проектирования и анализа печатных плат. Allegro от Cadence — одно из таких программ с множеством надежных функций для компоновки, а также тестирования и моделирования.

Если вы хотите узнать больше о том, какое решение может предложить Cadence, обратитесь к нам и нашей команде экспертов. Чтобы посмотреть видео по связанным темам или узнать, что нового в нашем наборе инструментов для проектирования и анализа, подпишитесь на наш канал YouTube.

 

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *