Конструкция и особенности включения светодиода
Конструкция и особенности включения светодиода
Наверняка, те, кто только начал заниматься электроникой знакомы со светодиодом и представляют что это такое. Для тех, кто смутно представляют, что такое светоизлучающий диод как раз и написана эта статья.
Светодиоды в настоящее время активно (можно сказать, сверхактивно) применяются как в бытовой, так и в промышленной радиоэлектронной аппаратуре. Начиная с 70-х годов ХХ века светодиоды стали более активно применяться в радиоэлектронике, так как технологии тех лет позволили начать массовое производство светодиодов, а, следовательно, продавать светодиоды по доступным ценам.
На принципиальных схемах обычный светодиод обозначается, как и полупроводниковый диод, но в кружке. Для указания того, что изображён именно излучающий диод рядом с условным изображением рисуются две стрелки, направленные от условного обозначения диода.
условное обозначение светодиода
Как же “засветить” светодиод?
Для начала нужно найти или купить на радиорынке самый обычный 3-х вольтовый светодиод любого цвета свечения, кому какой нравиться. Так как светодиод – это полупроводниковый p-n переход, то он, как и обычный диод
Для питания светодиода понадобиться источник питания напряжением 3 вольта. В простейшем случае подойдёт плоская литиевая батарейка на 3 вольта – такие часто используются для питания пультов автомагнитол и автомобильных CD/MP3-проигрывателей.
Плюсовой вывод батареи питания подключают к анодному выводу светодиода, а минусовой вывод к катодному выводу светодиода. Узнать, где катод (отрицательный вывод) светодиода, а где анод (положительный вывод) можно несколькими способами.
У новых, только что купленных светодиодов выводы ещё не укорочены (при монтаже, например) и наиболее длинный вывод и есть анод. Более короткий, следовательно – катод.
Также со стороны катодного вывода пластиковый корпус светодиода имеет плоскую засечку по торцу.
Если корпус светодиода выполнен из прозрачной пластмассы, то визуально нетрудно определить, что светоизлучающий кристалл размещён на электроде, на краю которого размещена как бы чашка, в которой и находится светоизлучающий кристалл. Вывод электрода с “чашкой” и есть отрицательный (катодный). От кристалла отходит тонкий “усик” – тоненький проводок, который соединён с анодным выводом светодиода.
Бояться переполюсовки при подключении питания светодиода не стоит, в худшем случае светодиод просто не будет светиться. Правда, если светодиод является частью сложного электронного устройства, то следует учесть последствия неправильного включения светодиода в схему.
Что следует бояться при подключении светодиода так это превышения питающего напряжения, так как при этом происходит нагрев и разрушение кристалла светодиода. В большинстве случаев сгоревший светодиод можно легко определить по внешнему виду. При сгорании светодиода, в месте, где расположен светоизлучающий кристалл, образуется хорошо заметное на глаз чёрное пятно – это и есть
Проверить исправность светодиода можно с помощью широко распространённых мультиметров серий DT-83x, MAS-83x и им подобных, а также усовершенствовать уже имеющийся мультиметр, встроив в прибор светодиодный фонарик.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
как определить где плюс и минус (схема цоколевки)
Как и любой полупроводниковый прибор с односторонней проводимостью, светодиод критичен к правильности включения в цепь постоянного тока. Для нормальной работы анод и катод светодиода должны подключаться к соответствующим полюсам источника напряжения согласно принципиальной схеме. Чтобы определить цоколевку светоизлучающего элемента, существует несколько способов.
Определение мультиметром
Как и любой диод, выполненный на основе p-n перехода, светоизлучающий диод можно проверить мультиметром, используя свойство проводить ток только в одну сторону. У современных цифровых тестеров есть специальный режим проверки диодов, при котором измерительное напряжение оптимально для данной процедуры.
Чтобы определить расположение выводов светодиода, надо произвольным образом подключить его ножки к щупам мультиметра и определить результат по показаниям дисплея.
Неправильная полярность подключения LED к тестеру.
Если элемент подключен неверно, то результатом измерения будет зашкаливание значения сопротивления (OL – overload, перегрузка). Надо поменять местами зажимы мультиметра.
Правильная полярность подключения LED к тестеру.
Если светодиод исправен и подключен правильно, то будет индицироваться какое-то сопротивление (конкретное значение зависит от типа излучающего элемента). В этом случае анодом будет вывод, присоединенный к плюсу мультиметра (красный провод), а катодом – к минусу (черный провод).
Некоторые тестеры в режиме проверки диодов выдают напряжение, достаточное для зажигания светоизлучающего элемента. В этом случае правильное подключение можно контролировать по свечению.
Свечение светодиода АЛ307 при проверке тестером.
Если в обоих вариантах подключения на дисплее будет индицироваться overload, это может означать:
- неисправность светодиода;
- измерительного напряжения не хватает для открытия p-n перехода (тестер рассчитан на «прозвонку» кремниевых диодов, а большинство светоизлучающих элементов делаются на основе арсенида галлия).
В первом случае полупроводниковый прибор можно утилизировать. Во втором – попробовать другой способ.
Читайте также
Проверка светодиода на исправность
Цоколевка светодиода путем подачи питания
Преимущество этого метода в том, что его можно использовать для светоизлучающих диодов с любыми параметрами (падение напряжения и номинальный ток). Для такой проверки лучше использовать источник питания с установкой ограничения тока, или хотя бы с его индикацией для контроля. В противном случае можно вывести чувствительный полупроводниковый прибор из строя.
Неправильная полярность подключения LED к источнику напряжения – свечения нет.
Если имеется регулируемый источник, надо произвольным образом подключить светодиод к его выходу и подать напряжение, постепенно увеличивая его от нуля. Выше 2-3 В питание поднимать не следует, чтобы элемент не сгорел. Если он не зажегся, надо снять напряжение и переключить выводы противоположным образом.
Правильная полярность подключения LED к источнику напряжения – светодиод зажегся.
Постепенно поднимая напряжение, можно визуально определить момент зажигания светодиода. В этом случае плюсовой вывод источника присоединен к аноду, а минусовой – к аноду излучающего элемента.
Если регулируемого источника нет, то можно попытаться использовать нерегулируемый блок питания с напряжением заведомо выше напряжения питания светодиода. В этом случае испытания проводить только через резистор 1-3 кОм, включенный последовательно с полупроводниковым прибором.
Если и в том, и в другом случае светодиод не загорается, можно попробовать провести проверку с увеличенным напряжением. Если элемент неисправен, ему это вреда не принесет, а если он рассчитан на повышенное напряжение, то появится вероятность узнать правильное расположение выводов.
Рекомендуем: Как узнать на сколько вольт светодиод
При помощи батарейки
Если источник питания отсутствует, можно попытаться определить расположение выводов от гальванического элемента, но следует иметь в виду особенности такой проверки:
- батарейка может выдавать напряжение, недостаточное для открытия p-n перехода.
- бытовые гальванические элементы имеют небольшую мощность, и выдаваемый ток нагрузки невелик – он зависит от начальной мощности батарейки и от остаточного заряда.
В таблице приведены параметры некоторых отечественных светодиодов. Очевидно, что распространенные полуторавольтовые химические источники тока не смогут зажечь ни один прибор из списка.
Тип прибора | Прямое падение напряжения, В | Рабочий ток, мА |
---|---|---|
АЛ102А | 2,8 | 5 |
АЛ307А | 2 | 10 |
АЛ307В | 2,8 | 20 |
Чтобы увеличить напряжение, можно соединить батарейки последовательно. Для увеличения мощности – параллельно (только для элементов одного напряжения!). В итоге может получиться громоздкая конструкция, не гарантирующая конечного результата. Поэтому пользоваться таким методом лучше в тех случаях, когда других путей нет.
По внешнему виду
Иногда можно определить полярность по внешнему виду. У некоторых типов светодиодов на корпусе есть ключ – выступ или метка. Чтобы определить, какой вывод помечен ключом, лучше ознакомиться со справочными материалами.
Ключ у катода светоизлучающего диода АЛ102.
Внешний вид расположения выводов у светодиода АЛ307.
У бескорпусных светодиодов производства СССР можно выяснить цоколевку, присмотревшись к внутреннему устройству прибора сквозь слой компаунда. Вывод катода имеет большую площадь и сделан в виде флажка. Этот принцип мог стать стандартом, но сейчас производители его строго не соблюдают, поэтому данный способ ненадежен, особенно для элементов от неизвестного производителя. Поэтому использовать такое определение выводов можно только для предварительной ориентировки.
Цоколевку отечественных светодиодов можно узнать по длине ножек – вывод анода делается более коротким. Но это верно только для элементов, не бывших в употреблении – при установке на место выводы могут быть обрезаны произвольно.
Для наглядности рекомендуем к просмотру видео.
С помощью техдокументации
Другие способы определения выводов можно поискать в техдокументации на элементы – в справочниках или онлайн-источниках. Для этого как минимум необходимо знать тип светодиода или его производителя. В документации может содержаться информация о габаритах и цоколевке прибора.
Но даже если данных сведений в спецификации не найдется, напрасно усилия не пропадут. Техдокументация может стать источником информации о предельных параметрах электронного прибора. Эти знания помогут правильно выбрать режим работы, а также не допустить выхода светодиода из строя при проверке расположения выводов.
Полярность SMD-светодиода
На текущий момент все более популярными становятся безвыводные элементы для непосредственного монтажа на плату (SMD – surface mounted device). Такие радиоэлементы, в отличие от обычных, имеют преимущества:
- в процессе изготовления печатной платы не надо сверлить отверстия – технология становится дешевле и быстрее;
- электронные устройства получаются меньших размеров;
- упрощается конструирование ВЧ-устройств – отсутствие выводов сводит к минимуму паразитные наводки.
Но стремление к миниатюризации имеет оборотную сторону – определить выводы СМД-светодиода сложнее. К нему трудно подключить щупы тестера или источника питания. Поэтому важно нанесение понятной маркировки прямо на корпус элемента для исключения ошибок при монтаже. Такое обозначение выполняется в виде метки на корпусе (скоса или углубления) или в виде мнемонического рисунка.
Цоколевка SMD-LED типоразмера 5730.
Цоколевка SMD-LED типоразмера 0805.
А самым простым случаем является включение светоизлучающего диода в цепь переменного тока. В этом варианте полярность светодиода значения не имеет.
Определяем полярность светодиода. Где плюс и минус у LED
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробникаПри правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Материалы по теме:
Параметры, цоколевка и аналоги светодиода АЛ310Б
Характеристики светодиода АЛ310Б
Цвет свечения | Красный |
сила света светодиода (яркость светодиода) | 250 мккд (кд/м2) |
прямое падение напряжения на светодиоде при токе Iпр.ном. | 2 В |
номинальный прямой ток светодиода | 10 мА |
максимум спектрального распределения светодиода | 0,67 mkM |
максимально-допустимый прямой ток через светодиод | 12 мА |
максимально-допустимое обратное напряжение светодиода (максимально-допустимое импульсное обратное напряжение светодиода) | - |
максимально-допустимая температура корпуса светодиода (максимально-допустимая температура перехода светодиода) | 70 °С |
Светодиод ал307: характеристика, цоколевка и маркировка
Параметры светодиодов
В таблице приведены основные параметры светодиодов отечественного производства.
Тип прибора | Цвет свечения | Значения параметров при Т=25С | Iпр.мах. mA | Uобр (Uобр.и) B | Тк.мах (Тп.) ±С | |||
Iv. мккд (L, кд/м2) | Uпр. B | Iпр.ном. mA | lмах. mkM | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
КЛ101А | Желтый | (10) | 5,5 | 10 | 0,64 | 10 | — | 70 |
КЛ101Б | Желтый | (15) | 5,5 | 20 | 0,64 | 20 | — | 70 |
КЛ101В | Желтый | (20) | 5,5 | 40 | 0,64 | 40 | — | 70 |
2Л101А | Желтый | (10) | 5 | 10 | 0,64 | 10 | — | 70 |
2Л101Б | Желтый | (15) | 5 | 20 | 0,64 | 20 | — | 70 |
АЛ102А | Красный | 40 | 2,8 | 5 | 0,69 | 10 | (2,0) | 70 |
АЛ102АМ | Красный | 40 | — | — | 0,69 | 20 | 2,0 | 70 |
АЛ102Б | Красный | 100 | 2,8 | 10 | 0,69 | 20 | (2,0) | 70 |
АЛ102БМ | Красный | 100 | — | — | 0,69 | 20 | 2,0 | 70 |
АЛ102В | Зеленый | 200 | 2,8 | 20 | 0,53 | 22 | (2,0) | 70 |
АЛ102ВМ | Зеленый | 200 | — | — | 0,56 | 22 | 2,0 | 70 |
АЛ102Г | Красный | 250 | 2,8 | 10 | 0,69 | 20 | (2,0) | 70 |
АЛ102ГМ | Красный | 250 | — | — | 0,69 | 20 | 2,0 | 70 |
АЛ102Д | Зеленый | 400 | 2,8 | 20 | 0,53 | 22 | (2,0) | 70 |
АЛ102ДМ | Зеленый | 400 | — | — | 0,56 | 22 | 2,0 | 70 |
3Л102А | Красный | 20 | 3 | 5 | 0,69 | 20 | (2,0) | 70 |
3Л102Б | Красный | 100 | 3 | 10 | 0,69 | 20 | (2,0) | 70 |
3Л102В | Зеленый | 250 | 2,8 | 20 | 0,53 | 22 | (2,0) | 70 |
3Л102Г | Красный | 60 | 3 | 10 | 0,69 | 20 | (2,0) | 70 |
3Л102Д | Красный | 200 | 3 | 10 | 0,69 | 20 | (2,0) | 70 |
АЛ112А | Красный | (1000) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Б | Красный | (600) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112В | Красный | (250) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Г | Красный | (350) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Д | Красный | (150) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Е | Красный | (1000) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Ж | Красный | (600) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112И | Красный | (250) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112К | Красный | (1000) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112Л | Красный | (600) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ112М | Красный | (250) | 2 | 10 | 0,68 | 12 | — | 70 |
АЛ301А-1 | Красный | 25 | 2,8 | 5 | 0,7 | 11 | — | 70 |
АЛ301Б-1 | Красный | 100 | 2,8 | 10 | 0,7 | 11 | — | 70 |
АЛ307А | Красный | 150 | 2 | 10 | 0,666 | 20 | 2,0 | 70 |
АЛ307АМ | Красный | 150 | 2 | 10 | 0,666 | 20 | 2,0 | 70 |
АЛ307Б | Красный | 900 | 2 | 10 | 0,666 | 20 | 2,0 | 70 |
АЛ307БМ | Красный | 900 | 2 | 10 | 0,666 | 20 | 2,0 | 70 |
АЛ307В | Зеленый | 400 | 2,8 | 20 | 0,566 | 22 | 2,0 | 70 |
АЛ307ВМ | Зеленый | 400 | 2,8 | 20 | 0,566 | 22 | 2,0 | 70 |
АЛ307Г | Зеленый | 1500 | 2,8 | 20 | 0,566 | 22 | 2,0 | 70 |
АЛ307ГМ | Зеленый | 1500 | 2,8 | 20 | 0,566 | 22 | 2,0 | 70 |
АЛ307Д | Желтый | 400 | 2,8 | 10 | 0,56; 0,7 | 22 | 2,0 | 70 |
АЛ307ДМ | Желтый | 400 | 2,5 | 10 | 0,56; 0,7 | 22 | 2,0 | 70 |
АЛ307Е | Желтый | 1500 | 2,8 | 10 | 0,56; 0,7 | 22 | 2,0 | 70 |
АЛ307ЕМ | Желтый | 1500 | 2,5 | 10 | 0,56; 0,7 | 22 | 2,0 | 70 |
АЛ307ЖМ | Желтый | 3500 | 2,5 | 10 | 0,56; 0,7 | 22 | 2,0 | 70 |
АЛ307И | Оранжев. | 400 | 2,8 | 10 | 0,56 | 22 | 2,0 | 70 |
АЛ307КМ | Красный | 2000 | 2 | 10 | — | 20 | 2,0 | 70 |
АЛ307Л | Оранжев. | 1500 | 2,8 | 10 | 0,56 | 22 | 2,0 | 70 |
АЛ307НМ | Зеленый | 6000 | 2,8 | 20 | — | 22 | 2,0 | 70 |
АЛ310А | Красный | 610 | 2 | 10 | 0,67 | 12 | — | 70 |
АЛ310Б | Красный | 250 | 2 | 10 | 0,67 | 12 | — | 70 |
АЛ316А | Красный | 800 | 2 | 10 | 0,67 | 20 | — | 70 |
АЛ316Б | Красный | 250 | 2 | 10 | 0,67 | 20 | — | 70 |
АЛС331А | Перемен. | 600 | 4 | 20 | 0,56…0,7 | 20 | 2 | 70 |
3ЛС331А | Перемен. | 250 | 3 | 10 | — | 20 | 2 | 70 |
АЛ341А | Красный | 150 | 2,8 | 10 | 0,69…0,71 | 20 | 2,0 | 70 |
АЛ341Б | Красный | 500 | 2,8 | 10 | 0,69…0,71 | 20 | 2,0 | 70 |
АЛ341В | Зеленый | 150 | 2,8 | 10 | 0,55…0,56 | 22 | 2,0 | 70 |
АЛ341Г | Зеленый | 500 | 2,8 | 10 | 0,55…0,56 | 22 | 2,0 | 70 |
АЛ341Д | Желтый | 150 | 2,8 | 10 | 0,55; 0,7 | 22 | 2,0 | 70 |
АЛ341Е | Желтый | 500 | 2,8 | 10 | 0,55; 0,7 | 22 | 2,0 | 70 |
АЛ341И | Красный | 300 | 2 | 10 | — | 30 | 2,0 | 70 |
АЛ341К | Красный | 700 | 2 | 10 | — | 30 | 2,0 | 70 |
КЛ360А | Зеленый | 300 | 1,7 | 10 | — | 20 | — | 85 |
КЛ360Б | Зеленый | 600 | 1,7 | 10 | — | 20 | — | 85 |
3Л360А | Зеленый | 300 | 1,7 | 10 | — | 20 | — | 85 |
3Л360Б | Зеленый | 600 | 1,7 | 10 | — | 20 | — | 85 |
КЛД901А | Синий | 150 | 12 | 3 | 0,466 | 6 | — | 70 |
КИПД01А-1Л | Зеленый | 800 | 7 | 10 | 0,55…0,56 | 12 | 8,0 | 70 |
КИПД01Б-1Л | Зеленый | 600 | 7 | 10 | 0,55…0,56 | 12 | 8,0 | 70 |
КИПД02А-1К | Красный | 400 | 1,8 | 5 | 0,7 | 20 | 3,0 | 70 |
КИПД02Б-1К | Красный | 900 | 1,8 | 5 | 0,7 | 20 | 3,0 | 70 |
КИПД02В-1Л | Зеленый | 250 | 2,5 | 5 | 0,55 | 20 | 3,0 | 70 |
КИПД02Г-1Л | Зеленый | 500 | 2,5 | 5 | 0,55 | 20 | 3,0 | 70 |
КИПД02Д-1Ж | Желтый | 250 | 2,5 | 5 | 0,63 | 20 | 3,0 | 70 |
КИПД02Е-1Ж | Желтый | 650 | 2,5 | 5 | 0,63 | 20 | 3,0 | 70 |
КИПД03А-1К | Красный | 60 | 2 | 5 | 0,65 | 8,0 | 5,0 | 70 |
КИПД03А-1Ж | Желтый | 30 | 2,5 | 5 | 0,6 | 8,0 | 5,0 | 70 |
КИПД03А-1Л | Зеленый | 32 | 3 | 5 | 0,57 | 8,0 | 5,0 | 70 |
КИПД04А-1К | Красный | 15000 | 2 | 10 | 0,7 | 30 | 2,0 | 70 |
КИПД04Б-1К | Красный | 10000 | 2 | 10 | 0,7 | 30 | 2,0 | 70 |
КИПД05А-1К | Красный | 200 | 1,8 | 5 | 0,7 | 6,0 | 6,0 | 70 |
КИПД05Б-1Л | Зеленый | 100 | 2,5 | 5 | 0,55 | 6,0 | 6,0 | 70 |
КИПД05В-1Ж | Желтый | 100 | 2,5 | 5 | 0,63 | 6,0 | 6,0 | 70 |
КИПД06А-1К | Красный | 4000 | 5,5 | 25 | 0,7 | 25 | 10,0 | 55 |
КИПД06Б-1К | Красный | 6000 | 5,5 | 25 | 0,7 | 25 | 10,0 | 55 |
КИПД06В-1Л | Зеленый | 3000 | 7,5 | 25 | — | 25 | 10,0 | 55 |
КИПД06Г-1Л | Зеленый | 5000 | 7,5 | 25 | — | 25 | 10,0 | 55 |
КИПМ01А-1К | Красный | 400 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ01Б-1К | Красный | 1000 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ01В-1Л | Жел-Зел | 400 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ01Г-1Л | Жел-Зел | 1000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ01Д-1Л | Жел-Зел | 2000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ02А-1К | Красный | 400 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ02Б-1К | Красный | 1000 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ02В-1Л | Жел-Зел | 400 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ02Г-1Л | Жел-Зел | 1000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ02Д-1Л | Жел-Зел | 2000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ03А-1К | Красный | 400 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ03Б-1К | Красный | 1000 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ03В-1Л | Жел-Зел | 400 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ03Г-1Л | Жел-Зел | 1000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ03Д-1Л | Жел-Зел | 2000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ04А-1К | Красный | 400 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ04Б-1К | Красный | 1000 | 2 | 10 | 0,65…0,675 | 30 | 5,0 | 70 |
КИПМ04В-1Л | Жел-Зел | 400 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ04Г-1Л | Жел-Зел | 1000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
КИПМ04Д-1Л | Жел-Зел | 2000 | 2,8 | 20 | 0,55…0,57 | 30 | 5,0 | 70 |
Справочник по отечественным светодиодам.
Особенности и модификация
Категория светодиодов
АЛ307М имеет четыре оттенка свечения. Это красный, желтый, оранжевый и зеленый.
При этом они имеют цветной металлический, пластмассовый или металлостеклянный
корпус, соответствующий спектру излучения – в рассеивающем или полностью
прозрачном компаунде. Светодиодный кристалл покрыт стеклянной линзой с диспергатором
овальной формы, диаметром 5 мм у основания. Выводные проводники изготовлены из
гибкой проволоки и имеют одно направление. Анод всегда длиннее и немного толще
катода. Последний также может иметь небольшой срез.
В маркировке первая
буква, идущая после числового значения «307», означает характерный цвет
светового потока:
- Красный – А, Б, К, Л.
- Желтый – Д, Е, Ж.
- Оранжевый – О, Р, М.
- Зеленый – В, Г, Н, П.
Основные
светотехнические параметры для существующих модификаций светодиода АЛ307
представлены в следующей таблице:
Чтобы светодиод модели АЛ307 работал, необходимо соблюдать полярность при подключении. Кроме того, подсоединение непосредственно к сети запрещено. В схеме обязательно должен быть токоограничивающий резистор. В каждой последовательной или параллельной цепочке должен располагаться отдельный подобный стабилизирующий модуль.
Цвета и материалы
См. также: Синий светодиод и Белый светодиод
Розовый светодиод диаметром 5 мм
Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде и материал:
Цвет | длина волны (нм) | Напряжение (В) | Материал полупроводника | |
---|---|---|---|---|
Инфракрасный | λ > 760 | ΔU < 1,9 | Арсенид галлия (GaAs)Алюминия галлия арсенид (AlGaAs) | |
Красный | 610 < λ < 760 | 1,63 < ΔU < 2,03 | Алюминия-галлия арсенид (AlGaAs)Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP) | |
Оранжевый | 590 < λ < 610 | 2,03 < ΔU < 2,10 | Галлия фосфид-арсенид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP) | |
Жёлтый | 570 < λ < 590 | 2,10 < ΔU < 2,18 | Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP) | |
Зелёный | 500 < λ < 570 | 1,9 < ΔU < 4,0 | Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)Галлия(III) фосфид (GaP)Алюминия-галлия-индия фосфид (AlGaInP)Алюминия-галлия фосфид (AlGaP) | |
Синий | 450 < λ < 500 | 2,48 < ΔU < 3,7 | Селенид цинка (ZnSe)Индия-галлия нитрид (InGaN)Карбид кремния (SiC) в качестве субстратаКремний (Si) в качестве субстрата — (в разработке) | |
Фиолетовый | 400 < λ < 450 | 2,76 < ΔU < 4,0 | Индия-галлия нитрид (InGaN) | |
Пурпурный | Смесь нескольких спектров | 2,48 < ΔU < 3,7 | Двойной: синий/красный диод,синий с красным люминофором,или белый с пурпурным пластиком | |
Ультрафиолетовый | λ < 400 | 3,1 < ΔU < 4,4 | Алмаз (235 нм) Нитрид бора (215 нм)Нитрид алюминия (AlN) (210 нм) | |
Белый | Широкий спектр | ΔU ≈ 3,5 | Сочетание трех светодиодов основных цветов (красный, синий, зеленый), либо люминофор, излучающий белый цвет под воздействием светодиода со спектром от синего до ультрафиолетового; |
Несмотря на то, что в мире широко выпускаются белые светодиоды в конструктиве синего/фиолетового свечения кристалла с нанесенным на него желтым или оранжевым люминофором, ничто не мешает нанести и люминофоры другого цвета свечения. В результате нанесения красного люминофора получают пурпурные или розовые светодиоды, гораздо реже выпускают светодиоды салатового цвета, где на синий кристалл наносится люминофор зеленого цвета свечения.
Светодиоды также могут иметь цветной корпус.
В 2001 году Citizen Electronics первой в мире произвела цветной SMD светодиод из цветной пастели под названием PASTELITE.
Оцените статью:Подключение светодиода к сети 220в , схема и расчет
Сегодня к светодиодам значительно возрос интерес, ведь за ними будущее в освещении. Возникает вопрос как происходит подключение светодиода к сети 220 В, на который мы подробно ответим в этой статье. Также рассмотрим напряжение питания, распиновку, цоколевку, схемы подключения и различные расчеты.
Светодиодом называют полупроводниковый прибор, где электрический ток переходит в свет. Диод пропускает ток только в одном направлении. Светодиоды подключаются к 220В благодаря драйверу, который подходит по всем характеристикам.
Подключение по схеме может быть параллельным или последовательным. Светодиод характеризуется прочным корпусом, долгой и надежной работой.
Как устроен светодиод
Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.
- Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:
- катод;
- короче.
Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.
Как устроен светодиод? Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.
На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.
Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.
Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.
Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.
Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.
Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х — 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации.
По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета.Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.
Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару).
У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой подложке.
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться).
Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.
Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например, линзы. В результате получается белый свет.
Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы.
Третий способ — это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.
Напряжение питания светодиодов
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.
Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
- Теоретический метод
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.
Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.
В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.
Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
- Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.
В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.
Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Распиновка светодиода
Для решения вопроса существует всего 3 способа:
- Конструктивно
Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
- С помощью мультиметра
Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).
Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
Цоколевка светодиодов
Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.
Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.
Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.
Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.
Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:
Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.
Обозначение светодиодов на схеме
Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.
Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.
Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.
Не стоит путать обозначение светодиода на схеме с фотодиодом. С первого взгляда может показаться, что они одинаковые, однако, при детальном рассмотрении видна существенная разница: стрелки фоторезистора направлены на диод (треугольник с палочкой у острого конца).
Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.
В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.
Последовательное подключение светодиодов
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
- Недостатки последовательного подключения:
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное соединение светодиодов
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002). Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже.
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
- Недостатки параллельного подключения:
- Большое количество элементов.
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Схема лед драйвера на 220 вольт
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.
Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
- Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения.
Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Чтобы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки. В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора Диаграмма в схеме со стабилизаторомПоэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт.
Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания. Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой.
Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей. При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности. Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью.
Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Автор:Сергей Владимирович, инженер-электрик.
Подробнее об авторе.
Какова правильная полярность подключения светодиода – АвтоТоп
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.
Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).
В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.
Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.
Визуальный метод определения полярности
Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.
Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.
Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).
Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.
Тестирование с применением мультиметра или аккумулятора
Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.
При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.
В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.
Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.
Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.
Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.
И еще несколько советов:
- если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
- некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
- при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.
выводов светодиодов – 2, 3, 4 и более контактов
Большинство светодиодов представляют собой простое одиночное устройство с двумя выводами, но обычно используются корпуса с двумя или более светодиодами, и используются различные схемы расположения выводов светодиодов.Простая схема тестирования светодиодов
Простая схема тестирования светодиодов. «LUT» означает «тестируемый светодиод»!Большинство светодиодов загораются при напряжении ниже 5 В и могут выдерживать обратное напряжение 5 В. Питание 5 В доступно от источника питания USB или, например, Arduino. Вы можете использовать более высокое напряжение, такое как батарея 9 В, и удвоить значение R1, но вы можете повредить чувствительные устройства при обратном напряжении.
Дополнительные сведения по этой теме см. В разделе «Тестирование неизвестных светодиодов».
Обратите внимание, что светодиоды обычно не имеют двух выводов одинаковой длины. На это есть две причины:
- Помогает идентифицировать контакты.
- Это помогает при сборке, так как штифты можно вставлять по одному, от самого длинного до самого короткого, без необходимости выравнивать все штифты одновременно.
Самый распространенный тип светодиода – это 2-контактные 5 мм круглые линзы. Обычно это один светодиод. Полярность обозначается длинным выводом (+ / анод) или плоской стороной на одной стороне основания (- / катод).
Типичный двухконтактный светодиод. Двухконтактный корпус может содержать один или два встречных светодиода.Имейте в виду, что в этой упаковке также продаются двухцветные светодиоды. Некоторые из них двухцветные, поэтому при прохождении тока через них изменяется цвет. Другие могут иметь оба светодиода одного цвета, и это может быть полезно в приложениях переменного тока, поскольку оно может работать в обоих циклах сети и устраняет необходимость в выпрямителе.
В техническом описании двухцветного светодиода будет указано, с какой стороны подключаться, чтобы обеспечить правильный цвет.
3-контактный светодиод.Трехконтактный светодиод обычно представляет собой пару светодиодов разного цвета с общим анодом или общим катодом. Любой из светодиодов может быть включен независимо или смешан, чтобы создать комбинацию.
Двухцветный 3-контактный светодиод с общим катодом. Популярный 4-контактный светодиодный RGB-индикатор позволяет воспроизводить цвета в видимом спектре.4-контактный корпус чаще всего встречается на светодиодах RGB (красный-зеленый-синий). Доступны версии с общим катодом и общим анодом.
Светодиод RGB в 4-контактном корпусе.Обратите внимание, что у этого есть общий катод. RGB с индивидуальными выводами позволяет использовать общий анод, общую конфигурацию катода, а также последовательное соединение светодиодов.Когда количество выводов достигает шести, возможны всевозможные странные вариации. Один из разумных – вывести каждый светодиодный анод и катод на отдельные выводы. Это позволяет использовать одну деталь для конфигураций с общим анодом, общим катодом и последовательными светодиодами.
Немного странный 6-контактный светодиод RB-GB имеет два отдельных 3-контактных светодиода в одном корпусе.
Этот пакет состоит из пары красно-синих и зелено-синих в одной упаковке. Обратите внимание на два независимых общих катода. Kingbright LF5WAEMBGMBW, 6-контактный, светодиод RB-GB имеет два 3-контактных светодиода в одном корпусе. Оба имеют синий светодиод. Обратите внимание на подсказку по ориентации длины штифта.5-миллиметровое расположение выводов светодиода, характеристики, прямое напряжение и техническое описание
Конфигурация контактовИмя контакта | Описание |
Анод | Положительный полюс светодиода |
Катод | Отрицательный вывод светодиода |
- Превосходная атмосферостойкость
- Круглая стандартная направленность 5 мм
- Устойчивый к ультрафиолетовому излучению эпоксидный материал
- Прямой ток (IF): 30 мА
- прямое напряжение (VF): 1.От 8 В до 2,4 В
- обратное напряжение: 5V
- Рабочая температура: от -30 ℃ до + 85 ℃
- Температура хранения: от -40 ℃ до + 100 ℃
- Сила света: 20 мкд
Светодиод – это двухпроводной полупроводниковый источник света, который при активации излучает свет. Когда соответствующее напряжение подается на вывод светодиода, электроны могут рекомбинировать с электронными дырками внутри устройства и выделять энергию в виде фотонов.Этот эффект известен как электролюминесценция. Цвет светодиода определяется шириной запрещенной зоны полупроводника.
Как использовать светодиод?Прямое напряжение, необходимое для включения светодиода, зависит от цвета светодиода. Если вы подаете точное значение прямого напряжения, вы можете подключить светодиод непосредственно к источнику. Если напряжение выше, чем используйте сопротивление последовательно со светодиодом, для расчета значения сопротивления используйте формулу:
R = (V S - V LED * X) / I LED Где, V S - напряжение питания V LED - прямое напряжение светодиода. X - количество светодиодов, подключенных последовательно I LED - ток светодиода
В приведенной ниже таблице указано прямое напряжение светодиода в зависимости от его цвета
Цвет светодиода | прямое напряжение |
Красный | 1.63 ~ 2,03 В |
Желтый | 2,10 ~ 2,18 В |
Оранжевый | 2,03 ~ 2,10 В |
Синий | 2,48 ~ 3,7 В |
Зеленый | 1.9 ~ 4,0 В |
фиолетовый | 2,76 ~ 4,0 В |
УФ | 3,1 ~ 4,4 В |
Белый | 3,2 ~ 3,6 В |
- Индикация
- Игрушки и игры
- Светотехника
- Электронные проекты
Основные способы использования светодиодной схемы
Мой сын очень заинтересован в светодиодах.Он хочет создать простую схему светодиодного мигающего сигнала. Но мы должны изучить принципы работы светодиода раньше. В электронных схемах используется множество светодиодов.
Что такое светодиод?
Светодиод представляет собой светоизлучающий диод. Это более сложный электронный компонент, чем лампа или лампа накаливания. Светодиоды имеют много цветов для использования. Что важно, они используют очень небольшой ток, 10 мА.
В обычных магазинах электроники есть много типов светодиодов. Но теперь мне нравится использовать в своих проектах электронных схем стандартные светодиоды диаметром 3 мм и 5 мм.Потому что они такие дешевые.
Распиновка светодиода
Это изображение крупным планом 3 мм светодиода и его распиновка. Имеет полярность как диод. Значит, мы должны связать это правильно или предвзято. Он не загорится при неправильном подключении или обратном смещении.
Когда мы нашли крупный план светодиода. Во-первых, более длинный вывод является положительным (+) или анодным (A). Другой вывод короче, отрицательный (-) или катодный (K).
Но иногда это один и тот же отрывок. Нам нужно смотреть на плоскую сторону светодиода.Всегда указывает катод (К) или минус (-). Значит, другой положительный (+) или анодный (A).
Затем посмотрите на символ светодиода по сравнению с обычным диодом.
Зачем нужны символы? Если вы рисуете схему, если на это уходит много времени, следует использовать символы.
Похоже на диод. Большая треугольная стрелка указывает направление протекающего тока. Маленькие стрелки на диаграмме указывают на излучаемый свет.
В целом, на диаграмме не отображаются знаки «+» или «-».На нем отображается только буква «К», обозначающая катод, и буква «А», обозначающая анод.
А, мы часто используем светодиод с ограничивающим резистором.
Примечание: Я думаю, нам не нужно разбираться в устройстве светодиода. На нашем уровне достаточно просто использовать.
Как проверить светодиод
Для начала, какое напряжение использует светодиод?
Детали, которые вам понадобятся
- Красный светодиод 3 мм
- Источник питания
- Вольтметр в мультиметре
У моего сына на макете красный светодиод 3 мм.Потому что для этого не нужен электрический паяльник. Идеально для него.
Затем он пытается использовать регулируемый источник питания постоянного тока, от 1,25 В до 25 В 1A. Для питания светодиода. Осторожность! Для начала только с 1,25 В.
- Теперь светодиод гаснет.
- Затем отрегулируйте напряжение до 1,5 В. Но светодиод все равно гаснет (не горит).
- Светодиод загорается при напряжении 1,7 В.
- Когда он добавляет напряжение до 2,2В, он сильно греется.
- При 1,8 В светодиоды имеют наилучшее освещение и нормальную температуру
Изучите: соотношение между током и напряжением
Напряжение светодиода
Обычно все светодиоды требуют тока через резистор около 10 мА для небольших размеров ( 3 мм) и 20 мА для 5 мм.Но для каждого цвета требуется разное напряжение.
- Красный светодиод: 1,7 В
- Зеленый светодиод: 2,3 В
- Желтый светодиод: 2,3 В
- Оранжевый светодиод: 2,1 В
- Синий светодиод: 3,3 В
- Белый светодиод: 3,6 В
Это хорошо падение напряжения символа. Потому что это постоянное напряжение.
На блок-схеме ниже. Я покажу вам, как использовать светодиод с батареей 3 В через ограничительный резистор четырех цветов: красный, зеленый, желтый и оранжевый.Они используют разное сопротивление.
Примечание: Вот как найти резистор ограничения тока .
Почему светодиод не светится?
Если подключить светодиод в цепь. Но это не работает. Почему не светится?
Например, две схемы ниже.
- Сначала красный светодиод подключен с обратным смещением или неправильным образом.
- Во-вторых, для белого светодиода требуется питание 3,6 В. Но теперь у него всего 3 батареи.
Как использовать белый светодиод
Добавляем еще один 1.Аккумулятор 5В на цепь. Теперь у нас есть батарея на 4,5 В. Таким образом, мы можем использовать их для белых и синих светодиодов.
Как использовать сине-белый светодиод с батареей 4,5 В или 5 В.
Это просто основные принципы использования светодиода. Когда ты делаешь реальные проекты. Это могут быть хорошие идеи для вас.
Пример реального использования LED
В процессе работы мы, вероятно, разбираемся в электронике больше.
DIY простой светодиодный светильник 12v
Светодиодная лампа пользуется большей популярностью, чем обычная лампочка.Потому что он имеет высокий КПД, низкое энергопотребление и, следовательно, термостойкость.
Я покупаю светодиодную лампу 12 В Для использования в автомобилях и для общего использования
Затем я попытался измерить ток, протекающий через нее, всего около 20 мА.
Но иногда нам нужно что-то доработать поблизости. Чтобы использовать возобновляемые, экономичные, не нужно покупать дополнительные, лучше удалить использованные старые.
Пробую использовать другую сверхяркую светодиодную схему.
Как обычно, потребуется напряжение около 1.8V-4V и ток около 10mA. Когда мы хотим сохранить низкое энергопотребление. Так же использовали серию или приводим 3 светодиода последовательно. Если напряжение на каждом из них составляет примерно 3 В, через него протекает ток примерно 10 мА.
Диод используется для защиты обратного напряжения светодиодов, но он снижает напряжение с 12В до 11,3В. По принципу этого.
И используйте резистор R, ограничивающий ток до 3 светодиодов. Вы можете использовать приведенную ниже формулу.
R = (11,3 В – Вольты светодиода) / токи светодиода
– Напряжение светодиода = 3 В x 3 = 9 В
– Ток светодиода = 10 мА
= (11.3 В – 9 В) / 10 мА = 300 Ом
Но я использую 330 Ом 0,25 Вт
Тогда измеряемый ток составляет только 9 мА. Если мы используем аккумулятор на 12 В, 500 мАч, мы будем использовать их в течение 50 часов. Это хорошо для экономии.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Руководство по установке аппаратного обеспечения маршрутизатора Cisco NCS 560-4 – информация о выводах и светодиодных индикаторах [Маршрутизаторы Cisco Network Convergence System 560 Series]
Два отдельных USB-разъема типа A используются для USB-консоли и USB-накопителя.Одна единственная розетка USB 2.0 Type-A на передней панели RSP для обеспечения консольного доступа к ROMMON, IOS-XE и диагностике. Он работает как периферийное устройство USB. только для подключения к внешнему хост-компьютеру. Это требует использования разъема Type-A на Type-A вместо стандартного USB. кабель.
Примечание | Использование консоли USB исключает использование консоли RS232 / порта Aux.Когда USB-кабель вставлен, доступ автоматически переключается на этот порт. |
Другой разъем USB 2.0 Type-A расположен на передней панели RSP для подключения внешних запоминающих устройств USB. такие как стандартные USB-флешки. Он используется для загрузки изображений, хранения конфигураций, записи журналов и т. Д. Он поддерживает работу до 12 Мбит / с
В таблице ниже приведена распиновка консольного порта USB.
Штифт | Имя сигнала | Направление | Описание |
---|---|---|---|
A1 | Vcc | + 5 В постоянного тока (500 мА) | |
A2 | D- | Данные – | |
A3 | D + | Данные + | |
A4 | Земля | Земля |
Примечание | Консольный порт USB + 5 В постоянного тока является входным и работает как периферийное устройство USB. |
Светодиодный заголовок – Полная документация
Распиновка¶
Штифт | Описание |
---|---|
1 | Мощность |
2 | Земля |
3 | Активность привода |
С прошивкой 1.18 (и выше) назначение контактов больше не статично.
Варианты светодиодов¶
Опция | Описание |
---|---|
на | Светодиод всегда включен |
Выкл. | Светодиод всегда выключен |
Привод A Pwr | Индикатор мощности привода А |
DrvAPwr + DrvBPwr | Индикатор мощности привода A и привода B вместе |
Привод А Акт | Светодиод горит, когда на диске A | активна
DrvAAct + DrvBAct | Светодиод горит, при работе приводов A и B вместе |
DrvAPwr ^ DrvAAct | Светодиод питания привода Активность привода XOR.Это приводит к обратному приводу |
активность, с таким же затемнением, как у светодиода питания. | |
Активность USB | Светодиод горит, при активности USB |
Любая деятельность | Светодиод горит при любой активности (кроме ленты) |
! (DrvAAct) | Инверсия активности диска A, поэтому светодиод гаснет при работе диска, а не горит |
! (DrvAAct + DrvBAct) | Инверсия дисков A и B вместе, поэтому светодиод гаснет при активности, а не горит |
! (Закон USB) | Инверсия активности USB, поэтому светодиод погаснет при активности USB, а не ВКЛ. |
! (Любой акт) | Инверсия любого действия, поэтому светодиод гаснет при любом действии, а не горит. |
IRQ Line | Светодиодгорит, когда линия IRQ на высоком уровне (неактивна) |
! (Линия IRQ) | Инверсия линии IRQ, поэтому светодиод горит, когда линия IRQ низкая (активная) |
С выходом прошивки 1.18 поведение светодиода можно изменить.
Что означает! (Опция)? ¶
Как видно из таблицы выше, существуют параметры (функции) настройки, отмеченные как! (Функция). ! (функция) означает, что это обратный результат функции.
Рассмотрим подробнее функцию DrvAAct + DrvBAct . Это означает, что когда есть активность диска A или диска B (вместе), светодиод будет гореть. Итак, ! (DrvAAct + DrvBAct) будет выполнять функцию, противоположную (обратную) функции DrvAAct + DrvBAct , поэтому светодиод погаснет. когда есть активность на диске A или диске B.
Пример с двумя отдельными светодиодами¶
Мы используем красный и зеленый светодиоды, красный – это светодиод питания (питание), а зеленый – активность диска (привод). Провод питания красного светодиода подключен к верхнему контакту (1), а зеленый светодиод подключен к нижнему контакту (3), и, конечно же, земля обоих светодиодов подключена к контакту заземления (2).
Поскольку есть два отдельных светодиода, мы хотим, чтобы питание всегда было включено, а привод включался только при наличии активности.
Итак, мы используем следующую настройку:
- Power => LED Select Top: На
- Drive => LED Выбрать снизу: DrvAAct + DrvBAct
Чтобы поменять местами цветовое назначение, просто поменяйте настройки между верхним и нижним.
Пример с дуэтом светодиодов¶
Мы используем двойной светодиод, в котором красный и зеленый объединены в одном корпусе, красный – это светодиод питания (питание), а зеленый – активность диска (движение). Провод питания красного светодиода подключен к верхнему контакту (1), а зеленый светодиод подключен к нижнему контакту (3), и, конечно же, земля светодиода подключена к контакту заземления (2).
Поскольку имеется только «один» светодиодный блок, мы хотим, чтобы питание отключалось при работе диска, иначе два цвета будут смешаны с желтым (красный + зеленый).
Итак, мы используем следующую настройку:
- Power => LED Select Top: ! (DrvAAct + DrvBAct)
- Drive => LED Выбрать снизу: DrvAAct + DrvBAct
Чтобы поменять местами цветовое назначение, просто поменяйте настройки между верхним и нижним.
Техническая информация¶
Индикатор питания
На вывод питания подается сигнал ШИМ 260 кГц, сигнал ШИМ снижает яркость светодиода.U64 имеет встроенный последовательный резистор 220 Ом для понижения тока, подаваемого напряжения 3,3 В.
Светодиод активности диска
ШИМ | Описание |
---|---|
Выкл. | Драйв выключен |
1/3 | Драйв на |
2/3 | Дисковод включен + установлена дискета |
3/3 | Диск включен + дискета установлена + двигатель работает |
PWM = ширина импульса сигнала pwm.
Распиновка платы светодиодаA19 – LIFX Developer Zone
У меня есть древний джакузи в земле, которым я полностью управляю с помощью SSR, рашпиля и веб-интерфейса. Поэтому, когда моя жена попросила заменить стандартную белую лампу накаливания на лампу RGB с забавными эффектами, я решил, что пришло время проекта.
Теперь эта гидромассажная ванна очень похожа на бассейн в том смысле, что все, включая логику, насосы, обогреватели, фильтры и т. Д., Находится в 20 футах от сарая. Все управляется воздушными переключателями.Я могу пропустить провод через канал, соединяющий ванну с навесом под бетонной плитой. Освещение осуществляется одной лампочкой низкого напряжения за съемной линзой сбоку ванны. Нет доступа к задней стороне этого nich, поэтому, чтобы получить доступ к свету, вы должны осушить ванну, снять линзу и вытащить лампочку и проводку через отверстие для линзы. Я не могу / не буду использовать сетевое напряжение рядом с ванной, поэтому требовалось решение для низкого напряжения.
Ладно, вот я купил А19 и сразу снес его.Я снял светодиодную плату и припаял более длинные выводы к 13 контактам на ней … затем вставил другой конец проводов в 13-контактную ИС на все еще неповрежденной цоколе лампы. Вуаля, это сработало как шарм, поэтому, по крайней мере, теоретически мы можем сделать следующее:
Основание основной лампы ввинчивается в цоколь Эдисона в сарае. Это означает, что рядом с водой нет водопровода, И он находится над землей и может подключаться к Wi-Fi.
Итак, я иду … Я использую два 20-футовых кабеля Cat5, несколько больших радиаторов SSR для светодиодной платы и макетную плату для подключения всего этого.Светодиодная плата и радиатор установлены за линзой ванны и соединены с парой cat 5 через трубопровод обратно в навес. Катушка 5 к макетной плате, макетная плата к 13 микросхеме в лампочке … включите ее, и все, что я получаю, – это повторяющееся синее мигание, а лампочка не появляется в моей сети. Тройной проверил мою проводку… без разницы. Я пробовал выполнить сброс с помощью метода включения и выключения 5 раз, но независимо от того, что я пробую, он остается неизменным … теперь мои вопросы:
Кто-нибудь знает, на что указывает повторяющееся синее мигание (код ошибки?)
Есть ли у кого-нибудь фактический вывод для платы светодиодов на A19, чтобы я мог прощупать / протестировать выводы по отдельности, чтобы увидеть, где я нахожусь.
Спасибо
Крис
Распиновка 7-сегментного дисплея и работа
Семисегментный дисплей обычно используется в электронных устройствах отображения десятичных чисел от 0 до 9 и, в некоторых случаях, основных символов. Использование светодиодов в семисегментных дисплеях сделало его более популярным, в то время как в последнее время стали использоваться и жидкокристаллические дисплеи (ЖКД). Электронные устройства, такие как микроволновые печи, калькуляторы, стиральные машины, радиоприемники, цифровые часы и т. Д.для отображения числовой информации используются наиболее распространенные приложения. Давайте посмотрим на распиновку 7-сегментного дисплея, чтобы лучше понять.
Распиновка 7-сегментного дисплея
7-сегментный дисплей состоит из семи различных светящихся сегментов. Они организованы таким образом, чтобы формировать числа и символы, отображая различные комбинации сегментов. Двоичная информация отображается с помощью этих семи сегментов. Светодиод или светоизлучающий диод представляет собой диод с P-N переходом, который излучает энергию в виде света, отличается от обычного диода с P-N переходом, который излучает в виде тепла.В то время как ЖК-дисплей использует свойства жидкого кристалла для отображения и не излучает свет напрямую. Эти светодиоды или ЖК-дисплеи используются для отображения необходимых цифр или букв.
Типы 7 сегментов
В основном есть 2 типа 7-сегментных светодиодных дисплеев:
Общий анод: Все отрицательные клеммы (анод) всех 8 светодиодов соединены вместе. Все положительные клеммы оставлены в покое.
Общий катод: Все положительные клеммы (катод) всех 8 светодиодов соединены вместе.Все отрицательные термики остаются в покое.
Работа на 7 сегментах
Семисегментные устройства обычно состоят из светодиодов. Эти светодиоды будут светиться при прямом смещении. Яркость светодиодов зависит от прямого тока. Таким образом, эти светодиоды должны светиться с полной интенсивностью прямого тока. Это обеспечивается драйвером и применяется к семи сегментам.
Номер | g f e d c b a | Шестнадцатеричный код |
0 | 1000000 | C0 |
1 | 1111001 | F9 |
2 | 0100100 | A4 |
3 | 0110000 | B0 |
4 | 0011001 | 99 |
5 | 0010010 | 92 |
6 | 0000010 | 82 |
7 | 1111000 | F8 |
8 | 0000000 | 80 |
9 | 0010000 | 90 |
Таблица: Отображаемые числа на семисегментном дисплее в общей конфигурации анода
В общей конфигурации катода все меняется.
Номер | g f e d c b a | Шестнадцатеричный код |
0 | 0111111 | 3F |
1 | 0000110 | 06 |
2 | 1011011 | 5Б |
3 | 1001111 | 4F |
4 | 1100110 | 66 |
5 | 1101101 | 6D |
6 | 1111101 | 7D |
7 | 0000111 | 07 |
8 | 1111111 | 7F |
9 | 1001111 | 4F |
Таблица: Отображаемые числа на семисегментном дисплее в конфигурации с общим катодом
Пример подключения 7-сегментного дисплея к Arduino uno приведен для справки.