Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор
Оглавление:
- Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.
- Мощность тока через резистор
- Мощность тока через конденсатор
- Мощность тока через катушку
- Мощность тока на произвольном участке
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.
Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .
Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу
Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:
(1)
Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.
Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.
1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).
2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.
Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).
Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.
к оглавлению ▴
Мощность тока через резистор
Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:
Поэтому для мгновенной мощности получаем:
(2)
График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.
Рис. 1. Мощность переменного тока через резистор
Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:
На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?
Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?
Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:
среднее значение квадрата синуса (или косинуса) за период равно .
Этот факт иллюстрируется рисунком 2.
Рис. 2. Среднее значение квадрата синуса равно
Итак, для среднего значения мощности тока на резисторе имеем:
(3)
В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):
(4)
Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:
Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.
Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.
к оглавлению ▴
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени представлен на рис. 3.
Рис. 3. Мощность переменного тока через конденсатор
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).
Рис. 4. Напряжение на конденсаторе и сила тока через него
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.
Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.
Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.
к оглавлению ▴
Мощность тока через катушку
Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :
Для мгновенной мощности получаем:
Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).
Рис. 5. Напряжение на катушке и сила тока через неё
Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.
В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.
Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.
к оглавлению ▴
Мощность тока на произвольном участке
Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение .
Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:
Тогда для мгновенной мощности имеем:
(5)
Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:
В результате получим:
(6)
Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:
(7)
Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:
Формула (7) охватывает все три рассмотренные выше ситуации.
В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.
С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.
Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «Мощность переменного тока» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Публикация обновлена: 06.02.2023
Элементарный учебник физики Т2
Элементарный учебник физики Т2
ОглавлениеИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮГлава I. Электрические заряды § 1. Электрическое взаимодействие. § 2. Проводники и диэлектрики. § 4. Положительные и отрицательные заряды § 5. Что происходит при электризации? § 6. Электронная теория. § 7. Электризация трением. § 8. Электризация через влияние. § 9. Электризация под действием света. § 10. Закон Кулона. § 11. Единица заряда. Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ § 12. Действие электрического заряда на окружающие тела. § 13. Понятие об электрическом поле. § 14. Напряженность электрического поля. § 15. Сложение полей. § 16. Электрическое поле в диэлектриках и в проводниках. § 17. Графическое изображение полей. § 18. Основные особенности электрических карт. § 19. Применение метода линий поля к задачам электростатики. § 20. Работа при перемещении заряда в электрическом поле. § 21. Разность потенциалов (электрическое напряжение). § 22. Эквипотенциальные поверхности. § 23. В чем смысл введения разности потенциалов? § 24. Условия равновесия зарядов в проводниках. § 25. Электрометр. § 26. В чем различие между электрометром и электроскопом? § 27. Соединение с Землей. § 28. Измерение разности потенциалов в воздухе. Электрический зонд. § 29. Электрическое поле Земли. § 30. Простейшие электрические поля. § 31. Распределение зарядов в проводнике. Клетка Фарадея. § 32. Поверхностная плотность заряда. § 33. Конденсаторы. § 34. Различные типы конденсаторов. § 35. Параллельное и последовательное соединение конденсаторов. § 36. Диэлектрическая проницаемость. § 37. Почему электрическое поле ослабляется внутри диэлектрика? § 38. Энергия заряженных тел. Энергия электрического поля. Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК § 39. Электрический ток и электродвижущая сила. § 41. Направление тока. § 42. Сила тока. § 43. «Скорость электрического тока» и скорость движения носителей заряда. § 44. Гальванометр. § 45. Распределение напряжения в проводнике с током. § 46. Закон Ома. § 47. Сопротивление проводов. § 48. Зависимость сопротивления от температуры. § 49. Сверхпроводимость. § 50. Последовательное и параллельное соединение проводников. § 51. Реостаты. § 52. Распределение напряжения в цепи. § 53. Вольтметр. § 54. Каким должно быть сопротивление вольтметра и амперметра? § 55. Шунтирование измерительных приборов. Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА § 56. Нагревание током. Закон Джоуля-Ленца. § 57. Работа, совершаемая электрическим током. § 58. Мощность электрического тока. § 59. Контактная сварка. § 60. Электрические нагревательные приборы. Электрические печи. § 61. Понятие о расчете нагревательных приборов. § 62. Лампы накаливания. § 63. Короткое замыкание. § 64. Электрическая проводка. Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ § 65. Первый закон Фарадея. § 66. Второй закон Фарадея. § 67. Ионная проводимость электролитов. § 68. Движение ионов в электролитах. § 69. Элементарный электрический заряд. § 70. Первичные и вторичные процессы при электролизе. § 71. Электролитическая диссоциация. § 72. Градуировка амперметров при помощи электролиза. § 73. Технические применения электролиза. Глава VI. ХИМИЧЕСКИЕ И ТЕПЛОВЫЕ ГЕНЕРАТОРЫ ТОКА § 74. Введение. Открытие Вольты. § 75. Правило Вольты. Гальванический элемент. § 76. Как возникают э. д. с. и ток в гальваническом элементе? § 77. Поляризация электродов. § 78. Деполяризация в гальванических элементах. § 79. Аккумуляторы. § 81. Напряжение на зажимах источника тока и э. д. с. § 82. Соединение источников тока. § 83. Термоэлементы. § 84. Термоэлементы в качестве генераторов. § 85. Измерение температуры с помощью термоэлементов. Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ § 86. Электронная проводимость металлов. § 87. Строение металлов. § 88. Причина электрического сопротивления. § 89. Работа выхода. § 90. Испускание электронов накаленными телами. Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ § 91. Самостоятельная и несамостоятельная проводимость газов. § 92. Несамостоятельная проводимость газа. § 93. Искровой разряд. § 94. Молния. § 95. Коронный разряд. § 96. Применения коронного разряда. § 97. Громоотвод. § 98. Электрическая дуга. § 99. Применения дугового разряда. § 100. Тлеющий разряд. § 101. Что происходит при тлеющем разряде? § 102. Катодные лучи. § 103. Природа катодных лучей. § 104. Каналовые лучи. § 105. Электронная проводимость в высоком вакууме. § 106. Электронные лампы. § 107. Электроннолучевая трубка. Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ § 108. Природа электрического тока в полупроводниках. § 109. Движение электронов в полупроводниках. § 110. Полупроводниковые выпрямители. § 111. Полупроводниковые фотоэлементы. Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ § 112. Естественные и искусственные магниты. § 113. Полюсы магнита и его нейтральная зона. § 114. Магнитное действие электрического тока. § 115. Магнитные действия токов и постоянных магнитов. § 116. Происхождение магнитного поля постоянных магнитов. § 117. Гипотеза Ампера об элементарных электрических токах. § 118. Магнитное поле и его проявления. Магнитная индукция. § 119. Магнитный момент. Единица магнитной индукции. § 120. Измерение магнитной индукции поля с помощью магнитной стрелки. § 121. Сложение магнитных полей. § 122. Линии магнитного поля. § 123. Приборы для измерения магнитной индукции. Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ § 124. Магнитное поле прямолинейного проводника и кругового витка с током. § 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита. § 126. Магнитное поле внутри соленоида. Напряженность магнитного поля. § 127. Магнитное поле движущихся зарядов. Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ § 128. Магнитное поле Земли. § 129. Элементы земного магнетизма. § 130. Магнитные аномалии и магнитная разведка полезных ископаемых. § 131. Изменение элементов земного магнетизма с течением времени. Магнитные бури. Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ § 132. Введение. § 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки. § 134. Действие магнитного поля на виток или соленоид с током. § 135. Гальванометр, основанный на взаимодействии магнитного поля и тока. § 136. Сила Лоренца. § 137. Сила Лоренца и полярные сияния. Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ § 138. Условия возникновения индукционного тока. § 139. Направление индукционного тока. Правило Ленца. § 140. Основной закон электромагнитной индукции. § 141. Электродвижущая сила индукции. § 142. Электромагнитная индукция и сила Лоренца. § 143. Индукционные токи в массивных проводниках. Токи Фуко. Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ § 144. Магнитная проницаемость железа. § 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные. § 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея. § 147. Молекулярная теория магнетизма. § 148. Магнитная защита. § 149. Особенности ферромагнитных тел. § 150. Основы теории ферромагнетизма. Глава XVII. ПЕРЕМЕННЫЙ ТОК § 151. Постоянная и переменная электродвижущая сила. § 152. Опытное исследование формы переменного тока. Осциллограф. § 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения. § 154. Сила переменного тока. § 155. Амперметры и вольтметры переменного тока. § 156. Самоиндукция. § 157. Индуктивность катушки. § 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью. § 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления. § 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока. § 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока. § 162. Сдвиг фаз между током и напряжением. § 163. Мощность переменного тока. § 164. Трансформаторы. § 165. Централизованное производство и распределение электрической энергии. § 166. Выпрямление переменного тока. Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ § 167. Генераторы переменного тока. § 168. Генераторы постоянного тока. § 169. Генераторы с независимым возбуждением и с самовозбуждением. § 170. Трехфазный ток. § 171. Трехфазный электродвигатель. § 172. Электродвигатели постоянного тока. § 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением. § 174. Коэффициент полезного действия генератора и двигателя. § 175. Обратимость электрических генераторов постоянного тока. § 176. Электромагниты. § 177. Применение электромагнитов. § 178. Реле и их применения в технике и автоматике. Ответы и решения к упражнениям Приложения Предметный указатель Таблицы |
В чем разница между источниками питания переменного и постоянного тока
Быстрый переход:
- Что такое питание переменного тока?
- Что такое мощность постоянного тока?
- Почему существует два разных типа мощности?
- В чем разница между источником питания переменного и постоянного тока?
- Как работает блок питания переменного/постоянного тока?
- Как работает источник питания постоянного тока?
- Как узнать, является ли источник питания переменным или постоянным током
Блоки питания предназначены для преобразования источника питания в нужный вам тип электроэнергии. Некоторые из наиболее известных устройств преобразуют переменный ток в постоянный, но у вас также есть возможность использовать блоки питания постоянного тока в постоянный. Знание различий между источниками питания переменного и постоянного тока и того, когда их использовать, поможет вам принять обоснованное решение, когда вам нужно совершить покупку.
Что такое переменный ток?
Переменный ток (AC) — это стандартный формат электроэнергии, который поступает из розеток. Название происходит от формы волны, которую принимает ток. Чтобы понять состав волны переменного тока, вам нужно понять, что электрические токи исходят из потока электронов. Когда электроны в волне переменного тока движутся, они могут двигаться в положительном направлении, что соответствует восходящей части синусоидальной волны, создаваемой током. Когда электроны имеют отрицательный поток, волна падает.
Эти волны исходят от генераторов переменного тока на электростанциях. Внутри генератора проволочная петля вращается внутри магнитного поля. Вращение создает волны переменного тока, когда провод перемещается в области с различной магнитной полярностью. Например, ток меняет направление, когда провод вращается от северного к южному полюсу магнитного поля. Волны, создаваемые генератором переменного тока, важны для использования переменного тока.
Волнообразное движение переменного тока дает этой форме электричества преимущество перед питанием постоянного тока. Поскольку он движется волнами, этот формат электричества может распространяться дальше, чем мощность постоянного тока. Большинство розеток в зданиях обеспечивают питание переменного тока. В то время как многие электрические устройства, такие как лампы и бытовая техника, используют питание переменного тока, другие требуют преобразования электричества в формат постоянного тока.
Что такое питание постоянного тока?
В энергии постоянного тока (DC) используются электроны, которые движутся по прямой линии. Это линейное движение, в отличие от волнового движения переменного тока, дало название этому току. Эта форма тока поступает от батарей, солнечных элементов, топливных элементов, генераторов переменного тока, оснащенных коммутаторами, которые создают прямую энергию, и выпрямителями, которые преобразуют мощность переменного тока в постоянный.
Поскольку мощность постоянного тока настолько постоянна в подаваемом напряжении, для большинства электронных устройств требуется этот тип питания. Вот почему большинство электронных устройств имеют источники питания постоянного тока в виде батарей или нуждаются в преобразовании мощности переменного тока из розеток в мощность постоянного тока через выпрямитель. Источники питания часто имеют встроенные выпрямители вместе с трансформаторами для повышения или понижения напряжения до соответствующего уровня.
Для некоторых устройств предпочтительнее постоянное напряжение, например для ноутбуков. Для таких устройств вам нужен преобразователь переменного тока в постоянный, если вы хотите, чтобы эта электроника работала от розетки. Преобразователь преобразует сигнал в устойчивую прямую линию. Постоянный ток для электроники предпочтительнее, потому что высокие и низкие частоты переменного тока могут повредить хрупкие компоненты внутри электронных устройств.
Почему существует два разных типа мощности?
Использование переменного тока в качестве основного источника электростанций связано с горячими спорами в конце 19 века.век. В то время знаменитый изобретатель Томас Эдисон боролся с не менее известным интеллектуалом Николой Тесла из-за Битвы токов.
Эдисон разработал мощность постоянного тока и хотел, чтобы эта форма была предпочтительной для подачи энергии в дома и на предприятия. Его ранняя работа в области питания постоянного тока способствовала тому, что многие города использовали его в качестве источника электроэнергии по умолчанию. Однако мощность постоянного тока не была идеальной. С этим источником электроэнергии было трудно изменить его напряжение и подавать постоянный ток на большие расстояния. Тесла считал, что мощность переменного тока решит эти две проблемы.
Джордж Вестингауз, имевший финансовый контроль над асинхронным двигателем переменного тока Теслы, перебил Эдисона за электроэнергию на Всемирной выставке в Чикаго в 1893 году. Эта более низкая ставка гарантировала, что те, кто посетит ярмарку, увидят сияющий город, питаемый переменным током. В том же году в Буффало, штат Нью-Йорк, началось строительство гидроэлектростанции с использованием Ниагарского водопада. Три года спустя весь город Буффало получил электроэнергию от переменного тока, создаваемого движением водопада. Увидев успех переменного тока в Буффало, General Electric, которая ранее поддерживала позицию Эдисона по постоянному току, начала продавать энергию переменного тока.
Сегодня переменный ток продолжает доминировать на рынке электроэнергии. Электрические розетки подают энергию переменного тока в здания, где этот ток может найти немедленное применение или нуждаться в преобразовании в мощность постоянного тока. Хотя Эдисон проиграл битву течений в целом, война на этом не закончилась. Многие электронные устройства сегодня требуют плавного, равномерного напряжения питания постоянного тока. Поскольку электричество постоянного тока все еще используется, оба типа энергии остаются важными и сегодня.
Поскольку оба типа электричества продолжают обеспечивать мощность сегодня, у вас могут быть устройства, работающие от источника постоянного тока и имеющие источник питания переменного тока. Для этого вам понадобится блок питания AC-DC. Эти источники питания преобразуют напряжение в постоянный ток и регулируют напряжение вверх или вниз в зависимости от выхода устройства.
Кроме того, многие портативные генераторы электроэнергии накапливают энергию в батареях, использующих постоянный ток. Для приложений в отдаленных местах питание от батарей, топливных элементов или солнечных элементов, которые обеспечивают питание постоянного тока, более доступно, чем питание переменного тока от линий электропередач. В этих ситуациях могут потребоваться источники питания постоянного тока для изменения выходного напряжения для использования устройством.
Блоки питания переменного и постоянного тока — в чем разница?
Как уже отмечалось, основное различие между мощностью переменного и постоянного тока заключается в направлении потока электронов. Это различие приводит ко всем другим различиям между этими видами электричества. Волновое движение мощности переменного тока помогает этому источнику питания очень эффективно перемещаться дальше, потому что электростанции могут легко генерировать большое количество энергии переменного тока и доставлять ее по линиям электропередач, которые затем подаются на трансформаторы для понижения напряжения, пока оно не достигнет домов и предприятий. При изменении напряжения мощность постоянного тока не так легко увеличивается или уменьшается, и поэтому она не может эффективно передаваться на большие расстояния.
Также важно отметить разницу между передачей энергии переменного и постоянного тока. Источник питания и его подача различаются — источник поступает от линий электропередачи и подает электроэнергию непосредственно в устройство или через источник питания, который преобразует мощность в другую форму или напряжение.
Сравнивая разницу между источниками питания переменного и постоянного тока, учитывайте, поступает ли электричество от батареи или от розетки. Большинство розеток обеспечивают питание переменного тока, тогда как батареи являются наиболее распространенным источником питания постоянного тока.
Как работает блок питания переменного/постоянного тока?
Для питания многих устройств в здании могут потребоваться блоки питания переменного/постоянного тока. Эти блоки включают в себя трансформаторы для изменения напряжения, выпрямители для преобразования в мощность постоянного тока и фильтр для удаления части электронного шума от волн высокой и низкой мощности переменного тока. Даже когда мощность меняется с переменного на постоянный, волны остаются, создавая пульсации выходного напряжения более высокого и более низкого напряжения.
В нерегулируемых источниках питания пульсации напряжения остаются в выходном напряжении. Соедините нерегулируемые источники питания с устройствами по выходу, если вы не уверены, нужна ли вам регулируемая или нерегулируемая мощность. Не используйте нерегулируемый источник питания с выходной мощностью, превышающей потребности электрической части, чтобы избежать перегрузки оборудования по мощности, особенно если это устройство имеет электронные компоненты.
На самом деле, если у вас есть электрическое устройство, в котором вы не уверены, что оно нуждается в нерегулируемом или регулируемом питании, будьте осторожны и выберите регулируемое. Хотя пульсации напряжения могут незначительно влиять на большинство обычных электрических устройств, они влияют на электронику. Чтобы не повредить компоненты внутри электроники, вам понадобится блок питания AC-DC с регулятором.
Регулируемые источники питания могут быть линейными или импульсными, в зависимости от механизма, который они используют для уменьшения пульсаций напряжения от источника питания. Импульсные источники питания используют модификацию ширины импульса. Преимущества этой технологии включают возможность добавления адаптеров для использования за границей, более высокую емкость и возможность повышать или понижать напряжение. К сожалению, импульсные источники питания стоят дороже и при переключении иногда создают небольшие электронные помехи. Эти недостатки, однако, не превосходят преимущества импульсного источника питания.
Линейным источникам питания не хватает эффективности и универсальности импульсных. Эти устройства имеют большой трансформатор, который может только понижать напряжение, поэтому они бесполезны, если у вас есть требования к высокому напряжению. Блок большего размера часто выделяет больше тепла по сравнению с импульсным блоком питания, но он тихий и идеально подходит для связи или медицинских учреждений. Если у вас есть старые устройства или вам нужна бесшумная работа, линейный регулируемый источник питания может быть лучшим выбором для сглаживания пульсаций напряжения в форме выходной мощности. Как следует из названия, линейные источники питания работают в одной линии для подачи электроэнергии через систему в одном направлении.
Импульсные источники питания работают по более сложной схеме, что, как ни странно, делает их более эффективными. С этими типами блоков питания вы действительно получаете то, за что платите. Плохо изготовленные регулируемые импульсные модели могут иметь лишь немного меньшую пульсацию на выходе, чем нерегулируемые источники питания. Тщательно оцените модель источника питания и ее конструкцию, прежде чем инвестировать в нее. Эти блоки питания начинаются с питания переменного тока и передают его через выпрямитель для перехода на питание постоянного тока. Затем транзисторы преобразуют мощность постоянного тока обратно в мощность переменного тока, на этот раз с прямоугольной волной. Затем он может двигаться вверх или вниз по напряжению через трансформатор. Наконец, правильное напряжение снова проходит через выпрямитель, чтобы снова превратиться в питание постоянного тока, которое проходит через фильтр для уменьшения пульсаций выходного напряжения.
Регулировка выходной мощности устройства снижает пульсации выходного напряжения, обеспечивая чистое питание постоянного тока. Для устройств, которые в значительной степени зависят от плавного питания без изменений напряжения, необходима регулируемая мощность постоянного тока. Решение о том, нужна ли вам регулируемая или нерегулируемая мощность, не исчезает, если вам нужен источник питания постоянного тока. Благодаря неожиданному способу работы этих устройств вам все равно придется выбирать, нужна вам чистая выходная мощность или нет.
Как работает источник питания постоянного тока?
Некоторые устройства запускаются с питанием постоянного тока, например автомобильный аккумулятор или солнечный элемент. Напряжение от источника может превышать потребности подключенного устройства. Поскольку напряжение постоянного тока сложно изменить, источники питания постоянного тока часто включают в себя инверторы и выпрямители для преобразования мощности постоянного тока в мощность переменного тока. Мощность переменного тока поступает в трансформатор для изменения напряжения. После того, как источник питания достигает нужного напряжения, электричество проходит к выпрямителю, где оно снова преобразуется в мощность постоянного тока.
Как и в случае с источниками питания AC-DC, для моделей DC-DC могут потребоваться регуляторы для сглаживания сигнала. При преобразовании напряжения в мощность переменного тока в электрическом токе появляются пульсации напряжения. Регулятор уменьшает пульсации выходного напряжения для получения более чистой энергии на выходе. Для устройств, которым не нужно идеально ровное напряжение, можно использовать нестабилизированные блоки питания, которые зачастую стоят дешевле. Однако, если вы должны использовать источник питания постоянного тока для деликатного устройства, вам понадобится более чистый выход регулируемого источника питания.
Как узнать, является ли источник питания переменным или постоянным источники питания и следите за самим устройством.
Один из способов определить, есть ли у вас блок питания AC-DC или модель DC-DC, — посмотреть на само устройство. Часто входная и выходная информация появляется где-то на поверхности. Если на вход подается переменный ток, у вас есть источник питания переменного/постоянного тока, и у вас есть модель постоянного тока, если вход и выход являются постоянными.
Хотя вы уже знаете, что источники питания переменного тока включают в себя розетки, эта информация становится бесполезной, если у вас есть устройство на борту корабля или в самолете. Как эти части получают энергию? Бортовой генератор или аккумуляторная батарея двигателя могут вырабатывать необходимое электричество. Если вы не уверены в источнике питания устройства, свяжитесь с нами по адресу ACT. У нас есть специалисты, которые помогут вам определить тип блока питания, который вам нужен.
Имеющиеся у вас источники питания так же важны, как и то, что вы питаете. Чтобы защитить ваши электрические устройства от повреждений, снабдите их источниками питания для создания нужного типа напряжения и тока, который требуется устройству, не выходя за рамки вашего бюджета. Если у вас есть вопросы или вам необходимо приобрести блоки питания переменного или постоянного тока, мы можем помочь.
Найдите блоки питания для любых условий в Advanced Conversion Technology
Получите надежные блоки питания, способные выдерживать даже самые экстремальные условия. Нужны ли вам блоки питания переменного/постоянного тока, преобразующие электричество, или блоки постоянного/постоянного тока для изменения напряжения без изменения типа тока, вы можете найти их в ACT. Просмотрите наши варианты, чтобы найти подходящие устройства для ваших нужд.
Хотя мы предлагаем широкий ассортимент блоков питания как в формате AC-DC, так и DC-DC, у вас могут возникнуть особые потребности, требующие определенного варианта. Если вы не можете найти в нашем каталоге идеальные блоки питания, свяжитесь с нами, чтобы мы могли разработать для вас специализированное решение.
Страница не найдена – Advanced Conversion Technology
Страница, которую вы ищете, не может быть найдена.
Посетите одну из следующих страниц, чтобы узнать больше о Advanced Conversion Technology.
Свяжитесь с нами для получения помощи (717-939-2300 или [email protected]) или отправьте свои вопросы через нашу страницу запросов.
Образовательные статьи
Продукты
- 115 В переменного тока, 1-фаза, 60 Гц, 1399, 24 В. Фаза, вход 60-400 Гц, 704, выход 24 В при 1000 Вт
- 90-160 В перем. тока, 3 фазы, вход 60-400 Гц, 704, выход 28 В при мощности 1000 Вт
- Военный источник питания постоянного тока | Выход 32 В
- Военный блок питания DC-DC | Выход 28 В
- Военный источник питания постоянного тока | 26 В Выход
- Военный блок питания постоянного тока | Выход 24 В
- Военный блок питания DC-DC | Выход 22 В
- Военный блок питания DC-DC | Выход 18 В
- Военный блок питания постоянного тока | Выход 16 В
- Военный блок питания DC-DC | Выход 15 В
- Военный блок питания DC-DC | Выход 12 В
- Блок питания постоянного тока постоянного тока 32 В с радиатором
- Выходной блок питания постоянного тока 28 В | Конвекционное охлаждение, радиатор
- Источник питания DC-DC на выходе 26 В | Конвекционное охлаждение, радиатор
- Источник питания постоянного тока 24 В постоянного тока для военных | Функция теплоотвода
- Блок питания DC-DC с выходом 22 В | Конвекционное охлаждение, радиатор
- Источник питания DC-DC на выходе 18 В | Конвекционное охлаждение, теплоотвод
- Источник питания постоянного тока постоянного тока 16 В для военных | Функция радиатора
- Источник питания постоянного тока постоянного тока 15 В с функцией радиатора
- Источник питания постоянного тока постоянного тока 12 В | Конвекционное охлаждение, радиатор
- COTS AC-DC вход 92-138 В, выход 28 В при 1200 Вт
- COTS Вход AC-DC 92-138 В, выход 28 В при 1000 Вт
- COTS Вход AC-DC 92-138 В, выход 24 В при 1200 Вт
- Выход 28 В, 400 Вт Блок питания AC-DC
- Выход 28 В, 200 Вт Блок питания AC-DC с радиатором
- Выход 28 В, блок питания AC-DC 200 Вт
- Выход 28 В, блок питания AC-DC 100 Вт
- Выход 28 В, блок питания AC-DC 400 Вт с радиатором
- Выход 24 В, блок питания AC-DC 200 Вт
- Выход 24 В, блок питания AC-DC 100 Вт
- Выход 24 В, блок питания AC-DC 400 Вт
- Выход 24 В, блок питания AC-DC 400 Вт с радиатором
- Выход 24 В, блок питания AC-DC 200 Вт с радиатором
- Выход 24 В, 100 Вт Блок питания AC-DC с радиатором
- Выход 28 В, 100 Вт Блок питания AC-DC с радиатором
- Блок питания 24 В DC-DC | 12-36 Входное напряжение
- Источник питания 12 В пост. /пост. тока | 12-36 Входное напряжение
- Источник питания 15 В пост./пост. тока | 12-36 Входное напряжение
- Источник питания 16 В пост./пост. тока | 12-36 Входное напряжение
- Блок питания 18 В постоянного тока | 12-36 Входное напряжение
- Источник питания 32 В пост./пост. тока | 12-36 Входное напряжение
- Источник питания 22 В пост./пост. тока | 12-36 Входное напряжение
- Источник питания 26 В постоянного тока | 12-36 Входное напряжение
- Источник питания 28 В постоянного тока | 12-36 Входное напряжение
- Прочный корпус 28 В при 2000 Вт переменного/постоянного тока | 97–277 В перем. тока
- Источник питания точки нагрузки до 140 Вт
- COTS DC-DC, один выход, источник питания 32 В
- COTS DC-DC, один выход, источник питания 32 В, 2000 Вт
- Источник питания постоянного тока для систем авионики |+28 В постоянного тока
- Источник питания постоянного тока мощностью 2000 Вт | Вход 12–36 В
- Источник питания постоянного тока | Вход 12–36 В
- Вход 12–36 В, выход 1000 Вт Источник питания постоянного тока | Блок питания ACT COTS
- Блок питания DC-DC с конвекционным охлаждением | Вход 12–36 В
- Выход 28 В постоянного тока Источник питания COTS
- Выход 28 В постоянного тока до 2000 Вт Блок питания COTS
- Источник питания постоянного тока с КПД до 96 % | ACT Products
- Блок питания DC-DC мощностью 2000 Вт, до 9КПД 6 %
- COTS Блок питания постоянного тока мощностью до 1000 Вт
- Вход 12–36 В, MIL-STD-1275E Блок постоянного тока | Блоки питания ACT COTS
- Блок питания COTS 26 В — выходная мощность до 2000 Вт
- Источник питания DC-DC от 26 В до 2000 Вт | ACT Power
- Защищенный от воздействия окружающей среды источник питания постоянного тока мощностью 2000 Вт
- Защищенный от воздействия окружающей среды источник питания постоянного тока соответствует стандарту MIL-STD-1275E
- Блок питания постоянного тока с кондуктивным охлаждением, предназначенный для использования в военных целях
- Пульсации 240 мВпик-пик постоянного тока источник питания постоянного тока | ACT COTS Power Solutions
- Требования MIL-STD-1275E выполнены | ACT DC-DC Источник питания COTS
- MIL-STD-1275E Блок питания 24 В DC-DC COTS | ACT Power
- Одноканальный источник питания постоянного тока Выходная мощность до 1920 Вт
- Одноканальный источник питания постоянного тока Выходная мощность до 2000 Вт
- Источник питания постоянного тока постоянного тока в соответствии с MIL-STD-1275E
- DC-DC Блок питания, соответствующий стандарту MIL-STD-1275E
- Одиночный, 22 В, выход DC-DC, источник питания до 1760 Вт
- Один выход, 22 В, 1760 Вт, DC-DC блок питания
- Вход 12–36 В | Источник питания DC-DC COTS | Военный класс
- Вход 12–36 В | Блок питания DC-DC мощностью 1680 Вт | армейского класса
- Неизолированный источник питания постоянного тока с входным напряжением 12–36 В
- Преобразователь постоянного тока в постоянный для тяжелых условий эксплуатации | Блок питания ACT
- Защищенный от воздействия окружающей среды блок питания 18 В постоянного тока | ACT Power
- Источник питания постоянного тока | Одиночный, 18-В, 1440-Вт Выход | ACT Power
- Один выход 18 В | 1430 Вт COTS Блок питания DC-DC
- Один выход 18 В, до 1440 Вт | COTS DC-DC блок питания в ACT
- Монтажный преобразователь постоянного тока в постоянный | Вход 12–36 В | ACT Supply
- Выходной преобразователь постоянного тока 18 В | Усовершенствованная технология преобразования
- Преобразователь постоянного тока в постоянный с пульсацией 280 мВпик-пик | Блоки питания ACT
- Преобразователь постоянного тока в постоянный с пульсацией 240 мВпик-пик | ACT Power Supplies
- COTS Блок питания DC-DC 1020 Вт | Один выход 16 В
- COTS Источник питания постоянного тока | Один выход 16 В
- Вход 12–36 В, выход 640 Вт DC-DC COTS Источник питания | ACT
- 12-36 Входное напряжение, COTS Преобразователь постоянного тока в постоянный | АКТ Мощность
- Источник питания DC-DC 12–36 В с кондуктивным охлаждением | ACT Power
- Входной блок питания 12–36 В | ACT Power
- Блок питания DC-DC 1020 Вт с конвекционным охлаждением | Вход 12–36 В
- Блок питания DC-DC с конвекцией и охлаждением | Вход 12–36 В
- COTS Блок питания постоянного и постоянного тока | 12-36 Входное напряжение | ACT Products
- Источник питания постоянного тока 12–36 В на входе | ACT COTS Solutions
- Вход 12–36 В | Advanced Conversion Technology DC-DC COTS Supply
- Вход 12–36 В | Источник питания DC-DC COTS, соответствующий стандарту MIL-STD-1275E
- Блок питания постоянного тока | от 12 до 36 В постоянного тока Выходная мощность до 960 Вт
- Блок питания постоянного тока | Один выход 12 В, мощность до 960 Вт
- Выход 12 В, блок питания DC-DC мощностью 480 Вт | ACT Products
- Вход 12–36 В, 8 фунтов, COTS Источник питания постоянного тока | ACT Products
- Вход 28 В | 4 выходных напряжения | ACT Источник питания постоянного и постоянного тока
- Один выход, входное напряжение 85–264 В Источник питания постоянного и переменного тока | ACT
- Выход 28 В, блок питания AC-DC мощностью 200 Вт | ACT Products
- Блок питания переменного/постоянного тока на входе 85–264 В | ACT COTS Power Solutions
- Блок питания переменного/постоянного тока в соответствии с MIL-STD-704 | Блок питания ACT COTS
- Вход 84–264 В, выход 24 В Блок питания переменного/постоянного тока | AC-DC блок питания ACT Power
- соответствует стандартам MIL-STD-704 | ACT
- Блок питания переменного/постоянного тока с одним выходом 24 В
- Вход 85–264 В, частота 50–400 Гц Источник переменного/постоянного тока
- Частотный преобразователь переменного тока в постоянный, 50–400 Гц | Вход 85–264 В
- Преобразователь переменного тока в постоянный, 50–400 Гц
- Выход 15 В, 100 Вт, изолированный преобразователь переменного тока в постоянный
- Преобразователь переменного тока в постоянный | 85–264 В на входе и 15 В, 50 Вт на выходе
- Преобразователь переменного тока в постоянный с входом 85–264 В | Выход 12 В
- Вход 85–264 В с выходом 12 В, 100 Вт | Блок питания AC-DC
- Сертифицированный MIL-STD-704 Блок питания AC-DC
- Многоканальный блок питания AC-DC | Вход 115 В
- Блоки питания переменного/постоянного тока на входе 220 В, выход 10 000 Вт
- Источник питания переменного и постоянного тока на 115 В | Выходная мощность 2370 Вт
- Блок питания переменного/постоянного тока с входным напряжением 115 В | 7 выходов
- Источник питания переменного/постоянного тока, 60 Гц с одним выходом 28 В
- Входной преобразователь переменного/постоянного тока на 115 В
- Входной сигнал 115 В для блока питания переменного/постоянного тока | 7 выходов
- Преобразователь мощности переменного тока в постоянный с входом 115 В
- Вход 115 В для источника питания переменного тока в постоянный | Выходная мощность 2100 Вт
- Блок питания переменного/постоянного тока с 6 выходами | Усовершенствованная технология преобразования
- Блок питания переменного/постоянного тока с 9 выходами и входом 115 В
- Модуль питания переменного/постоянного тока от 90–140 В переменного тока
- Блок питания переменного/постоянного тока с входом 115 В
- 1278 Вт Выходная мощность переменного/постоянного тока | Вход 115 В
- Вход 115–220 В, выходная мощность 600 Вт, блок питания переменного и постоянного тока
- Один выход, вход 115–220 В, источник питания переменного и постоянного тока
- Вход 115 В, выходное напряжение 25000 | Индивидуальный блок питания AC-DC
- Блок питания DC-DC с кондуктивным охлаждением | 3 выхода | ACT Custom
- Преобразователь постоянного тока в постоянный | Выходная мощность 539 Вт с 7 выходами
- Лазерный диодный источник питания постоянного тока | Вход 28 В
- Преобразователи постоянного тока в постоянный с выходной мощностью 150 Вт
- Входной преобразователь постоянного тока 280 В | Усовершенствованная технология преобразования
- 280-вольтовый источник питания DC-DC военного класса | ACT Power
- COTS Преобразователь постоянного тока в постоянный с входным напряжением 18 и 375 В | ACT Solution
- Низковольтный преобразователь постоянного тока в постоянный | Вход 28 В | VAC Products
- Герметичный блок питания ЭЛТ | 6 выходов | ACT
- Лазерный преобразователь постоянного тока в постоянный | Вход 28 В, выход 150 В | ACT Unit
- Преобразователь постоянного тока в постоянный с 2 выходными напряжениями на 160 В | АКТ Мощность
- Выходная мощность 180 Вт Источник постоянного тока | ACT Converters
- Источник питания постоянного тока с регулируемой мощностью | ACT Military Units
- 1.