Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Допустимая нагрузка на медный кабель | Полезные статьи


Во время эксплуатации кабельных линий переменный электрический ток в течение продолжительного периода времени протекает по токопроводящим жилам кабелей и вызывает их нагрев. Максимальное значение тока, при котором температура жил достигает предельно допустимых значений, но при этом не приводит к выходу кабеля из строя, называется максимальной допустимой длительной токовой нагрузкой. На величину этой нагрузки влияет номинальное напряжения сети, материал, из которого изготовлены жилы кабеля и их изоляция, номинальное сечение жил, а также температура воздуха или грунта (в зависимости от того, какой способ прокладки был выбран для данной кабельной линии). Температура жил не должна превышать значения, указанные в таблице 1.

Таблица 1

Таблица 2

Таблица 3

Таблица 4

Таблица 5

 

 

 

 

 

Чаще всего для прокладки кабельных линий используется кабель медный, токовая нагрузка которого выше, чем у кабелей с алюминиевыми жилами с аналогичным сечением. Поэтому рассмотрим допустимые токовые нагрузки кабелей с медными жилами с изоляцией из ПВХ пластиката, полимерных композиций, резины, кабельной бумаги, сшитого полиэтилена при различных условиях прокладки.

Следует учитывать, что температура окружающего пространства зависит от климатического региона и, к тому же, изменяется в течение года. Ниже приводятся таблицы, в которых указан допустимый длительный ток для кабелей с медными жилами эксплуатируемых при полной нагрузке и рассчитанный для температуры воздуха +250С внутри и снаружи помещений, а также температуре грунта 150С на глубине 0,7-0,8 м при удельном термическом сопротивлении 1,2 К м/Вт.

Для кабелей, работающих в режиме перегрузки, вводятся поправочные коэффициенты:

с изоляцией из ПВХ пластиката и безгалогеновых полимерных композиций:

  • при прокладке на воздухе – 1,16
  • при прокладке в земле – 1,13

с изоляцией из сшитого полиэтилена:

  • при прокладке на воздухе – 1,20
  • при прокладке в земле – 1,17

Таблица 6

Таблица 7

Таблица 8

Таблица 9

Таблица 10

 

 

При выполнении расчетов кабельных линий необходимо брать в расчет, что величина длительно допустимых токов для кабелей с защитным покровом типа К, проложенных в воде увеличиваются в 1,1 раза

Если температура воздуха или грунта отличается от значений, для которых были произведены расчеты, то длительно допустимые токовые нагрузки вычисляются путем умножения на поправочный коэффициент в соответствии данными из таблицы 10


Данными из приведенных выше таблиц, можно пользоваться при проектировании кабельных линий, проложенных на открытом воздухе или под землей. Однако монтаж электропроводок в низковольтных электроустановках может производиться внутри труб из различного материала, кабельных лотках, коробах и т. д. Прокладка может быть как скрытой, так и открытой, одиночной или групповой. В этом случае расчет максимальных допустимых нагрузок по току осуществляется в соответствии с данными, указанными в ГОСТ 50571.5.52-2011.

Таблица 11

Таблица 12

Таблица 13

Таблица 14

Таблица 15

 

 

Для кабелей с изоляцией из силанально сшитого полиэтилена на напряжение от 6 до 35 кВ токовые нагрузки рассчитаны исходя из условий, что экраны заземлены с обеих сторон.

Если температура воздуха или грунта отличается от значений, для которых были произведены расчеты, то длительно допустимый ток медного кабеля корректируется с помощью поправочного коэффициента в соответствии с данными из таблиц 18 и 19

Для кабелей, эксплуатируемых в режиме перегрузки, продолжительные предельные токовые нагрузки рассчитываются с учетом корректировочного коэффициента, равного:

  • для прокладки в земле – 1,17
  • для прокладки на воздухе – 1,2

При расчете токовых нагрузок для одножильных кабелей, прокладываемых под землей в трубах, длина которых превышает 10 метров, учитываются коэффициенты:

при раздельной прокладке кабелей – 0,94

при групповой прокладке – 0,9

Если осуществляется подземная прокладка нескольких кабельных линий, то длительные токи рассчитываются с учетом поправочных коэффициентов из таблицы 20.

Таблица 16

Таблица 17

Таблица 18

Таблица 19

Таблица 20

cable.ru

Таблица токовых нагрузок к сечению медных кабелей по ПУЭ

Любая электрическая схема требует точного инженерного расчета. Один из этапов вычислений – определение оптимального сечения жил кабелей, которые предполагается использовать для прокладки линий. При проектировании внутридомовой эл/проводки предпочтение отдается медным кабелям и проводам. Между диаметрами и токовыми нагрузками существует прямая зависимость, и все значения, для упрощения вычислений, сведены в соответствующие таблицы токовых нагрузок к сечению. Нужно лишь уметь правильно с ними работать.

Общая информация

Нужно учесть, что когда упоминается диаметр, это чисто условное определение, так как правильнее говорить – сечение провода или жилы кабеля. Разница принципиальная. В первом случае величина линейная и выражается она в мм. Во втором речь идет о площади, а она обозначается в мм². Поэтому замерять жилу при подборе кабеля (например, из запасов в сарае или гараже) линейкой, штангенциркулем или еще чем-то можно лишь для того, чтобы потом сделать соответствующий расчет токовой нагрузки. Формула известна из школы: S = π х D2/4 = π х 0,785 D2.

Рекомендации о приблизительных расчетах также не во всем верны. Например, на отдельных сайтах есть такой полезный совет – каждый «квадрат» медной жилы выдерживает до 10 А. Правильно. Но при этом не указывается, что данная пропорция справедлива лишь для цепей трехфазных (380). Внутридомовая проводка – это 220 В, и здесь соотношение несколько иное.

Таблицы

Что учесть при определении сечения

Выбирать провода на основании лишь расчетных данных (один в один) не рекомендуется. Дело в том, что в результате вычислений пользователь определяет, какой максимальный ток способна выдержать конкретная жила. Но нагружать провод так, чтобы он работал на пределе возможностей, нельзя. Во-первых, он будет постоянно нагреваться. Во-вторых, при малейших изменениях нагрузки в сторону увеличения его изоляция может не выдержать. Чем это грозит, понятно и без профессиональных комментариев – короткие замыкания, обрывы на линиях, воспламенения на отдельных участках. Следовательно, сечения кабелей целесообразно подбирать с некоторым запасом (примерно в 15% от расчетного значения).

При прокладке эл/проводки нужно учитывать и перспективу. Лучше заложить кабель с большим сечением, хотя это и выйдет дороже, чем потом, по мере того, как количество подключаемых потребителей увеличится, а нагрузка, соответственно, возрастет, заниматься переделками. А если монтаж осуществлен скрытым способом, то такой ремонт в итоге обернется еще большими финансовыми потерями (начиная с демонтажа облицовки помещения и далее по списку необходимых мероприятий).

Требования ПУЭ (редакция 7-я). В Правилах обозначены отдельные ограничения по минимально допустимому сечению жил в зависимости от методики монтажа кабелей. Если он ведется открытым способом, то не менее 4 «квадратов». Это обусловлено необходимостью обеспечения достаточной механической прочности линии. Имеет значение и материал изоляции. Сортамент кабельной продукции значительный, и этот момент также необходимо учитывать.

Вывод – табличные данные не следует трактовать однозначно, априори принимая их за абсолютно верные. Необходимо учесть все составляющие монтажа – способ, тип строения, назначение линии, разновидность (марку) кабеля и ряд других.

electroadvice.ru

Таблица ПУЭ выбора сечения кабеля, провода

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров 
с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2 Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
0,5 11 - - - - -
0,75 15 - - - - -
1,00 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2,5 30 27 25 25 25 21
4,0 41 38 35 30 32 27
6,0 50 46 42 40 40 34
10,0
80
70 60 50 55 50
16,0 100 85 80 75 80 70
25,0 140 115 100 90 100 85
35,0 170 135 125 115 125 100
50,0 215 185 170 150 160 135
70,0 270 225 210 185 195 175
95,0 330 275 255 225 245 215
120,0 385 315 290 260 295 250
150,0 440 360 330 - - -
185,0 510 - - - - -
240,0 605 - - - - -
300,0 695 - - - - -
400,0 830 - - - - -
Сечение токопроводящей жилы, мм2 открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

  

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов 
с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2 Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)
открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1*2
(один 2ж)
1*3
(один 3ж)
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255 - - -
185 390 - - - - -
240 465 - - - - -
300 535 - - - - -
400 645 - - - - -
Сечение токопроводящей жилы, мм2 открыто
(в лотке)
1 + 1
(два 1ж)
1 + 1 + 1
(три 1ж)
1 + 1 + 1 + 1
(четыре 1ж)
1 * 2
(один 2ж)
1 * 3
(один 3ж)
Токовые нагрузки А проводов, проложенных в одной трубе (коробе, пучке)

  

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16 100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605 - - - -

  

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465 - - - -

  

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
0.5 - 12 -
0.75 - 16 14
1 - 18 16
1.5 - 23 20
2.5 40 33 28
4 50 43 36
6 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в земле в воздухе в земле в воздухе в земле
1,5 29 32 24 33 21 28
2,5 40 42 33 44 28 37
4 53 54 44 56 37 48
6 67 67 56 71 49 58
10 91 89 76 94 66 77
16 121 116 101 123 87 100
25 160 148 134 157 115 130
35 197 178 166 190 141 158
50 247 217 208 230 177 192
70 318 265 - - 226 237
95 386 314 - - 274 280
120 450 358 - - 321 321
150 521 406 - - 370 363
185 594 455 - - 421 406
240 704 525 - - 499 468

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в земле в воздухе в земле в воздухе в земле
2.5 30 32 25 33 51 28
4 40 41 34 43 29 37
6 51 52 43 54 37 44
10 69 68 58 72 50 59
16 93 83 77 94 67 77
25 122 113 103 120 88 100
35 151 136 127 145 106 121
50 189 166 159 176 136 147
70 233 200 - - 167 178
95 284 237 - - 204 212
120 330 269 - - 236 241
150 380 305 - - 273 278
185 436 343 - - 313 308
240 515 396 - - 369 355

  Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 - при 7-9, 0,6 - при 10-12.

Для облегчения выбора сечения и учета дополнительных условий можно воспользоваться формой "Расчет сечения провода по допустимому нагреву и допустимым потерям напряжения". Значения токов для малых сечений для медных проводников получен методом экстрапляции.

Расчет по экономическому критерию для конечных потребителей не производится.

energobud.zakupka.com

ПУЭ 7. Правила устройства электроустановок. Издание 7

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил + 65, окружающего воздуха + 25 и земли + 15°С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух-, одножильных

трех-, одножильных

четырех-, одножильных

одного-, двухжильного

одного-, трехжильного

0,5

11

0,75

15

1

17

16

15

14

15

14

1,2

20

18

16

15

16

14,5

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50

16

100

85

80

75

80

70

25

140

115

100

90

100

85

35

170

135

125

115

125

100

50

215

185

170

150

160

135

70

270

225

210

185

195

175

95

330

275

255

225

245

215

120

385

315

290

260

295

250

150

440

360

330

185

510

240

605

300

695

400

830

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух-, одножильных

трех-, одножильных

четырех-, одножильных

одного-, двухжильного

одного-, трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

16

75

60

60

55

60

55

25

105

85

80

70

75

65

35

130

100

95

85

95

75

50

165

140

130

120

125

105

70

210

175

165

140

150

135

95

255

215

200

175

190

165

120

295

245

220

200

230

190

150

340

275

255

185

390

240

465

300

535

400

645

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2

Ток *, А, для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

1,5

23

19

33

19

27

2,5

30

27

44

25

38

4

41

38

55

35

49

6

50

50

70

42

60

10

80

70

105

55

90

16

100

90

135

75

115

25

140

115

175

95

150

35

170

140

210

120

180

50

215

175

265

145

225

70

270

215

320

180

275

95

325

260

385

220

330

120

385

300

445

260

385

150

440

350

505

305

435

185

510

405

570

350

500

240

605

-

-

-

-

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм²

Ток, А, для кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

2,5

23

21

34

19

29

4

31

29

42

27

38

6

38

38

55

32

46

10

60

55

80

42

70

16

75

70

105

60

90

25

105

90

135

75

115

35

130

105

160

90

140

50

165

135

205

110

175

70

210

165

245

140

210

95

250

200

295

170

255

120

295

230

340

200

295

150

340

270

390

235

335

185

390

310

440

270

385

240

465

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

одножильных

двухжильных

трехжильных

0,5

12

0,75

16

14

1,0

18

16

1,5

23

20

2,5

40

33

28

4

50

43

36

6

. 65

55

45

10

90

75

60

16

120

95

80

25

160

125

105

35

190

150

130

50

235

185

160

70

290

235

200

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.

Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

0,5

3

6

6

44

45

47

10

60

60

65

16

80

80

85

25

100

105

105

35

125

125

130

50

155

155

160

70

190

195

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

3

6

3

6

16

85

90

70

215

220

25

115

120

95

260

265

35

140

145

120

305

310

50

175

180

150

345

350

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ

Сечение токопроводящей жилы, мм2

Ток, А

Сечение токопроводящей жилы, мм2

Ток, А

Сечение токопроводящей жилы, мм2

Ток, А

1

20

16

115

120

390

1,5

25

25

150

150

445

2,5

40

35

185

185

505

4

50

50

230

240

590

6

65

70

285

300

670

10

90

95

340

350

745

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих

одножильных

многожильных

отдельные электроприемники с коэффициентом использования до 0,7

группы электроприемников и отдельные приемники с коэффициентом использования более 0,7

Многослойно и пучками

До 4

1,0

2

5-6

0,85

3-9

7-9

0,75

10-11

10-11

0,7

12-14

12-14

0,65

15-18

15-18

0,6

Однослойно

2-4

2-4

0,67

5

5

0,6

1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4-1.3.7 как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

www.elec.ru

Как рассчитать нагрузку на кабель?

Для чего необходимо проводить расчет нагрузки на кабель?

Один из основных параметров, определяющих стоимость кабеля – его сечение. Чем оно больше, тем выше его цена. Но если купить недорогой провод, сечение которого не соответствует нагрузкам в контуре, повышается плотность тока. Из-за этого увеличивается сопротивление и выделение тепловой энергии при прохождении электричества. Потери же электроэнергии возрастают, а эффективность системы снижается. На протяжении всего срока эксплуатации потребитель оплачивает значительные потери электроэнергии.

Но это не единственный минус установки кабеля с неправильно выбранным сечением. Из-за повышенного выделения тепла чрезмерно нагревается изоляция проводов – это сокращает срок использования проводов и нередко становится причиной короткого замыкания.

Расчет нагрузки на кабель позволяет:

  • Уменьшить счета за электроэнергию;
  • Увеличить срок службы проводки;
  • Снизить риск возникновения короткого замыкания.

Какие потери возникают при прохождении электрического тока?

При выполнении расчета нагрузки на кабель нужно учитывать:

1. Потери электрического тока при прохождении по проводам

Перемещение электричества от генератора тока к приемникам (бытовой технике, электрооборудованию, осветительным приборам) сопровождается высвобождением тепловой энергии. Этот физический процесс не приносит пользы. Выделяющееся тепло нагревает изоляционные оболочки, что приводит к сокращению срока их службы. Они становятся более хрупкими и быстро разрушаются. Нарушение целостности изоляции может стать причиной короткого замыкания при соприкосновении проводов друг с другом, а при контакте с человеком – опасной травмы.

Превращение электрической энергии в тепловую происходит из-за сопротивления, которое увеличивается по мере роста плотности проходящего тока. Эта величина рассчитывается по формуле:

Ј = I/S а/мм2

где

  • I – сила тока;
  • S – поперечное сечение провода.

При монтаже внутренней электропроводки плотность тока должна быть не выше 6 А/мм2. Для других работ расчет сечения кабеля по току производится на основании таблиц, содержащихся в Правилах устройства и технической эксплуатации электроустановок (ПУЭ и ПТЭЭП).

Если рассчитанное значение плотности больше рекомендованного необходимо купить кабель с большим сечением провода. Несмотря на увеличение стоимости проводки, такое решение оправдано с экономической точки зрения. Выбор кабеля для проводки с оптимальным размером сечения в несколько раз увеличит ее срок безопасной эксплуатации и сократит потери электричества при прохождении по проводам.

2. Потери, возникающие из-за электрического сопротивления материалов

Сопротивление материалов, возникающее в процессе передачи электрического тока, приводит не только к выделению тепловой энергии и нагреву проводов. Также происходят потеря напряжения, что негативно сказывается на работе электрооборудования, бытовой техники и осветительных приборов.

При монтаже электропроводки необходимо рассчитать и величину сопротивления линии (Rл). Она рассчитывается по формуле:

Rл = ρ(l/S)

где

  • ρ – удельное сопротивление материала, из которого изготовлен провод;
  • l – длина линии;
  • S – поперечное сечение провода.

Падение напряжения определяется как ΔUл = IRл, и его величина должна составлять не более 5% от исходного, а для осветительных нагрузок – не более 3%. Если же она больше, необходимо выбрать кабель с большим сечением или изготовленный из другого материала, с меньшим удельным сопротивлением. В большинстве случаев и с технической, и с экономической точки зрения целесообразно увеличить площадь сечения кабеля.

Выбор материала кабеля

Наш каталог кабельной продукции в Бресте включает большой выбор кабелей, изготовленных из различных материалов:

Медь имеет очень низкое удельное сопротивление (ниже только у золота), поэтому проводимость медных проводов значительно выше, чем у алюминиевых. Она не окисляется, что существенно увеличивает срок эффективной эксплуатации. Металл очень гибкий, кабель можно многократно складывать и сворачивать. Благодаря высокой пластичности возможно изготовление более тонких жил (изготавливаются медные жилы й от 0,3 мм2, минимальный размер алюминиевой жилы – 2,5 мм2).

Более низкое удельное сопротивление позволяет уменьшить выделение тепловой энергии при прохождении тока, поэтому при прокладке внутренней проводки в жилых помещениях разрешается использовать только медные провода.

Удельное сопротивление алюминия выше, чем у золота, меди и серебра, но ниже, чем у других металлов и сплавов.

Главное преимущество алюминиевого кабеля перед медным – его цена в несколько раз ниже. Также он значительно легче, что облегчает монтаж электросетей. При монтаже электросетей большой протяженностью эти характеристики имеют решающее значение.

Алюминий не подвержен коррозии, но при контакте с воздухом на его поверхности образовывается пленка. Она защищает металл от воздействия атмосферной влаги, но практически не проводит ток. Эта особенность осложняет соединение кабелей.

Медный кабель для прокладки.Алюминиевый кабель для прокладки.

Основные виды расчета сечения

Расчет нагрузок на провод должен быть выполнен по всем значимым характеристикам:

По мощности

Определяется суммарная мощность всех приборов, потребляющих электроэнергию в доме, квартире, в производственном цеху. Потребляемая мощность бытовой техники и электрооборудования указывается производителем.

Также необходимо учесть электроэнергию, потребляемую осветительными приборами. Все электроприборы в домашних условиях редко работают одновременно, но расчет сечения кабеля по мощности выполняется с запасом, что позволяет сделать электропроводку более надежной и безопасной. Для промышленных объектов выполняется более сложный расчет с использованием коэффициентов спроса и одновременности.

По напряжению

Расчет сечения кабеля по напряжению производится исходя из вида электрической сети. Она может быть однофазной (в квартирах многоэтажных домов и большинстве индивидуальных коттеджей) и трехфазной (на предприятиях). Напряжение в однофазной сети составляет 220 В, в трехфазной – 380 В.

Если суммарная мощность электроприборов в квартире равна 15 кВт, то для однофазной проводки этот показатель и будет равен 15кВт, а для трехфазной он будет в 3 раза меньше – 5 кВт. Но при монтаже трехфазной проводки используется кабель с меньшим сечением, но содержащий не 3, а 5 жил.

По нагрузке

Расчет сечения кабеля по нагрузке также требует подсчета суммарной мощности электрооборудования. Желательно увеличить эту величину на 20-30%. Проводка выполняется на длительный срок, а количество бытовой техники в квартире или оборудования в цеху может увеличиться.

Затем следует определить, какое оборудование может быть включено одновременно. Этот показатель может существенно отличаться в разных домах. У одних большое количество бытовой техники или электрооборудования, которым пользуются несколько раз в месяц или в год. У других в доме – только необходимые, но часто используемые электроприборы.

В зависимости от величины коэффициента одновременности мощность может как незначительно, так и в несколько раз отличаться от нагрузки.

Установленная мощность (кВт) для кабелей, прокладываемых открыто
Сечение жил, мм2 Кабели с медными жилами Кабели с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В Напряжение 220 В Напряжение 380 В
0,5 2,4 - - -
0,75 3,3 - - -
1 3,7 6,4 - -
1,5 5 8,7 - -
2 5,7 9,8 4,6 7,9
2,5 6,6 11 5,2 9,1
4 9 15 7 12
5 11 19 8,5 14
10 17 30 13 22
16 22 38 16 28
25 30 53 23 39
35 37 64 28 49
Установленная мощность (кВт) для кабелей, прокладываемых в штробе или трубе
Сечение жил, мм2 Кабели с медными жилами Кабели с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В Напряжение 220 В Напряжение 380 В
1 3 5,3 - -
1,5 3,3 5,7 - -
2 4,1 7,2 3 5,3
2,5 4,6 7,9 3,5 6
4 5,9 10 4,6 7,9
5 7,4 12 5,7 9,8
10 11 19 8,3 14
16 17 30 12 20
25 22 38 14 24
35 29 51 16 -

По току

Для расчета номинального тока используется величина суммарной мощности нагрузки. Зная ее, максимально разрешенную нагрузку по току рассчитывают по формуле:

I = P/U*cosφ

где

  • I – номинальн. ток;
  • P – суммарн. мощность;
  • U – напряжение;
  • cosφ – коэфф-т мощности.

На основании полученной величины находим оптимальный размер сечение кабеля в таблицах.

Допустимые токовые нагрузки для кабеля с медными жилами прокладываемого скрыто
Сечение жил, мм Медные жилы, провода и кабели
Напряжение 220 В Напряжение 380 В
1,5 19 16
2,5 27 25
4 38 30
6 46 40
10 70 50
16 85 75
25 115 90
35 135 115
50 175 145
70 215 180
95 260 220
120 300 260

Важные нюансы для правильного расчета нагрузки на кабель

При работе с таблицей, следует обращать внимание, для какого вида электропроводки она составлена (однофазной или трехфазной), для открытой или скрытой проводки, для медного или алюминиевого кабеля.

При выборе и заказе провода важно различать такие характеристики как сечение и диаметр. Если диаметр провода 8 мм2, его сечение равно S = (π/4) х D² = 50 мм2.

Для расчета сечения многожильного провода, применяется формула:

S = N *(D²/1.27)

где

  • N – количество жил.

Чтобы заказать кабельную продукцию или задать вопросы относительно ее характеристик и особенностей выбора, звоните по телефонам: +375 (162) 44-66-60.

viva-el.by

Выбор сечения кабеля КГ в зависимости от силы тока

Каталог кабеля КГ / Каталог КГ-ХЛ

1) Кабель КГ и КГ-ХЛ (1х...)

2) Кабель КГ и КГ-ХЛ (2х...)

Марка кабеля
Сечение жилы, мм2
Допустимый ток, А
КГ 2х2,5
2,5
40
КГ 2х4
4 55
КГ 2х6
6 60
КГ 2х10
10 90
КГ 2х16
16 115
КГ 2х25
25 145
КГ 2х35
35 180
КГ 2х50
50 220
КГ 2х70
70 260
КГ 2х95
95 300
КГ 2х120
120 350
КГ 2х150
150 400
КГ 2х185
185 450

3) Кабель КГ и КГ-ХЛ (3х...)

Марка кабеля
Сечение жилы, мм2
Допустимый ток, А
КГ 3х2,5+
2,5
40
КГ 3х4+
4 50
КГ 3х6+
6 60
КГ 3х10+
10 80
КГ 3х16+
16 105
КГ 3х25+
25 135
КГ 3х35+
35 165
КГ 3х50+
50 205
КГ 3х70+
70 250
КГ 3х95+
95 290
КГ 3х120+
120 335
КГ 3х150+
150 385
КГ 3х185+
185 430

4) Кабель КГ и КГ-ХЛ (4х...)

5) Кабель КГ и КГ-ХЛ (5х...)


Свои вопросы по подбору кабеля КГ и КГ-ХЛ и другой кабельно-проводниковой продукции вы всегда можете задать сотрудникам Торгового Дома «Кабель-Ресурс» позвонив по указанным на сайте телефонам.

www.merg.ru

Расчёт сечения провода, кабеля - Ремонт220

Автор Светозар Тюменский На чтение 4 мин. Просмотров 28.1k. Опубликовано

Материал изготовления и сечение проводов (правильнее будет площади сечения проводов) является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.

Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.

Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели – основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.

Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ). Основные показатели, определяющие сечение провода:

  • Металл, из которого изготовлены токопроводящие жилы
  • Рабочее напряжение, В
  • Потребляемая мощность, кВт и токовая нагрузка, А

Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.

Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.

Расчет площади сечения медных жил проводов и кабелей

Так, говоря об электропроводке дома или квартиры, будет оптимальным применение: для «розеточных» – силовых групп медного кабеля или провода с сечением жил 2,5 мм2 и для осветительных групп – с сечением жил 1,5 мм2. Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.

Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм2 способны «держать» нагрузку 4,1 кВт (по току – 19 А), 2,5 мм2 – 5,9 кВт (27 А), 4 и 6 мм2 – свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».

Расчет площади сечения алюминиевых жил проводов и кабелей

При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм2 максимальная нагрузка составляет чуть больше 4 кВт (по току это – 22 А), для жил сечением 4 мм2 – не более 6 кВт.

Не последний фактор в расчете сечения жил проводов и кабелей – рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.

Вообще, для более точного расчета нужных сечений жил кабелей и проводов необходимо руководствоваться не только мощностью нагрузки и материалом изготовления жил; следует учитывать также способ их прокладки, длину, вид изоляции, количество жил в кабеле и т. д. Все эти факторы в полной мере определены основным регламентирующим документом – Правилами Устройства Электроустановок.

Таблицы выбора сечения проводов

Медные провода

Сечение токопроводящей жилы, кв.мм

Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Расчёт сечения провода, кабеля

Алюминиевые провода

Сечение токопроводящей жилы, кв.мм

Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44 170 112,2
120 230 50,6 200 132

В расчете использовались данные из таблиц ПУЭ

Выбор сечения кабеля или провода. Ошибки


Как определить сечение провода? Несколько способов, пример расчета


Подбор автоматов и сечения кабеля по мощности


remont220.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *