РАЗНИЦА МЕЖДУ АНОДОМ И КАТОДОМ | СРАВНИТЕ РАЗНИЦУ МЕЖДУ ПОХОЖИМИ ТЕРМИНАМИ – НАУКА
В ключевое отличие между анодом и катодом это то, что анод – это положительный вывод, а катод – отрицательный вывод.Аноды и катоды – это электроды с противоположной полярностью. Чтобы узнать разницу м
В ключевое отличие между анодом и катодом это то, что анод – это положительный вывод, а катод – отрицательный вывод.
Аноды и катоды – это электроды с противоположной полярностью. Чтобы узнать разницу между анодом и катодом, нам сначала нужно понять, что они собой представляют. Аноды и катоды – это электроды, которые используются для подачи электрического тока в любое устройство, использующее электричество, или из него. Электрод – это проводящий материал, который позволяет току проходить через него. Электроды обычно изготавливаются из металлов, таких как медь, никель, цинк и т. Д., Но некоторые электроды также сделаны из неметаллов, таких как углерод. Кроме того, электрод замыкает цепь, пропуская через него ток.
1. Обзор и основные отличия
3. Что такое катод
4. Параллельное сравнение – анод и катод в табличной форме
5. Резюме
Что такое анод?
Анод – это электрод, на котором ток покидает ячейку и где происходит окисление. Мы также называем его положительным электродом. Простая батарея состоит из трех основных частей: анода, катода и электролита. Традиционно электроды находятся на концах батареи. Когда мы соединяем эти концы с электричеством, внутри батареи начинается химическая реакция. Здесь электроны возмущаются и должны реорганизоваться. Они отталкиваются друг от друга и движутся к катоду, на котором меньше электронов. Это уравновешивает электроны во всем растворе (электролите).
Как правило, ток течет через катод, когда устройство разряжается. Однако направление тока меняется на противоположное, когда устройство заряжается, и катод начинает работать как анод, а анод становится катодом.
В первичном элементе или батарее выводы необратимы, а это означает, что анод всегда будет положительным. Это потому, что мы всегда используем это устройство для разряда электрического тока. Но в случае вторичных элементов или батарей электроды обратимы, поскольку устройство разряжается, но также получают ток для зарядки.
Что такое катод?
Катод – это электрод, по которому ток входит в ячейку и происходит восстановление. Мы также можем назвать это отрицательным электродом. Однако катод может быть отрицательным в электролитических ячейках и положительным в гальванических элементах.
Катод обеспечивает электроны для катионов (положительно заряженных ионов). Эти ионы попадают на катод через электролит. Более того, катодный ток – это поток электронов от катода к катионам в растворе. Однако термины катод и анод могут иметь разные значения в разных приложениях.
В чем разница между анодом и катодом?
Анод – это электрод, на котором ток покидает ячейку и где происходит окисление, а катод – это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод – отрицательным выводом. Однако есть также биполярные электроды, которые могут работать как аноды, так и катоды. Обычно анод притягивает анионы, а катод притягивает катионы, что привело к названию этих электродов именно так.
Резюме – анод против катода
Анод – это электрод, на котором ток покидает ячейку и где происходит окисление, а катод – это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод – отрицательным выводом.
Что такое анод, а что такое катод | Инженерные знания
В статьях и заметках на нашем канале частенько проскакивают слова анод и катод. Эти термины пронизываются все технические науки и будут встречаться регулярно. На первый взгляд они должны быть знакомы нам ещё этак класса из 8 школьной программы, но кто же её когда помнит 🙂 Давайте раз и навсегда разберемся с тем, что такое анод и что такое катод и когда используются эти термины.
Начнем с самого простого. Анод и катод впервые встречаются нам в курсе химии. Катод от греческого “ход вниз”, анод от греческого “ход вверх”.
На момент появления этих хитрых слов мы ещё не до конца понимаем, что такое электричество (советую прочитать вот эту статейку) и знаем только самые основы электрофизики. Главная путаница тут с тем, где плюс, а где минус. Однозначно тут ответить нельзя, так как зависит всё от ситуации.
Электрический ток, как нам известно, есть упорядоченное направленное движение частиц. Если всё сильно упростить (и даже немного исказить, что допустимо для общего понимания вопроса), то для существования этого тока нужны сами частицы. Их нужно где-то брать. Берутся они из источника тока. Рассматривая устройство обычной батарейки, где электрический ток получается “химическим” образом, мы наблюдаем следующую картинку.
Частицы берутся из протекающей химической реакции. На одном электроде идёт окисление, на другом – восстановление. Помним, что окисление – это отдача электронов, а восстановление – это принятие электронов. Чем не электрический ток, если увязать всё это в единую систему :)…Так, собственно говоря, и поступили.
Поместили два электрода из разных металлов в раствор электролита. Раствор электролита начал реагировать с каждым из электродов параллельно выполняя транспортную функцию для переноса заряженных частиц от одной пластины к другой пластине. Один электрод восстанавливается, а другой окисляется. Получается электрический ток. Если к этим электродам подключить внешнюю нагрузку, то получится электрическая цепь. Заряд будет “пробегать” по этой внешней нагрузке (например по лампочке) и появится электрический ток.
Если же запустить процесс в обратном направлении, то при правильном подборе химии процесса, мы сможем зарядить этот элемент питания и получится аккумулятор.
Ну а катод и анод – это просто заумные названия положительного и отрицательного электрода в такой системе.
На аноде происходит окислительная реакция а сам он восстановитель в системе. С него уходят заряженные частицы в цепь. На катоде происходит восстановительная реакция, а сам он окислитель. В цепи он принимает заряженные частицы.
Есть тут и заковырка, куда же без неё 🙂 Мало запомнить, что анод – это минус, а катод – это плюс. Очень важно понимать логику процесса и анализировать его химию. Пока мы находимся в рамках системы “элемент питания” всё будет действительно так, как мы описали выше. Но что, если мы рассматриваем электролиз? Про электролиз можно написать ещё одну огромную статью, но пока рано. Усвоим главное!
Электролиз есть процесс выделения на электродах растворённых веществ из электролита. Те самые хромированные детали, как вариант, делают именно этим способом.
В этом процессе необходим внешний источник тока, который создаст разность потенциалов между электрическими проводниками. Нужен внешний источник тока, который будет вкачивать ток в систему. Тогда на аноде будет плюс, а на катоде — противоположно.
Ещё полезно запомнить, что особенности процессов на анодах и катодах породили множество разных методик обработки. Анодировка, хромирование, различные прочие процессы гальванической обработки и активно используются в технике. Про обработку металла подобным образом я рассказывал здесь.
Ещё некоторая путаница встречается и в полупроводниках. Там тоже катод минус, а анод – плюс.
Для того, чтобы “открыть” прибор, нужно подать на анод плюс, а на катод минус. Полезно почитать вот этот материал.
И анод, и катод, 8 (восемь) букв
Примеры употребления слова электрод в литературе.
Электроды присоединялись к универсальному Центру Поэтического Восприятия, в который, кроме всего прочего, входили усилители образной структуры, ритм-модуляторы, микшеры уподоблений, аллитерационный синтезатор — все для того, чтобы слушатель в полной мере насладился стихами и проникся всеми оттенками поэтической мысли творца.
При свете раннего солнца город был похож на огромный ящик с сокровищами, обитый черным и серым бархатом пепелищ и наполненный миллионами сверкающих драгоценных камней: осколками аккумуляторов, амперметров, анализаторов, батарей, библиотечных автоматов, бутылок, банкнотов, бобин, вентиляторов, генераторов, громкоговорителей, динамо-машин, динамометров, детекторов, калориметров, конденсаторов, копилок, консервных автоматов, вакуумных установок, изоляторов, ламп, магнето, массспектрометров, масштабных линеек, машин по учету личного состава, моек для посуды, мотогенераторов, моторов, механических уборщиков, осциллографов, очистителей, записывающих устройств, напильников, колосников, обогревателей, панелей управления, понижающих трансформаторов, прерывателей, преобразователей, приводных ремней, потенциометров, пылеулавливателей, резцов, распылителей, регуляторов частоты, радиоприемников, реакторов, реле, реостатов, рентгеновских установок, сварочных аппаратов, счетных машин, счетчиков Гейгера, светофоров, сопротив
Выглядела она блистательно и дико – как в предутреннем сне интеллигентного пьяницы, по определению Корнева: сверкали в свете прожекторов конусами сходящиеся в перспективу алюминиевые дуги электродов, стеклянные чаши высоковольтных изоляторов растягивались между ними гирляндами, выстраивались в многоугольные фигуры керамические распорные балки, матово лоснились серые бока аэростатных баллонов, от натяжения капроновых тросов вокруг кабины веерами растопыривались выравнивающие пластины.
Хотя примеси давно уже загрязнили контрольные электроды, а бакта стала такой зеленой и темной, что Илису почти не было видно, Лея знала, что мастерджедай проснулась.
Так вот, после вживления электродов, добились, управляете некоторыми функциями мозга.Источник: библиотека Максима Мошкова
Никель анод, катод
Цветной металлопрокат/Никелевый прокат/Никель анод, катод
По вопросам цены и наличия обращайтесь
по телефонам: +7 (3435) 48-50-92; 92-26-99 +7-922-109-57-42
или отправьте Вашу заявку на E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Анодный никель (используется для электролитических покрытий) изготавливают двух типов: непассивирующийся – марки НПАН и обычный — марок НПА-1 и НПА-2. Аноды из НПАН растворяются при электролизе равномерно, без образования шлама и являются предпочтительными.
Марка |
Ni+Co не менее |
Примеси, не более | ||||||||||||
Fe | Si | Mg | Mn | Cu | Pb | S | C | P | Bi | As | Другие | Всего | ||
НПАН | 99,4 | 0,1 | 0,03 | – | 0,05 | 0,01-0,1 | – | 0,002-0,01 | – | – | – | – | 0,03-0,3 (O2) | 0,6 |
НПА1 | 99,7 | 0,1 | 0,03 | 0,1 | 0,1 | 0,1 | – | 0,005 | 0,02 | – | – | – | – | 0,3 |
НПА2 | 99,0 | 0,25 | 0,15 | 0,1 | 0,15 | 0,15 | – | 0,005 | 0,1 | – | – | – | – | 1 |
Примечание: знак «–» в графах химического состава обозначает, что примесь не регламентирована.
Марка | Виды изделий | Применение |
Анод никелевый НПАН | Полосы, овальные стержни | Для электролитических покрытий |
Анод никелевый НПА-1 | Полосы, овальные стержни | |
Анод никелевый НПА-2 |
Никелевые катоды (для электролитических покрытий) изготавливают двух типов: непассивирующийся – марки НПАН и обычный — марок НПА-1 и НПА-2. Катоды из НПАН растворяются при электролизе равномерно, без образования шлама и являются предпочтительными.
Марка | Ni+Co не менее |
Примеси, не более | ||||||||||||
Fe | Si | Mg | Mn | Cu | Pb | S | C | P | Bi | As | Другие | Всего | ||
НПАН | 99,4 | 0,1 | 0,03 | – | 0,05 | 0,01-0,1 | – | 0,002-0,01 | – | – | – | – | 0,03-0,3 (O2) | 0,6 |
НПА1 | 99,7 | 0,1 | 0,03 | 0,1 | 0,1 | 0,1 | – | 0,005 | 0,02 | – | – | – | – | 0,3 |
НПА2 | 99,0 | 0,25 | 0,15 | 0,1 | 0,15 | 0,15 | – | 0,005 | 0,1 | – | – | – | – | 1 |
Примечание: знак «–» в графах химического состава обозначает, что примесь не регламентирована.
Марка | Виды изделий | Применение |
Анод никелевый НПАН | Полосы, овальные стержни | Для электролитических покрытий |
Анод никелевый НПА-1 | Полосы, овальные стержни | |
Анод никелевый НПА-2 |
Цветной металлопрокат/Никелевый прокат/Никель анод, катод
Катоды. Что такое анод и катод — простое объяснение
Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.
Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.
Применение в электрохимии
В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.
Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.
На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.
На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.
Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.
При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:
- цинковые;
- кадмиевые;
- медные;
- никелевые;
- оловянные;
- золотые;
- серебряные;
- платиновые.
Чаще всего на производстве используют цинковые аноды. Они бывают:
- катанные;
- литые;
- сферические.
Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.
Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.
Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.
Применение в вакуумных электронных приборах
Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.
Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.
Катод и анод в электрохимии
Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:
- Процедура преобразования электрического воздействия в химическую реакцию, называемая электролизом;
- Процедура преобразования химической реакции в электрический ток, называемая гальваническим процессом.
В электрохимии под терминами анод и катод понимают следующее:
- Электрод, на котором проходит окислительная реакция, называется анодом;
- Электрод, на котором осуществляется процедура восстановления, называется катодом.
Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.
Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.
Катод в вакуумных приборах
Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.
В составе любой радиолампы такие элементы:
- Катод;
- Анод;
- Сетка.
Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:
- Катод прямого разогрева;
- Катод непрямого разогрева.
Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.
Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.
Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.
Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.
Катод у полупроводниковых приборов
К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.
Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.
Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод – это положительный электрод, а катод – отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.
Анод
Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным – они помогут понять, что же автор хочет вам донести.
Катод
Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.
Возникновение терминов
Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод – это восход. Солнце движется вверх (ток входит). Катод – это заход. Солнце движется вниз (ток выходит).
Пример радиолампы и диода
Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные – помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение – обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.
Почему существует путаница?
Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.
Разбираемся с электрическим аккумулятором
Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:
- Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
- При отсутствии движения о них разговор вести нет смысла.
- Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.
Об электрохимии замолвим слово
Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:
- Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
- Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
- Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).
Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:
- Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
- Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).
Как происходят химические реакции?
Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.
Что есть что: шаг 1
Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.
Шаг 2: Процесс
Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод – положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».
Шаг 3: Электролиз
Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае – это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод – это катод. Здесь протекает реакция восстановления.
Шаг 4: Напоследок
Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.
Заключение
Вот таким всё и является – не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.
Химические реакции, сопровождающиеся переносом электронов () делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав .
Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .
Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .
Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита , и подключают к электрической цепи с источником питания.
При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод (анод ) притягивает отрицательно заряженные частицы (анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.
Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .
Электролиз растворовРазличают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода , которая может принимать участие в окислительно-восстановительных реакциях.
Катодные процессыВ растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей . Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :
Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.
Также около катода находятся молекулы воды Н 2 О . В составе воды есть окислитель — ион H + .
При электролизе растворов солей на катоде наблюдаются следующие закономерности:
1. Если металл в соли — активный (до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:
2H 2 O +2ē → H 2 + 2OH —
Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.
2. Если металл в соли – средней активности (между Al 3+ и Н +) , то на катоде восстанавливается (разряжается ) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:
Me n+ + nē → Me 0
Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться ) и железо, и водород:
Fe 2+ + 2ē → Fe 0
2H + 2 O +2ē → H 2 0 + 2OH —
3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:
Me n+ + nē → Me 0
Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:
Cu 2+ + 2ē → Cu 0
4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:
2H + + 2ē → H 2 0
Анодные процессыПоложительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).
При электролизе растворов солей на аноде наблюдаются следующие закономерности:
1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):
неМе n- – nē = неМе 0
Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:
2Cl — – 2ē = Cl 2 0
Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются . А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :
2H 2 O -2 – 4ē → O 2 0 + 4H +
2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:
2H 2 O -2 – 4ē → O 2 0 + 4H +
3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:
4 O -2 H – – 4ē → O 2 0 + 2H 2 O
4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.
Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:
2CH 3 C +3 OO – – 2ē → 2C +4 O 2 + CH 3 -CH 3
Суммарные процессы электролиза
Рассмотрим электролиз растворов различных солей.
Например , электролиз раствора сульфата меди . На катоде восстанавли-ваются ионы меди:
Катод (–): Cu 2+ + 2ē → Cu 0
На аноде окисляются молекулы воды :
Анод (+): 2H 2 O -2 – 4ē → O 2 + 4H +
Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом урав-нении с ионами водорода в виде серной кислоты:
2 Cu 2+ SO 4 + 2H 2 O -2 → 2Cu 0 + 2H 2 SO 4 + O 2 0
Электролиз раствора хлорида натрия выглядит так:
На катоде восстанавливается водород :
Катод (–):
На аноде окисляются хлорид-ионы :
Анод (+): 2Cl – – 2ē → Cl 2 0
Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хло-рида натрия :
2H + 2 O +2NaCl – → H 2 0 + 2NaOH + Cl 2 0
Следующий пример карбоната калия.
На катоде восстанавливается водород из воды :
Катод (–): 2H + 2 O +2ē → H 2 0 + 2OH –
На аноде окисляются молекулы воды до молекулярного кислорода :
Анод (+): 2H 2 O -2 – 4ē → O 2 0 + 4H +
Таким образом, при
2H 2 + O -2 → 2H 2 0 + O 2 0
Еще один пример : электролиз водного раствора хлорида меди (II).
На катоде восстанавливается медь :
Катод (–): Cu 2+ + 2ē → Cu 0
На аноде окисляются хлорид-ионы до молекулярного хлора :
Анод (+): 2Cl – – 2ē → Cl 2 0
Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:
Cu 2+ Cl 2 – → Cu 0 + Cl 2 0
Еще несколько примеров: электролиз раствора гидроксида натрия.
На катоде восстанавливается водород из воды :
Катод (–): 2H + 2 O +2ē → H 2 0 + 2OH –
На аноде окисляются гидроксид-ионы до молекулярного кислорода :
Анод (+): 4 O -2 H – – 4ē → O 2 0 + 2H 2 O
Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:
2H 2 + O -2 → 2H 2 0 + O 2 0
Электролиз расплавов
При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.
Например: электролиз расплава хлорида натрия . На катоде восстанавли-ваются катионы натрия:
Катод (–): Na + + ē → Na 0
На аноде окисляются анионы хлора :
Анод (+): 2Cl – – 2ē → Cl 2 0
расплава хлорида натрия :
2Na + Cl – → 2Na 0 + Cl 2 0
Еще один пример: электролиз расплава гидроксида натрия . На катоде восстанавливаются катионы натрия:
Катод (–): Na + + ē → Na 0
На аноде окисляются гидроксид-ионы :
Анод (+): 4OH – – 4ē → O 2 0 + 2H 2 O
Сумарное уравнение электролиза расплава гидроксида натрия :
4Na + OH – → 4Na 0 + O 2 0 + 2H 2 O
Многие металлы получают в промышленности электролизом расплавов.
Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na 3 плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.
В растворе криолите оксид алюминия диссоциирует на ионы:
Al 2 O 3 = Al 3+ + AlO 3 3-
На катоде восстанавливаются катионы алюминия:
Катод (–): Al 3+ + 3ē → Al 0
На аноде окисляются алюминат-ионы :
Анод (+): 4AlO 3 3 – – 12ē → 2Al 2 O 3 + 3O 2 0
Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:
2Al 2 О 3 = 4Al 0 + 3О 2 0
В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:
C 0 + О 2 0 = C +4 O 2 -2
Электролиз с растворимыми электродами
Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.
Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.
На катоде разряжаются ионы меди из раствора:
Катод (–): Cu 2+ + 2ē → Cu 0
На аноде окисляются частицы меди из электрода :
Анод (+): Cu 0 – 2ē → Cu 2+
Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.
Электрохимия и гальваника
В электрохимии есть два основных раздела:
- Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
- Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.
Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?
- Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
- Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .
Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .
Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.
В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.
Внимание: ток всегда втекает в анод!
Или то же самое на схеме:
Процесс электролиза или зарядки аккумулятора
Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.
В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!
Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.
Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.
Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.
Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.
Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.
В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.
В электронике
Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:
Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.
У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.
Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:
У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.
С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.
Заключение
Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:
Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.
Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.
Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы
Как определить где катод где анод. Анод и катод
Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.
Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.
Применение в электрохимии
В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.
Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.
На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.
На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.
Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.
При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:
- цинковые;
- кадмиевые;
- медные;
- никелевые;
- оловянные;
- золотые;
- серебряные;
- платиновые.
Чаще всего на производстве используют цинковые аноды. Они бывают:
- катанные;
- литые;
- сферические.
Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.
Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.
Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.
Применение в вакуумных электронных приборах
Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.
Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.
Катод и анод в электрохимии
Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:
- Процедура преобразования электрического воздействия в химическую реакцию, называемая электролизом;
- Процедура преобразования химической реакции в электрический ток, называемая гальваническим процессом.
В электрохимии под терминами анод и катод понимают следующее:
- Электрод, на котором проходит окислительная реакция, называется анодом;
- Электрод, на котором осуществляется процедура восстановления, называется катодом.
Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.
Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.
Катод в вакуумных приборах
Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.
В составе любой радиолампы такие элементы:
- Катод;
- Анод;
- Сетка.
Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:
- Катод прямого разогрева;
- Катод непрямого разогрева.
Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.
Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.
Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.
Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.
Катод у полупроводниковых приборов
К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.
Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.
Анод в электрохимии
Аноды – множественное число слова «анод»; эта форма применяется преимущественно в металлургии, где применяются аноды для гальваники, используемые для нанесения на поверхность изделия слоя металла электрохимическим способом, либо для электрорафинирования, где металл с примесями растворяется на аноде и осаждается в очищенном виде на катоде . Основное распространение получили аноды из цинка (бывают сферические, литые и катаные, чаще используются последние), никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия (применение которых сокращается из-за экологической вредности), бронзы, олова (применяются при производстве печатных плат в радиоэлектронной промышленности), сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.
Анод в вакуумных электронных приборах
Знак анода и катода
В литературе встречается различное обозначение знака анода – «+» или «-», что определяется, в частности, особенностями рассматриваемых процессов.
В электрохимии принято считать, что катод – электрод, на котором происходит процесс восстановления, а анод – тот, где протекает окисление . При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.
В электротехнике анод – положительный электрод, ток течет от анода к катоду, электроны , соответственно, наоборот.
См. также
- Мнемонические правила запоминания знака анода
Литература
Ссылки
- // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). – СПб. , 1890-1907.
- Рекомендации ИЮПАК по выбору знака для величин анодного и катодного токов
Wikimedia Foundation . 2010 .
Синонимы :Смотреть что такое “Анод” в других словарях:
– (греч. anodos восходящая дорога). В гальваническом элементе, одна из двух пластинок или проволок, по которой вступает или выходит из жидкости электрический ток. Противоположность катоду. Словарь иностранных слов, вошедших в состав русского языка … Словарь иностранных слов русского языка
анод – а, м. anode f., англ. anode <гр. anodos путь вверх, восхождение. физ. Положительно заряженный электрод. В действии таких приборов, как гальваническая батарея, полярности нет и быть не может.. <положительный и отрицательный полюс..… … Исторический словарь галлицизмов русского языка
Отрицательный электрод Словарь русских синонимов. анод сущ., кол во синонимов: 1 электрод (10) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов
анод – электровакуумного прибора; анод; отрасл. коллектор Электрод, основным назначением которого обычно является прием основного потока электронов при электрическом разряде … Политехнический терминологический толковый словарь
анод – (устройства) электрод, через который электрический ток входит в среду, имеющую удельную проводимость, отличную от удельной проводимости анода [СТ МЭК50(151) 78] анод EN anode electrode capable of emitting positive charge… … Справочник технического переводчика
– (от греческого anodos движение вверх, восхождение), электрод электронного или электротехнического прибора (например, электронной лампы, гальванического элемента, электролитической ванны), характеризующийся тем, что движение электронов во внешней… … Современная энциклопедия Толковый словарь Ожегова
– (от греч. anodos движение вверх), 1) электрод электронного или ионного прибора, соединяемый с положит. полюсом источника. 2) Положит. электрод источника электрич. тока (гальванич. элемента, аккумулятора). 3) Положит. электрод электрич. дуги.… … Физическая энциклопедия
m.katod-anod.ru
Назначение диода, анод диода, катод диода, как проверить диод мультиметром
Назначение диода – проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.
Условное обозначениедиода на схемеНа рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода – это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода – это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.
Как проверить диод мультиметром
Как проверить диод мультиметром или тестером – такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах – диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному – катодом диода. Проверка диодов очень похожа на проверку транзисторов.
katod-anod.ru
Определяем полярность светодиода. Где плюс и минус у LED
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А – анод, К – катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
svetodiodinfo.ru
Обозначение светодиодов и других диодов на схеме
Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.
Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.
Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.
УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.
Диоды, какие они бывают?
Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.
Обозначение диодного мостаНапример, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.
Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.
Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.
Специфичные диоды
Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.
Обозначение стабилитрона (диод Зенера)
Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.
Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.
Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.
Варикап – обозначение на схеме и внешний видДинистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.
Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.
Обозначение динистораСветодиоды и оптоэлектроника
Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.
В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.
Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.
Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:
Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.
Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:
Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.
В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.
Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.
Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.
Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.
Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!
svetodiodinfo.ru
Как проверить диод мультиметром – Практическая электроника
В радиоэлектронике в основном применяются два типа диодов – это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.
На фото ниже у нас простой диод и светодиод.
Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду – асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.
Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному – катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус – ток НЕ потечет.
Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.
Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп – это анод, а другой конец – катод. 436 миллиВольт – это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.
Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.
А как же проверить светодиод? Да точно также! Светодиод – это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод – минус.
Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп – это анод, а вывод на котором черный щуп – катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.
Меняем щупы местами. Светодиодик не загорелся.
Выносим вердикт – вполне работоспособный светодиод!
А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки – это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.
www.ruselectronic.com
Маркировка диодов: таблица обозначений
Содержание:- Маркировка импортных диодов
- Маркировка диодов анод катод
Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.
Характеристики и параметры диодов
В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.
В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.
Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.
Обозначения и цветовая маркировка диодов
Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.
Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.
Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.
Маркировка импортных диодов
В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.
Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.
По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.
Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.
Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.
Маркировка диодов анод катод
Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.
Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:
- Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
- Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.
electric-220.ru
Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок: На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода: В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу. |
Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод – это положительный электрод, а катод – отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.
Анод
Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным – они помогут понять, что же автор хочет вам донести.
Катод
Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.
Возникновение терминов
Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод – это восход. Солнце движется вверх (ток входит). Катод – это заход. Солнце движется вниз (ток выходит).
Пример радиолампы и диода
Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные – помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение – обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.
Почему существует путаница?
Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.
Разбираемся с электрическим аккумулятором
Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:
- Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
- При отсутствии движения о них разговор вести нет смысла.
- Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.
Об электрохимии замолвим слово
Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:
- Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
- Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
- Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).
Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:
- Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
- Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).
Как происходят химические реакции?
Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.
Что есть что: шаг 1
Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.
Шаг 2: Процесс
Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод – положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».
Шаг 3: Электролиз
Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае – это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод – это катод. Здесь протекает реакция восстановления.
Шаг 4: Напоследок
Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.
Заключение
Вот таким всё и является – не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.
Вконтакте
Одноклассники
Google+
Что такое воздушный катод?
Воздушный катод в основном проводит кислород в электролит, где молекулы реагируют с ионами анода, генерируя электрический ток. Энергия, полученная в результате этой реакции, возвращается из воздушного катода к любому объекту или устройству, требующему энергии. Катод извлекает кислород, используемый для инициирования реакции, из воздуха или из водного раствора. Производители называют эти типы источников питания воздушными батареями.
Аноды воздушной батареи состоят из любого из нескольких металлов, но наиболее широко используемые включают алюминий, литий, магний или цинк. Электролит, используемый между анодом и катодом, должен представлять собой вещество, которое совместимо и успешно проводит ионы от анода. Катодным материалом, наиболее часто используемым в этом типе батареи, является углерод. Названия батарей с воздушным катодом обычно происходят от металла, который содержит анодную сторону батареи в сочетании с самим воздушным катодом. Например, литиевые или литий-воздушные батареи имеют литиевый анод, а цинковые или Zn-воздушные батареи содержат цинковые аноды; оба имеют воздушный катод на углеродной основе.
Производители разрабатывают Zn-воздушные катодные батареи различных размеров, и самые маленькие – это круглые батареи, используемые в слуховых аппаратах или часах. Большие версии обычно приводят в действие камеры или другие электронные устройства. Преимущества этого типа источника питания включают в себя увеличенный срок годности, а также более продолжительный срок службы при фактическом использовании. Компоненты этих источников энергии также в целом безопаснее для окружающей среды.
Различные типы катодов становятся отрицательными или положительными, в зависимости от конкретных применений. Отрицательные катоды содержат электролизеры, а положительные катоды – гальванические элементы. Воздушные катоды, как правило, являются положительными, хотя они поглощают кислород в качестве потенциального источника энергии; они испускают побочный продукт химической реакции в виде электрического тока.
Люди могут легко воспроизвести простой воздушный катод, положив сэндвич-бумагу или ткань, пропитанную раствором соленой воды, вместе со слоем измельченного угля между двумя кусочками алюминиевой фольги. Конец одного провода обычно крепится к миниатюрной лампочке или двигателю, а другой конец – к фольге. Другой провод также присоединяется к объекту, в то время как другой конец контактирует с измельченным углеродом. Нажатие на все слои создает химическую реакцию, и устройство получает электричество. Добавление перекиси водорода в раствор соленой воды обычно увеличивает количество доступных молекул кислорода и обеспечивает большую мощность.
ДРУГИЕ ЯЗЫКИ
Аноды и катод – обзор
6.1.1 Принципы
Анод и катод закорочены и подключены к «низковольтной» клемме измерителя LCR. Затвор находится под «высоким потенциалом» и принимает постоянный ток VFG, а также слабый сигнал переменного тока (рис. 6.1a). Независимый источник напряжения подключен к заднему затвору, имитируемому заземляющим слоем или подложкой. Частота выбирается около 10 кГц, чтобы ослабить шум 1 / f и дать несущим достаточно времени для создания каналов инверсии / накопления [2].
Рисунок 6.1. (а) Установка для измерения разделенной емкости в закрытом PIN-диоде. (b) Полная емкость в зависимости от смещения переднего затвора, показывающая компоненты затвор-анод C GA и затвор-катод C GK ( t ox = т ящик = 25 нм, адаптировано из [2]).
Типичная кривая раздельного CV имеет две ветви (рис. 6.1b). Левая ветвь учитывает образование дырочного канала на границе раздела пленка / затвор-оксид и аналогична кривой расщепления CV, измеренной в МОП-транзисторе с P-каналом.Что касается правой ветви, то она описывает поведение электронного канала, точно так же, как в N-канальном MOSFET. Каждую из этих ветвей также можно измерить независимо, отсоединив одну из клемм. Это означает, что общая разделенная емкость складывает емкость затвор-анод (измеренную при разомкнутой клемме N +) и емкость затвор-катод (при отключенной клемме P +).
Разделенная емкость суммирует вклады электронов и дырок на одной кривой C – V.Это заметное преимущество PIN-диодов: для получения одинакового количества информации от транзисторов потребуется проверка двух отдельных устройств (полевых МОП-транзисторов с N- и P-каналом).
Максимальное значение емкости на рис. 6.1b одинаково для двух ветвей и указывает емкость оксида, C1 = Cox. Это происходит, когда поверхностный канал находится в состоянии сильной инверсии или сильного накопления, и его емкость превышает емкость диэлектрика затвора. С обеих сторон емкость уменьшается с | VFG | поскольку носители стремятся испаряться с поверхности.Численное моделирование показывает, что электронные или дырочные каналы никогда не могут занимать всю площадь поверхности раздела. Электронный канал замкнут накоротко на катод N + , но отделен от анода небольшой боковой обедненной областью. И наоборот, дырочный канал соединен с анодом P + и немного отделен от катода. Теперь легко понять, что минимальное значение емкости мало, но отлично от нуля, поскольку оно включает паразитные вклады переходов.
Еще более значимыми являются кривые C – V, измеренные при изменении напряжения на заднем затворе VBG (рис. 6.2a). Когда задний интерфейс сильно инвертирован (VBG = 6 В) или накапливается, емкость изменяется между двумя граничными значениями, C1 и C2, для которых линии электрического поля заканчиваются либо в верхнем канале, либо в обратном канале. В последнем случае общая емкость представляет собой последовательную комбинацию вкладов затвор-диэлектрик и полностью обедненного тела:
Рисунок 6.2. (a) Разделенная емкость C FG и (b) производная емкости в зависимости от смещения затвора, измеренная для переменного напряжения на затворе.Положения отрицательного и положительного пиков производной указывают на пороговые напряжения для дырочных и электронных фронтальных каналов. Промежуточный отрицательный пик, наблюдаемый для В BG = −2 В, обозначает пороговое напряжение обратного канала дырки (пленка толщиной 25 нм и BOX, адаптировано из [2]).
(6,1) 1C2 = 1Cox + 1Csi
Измерения с заземленным задним затвором дают квазисимметричную кривую. Поскольку задний интерфейс истощен, минимальная емкость C3 ниже, C3 Детализированная и сложная кривая C – V измеряется путем смещения заднего затвора непосредственно перед пороговым напряжением дырочного канала (VBG = −2 В, на рис. 6.2a). Изменение напряжения на переднем затворе от накопления до инверсии модулирует через интерфейсную связь переход обратного канала от накопления дырок к истощению.На этой уникальной кривой собраны несколько режимов работы. На левом конце (VFG = −2 В) дыры везде в теле. Общая емкость уменьшается до диэлектрической емкости C1 = Cox. По мере увеличения VFG отверстия больше не поддерживаются на переднем интерфейсе, и емкость падает. Пока задний канал все еще накапливается, емкость стремится достичь C2. Одновременно пороговое напряжение дырочного обратного канала становится все более и более отрицательным из-за эффекта связи [3], пока VBG = -2 В не станет недостаточным для поддержания дырочного канала.В этот момент (VFG = 0,2 В) задний интерфейс переходит в режим истощения, материализованный третьей точкой перегиба (перегибом). За пределами перегиба все тело полностью разряжается, в результате чего емкость падает до минимального значения C3 (для VFG = +0,5 В на рис. 6.2a). Наконец, по мере того, как VFG продолжает расти, электроны начинают заполнять переднюю границу раздела, и емкость быстро увеличивается, чтобы в конечном итоге снова достичь максимального значения C1. Симметричные вольт-фарадные кривые получаются заменой дырок электронами в обратном канале ( i.е. , VBG = + 2 В). % PDF-1.4
%
6 0 obj
>
эндобдж
xref
6 180
0000000016 00000 н.
0000004376 00000 п.
0000004453 00000 п.
0000004632 00000 н.
0000006128 00000 н.
0000006423 00000 н.
0000006687 00000 н.
0000006822 00000 н.
0000007108 00000 н.
0000007608 00000 н.
0000008307 00000 н.
0000008793 00000 н.
0000008925 00000 н.
0000009305 00000 н.
0000009353 00000 п.
0000009401 00000 п.
0000009449 00000 н.
0000009497 00000 н.
0000009545 00000 н.
0000009593 00000 н.
0000009641 00000 п.
0000009689 00000 н.
0000009737 00000 н.
0000009785 00000 н.
0000009833 00000 н.
0000009881 00000 п.
0000009929 00000 н.
0000009977 00000 н.
0000010025 00000 п.
0000010073 00000 п.
0000013757 00000 п.
0000013896 00000 п.
0000014059 00000 п.
0000014193 00000 п.
0000017681 00000 п.
0000021554 00000 п.
0000024729 00000 п.
0000028011 00000 п.
0000031403 00000 п.
0000031860 00000 п.
0000032198 00000 п.
0000035475 00000 п.
0000039125 00000 п.
0000039836 00000 н.
0000040670 00000 п.
0000041468 00000 п.
0000042233 00000 п.
0000043058 00000 п.
0000043805 00000 п.
0000044618 00000 п.
0000045365 00000 п.
0000046151 00000 п.
0000046967 00000 п.
0000047801 00000 п.
0000048635 00000 п.
0000049424 00000 п.
0000049964 00000 н.
0000050790 00000 п.
0000051642 00000 п.
0000051744 00000 п.
0000051836 00000 п.
0000064225 00000 п.
0000064499 00000 н.
0000064721 00000 п.
0000065026 00000 п.
0000075317 00000 п.
0000075580 00000 п.
0000088528 00000 п.
0000088801 00000 п.
0000088886 00000 п.
0000101411 00000 п.
0000101679 00000 п.
0000101887 00000 н.
0000102173 00000 п.
0000117542 00000 н.
0000117797 00000 н.
0000130752 00000 п.
0000131015 00000 н.
0000149558 00000 н.
0000149826 00000 н.
0000171069 00000 н.
0000171330 00000 н.
0000182373 00000 н.
0000182632 00000 н.
0000182722 00000 н.
0000194652 00000 н.
0000194920 00000 н.
0000195137 00000 н.
0000195435 00000 н.
0000220375 00000 н.
0000220630 00000 н.
0000242216 00000 н.
0000242484 00000 н.
0000242573 00000 н.
0000256035 00000 н.
0000256298 00000 н.
0000256511 00000 н.
0000256809 00000 н.
0000276729 00000 н.
0000276980 00000 н.
0000295446 00000 н.
0000296379 00000 н.
0000298014 00000 н.
0000299830 00000 н.
0000301620 00000 н.
0000303246 00000 н.
0000304833 00000 н.
0000306547 00000 н.
0000308342 00000 п.
0000310308 00000 п.
0000312330 00000 н.
0000328905 00000 н.
0000330947 00000 н.
0000332763 00000 н.
0000334012 00000 н.
0000334533 00000 н.
0000338405 00000 н.
0000339433 00000 н.
0000340790 00000 н.
0000342696 00000 н.
0000344879 00000 н.
0000347030 00000 н.
0000407227 00000 н.
0000409412 00000 н.
0000411737 00000 н.
0000413885 00000 н.
0000415481 00000 н.
0000417653 00000 н.
0000419820 00000 н.
0000422067 00000 н.
0000424383 00000 п.
0000426688 00000 н.
0000428840 00000 н.
0000454683 00000 п.
0000456722 00000 н.
0000458787 00000 н.
0000461001 00000 п.
0000463031 00000 н.
0000464408 00000 н.
0000466395 00000 н.
0000468529 00000 н.
0000470677 00000 н.
0000472641 00000 н.
0000474286 00000 н.
0000488516 00000 н.
0000489677 00000 н.
0000490811 00000 п.
0000492557 00000 н.
0000494446 00000 н.
0000496514 00000 н.
0000498753 00000 п.
0000500717 00000 н.
0000502076 00000 н.
0000504173 00000 н.
0000506427 00000 н.
0000509532 00000 н.
0000511803 00000 н.
0000513751 00000 н.
0000515920 00000 н.
0000518262 00000 н.
0000520569 00000 н.
0000522832 00000 н.
0000525019 00000 н.
0000527045 00000 н.
0000528634 00000 н.
0000530717 00000 н.
0000556400 00000 н.
0000558596 00000 н.
0000560811 00000 н.
0000563039 00000 н.
0000565269 00000 н.
0000567247 00000 н.
0000568615 00000 н.
0000569715 00000 н.
0000576249 00000 н.
0000611735 00000 п.
0000648593 00000 н.
0000669992 00000 н.
0000676695 00000 н.
0000003896 00000 н.
трейлер
] / Назад 739146 >>
startxref
0
%% EOF
185 0 объект
> поток
h ބ K (a3 # Rn1I3 # PlJM \ ۂ ,, d64bC) Bj6n% ir %% dBz: Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors. Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в качестве
ChillingEffects.org. Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу. Чтобы отправить уведомление, выполните следующие действия: Вы должны включить следующее: Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса – изображению, ссылке, тексту и т. д. – относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени. Отправьте жалобу нашему уполномоченному агенту по адресу: Чарльз Кон
Varsity Tutors LLC Или заполните форму ниже: Ключевое отличие между анодом и катодом состоит в том, что анод является положительной клеммой, а катод – отрицательной клеммой. Аноды и катоды – это электроды с противоположной полярностью. Чтобы узнать разницу между анодом и катодом, нам сначала нужно понять, что они собой представляют. Аноды и катоды – это электроды, которые используются для подачи электрического тока в любое устройство, использующее электричество, или из него. Электрод – это проводящий материал, который позволяет току проходить через него. Электроды обычно сделаны из металлов, таких как медь, никель, цинк и т. Д., Но некоторые электроды также сделаны из неметаллов, таких как углерод.Кроме того, электрод замыкает цепь, пропуская через него ток. 1. Обзор и основные отличия Анод – это электрод, на котором ток покидает ячейку и где происходит окисление. Мы также называем его положительным электродом. Простая батарея состоит из трех основных частей: анода, катода и электролита.Традиционно электроды находятся на концах батареи. Когда мы соединяем эти концы с электричеством, внутри батареи начинается химическая реакция. Здесь электроны возмущаются и должны реорганизоваться. Они отталкиваются друг от друга и движутся к катоду, на котором меньше электронов. Это уравновешивает электроны во всем растворе (электролите). Рисунок 01: Цинковый анод Обычно ток течет через катод, когда устройство разряжается. Однако направление тока меняется на противоположное, когда устройство заряжается, и катод начинает работать как анод, в то время как анод становится катодом. В первичном элементе или батарее выводы необратимы, что означает, что анод всегда будет положительным. Это потому, что мы всегда используем это устройство для разряда электрического тока. Но в случае вторичных элементов или батарей электроды обратимы, поскольку устройство разряжается, но также получают ток для зарядки. Катод – это электрод, по которому ток входит в ячейку и происходит восстановление. Мы также можем назвать это отрицательным электродом.Однако катод может быть отрицательным в электролитических ячейках и положительным в гальванических элементах. Рисунок 02: Анод и катод в электролитической ячейке Катод обеспечивает электроны для катионов (положительно заряженных ионов). Эти ионы попадают на катод через электролит. Более того, катодный ток – это поток электронов от катода к катионам в растворе. Однако термины катод и анод могут иметь разные значения в разных приложениях. Анод – это электрод, на котором ток покидает ячейку и где происходит окисление, в то время как катод – это электрод, на котором ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод – отрицательным выводом. Однако есть также биполярные электроды, которые могут работать как аноды, так и катоды. Обычно анод притягивает анионы, а катод притягивает катионы, что привело к названию этих электродов именно так. Анод – это электрод, на котором ток покидает ячейку и где происходит окисление, в то время как катод – это электрод, на котором ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом состоит в том, что анод является положительным выводом, а катод – отрицательным выводом. 1. «Катод». Википедия, Фонд Викимедиа, 27 июня 2019 г., доступно здесь. 1.«Zinc anode 2» – Оригинальная работа: Файл: Zinc anode 2.png, автор: MichelJullian (выступление) Производная работа: KES47 (обсуждение) – Файл: Zinc anode 2.png (CC BY-SA 3.0) через Commons Wikimedia Дайте катодную половинную реакцию.{-}\) \(\к\)
\ (\ text {Mn} (\ text {s}) \) Дайте анодную полуреакцию. Слева написано анод, поэтому магний – это
анод.{-} \) Приведите общее уравнение электрохимической ячейки. Заряд двух половинных реакций уравновешен. {2 +} (\ text {aq}) + \ text {Mn} (\ text {s}) \) Какие металлы можно использовать для электродов в этом
электрохимическая ячейка? Металлический магний и металлический марганец Предложите два электролита для этой электрохимической ячейки. Сульфат магния и сульфат марганца или нитрат магния
и нитрат марганца В каком направлении будет течь ток? Твердое тело \ (\ text {Mg} \) окисляется с образованием
\ (\ text {Mg} ^ {2 +} \) ионы на аноде.{2 +} \) ионы приводятся к форме
\ (\ text {Mn} (\ text {s}) \) на катоде. Это делает
катодный положительный. Электронный поток идет от отрицательного к положительному, поэтому от анода
к катоду. Обычный ток в обратном
направление (от катода к аноду). Следовательно, условный ток идет от марганцевой пластины к
пластина магния. Нарисуйте простой эскиз всей ячейки. Рисунок 1.Упрощенная схема гальванического элемента с цинковыми и медными электродами для замыкания цепи через неметаллическую среду. Электрод – это проводник, который используется для контакта с неметаллической частью цепи. [1] Электроды обычно используются в электрохимических ячейках (см. Рис. 1), полупроводниках, таких как диоды, и в медицинских устройствах. Электрод – это место, где происходит перенос электронов. Электрод классифицируется как катод или анод в зависимости от типа протекающей химической реакции.Если на электроде происходит реакция окисления (окисление – потеря электронов), то электрод классифицируется как анод. Если на электроде происходит реакция восстановления (уменьшение – это усиление электронов), то электрод классифицируется как катод. [2] Обычный ток в чем-то вроде разряженной батареи течет в устройство через его анод и покидает устройство через катод. [3] Различают активные электроды и инертные электроды .Например, магниевый электрод обычно является активным электродом, поскольку он участвует в окислительно-восстановительной (сокращенно «окислительно-восстановительной») реакции. Платиновый электрод обычно является инертным электродом, поскольку он не участвует в окислительно-восстановительной реакции. Инертный электрод химически инертен и присутствует только для того, чтобы ток мог течь через электрохимическую ячейку. [2] Есть много способов подумать о том, какой электрод является анодом, а какой – катодом в электрохимической системе. Иногда аноды и катоды описываются как отрицательные и положительные электроды. Однако это может сбивать с толку, поскольку аноды и катоды могут быть отрицательными или положительными, в зависимости от того, производит ли электрохимический элемент электричество или потребляет электричество.Таким образом, лучше всего думать об этом в связи с потоком электронов. Как было сказано ранее, анод относится к электроду, на котором происходит окисление или где электроны выходят . Катод относится к электроду, на котором происходит восстановление или где электроны текут в . [4] Аноды и катоды используются в электрических компонентах с потенциалом элемента, включая батареи, топливные элементы, фотоэлектрические элементы, электролитические элементы и диоды. Для получения дополнительной информации см. Соответствующие страницы ниже: Задача: Обеспечить теоретическую основу для выбора конфигурации анод-катод при стимуляции спинного мозга для снятия боли при использовании одного чрескожного эпидурального электрода или двух электродов, включенных параллельно. Методы: Компьютерная модель стимуляции спинного мозга в точках Т8-Т9 использовалась для расчета площадей спинного столба, задействованных при стимуляции с помощью различных конфигураций, используемых в клинической практике. Полученные результаты: Триполярная (или биполярная) стимуляция одним электродом, симметрично расположенным над спинными колоннами, задействует наибольшую площадь и дает самый широкий охват парестезии.Стимуляция двумя симметрично расположенными электродами, подключенными параллельно к одноканальному генератору импульсов, может дать аналогичные результаты из-за их, как правило, меньшего расстояния от спинного мозга, но «эффекта суммирования» не существует. Меньшая площадь спинной колонны активируется при использовании двух смещенных электродов. Электрод, расположенный сбоку или поперек биполярной стимуляции, приводит к односторонней, обычно сегментарной парестезии. Выводы: Относительное положение катодов и анодов и их расстояние от спинного мозга являются основными детерминантами активации дорсального столба / дорсального корешка и распределения парестезии.Большая вариабельность внутриспинальной геометрии у разных пациентов является основной причиной различий в охвате парестезией среди пациентов, имеющих оптимально расположенный электрод (-ы). Изменения степени охвата парестезии с течением времени более вероятны при использовании нескольких электродов. Справка с анодами и катодами
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105 Разница между анодом и катодом
СОДЕРЖАНИЕ
2. Что такое анод
3. Что такое катод
4. Сравнение бок о бок – анод и катод в табличной форме
5. Резюме Что такое анод?
Что такое катод?
В чем разница между анодом и катодом?
Резюме – анод против катода
Артикул
Изображение предоставлено:
2 . «Гальваническая ячейка без катионов» – исходным пользователем был стандарт Огайо из английской Википедии. – Передано из en.wikipedia в Commons с помощью Burpelson AFB с использованием CommonsHelper (CC BY-SA 3.0) через Commons Wikimedia 13.4 Процессы в электрохимических ячейках | Электрохимические реакции
– Энергетическое образование
Анод и катод
Рис. 2. Упрощенная схема, показывающая анод и катод топливного элемента.Обратите внимание, что стрелки на диаграмме показывают поток электронов. Обычный ток будет в обратном направлении. Для дальнейшего чтения
Список литературы
Влияние конфигурации анод-катод на покрытие парестезии при стимуляции спинного мозга