Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

почему чистый синус лучше? © Солнечные.RU

Инвертор

 

Подбирая инвертор для солнечной электростанции или для системы резервного питания возникает вопрос: что выбрать — дешевую модель с псевдосинусоидой (трапецией, прямоугольником) или дорогую с чистым синусом на выходе?

 

Попробуем рассмотреть, в чем состоит отличие синусоидальных инверторов от прочих с точки зрения пользователя:

Основное отличие этих инверторов заключается в форме выходного напряжения (чистый синус, квазисинусоида или прямоугольная форма). Однако, что это значит для конечного пользователя, мало разбирающегося в физике и электронике?

Вероятно, ни для кого не секрет, что форма напряжения в электрической сети (в домашней розетке) — чистый синус. Соответственно, все электроприборы десятилетиями разрабатывались с учетом этого. Тем не менее, в последнее время все большее распространение получают электроприборы с импульсными блоками питания, для которых в большинстве случаев форма напряжения не важна, а важно только действующее значение напряжения — 220 В. То есть такие приборы будут одинаково работать независимо от формы напряжения на выходе инвертора. И если Вы уверены, что совместно с инвертором будут работать только электроприборы с импульсными блоками питания (например, энергосберегающие лампы, большинство телевизоров, магнитофонов, зарядных устройств для телефонов и т.п.), то Вы можете купить любую модель.

Однако и по сей день остается большая группа электроприборов, которая либо совсем не будет работать при форме напряжения инвертора, отличной от чистого синуса, либо будет работать, но при этом характеристики этих приборов ухудшатся и сократится их срок службы. К этой группе приборов относятся так называемые индуктивные нагрузки (холодильники, насосы, кондиционеры, синхронные электродвигатели, приборы с трансформаторными блоками питания, некоторые модели LCD-телевизоров и т.п.).

Таким образом, если Вы планируете подключать к инвертору холодильник или насос, а эти приборы вероятно есть в каждом доме или на даче, то Вам необходим инвертор с чистым синусом. Если же у Вас не будет индуктивных нагрузок, то Вам вполне подойдет недорогая модель с прямоугольником, трапецией или псевдосинусоидой на выходе.

Стоит отметить, что среди несинусоидальных инверторов самыми близкими по характеристикам являются модели с квазисинусоидой (псевдосинусоидой или модифицированной синусоидой) и в некоторых случаях работа таких инверторов будет аналогична работе более дорогих моделей с чистой синусоидой . Квазисинусоида — это своего рода компромиссное решение — почти чистый синус. Поэтому, если Вашей целью является экономия средств, то Вы вполне можете выбрать и это решение. Хотя, экономия получится незначительной.

На что еще обратить внимание при выборе инвертора, Вы можете узнать на нашем сайте.

 

 

Надеемся, описание синусоидального инвертора поможет Вам сделать выбор!

www.solnechnye.ru

Чистый синус или модифицированный меандр

09-03-2013

Графики чистого синуса и меандра на экране осциллографа

Что такое «чистый синус» электропитания, и зачем он нужен? Давайте разбираться.

Качество электроэнергии, поставляемой в наши дома, отвечает определенным требованиям. Один из важных показателей качества — вид графика напряжения. График напряжения электрического сигнала в сети должен иметь правильную синусоидальную форму. Для такого графика часто используют определение «чистый синус».

В случае отключения сетевого электропитания используются источники бесперебойного питания. Однако далеко не все ИБП обеспечивают электропитание правильной синусоидальной формы.

Вид графика напряжения выходного сигнала источника бесперебойного питания зависит от типа и конструкции данного устройства.

Большинство обычных компьютерных ИБП генерируют на выход сигнал, называемый «модифицированный синус» или «меандр».

Различные типы графиков выходного сигнала, полученные с помощью осциллографа, представлены на следующем рисунке.

Методы аппроксимации графика чистого синуса

В этом разделе мы ознакомимся с различными методами аппроксимации графика чистого синуса, применяемыми на практике.

График напряжения в форме правильной синусоиды на следующих рисунках представлен красным цветом. Графики напряжения, имеющие приближенную к синусоиде форму, представлены другим цветом.

Самым простым приближением является график меандра. Меандр — простая ломаная линия, в данном случае имеющая форму прямоугольника в каждом полупериоде графика синуса. График простого меандра представлен на рисунке 1. На практике преобразователи такого типа не используются по причине резкого изменения значения напряжения в точках пересечения нулевого значения напряжения. Электрический сигнал такой формы создает большие электрические помехи  и может вывести из строя подключенное оборудование.

Для снижения негативных эффектов применяется преобразование типа «меандр» с дополнительными «паузами» в точках смены полярности сигнала. График такого модифицированного меандра представлен на рисунке 2.

Более совершенные методы аппроксимации графика синусоиды напряжения позволяют получать график с большим количеством «ступенек». Такой подход позволяет снизить амплитуду перехода на следующую ступень и ближе подойти к графику «чистого синуса». Такой график носит название «модифицированный синус» и представлен на рисунке 3.

Когда нужен «чистый синус», а когда достаточно и «модифицированного»

Различные электроприборы и электрооборудование имеют разные требования к качеству электропитания. Ряд устройств корректно работает только с сигналом «чистый синус», другие приборы могут без проблем использовать электропитание в форме «модифицированного синуса». С другой стороны, источники бесперебойного питания с выходным сигналом в форме чистого синуса существенно дороже, чем ИБП с модифицированным синусом.

Не критичны к форме графика напряжения и могут использовать «модифицированный синус» следующие приборы:

  • нагревательные приборы;
  • компьютеры;
  • бытовые приборы, имеющие импульсные источники питания.

Требуют использования питания форме чистого синуса следующие приборы:

  • электродвигатели;
  • котлы отопления;
  • циркуляционные и погружные насосы;
  • компрессоры;
  • приборы и оборудование, имеющие трансформаторные источники питания;
  • приборы и оборудование, чувствительные к электрическим помехам в сети.

Отклонения от правильной синусоидальной формы напряжения приводят к перегреву такого оборудования, повышенному трению и биению подвижных частей конструкции, к возможным авариям и поломкам. Использование источников питания с модифицированным синусом выходного сигнала приводит к существенному сокращению срока эксплуатации приборов, имеющих трансформаторные источники питания или электродвигатели.

ИБП с чистым синусом для питания котлов отопления

Для правильного и безопасного электропитания газовых котлов отопления необходимо использовать только ИБП с синусоидальной формой сигнала. 

В конструкцию современного котла отопления входят: электронный блок управления, циркуляционные насосы, насосы или компрессоры для обогащения воздухом горючей смеси. Все эти устройства требуют правильного синусоидального электропитания.

Использование источников бесперебойного питания с формой сигнала в виде модифицированного синуса приведет к сбоям в работе электронного блока и повышенному износу и перегреву насосов котла отопления.

Надёжные российские источники бесперебойного питания компании БАСТИОН представлены в разделе Бесперебойное питание.

Читайте также по теме:


Тех. поддержка

Бастион в соц. сетях

Канал Бастион на YouTube

teplo.bast.ru

Что такое «чистый синус» для преобразователя напряжения / Электроснабжение / Статьи / Proektstroy.ru

Потребность в инверторах возникает, когда требуется решить задачу питания от источников переменного тока аппаратов и приборов, работающих от сети 220 В, 50 Гц. Форма переменного напряжения, получаемого на выходе инвертора, может быть строго синусоидальной или аппроксимированной.

Что такое «чистый синус» для инвертора

Для многих приборов важным является лишь величина питающего напряжения, а его форма не имеет большого значения, что позволяет применять для их подключения более дешевые инверторы с искаженной синусоидой. Целый ряд устройств чувствителен к форме кривой напряжения, поэтому для них требуются модели инверторов с синусом на выходе.
Термин “чистый синус” в применении к инвертору означает, что вольтамперные характеристики стабильны. Постоянство параметров напряжения гарантирует длительную и надежную работу всех электроприборов, подключенных к преобразующему устройству.
Именно такие преобразователи пользуются большой популярностью у тех, кто в частной жизни или на производстве использует электрооборудование, зависящее от параметров и качества питающего напряжения. К нагрузкам, чувствительным к параметрам напряжения и форме кривой, относятся холодильники, кондиционеры, насосы некоторых видов, аппаратура, имеющая в своем составе трансформаторы, газовые отопительные котлы.

В жизни не приходится рассчитывать только на подключение нагрузки определенного типа. Поэтому для уверенности в том, что все электрооборудование будет работать надежно с высоким КПД, применяют инверторы с “чистым синусом”.

О моделях инверторов с синусоидальным выходным напряжением

Современный рынок устройств, преобразующих напряжение, насыщен самыми разными моделями отечественного и иностранного производства. В зависимости от требований и условий эксплуатации они могут иметь различные виды, конструкции, габаритные размеры и стоимость.

С появлением все большего числа производителей преобразовательных устройств, стоимость их постепенно снижается. Инверторы с синусом на выходе продолжают стоить дороже своих собратьев с модифицированной кривой напряжения, но имеются достаточно дешевые модели, имеющие небольшие мощности (до 6 кВт) и маленькие размеры. Их нельзя применять для долговременной работы, так как они сильно нагреваются и на холостом ходу потребляют от 0,2 до 0,6 А.

Многие производители предлагают потребителям инверторы для использования в системах, работающих от энергии ветра или солнца. Хорошо зарекомендовали себя в данном сегменте, судя по отзывам, российские устройства. Кроме стандартных защит от короткого замыкания и перегрузки, они имеют опцию «спящий режим», что позволяет сокращать потребляемую электроэнергию, ток в таком режиме не превышает 50 мА.

Энергосистемы, работающие постоянно в автономном режиме, требуют применения мощных синусодидальных инверторов. Обязательная функция таких приборов – это возможность настройки порогов отключения, чтобы не произошло глубокой разрядки батареи. Стоимость таких моделей зависит от мощности, набора присутствующих функций и бренда.

Самыми сложными и дорогими являются бесперебойные комплексы, в которые входят инверторы. Такие системы устанавливаются в качестве резервных для полноценного электропитания больших объектов и производств.

Автор статьи: представитель компании «СибКонтакт»


www.proektstroy.ru

Чистая синусоида VS её ступенчатая аппроксимация. Часть I | Блог

Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.

В таких случаях в характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.

Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.

а)                                          б)                                         в)

Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well

Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.

Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.

Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт

Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.

Нагревательное электрооборудование

Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.

Люминесцентные, светодиодные лампы и светильники

В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.

Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.

По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).

Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

club.dns-shop.ru

Инверторный электрогенератор: идеальная синусоида напряжения | Блог

Инверторные электрогенераторы завоевывают все большую популярность. Оно и понятно — их ассортимент увеличивается, а стоимость приближается к обычным генераторам. Об их преимуществах над классическими наслышаны многие, кто хоть немного интересовался автономными электростанциями. Так в чем же заключаются их достоинства и насколько они хороши на самом деле?

Инверторный электрогенератор — что это?

В основе электрогенераторов положен принцип выработки электрической энергии за счет преобразования механической энергии двигателя внутреннего сгорания в электрическую путем вращения генератора переменного тока — альтернатора.

В бытовых моделях чаще всего применяют синхронные генераторы переменного тока. Генератор состоит из статора и ротора. На статоре расположены обмотки, с которых снимается вырабатываемое генератором переменное напряжение. На роторе же — несколько полюсов с магнитами. Это могут быть как электромагниты, так и постоянные магниты, например, мощные неодимовые. Ротор вращается, создавая переменное магнитное поле, которое пронизывает обмотку статора, в результате чего в последней появляется электродвижущая сила, или, проще говоря, напряжение.

Схема классического электрогенераторабез инверторной технологии

Что же такое инверторные электростанции? Инвертор — это электронное устройство, предназначенное для преобразования постоянного тока в переменный. Таким образом, в инверторных электростанциях выходное переменное напряжение получают не напрямую от генератора переменного тока, а от инверторного преобразователя. Но пытливый читатель, вероятно, заметил, что инвертор преобразует постоянный ток в переменный. А где же его взять, если с обмоток статора снимается переменное напряжение? Все правильно, от генератора переменного тока получается переменное напряжение. Для получения же постоянного напряжения используют выпрямители.

Схема электрогенератора с использованиемнезависимого формирователя выходного напряжения

Если в электростанции отсутствует инверторный преобразователь (далее будем называть такие электростанции классическими), то необходимое напряжение снимается напрямую с обмоток статора.

Зачем же так все усложнять, если можно просто подключить необходимое электрооборудование к обмотке статора генератора переменного тока и завести двигатель. На то есть, как минимум, три веские причины:

  1. Требуется не абы какое переменное напряжение, а с вполне определенными контролируемыми характеристиками.
  2. А еще требуется легкое и компактное устройство в целом.
  3. И было бы очень неплохо, чтобы это устройство поглощало как можно меньше горючего.

Думается, что эти причины стоят того, что бы немного заморочиться. Начнем с самого важного — характеристик переменного напряжения, требуемого для питания электроприборов.

Характеристики переменного напряжения

Какими же характеристиками должен обладать электрический ток, получаемый от автономной электростанции?

Пойдем простым логическим путем — если к электростанции планируется подключать бытовые электроприборы, то электрическое напряжение, получаемое от автономной электростанции, должно иметь те же характеристики, что и напряжение в обычной розетке.

Согласно ГОСТ 32144-2013 «Нормы качества электроэнергии в системах электроснабжения общего назначения», основные характеристики напряжения в бытовой электросети должны удовлетворять следующим значениям:

  • номинальное значение напряжения — 220 Вольт,
  • допустимое отклонение от номинального напряжения — ±10%,
  • номинальное значение частоты напряжения — 50 Гц,
  • допустимое отклонение частоты — ±5 Гц (для автономных систем электроснабжения).

Форма напряжения должна быть синусоидальной с минимальными искажениями. «Качество» синуса определяется уровнем гармонических искажений.

Допустимый уровень гармонических искажений по напряжению не должен превышать 8 %. Зачастую именно искажения формы напряжения, которую выдают автономные электростанции, является причиной плохой работы, а то и вовсе неработоспособности подключаемого электрооборудования.

Синусоидальный сигнал «высокого качества» можно посмотреть на экране осциллографа, подключив его к выходу специального генератора сигналов, который предназначен для тестирования различных устройств.

Синусоидальный сигнал частотой 50 Гц на экране осциллографа Hantek DSO5202P, полученный со специального генератора сигналов

Можно оценить и частотный спектр этого сигнала. Например, используя программу SpectraPlus и звуковую карту Sound Blaster X-Fi Xtreme Audio SB0790, можно получить вот такой график и значение коэффициента гармоник, которое в данном случае не превышает 0,03 %.

Частотный спектр сигнала, полученного со специального генератора

С точки зрения ценителей хорошего звука данную форму напряжения нельзя назвать идеальной, а вот инженер-электрик наверняка посчитает такую форму напряжения образцовой.

Некоторые электронные приборы и электрооборудование допускают электропитание с худшими характеристиками, чем указано в ГОСТе, но если требуется «универсальный» электрогенератор, к которому можно было бы подключать любые устройства, не задумываясь о последствиях, то характеристики его напряжения должны быть максимально приближены к требованиям ГОСТа.

А что творится в обычной розетке?

Чтобы понимать, о чем идет речь и какие в реальности основные параметры напряжения в бытовой электросети, были проведены их измерения.

Форма напряжения частотой 50 Гц в бытовой электросети

Спектр напряжения в бытовой электросети

По результатам измерений коэффициент гармоник (уровень гармонических искажений) по напряжению в бытовой электросети составил около 3.4 %, что полностью укладывается в требования ГОСТа. Изменения напряжения в течение двух часов не превышали допуски, указанные в ГОСТ.

Изменение напряжения в бытовой электросети в течение двух часов

Изменения частоты напряжения в бытовой электросети минимальны и не превышают 0,05 Гц.

Изменение частоты напряжения в бытовой электросети в течение 1 часа

Такая точность необходима в большей степени для синхронизации промышленных электрогенераторов, установленных на ТЭЦ, ГЭС, АЭС и прочих электростанциях. Для бытовых потребителей электроэнергии такая точность, как правило, избыточна. Поэтому в ГОСТе отдельно указаны допуски на отклонение частоты для автономных систем электроснабжения, значения которых составляют ±5 Гц.

С качеством электрической энергии разобрались, вернемся к электрогенераторам.

Классическая автономная электростанция

Для того, чтобы получить напряжение с требуемыми характеристиками, в классической электростанции необходимо выполнить несколько условий.

У синхронных генераторов частота выходного напряжения пропорциональна частоте вращения ротора. Если вращать ротор со скоростью 1500 оборотов в минуту, то на выходе получим напряжение частотой 50 Гц. При этом ротор должен быть двухполюсным, то есть иметь два магнита, закрепленных на противоположных сторонах оси ротора. Для двигателя внутреннего сгорания 1500 об/мин — это оптимальное значение, поэтому ось ротора напрямую соединяется с осью коленчатого вала двигателя. Теперь требуется тщательно следить за оборотами двигателя и поддерживать их на заданном уровне для обеспечения стабильной частоты получаемого переменного напряжения.

Нужную частоту получили, теперь разберемся с напряжением на выходе. Альтернатор, по сути, является источником тока, а не напряжения, поэтому выходное напряжение при условии постоянства оборотов будет зависеть от величины нагрузки. Чем больше нагрузка, тем меньше напряжение.

А еще выходное напряжение зависит от величины вращающегося магнитного поля, которое создают магниты на роторе. Силу магнитного поля можно менять, если установить на роторе электромагниты. Теперь, меняя ток в обмотках электромагнитов, можно регулировать выходное напряжение альтернатора. Так как ротор вращается, то для подачи тока в его обмотки применяют скользящие контакты — щетки. Устройство, которое поддерживает выходное напряжение генератора на уровне 220–230 В путем непрерывной регулировки тока в обмотках ротора, называется автоматическим регулятором напряжения (automatic voltage regulator — AVR). Без AVR синхронные генераторы в автономных электростанциях не применяются. Данные устройства чаще всего устанавливаются в корпусе альтернатора и выглядят примерно так.

Автоматический регулятор напряжения (AVR)

А вот так выглядит типичный альтернатор, установленный на классической автономной электростанции.

Типичный синхронный альтернатор мощностью 2,2 кВт. Сверху со снятой задней крышкой и демонтированным AVR, снизу вид сбоку с ориентировочными размерами

Как видно на фото, конструкция довольно громоздкая. Альтернатор сопоставим по размерам с применяемым двигателем внутреннего сгорания. При частоте выходного напряжения в 50 Гц и используемому принципу поддержания выходного напряжения на должном уровне уменьшить габариты альтернатора практически не возможно.

Характеристики напряжения в классическом электрогенераторе

Форма выходного напряжения классической автономной электростанции номинальной мощностью 2.2 кВт показана на трех осциллограммах ниже при мощностях нагрузки в 100 Вт, 900 Вт и 1700 Вт соответственно.

Нагрузка 100 Вт                      Нагрузка 900 Вт                   Нагрузка 1700 Вт

Форма выходного напряжения на выходе классической автономной электростанции номинальной мощностью 2.2 кВт

Нетрудно заметить, что форма напряжения отличается от «идеальной» синусоиды. Частотные спектры сигналов и значения коэффициента гармоник показаны ниже на графиках.

Нагрузка 100 Вт                                       Нагрузка 900 Вт

Нагрузка 1700 Вт

При мощностях нагрузки 900 и 1700 Вт коэффициент гармоник превышает требования ГОСТа.

Далее показана зависимость выходного напряжения от величины нагрузки.

Зависимость выходного напряжения от величины нагрузки

Что интересно, при увеличении нагрузки выходное напряжение генератора даже немного повышается. Это особенности работы AVR. В целом значение выходного напряжения достаточно стабильно. Тут некоторую озабоченность вызывают кратковременные всплески напряжения в моменты подключения нагрузки. Особенно это заметно, если к ненагруженному генератору сразу подключить довольно мощную нагрузку. В данном случае в момент подключении к генератору нагрузки в 1700 Вт сразу наблюдается провал напряжения на 9-10 вольт, затем кратковременный подъем на 11-12 вольт. Это результат работы системы AVR и системы автоматического поддержания оборотов двигателя, которые имеют естественную инерционность и не могут мгновенно производить регулировку.

А вот так меняется частота выходного напряжения при подключении нагрузки разной мощности.

Зависимость частоты выходного напряжения от величины нагрузки

При работе электростанции без нагрузки или при малой нагрузке частота напряжения немного завышена относительно номинального значения (50 Гц), это сделано умышлено, так как при номинальной нагрузке обороты двигателя в любом случае упадут даже при задействованной автоматической регулировке оборотов. А для электрооборудования незначительное повышение частоты питающего напряжения менее вредно, чем ее понижение, в особенности для устройств с трансформаторным питанием. При снижении частоты у трансформаторов увеличивается ток холостого хода, а значит и нагрев.

Как бы то ни было, характеристики напряжения исследуемой классической электростанции вполне удовлетворяют требованиям ГОСТа, за исключением гармонических искажений выходного напряжения. Но для большинства оборудования это вполне допустимо.

Инверторная автономная электростанция

В инверторных электростанциях тоже используется синхронный генератор переменного тока. Но его конструкция отличается от тех, которые используются в классических электростанциях.

Какие же требования предъявляются к генератору переменного тока инверторной электростанции, чтобы получить напряжение с требуемыми характеристиками? А требования эти очень лояльные, так как формированием нужных характеристик выходного напряжения занимается инверторный преобразователь, а не альтернатор. В этом и кроется ключевое отличие инверторных электростанций от классических.

Самое интересное заключается в том, что становится не важно, какая частота напряжения будет на выходе альтернатора, так как напряжение будет преобразовано в постоянное, а у него частота как параметр отсутствует в принципе. Это дает возможность применения многополюсного генератора с внешним ротором, обмотки которого работают на повышенной частоте (примерно 400–600 Гц).

Отпадает необходимость в роторе с обмоткой для создания электромагнита. Блок AVR тоже становится лишним. Ведь уровень напряжения, необходимый для питания инвертора можно регулировать, изменяя обороты двигателя. Поэтому на роторе можно установить постоянные магниты. Все эти конструктивные особенности значительно уменьшают размеры и вес альтернатора.

Синхронный многополюсный альтернатор с внешним ротором на постоянных магнитах мощностью 1,25 кВт

Показанная на фото инверторная электростанция имеет в составе два многополюсных генератора переменного тока, которые установлены по обе стороны коленчатого вала. В результате параллельной работы двух альтернаторов номинальная мощность электростанции составляет 2,5 кВт.

А вот так выглядит типичный блок формирователя выходного напряжения, в составе которого установлен выпрямитель и, собственно, инвертор. Размеры данного блока 175х130х80 мм.

Характеристики напряжения инверторного электрогенератора

Форма выходного напряжения инверторной электростанции номинальной мощностью 2 кВт показана на трех осциллограммах ниже при мощностях нагрузки в 100 Вт, 900 Вт и 1700 Вт соответственно.

Форма выходного напряжения на выходе инверторной электростанции номинальной мощностью 2 кВт

Форма напряжения близка к «идеальной» синусоиде. Измерения коэффициента гармоник показали отличные результаты. Уровень искажений меньше, чем в бытовой электросети и в несколько раз меньше требований ГОСТа.

Нагрузка 100 Вт                                       Нагрузка 900 Вт

Нагрузка 1700 Вт

Уровень гармоник выходного напряжения инверторной электростанциипри разных величинах нагрузки

Далее показана зависимость выходного напряжения от подключаемой нагрузки.

Зависимость выходного напряжения от величины нагрузки

При увеличении нагрузки напряжение уменьшается, но незначительно. Наблюдаются провалы напряжения в моменты подключения нагрузки. Более всего это заметно при резком увеличении нагрузки с нуля. Такие провалы объясняются конкретными схемотехническими решениями при разработке инвертора и в разных реализациях могут отличаться по величине.

А вот если посмотреть на график частоты выходного напряжения от нагрузки, то увидим ровненькую горизонтальную линию. При этом нагрузка к генератору подключалась аналогично предыдущему графику. Такие стабильные параметры являются следствием того, что инверторный преобразователь имеет свой собственный задающий электронный генератор, и его частота никак не зависит от оборотов двигателя.

Параметры напряжения инверторной электростанции полностью удовлетворяют требованиям ГОСТа. Отличительной особенностью являются малые гармонические искажения выходного напряжения и высокая стабильность частоты.

В каждой бочке бывает ложка…

Нельзя не отметить одну особенность инвертора, которой пользуются производители, чтобы удешевить его конструкцию. Дело в том, что по определению инвертор — это устройство, которое преобразует постоянное напряжение в переменное. При этом речь не идет о форме этого переменного напряжения. Синусоидальную форму выходного напряжения чисто технически получить несколько сложнее, чем прямоугольную. В результате некоторые производители устанавливают на свои электростанции инверторы, которые вместо синуса дают прямоугольные импульсы частотой 50 Гц, при этом их ширина и амплитуда подобраны таким образом, что дают среднеквадратическое значение напряжения как раз в 220–230 В. Все это называют ступенчатой аппроксимацией синусоиды. Ниже показана форма выходного напряжения инверторной электростанции с выходным напряжением в виде как раз той самой ступенчатой аппроксимации.

Форма выходного напряжения инверторной электростанции со ступенчатой аппроксимацией синусоиды

Да, некоторое оборудование вполне сносно переваривает такую форму напряжения, но называть такую электростанцию универсальной для питания любого электрооборудования было бы опрометчиво. Сложно гарантировать стабильную и безотказную работу оборудования, подключенного к такому электрогенератору. Либо надо знать, что подключаемое оборудование допускает работу от напряжения такой формы.

К сожалению, производители зачастую умалчивают об этом параметре, но зато громко заявляют, если их изделие выдает «чистый» синус.

Что в итоге?

Основным преимуществом инверторных электростанций является малый вес и габариты. В среднем инверторная электростанция в 1,5-2 раза легче и меньше классической. Такие показатели удалось достичь благодаря применению многополюсного генератора переменного тока с внешним ротором на постоянных магнитах и работающего на повышенной частоте. А применяется такой генератор как раз из-за независимого формирователя выходного напряжения — инвертора. Ко всему прочему все эти технические решения увеличивают КПД электрогенератора, что уменьшает потребление горючего двигателем.

Что касается качества выходного напряжения, то тут неоспоримым преимуществом инвертора по сравнению с классической электростанцией является низкий уровень искажений формы выходного напряжения. На выходе практически идеальная синусоида (если, конечно, не попался инвертор с аппроксимацией). Тоже можно сказать и о стабильности частоты. Такие параметры позволяют использовать инверторную электростанцию для питания любого оборудования, не опасаясь негативных последствий.

Стабильность напряжения инверторной электростанции ничем не выделяется на фоне этого же параметра классического электрогенератора. И у того, и другого устройства этот параметр находится на должном уровне и зависит от применяемых решений при разработке и изготовлении AVR или инвертора.

club.dns-shop.ru

принцип работы, плюсы и минусы

Инвертор — это необходимый элемент в системе автономного дома, который приспосабливает параметры вырабатываемой альтернативными источниками энергии к параметрам, необходимым для питания технических приборов. Почитайте подробнее об опыте выстраивания такой системы здесь.

Принцип работы

Инвертор — это прибор для преобразования напряжения. Например, он может преобразовать постоянный ток с напряжением в 12 Вольт (полученный при помощи солнечной панели) в переменный с напряжением в 220 Вольт (подходит для питания бытовых устройств). Без этого небольшого устройства практически невозможно полноценное использование энергии гелиопанелей и ветряков для домашних нужд.

Инверторы бывают разные. В зависимости от конструкции прибора и его предназначения он выдает выходной сигнал разной формы:

  • синусоида;
  • квазисинусоида;
  • импульсный.

Увидеть форму можно, если подключить к цепи специальный измерительный прибор — осциллограф. Он как бы разворачивает сигнал во времени: по оси Х мы видим временной интервал, а по оси У — уровень напряжения.

Принцип работы

Самое качественное напряжение, близкое по параметрам к внешней электросети, выдает инвертор «чистый синус». Принцип его работы заключается в следующем:

  • При подаче энергии с аккумулятора на инвертор, она изменяется с 12 Вольт на 220 Вольт.
  • Преобразованная электроэнергия попадает на мостовой инвертор, где постоянный ток превращается в переменный.
  • Высокочастотный фильтр низких частот определяет форму чистой синусоиды у напряжения на выходе.

Плюсы и минусы

Если вы планируете превратить свое жилище в умный дом или поэкспериментировать с отдельными источниками альтернативной энергии, то рано или поздно вы придете к проблеме выбора инвертора для вашей системы. Иначе вы просто не сможете запитать бытовые приборы от сгенерированной и накопленной энергии.

Плюсы использования устройства с чистым синусом:

  • Параметры выходного напряжения близки параметрам внешней электросети.
  • Возможность безопасного подключения сложных устройств, которые требовательны к качеству напряжения.
  • Улучшаются условия использования сетевой нагрузки: меньше шумов, перепадов напряжения и так далее.
  • Бытовые приборы и устройства, питаемые от инвертированной энергии, дольше служат.

Плюсы и минусы

К минусам прибора можно отнести лишь его высокую стоимость по сравнению с инверторами, выдающими выходное напряжение другого вида. Но с этим недостатком можно бороться, если сделать прибор самостоятельно. Составляющие элементы стоят значительно дешевле готового устройства.

Самодельный инвертор с чистым синусом

Цена ценой, но это достаточно сложный прибор. Поэтому за самостоятельное его изготовление стоит браться только при наличии определенного опыта. Пригодятся уверенные знания схемотехники, а также навыки и опыт пайки, монтажа схем, использования измерительных приборов и настройки элементов микросхемы.

Инвертор «чистый синус»: схема

Самодельный инвертор с чистым синусом

Рассмотрим эту простую, но популярную даже в промышленности схему чуть подробнее. Сигналы генерируются при помощи микросхемы КП1114ЕУ. Два транзистора IRFZ44N используются как ключи. Конденсатор служит фильтром высокочастотного шума, а трансформатор обеспечивает выходное напряжение в 220 Вольт.

В первый раз схему лучше собрать на макетной плате. Для получения чистого синуса многие элементы придется подбирать или дополнительно настраивать (ориентируясь на показания осциллографа). Неопытным схемотехникам потребуется изрядная доля терпения, поэтому лучше заранее найти специалиста, у которого можно будет попросить совета или помощи.

altenergiya.ru

Модифицированная или чистая синусоида. Что выбрать?

Сейчас на многих форумах можно прочесть о большом вреде модифицированной синусоиды и предложения скорее бежать прочь, как только эта надпись появится в зоне видимости или описании прибора. Но при всей осторожности, которую надо соблюдать, подбирая инвертор к тем приборам, с которыми вы их собираетесь использовать, не надо наводить заранее панику. Лучше внимательно прочитать инструкцию или паспорт электроприбора, а также выяснить как можно больше информации о конкретной марке инвертора, который вы присмотрели для покупки.

Когда можно без опаски брать инвертор с модифицированной синусоидой?

– если вы собираетесь подключать через него обычные бытовые приборы, которые не имеют в своем устройстве двигателя. Такие инверторы успешно и без вреда справятся с подзарядкой телефонов или ноутбуков, подключением осветительных приборов и большинства кухонной бытовой техники (кроме холодильника).

– допускается, но уже с осторожностью, применение с электроинструментом и, например, пылесосом. Всё зависит от паспортных требований к качеству напряжения у приборов. В любом случае, подключение техники с двигателем через инверторы с модифицированным синусом, будет незаметно, но не в лучшую сторону сказываться на сроке её эксплуатации.

В каких случаях лучше не думать, а точно брать инвертор только с чистой синусоидой?

– на защите газового котла (и его циркуляционного насоса – прибора с двигателем) лучше не экономить

– если задача инвертора – обеспечить бесперебойное питание медицинского оборудования. Помимо собственной высокой стоимости, от надёжной работы оборудования зависит здоровье пациентов.

– для другого дорогостоящего и высокочувствительного оборудования. К таким часто относятся аудиосистемы, профессиональное фотооборудование, а также дорогое серверное или телекоммуникационное оборудование.

www.stabilizator.spb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *