Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Расцепители автоматического выключателя . Электропара

В любом автоматическом выключателе есть важная составная часть устройства: расцепитель, который служит для размыкания или замыкания коммутационного устройства. По сути расцепитель размыкает контакты автомата при появлении сверхтоков, снижении напряжения. ГОСТ Р 50030.1 (5) определяет понятие расцепителя, как «Устройство, механически связанное с контактным коммутационным аппаратом, которое освобождает удерживающие приспособления и тем самым допускает размыкание или замыкание коммутационного аппарата». Стандарт МЭК 61992‑1 (6) дополняет данное определение расцепителя автоматического выключателя – расцепитель может состоять из механических, электронных или электромагнитных компонентов; относится к любому устройству с механическим действием, которые применяется для расцепляющего оперирования в случае, когда во входной цепи встречаются определенные условия; в автомате может быть несколько расцепителей.  

Виды расцепителей

В бытовых автоматических выключателях чаще всего встречаются следующие виды расцепителей: тепловой, электронный и электромагнитный. Они быстро распознают критическую ситуацию (появление сверхтоков, перегрузки и перепады напряжения) и размыкают контакты автоматического выключателя, предотвращая порчу электрического оборудования и защищая проводку. Помимо этих видов, существуют еще и расцепители нулевого напряжения, минимального напряжения, независимые, полупроводниковые, механические.  

Сверхтоки – увеличение силы тока в электрической сети, превышающей номинальный ток автомата. Это токи перегрузки, замыкания.

Ток перегрузки – сверхток в функциональной сети.

Ток короткого замыкания – сверхток, появляющийся в результате замыкания двух составляющих сети при крайне низком сопротивлении между  этими элементами.

Тепловой расцепитель

Тепловой расцепитель размыкает контакты автоматического выключателя при небольших превышениях номинального тока, отличается увеличенным временем срабатывания. При кратковременных превышениях токовой нагрузки он не срабатывает, это удобно в сетях, где часты именно кратковременные превышения номинального тока автомата.

Тепловой расцепитель является биметаллической пластиной, один конец которой расположен рядом со спусковым механизмом расцепления. В случае увеличения силы тока пластина начинает изгибаться и приближаться к спусковому механизму, касается планки, а та, в свою очередь, размыкает контакты автоматического выключатели. Принцип работы построен на физических свойствах металла, расширяющегося при нагревании, поэтому такой расцепитель и называется тепловым.

К достоинствам теплового расцепителя можно отнести отсутствие трущихся друг о друга поверхностей, устойчивость к вибрациям, низкая стоимость в силу простой конструкции. Но нужно обратить внимание и на недостатки – работа теплового расцепителя сильно зависит от температуры окружающей среды, их следует размещать в местах со стабильным температурным режимом вдали от источников тепла, в противном случае возможны многочисленные ложные срабатывания.

Электронный расцепитель

В состав электронного расцепителя входят измерительные устройства (датчики тока), блок управления и исполнительный электромагнит. Электронные расцепители предназначены для подачи команды на автоматическое отключения автомата с заданной программой при возникновении в электрической цепи сверхтоков перегрузки или замыкания. При превышении силы тока через автомат в блоке электронного расцепителя начинается отсчет времени срабатывания в соответствии с время-токовой характеристикой. Если за время срабатывания ток снизится до величины, ниже пороговой, то автоматического срабатывания не произойдет.

К плюсам электронных расцепителей относятся: широкий выбор настроек, четкое следование прибора заданной программе, наличие индикаторов. Основной недостаток – довольно высокая стоимость, а также чувствительность расцепителя к воздействию электромагнитного излучения.   

Электромагнитный расцепитель

Электромагнитный расцепитель (отсечка) срабатывает мгновенно, не допуская ни малейшей вероятности повреждения составных частей  электроцепи. Это соленоид с подвижным сердечником, который воздействует на механизм расцепления. В процессе протекания тока по обмотке соленоида, в случае превышения токовой нагрузки, происходит втягивание сердечника под воздействием электромагнитного поля.

Электромагнитный расцепитель срабатывает при превышении тока короткого замыкания. Он обладает достаточной прочностью, устойчив к вибрации, однако создает магнитное поле.

Ток расцепителя автоматического выключателя

Ток расцепителя автоматического выключателя имеет конкретное значение (номинал), означающий величину тока, при котором автомат разомкнет цепь. Ток в тепловом расцепителе всегда равен или меньше номинального тока автоматического выключателя. При любом превышении токовой нагрузки на расцепитель будет происходить отключения автомата. При этом время, через которое произойдет размыкание контактов, зависит от времени протекания тока превышенной нагрузки. Время отключения теплового расцепителя можно рассчитать, используя время-токовые характеристики.

Ток электромагнитного расцепителя  отключает автомат мгновенно при превышении номинального тока автоматического выключателя, чаще всего это происходит при коротком замыкании. Перед КЗ в сети очень быстро нарастает величина тока, которую учитывает устройство электромагнитного расцепителя, в результате происходит очень быстрое воздействие на механизм расцепления. Скорость срабатывания в этом случае составляет доли секунды. 

Ничего не найдено для Feeds

Выключатели

Правильный подбор расцепителя автоматического выключателя защитит электрооборудование, СБТ и разводку распределительной сети от перегруза

Электрооборудование и безопасность

Теплые полы – это не роскошь, а комфорт. При наличии в семье маленьких детей

Светильники

Виды точечных светильников, их предназначение для ПВХ потолков и ГКЛ конструкций. Правильный монтаж с

Электрооборудование и безопасность

Популярность инфракрасного пола растет за счет его преимуществ над другими вариантами. Благодаря современным технологиям

Светильники

Точечные светильники – споты улучшают яркость освещения, без возникновения теней. Равномерно распределив их по

Розетки

Выбор розетки и выключателя необходимо проводить с учетом специфики использования помещения, репутации производителя соответствующего

Электромагнитный расцепитель автоматического выключателя метод проверки. Проверка действия максимальных, минимальных или независимых расцепителей автоматических выключателей

Страница 8 из 19

При проверке и испытаниях автоматических выключателей выполняют следующее: внешний осмотр; измерение сопротивления изоляции и ее испытание повышенным напряжением промышленной частоты; проверку работоспособности автоматических выключателей при номинальном, пониженном и повышенном напряжениях оперативного тока; проверку действия максимальных, минимальных или независимых расцепителей автоматических выключателей с номинальным током 200 А и более.

При внешнем осмотре проверяют соответствие установленных автоматических выключателей проекту или параметрам сети; отсутствие внешних повреждений и наличие пломб на блоках полупроводниковых расцепителей; надежность контактных соединений; правильность регулировки контактной системы и четкость работы привода при ручном включении и отключении выключателя.
К внешнему осмотру можно приступать только после тщательного изучения инструкции по эксплуатации данных выключателей.
Сопротивление изоляции проверяют мегаомметром на 1000 В между зажимами полюсов и между зажимами каждого полюса и заземленной металлической конструкцией автомата в отключенном положении при снятом напряжении. Оно должно быть не менее 0,5 МОм. При неудовлетворительной изоляции необходимо выяснить причины: снять дугогасительные камеры и проверить состояние полюсов, отсутствие загрязнений и подключения к полюсам внешней коммутации, возможность увлажнения плиты выключателя. После устранения причины пониженного сопротивления его изоляции измерение повторяют. При установке дугогасительных камер на полюса выключателя после их снятия обращают внимание на то, чтобы главные и дугогасительные контакты не касались внутренних частей дугогасительных камер. Сопротивление изоляции обмоток приводов максимальных, минимальных и независимых расцепителей проверяют мегаомметром на 1000 В между одним из зажимов обмотки и заземленным корпусом. Оно должно быть не менее 0,5 МОм (для новых выключателей серии «Электрон» – 20 МОм). Перед началом измерения блоки полупроводниковых расцепителей снимают с выключателя («Электрон», А3700, ВА53-41) и проверяют сопротивление изоляции каждого из них мегаомметром на 500 В, соединив все выводы разъемов между собой. После испытания выключателя повышенным напряжением блоки устанавливают на место.
Работоспособность и надежность включения и отключения выключателей электроприводом при номинальном, пониженном и повышенном напряжениях проверяют до контроля действия максимальных расцепителей. На практике при такой проверке работоспособности привода необходима его регулировка, во время которой нарушается действие электромагнитных максимально-токовых расцепителей (у автоматов серий ABM, А-3700). Поэтому настройку максимально-токовой защиты выполняют на заключительной стадии наладки. Проверку работоспособности и надежности включения и отключения выполняют подачей на схему привода выключателя напряжения, равного номинальному (1,1 и 0,85 (Люм). При этом проверяют и в случае необходимости регулируют механизмы включения и отключения выключателя (количество операций включения и отключения при каждом значении напряжения составляет не менее пяти с интервалами между ними не менее 5 с), а также контролируют работоспособность и надежность независимого и минимального расцепителей при номинальном, пониженном и повышенном напряжениях оперативного тока в сети.
Максимальные расцепители у выключателей на номинальные токи 200 А и более проверяют обязательно. Однако в эксплуатации встречаются установки, в которых приходится проверять действие таких расцепителей с меньшими номинальными токами (например, выключатели цепей управления, защиты и сигнализации на подстанциях, где устанавливают выключатели АП50 на токи 10-50 А. Работу тепловых, электромагнитных или комбинированных расцепителей выключателей серий АЗ 100, А3700 с электромагнитным расцепителем, АЕ20, АК50, АК63, АЕ25, АЕ26, АЕ1000, ВА51, ВА52 и АП50 проверяют в каждом полюсе выключателя. Проверку тепловых элементов при наладочных работах осуществляют нагрузочным током, равным трехкратному номинальному току расцепителя. Время срабатывания сравнивают с заводскими (или типовыми) характеристиками с учетом, что они даны для случая одновременной нагрузки испытательным током всех полюсов выключателя. Если фактическое время срабатывания превысит на 50 % данные завода- изготовителя, необходимо, прежде чем браковать выключатель, проверить начальный ток его срабатывания. При нагрузке одного полюса выключателя начальный ток срабатывания увеличивается на 25-30 % по сравнению с таким же током при нагрузке одновременно всех полюсов. Время срабатывания теплового расцепите- ля должно соответствовать заводской характеристике. При этом большинство выключателей имеет ограниченное время испытания под током (не более 120-150 с).
При проверке электромагнитных расцепителей без тепловых элементов подают на каждый полюс испытательный ток, значение которого устанавливают на 15-30 % ниже тока уставки. При этом выключатель не должен отключаться. Затем испытательный ток поднимают до тока срабатывания, значение которого не должно превышать значения тока уставки более чем на 15-30 %.
При проверке электромагнитных элементов комбинированных расцепителей нагрузочный ток от испытательного устройства подают на каждый полюс выключателя. Быстро увеличивая ток до значения на 15-30 % ниже тока уставки, убеждаются, что расцепитель не срабатывает. Затем быстро повышают ток до тока срабатывания, фиксируя его значение. Оно не должно отличаться от заводских данных. Проверяя электромагнитные элементы комбинированных расцепителей, следует помнить, что между подачами испытательного тока на полюс должен быть интервал, достаточный для остывания теплового элемента. Чтобы убедиться, что отключение произошло от электромагнитного элемента расцепителя, необходимо сразу же включить его после каждого отключения выключателя, Если выключатель включается нормально, отключение последовало от электромагнитного элемента. При срабатывании теплового элемента выключатель повторно не включится. Из всех ранее указанных серий выключателей только выключатели серии АП50 имеют на механизме свободного расцепления рычаг для регулировки уставки до 0,6 номинального значения тока, остальные комплекты расцепителей, отрегулированных на уставку на заводе-изготовителе.
Регулировка токов срабатывания максимальных расцепителей выключателей, укомплектованных полупроводниковыми элементами, осложняется тем, что при большом количестве элементов, из которых состоит полупроводниковый расцепитель, увеличивается число возможных отказов в работе. Поэтому, приступая к регулировке уставок токов и времени срабатывания таких расцепителей, следует убедиться в работоспособности полупроводникового блока БУРИ и отключающего электромагнита. Для этого изготовляют специальные устройства (приставки), с помощью которых выполняют данную проверку. Так, для проверки работоспособности полупроводникового расцепителя выключателя серии А3700 используют устройство, схема которого показана на рис. 26.
В подготовленном для регулировки выключателе сначала проверяют работоспособность независимого расцепителя, являющегося выходным элементом полупроводникового блока. При подаче напряжения с зажимов А1 – А2 на зажим разъема X полупроводникового блока должен сработать независимый расцепитель, а выключатель отключиться.

Рис 26 Электрическая схема прибора контроля РП

Если этого не происходит, необходима механическая регулировка расцепителя. Затем к гнездам 1, 2, 3 полупроводникового блока БУРП подсоединяют в зависимости от рода проверяемого тока зажимы А1, А2, А3 расцепителя переменного или постоянного тока Устанавливают переключатель S3 в положение Номинальный и включают проверяемый выключатель. Подают питание на схему устройства. Расцепитель не должен срабатывать в любом фиксированном положении регулировочных ручек.
Устанавливают переключатель S3 в положение Перегрузка. Автоматический выключатель должен отключиться с выдержкой не более 800 с. Таким образом проверяют работоспособность блока в зоне перегрузки. Затем устанавливают переключатель S3 в положение Номинальный, включают выключатель и нажимают кнопку S2. Автоматический выключатель должен отключиться за промежуток не более I с. Таким образом проверяют работоспособность блока в зоне токов короткого замыкания. Далее можно переходить к проверке или при необходимости к регулировке токов и времени срабатывания выключателя.
QF – автоматический выключатель, X.S0 гнездо, TAI – ТАЗ трансформаторы тока, FUI – плавкий предохранитель, РА! амперметр, НИ – прибор световой сигнализации, UD – выпрямитель


Рис 27 Упрощенная схема проверки работы максимально-токовой защиты вторичным током
V/ Для выключателей серии «Электрон» разработана методика не только проверки работоспособности, но и настройки уставок тока и времени срабатывания полупроводниковых блоков РМТ-1 вторичным током. Выполняют это с помощью приставки для проверки максимально-токовой защиты вторичным током, принципиальная схема которой приведена на рис. 27. На этом рисунке показана и схема подключения приставки к выключателю серии «Электрон», а также источников питания схемы.


Рис 28 Лицевая панель расцепителя РМТ-1 I – контрольные гнезда, 2-5 – шкалы

Приставку включают в разъем между выключателем и блоком РМТ. При проверке калибровки номинальных токов на лицевой панели блока ручку /« (рис. 28) ставят на уставку 0,8, ручки S6In, !пх и S – в среднее положение. Подключают индикатор (вольтметр постоянного тока с пределом 25-30 В) к гнездам на лицевой панели РМТ. Колодки переключателей S1 и S2 блока РМТ устанавливают соответственно в положения 6 и II.
Включают выключатель «Электрон». Подают на схему питание и с помощью автотрансформатора плавно увеличивают ток в цепи РА1 (см. рис. 27), одновременно следя за стрелкой индикатора. С момента подачи напряжения питания показание индикатора должно быть 17-21 В. При некотором значении тока, равном вторичному току срабатывания на проверяемой уставке, показание индикатора скачкообразно уменьшиться до 0-3 В. Показания амперметра PAI в момент срабатывания блока не должны отличаться более чем на ± 10 % от значения вторичного тока для проверяемой уставки выключателя. Таким же образом проверяют работу блока РМТ на других уставках. Проверка работоспособности полупроводниковых блоков выключателей серии ВА53-41 аналогична проверке выключателя «Электрон»
Окончательную проверку срабатывания максимально-токовой защиты выключателей серий А3700, ВА53-41 и «Электрон» осуществляют первичным током от нагрузочного устройства. Для этого на лицевой панели полупроводниковых блоков устанавливают в расчетное положение соответствующие регуляторы. Подключают к одной из фаз главной цепи выключателя нагрузочное устройство, с помощью которого повышают ток в главной цепи до отключения выключателя. Значение тока и время срабатывания не должны отличаться от калибровочного значения для проверяемой уставки более чем на ±15 %. Далее по аналогии проверяют работу максимально-токовой зашиты, пропуская ток через остальные фазы или полюса выключателя. По окончании проверок закрывают полупроводниковые блоки защитными стеклами и пломбируют. Результаты проверок заносят в протокол.
Для прогрузки выключателей первичным током используют нагрузочные устройства УБКР-1, УБКР-2, НТ-10, РНУ6-12, ТОН-7 и lр.
При проверке и регулировке уставок выключателей постоянного тока применяют нагрузочные трансформаторы как с однофазными, так и трехфазными выпрямителями или генераторы постоянного тока на ток до 10 кА при напряжении холостого хода 6-12 В.
Наладка выключателей заканчивается проверкой их работы по полной схеме (на подстанции может быть схема автоматического ввода резерва, иногда-схема управления электродвигателем), взаимодействия всех элементов схемы и правильности включения измерительных приборов. Проверку проводят при номинальном и 0,8 Uном напряжении оперативного тока. По постоянной схеме проверяют фазировку поданного напряжения (чередование фаз), показания вольтметров и амперметров (после подключения нагрузки).
Окончательное заключение о качестве наладочных работ и пригодности выключателей к эксплуатации делают после их включения в работу на полную нагрузку. Причем, если от выключателя питается один электродвигатель, достаточно произвести несколько его пусков (это особенно необходимо для приводов вентиляторов, пуск которых длительный). Если выключатель во время пуска не отключается, значит уставки защит выполнены правильно. Если от выключателя питается несколько токоприемников, следует создать наиболее неблагоприятный рабочий режим, например пуск наиболее мощного из двигателей при работающих остальных токоприемниках под нагрузкой.

Автоматические выключатели служат для защиты электрических цепей напряжением до 1000 В от аварийных режимов работы. Надежная защита электрических цепей данными электрическими аппаратами обеспечивается только в том случае, если автоматический выключатель находится в исправном техническом состоянии, а его фактические рабочие характеристики соответствуют заявленным. Поэтому проверка автоматических выключателей является одним из обязательных этапов работ при вводе в работу электрических щитов различного назначения, а также при периодической их ревизии. Рассмотрим особенности проверки автоматических выключателей.

В первую очередь необходимо произвести визуальный осмотр аппарата. На корпусе автоматического выключателя должна быть нанесена необходимая маркировка, не должно быть видимых дефектов, неплотного прилегания частей корпуса. Необходимо произвести несколько операций включения и отключения аппарата вручную.

Автомат должен фиксироваться во включенном положении и свободно отключаться. Также необходимо обратить внимание на качество зажимов автоматического выключателя. При отсутствии видимых повреждений переходим к проверке его рабочих характеристик.

Автоматический выключатель конструктивно имеет независимый, тепловой и электромагнитный расцепители. Проверка автоматического выключателя заключается в проверке работоспособности перечисленных расцепителей при различных условиях. Данный процесс называется прогрузкой.

Прогрузка автоматических выключателей осуществляется на специальной испытательной установке, при помощи которой можно подать на испытуемый аппарат необходимый ток нагрузки и зафиксировать время его срабатывания.

Независимый расцепитель осуществляет замыкание и размыкание контактов автоматического выключателя при выполнении операций включения и отключения аппарата вручную. Также данный расцепитель автоматически отключает защитный аппарат в случае воздействия на него двух других расцепителей, осуществляющих защиту от сверхтоков.

Тепловой расцепитель осуществляет защиту от превышения тока нагрузки, протекающего через автоматический выключатель, выше номинального значения. Основной конструктивный элемент данного расцепителя – это , которая нагревается и деформируется в случае протекания через нее тока нагрузки.

Пластина, отклоняясь до определенного положения, осуществляет воздействие на механизм свободного расцепления, который обеспечивает автоматическое отключение выключателя. Причем время срабатывания теплового расцепителя зависит от тока нагрузки.

Каждый тип и класс автоматического выключателя имеет свою времятоковую характеристику, в которой прослеживается зависимость тока нагрузки от времени срабатывания теплового расцепителя данного автоматического выключателя.

При проверке теплового расцепителя берется несколько значений тока, фиксируется время, за которое произойдет автоматическое отключение автоматического выключателя. Полученные значения сверяют со значениями из времятоковой характеристики для данного аппарата. Следует учитывать, что на время срабатывания теплового расцепителя влияет температура окружающей среды.

В паспортных данных к автоматическому выключателю приводятся времятоковые характеристики для температуры 25 0С, при повышении температуры время срабатывания теплового расцепителя снижается, а при снижении температуры – увеличивается.

Электромагнитный расцепитель служит для защиты электрической цепи от токов короткого замыкания, токов, которые значительно превышают номинальный. Величину тока, при котором срабатывает данный расцепитель, показывает класс автоматического выключателя. Класс показывает кратность тока срабатывания электромагнитного расцепителя к номинальному току автомата.

Например, класс «C» показывает, что электромагнитный расцепитель сработает при превышении номинального тока в 5-10 раз. Если номинальный ток автоматического выключателя 25 А, то ток срабатывания его электромагнитного расцепителя будет в пределах 125-250 А. Данный расцепитель, в отличие от теплового, должен сработать мгновенно, за доли секунды.

Добрый вечер, дорогие друзья.

Поводом к этой статье стал вопрос читателя:

Каким нормативным документом нормируется периодичность проверки автоматического выключателя на кратность КЗ?
В ПТЭЭП нету, в ПУЭ нету. Где есть?

В самом деле, этой стороне деятельности ЭТЛ на сайте уделяется весьма мало внимания. Я сейчас говорю о таком виде работ, как проверка устройств релейной защиты и электроавтоматики.

И так. Начнем с того, что в ПУЭ (Правила устройства электроустановок ) не может быть указана никакая периодичность каких либо работ, т.к. это правила по которым осуществляется проектировка и монтаж вновь вводимого оборудования.

Поэтому переходим сразу к ПТЭЭП (Правила технической эксплуатации электроустановок потребителей ). Нам будет интересен Раздел 2.6. РЕЛЕЙНАЯ ЗАЩИТА, ЭЛЕКТРОАВТОМАТИКА, ТЕЛЕМЕХАНИКА И ВТОРИЧНЫЕ ЦЕПИ . Именно в этом разделе в пункте 2.6.1. и упомянуты наряду с устройствами релейной защиты автоматические выключатели. То есть релейная защита и автоматические выключатели – это устройства, имеющие одно и тоже назначение.

Для таких устройств существуют отдельные правила РД153-34.3-35.613-00 Правила технического обслуживания устройств релейной защиты и электроавтоматики электросетей 0,4 – 35кВ . К ним мы вернемся позже.

А сейчас перейдем назад к ПТЭЭП п.3.6.2.

«Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т.е.при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом оборудования в ремонт (далее – М), определяет руководитель Потребителя на основе приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий».

Напомню, у Потребителя должны быть составлены графики капитальных и текущих ремонтов электрооборудования в соответствии с системой ППР.

В ПТЭЭП есть приложение 3 НОРМЫ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ И АППАРАТОВ ЭЛЕКТРОУСТАНОВОК ПОТРЕБИТЕЛЕЙ. Согласно этому приложению п.28.6. Проверка действия расцепителей. Осуществляется при КАПИТАЛЬНОМ ремонте. Пределы работы расцепителей должны соответствовать заводским данным.

Несколько туманно. Даже не сразу понятно, что за расцепители.

За разъяснениями обратимся к РД 34.45-51.300-97 Объем и нормы испытаний электрооборудования.

В этом документе нас интересует пункт 26.3 Проверка действия максимальных и минимальных или независимых расцепителей автоматов.

Единственное, что нам разъясняет, этот пункт то, что расцепители относятся к автоматам.

Но и вносит неразбериху, т.к. заявляет, что проверять расцепители следует при ТЕКУЩЕМ ремонте.

Но т.к. ПТЭЭП имеет более позднюю редакцию чем РД, то думаю более правильно опираться на требования Правил и проверку расцепителей проводить при КАПИТАЛЬНОМ ремонте.

А теперь вернемся к тому с чего я начал. Т.к. автоматические выключатели отнесены к устройствам релейной защиты и электроавтоматики, то лично я пользуюсь требованиями РД153-34.3-35.613-00.

Для определения периодичности проверки расцепителей автоматов в Ваших условиях привожу здесь раздел 2.3. Периодичность технического обслуживания устройств РЗА.

2.3.1. Для устройств РЗА цикл технического обслуживания устанавливается от трех до двенадцати лет.

Под циклом технического обслуживания понимается период эксплуатации устройства между двумя ближайшими профилактическими восстановлениями, в течение которого выполняются в определенной последовательности установленные виды технического обслуживания, предусмотренные настоящими Правилами.

2.3.2. По степени воздействия различных факторов внешней среды на аппараты в электрических сетях 0,4-35 кВ могут быть выделены две категории помещений.

К I категории относятся закрытые, сухие отапливаемые помещения.

Ко II категории относятся помещения с большим диапазоном колебаний температуры окружающего воздуха, в которых имеется сравнительно свободный доступ наружного воздуха (металлические помещения, ячейки типа КРУН, комплектные трансформаторные подстанции и др.), а также помещения, находящиеся в районах с повышенной агрессивностью среды.

2.3.3. Цикл технического обслуживания для устройств РЗА, установленных в помещениях I категории, принимается равным 12, 8 или 6 годам, а для устройств РЗА, установленных в помещениях II категории, принимается равным 6 или 3 годам в зависимости от типа устройств РЗА и местных условий, влияющих на ускорение износа устройств (см. таблицу). Цикл обслуживания для устройств РЗА устанавливается распоряжением главного инженера предприятия.

Для неответственных присоединений в помещениях II категории продолжительность цикла технического обслуживания устройств РЗА может быть увеличена, но не более чем в два раза. Допускается в целях совмещения проведения технического обслуживания устройств РЗА с ремонтом основного оборудования перенос запланированного вида технического обслуживания на срок до одного года. В отдельных обоснованных случаях продолжительность цикла технического обслуживания устройств РЗА может быть сокращена.

Указанные в таблице циклы технического обслуживания относятся к периоду эксплуатации устройств РЗА, соответствующему полному сроку службы устройств. По опыту эксплуатации устройств РЗА на электромеханической элементной базе, установленных в помещениях I категории, полный средний срок их службы составляет 25 лет и для устройств, установленных в помещениях II категории, 20 лет.

В технической документации по устройствам РЗА на микроэлектронной и электронной базе полный средний срок службы установлен, как правило, 12 лет. Эксплуатация устройств РЗА на электромеханической, микропроцессорной и электронной базе сверх указанных сроков может быть разрешена только при удовлетворительном состоянии и сокращении цикла технического обслуживания, устанавливаемого руководством предприятия.

Наибольшее количество отказов электронной техники происходит в начале и в конце срока службы, поэтому рекомендуется устанавливать для этих устройств укороченные периоды между проверками в первые два-три года и после 10-12 лет эксплуатации. Периоды эксплуатации между двумя ближайшими профилактическими восстановлениями для этих устройств в первые годы эксплуатации рекомендуется устанавливать не более 6 лет. По мере накопления опыта эксплуатации цикл технического обслуживания может быть увеличен до 12 лет.

Цикл технического обслуживания расцепителей автоматических выключателей 0,4 кВ рекомендуется принимать равным 3 или 6 годам.

2.3.4. Плановое техническое обслуживание устройств РЗА электрических сетей 0,4-35 кВ следует по возможности совмещать с проведением ремонта основного электрооборудования.

2.3.5. Первый профилактический контроль устройств РЗА должен проводиться через 10-18 мес. после включения устройства в работу.

2.3.6. Периодичность технического обслуживания аппаратуры и вторичных цепей устройств дистанционного управления и сигнализации принимается такой же, как для соответствующих устройств РЗА.

2.3.7. Периодичность технических осмотров аппаратуры и цепей устанавливается МС РЗА в соответствии с местными условиями.

2.3.8. Тестовый контроль (опробование) устройств на микроэлектронной базе рекомендуется проводить еженедельно на подстанциях с дежурным персоналом, а на подстанциях без дежурного персонала – по мере возможности, но не реже одного раза в 12 мес.

2.3.9. Для микроэлектронных и микропроцессорных устройств РЗА перед новым включением, как правило, должна производиться тренировка подачей на устройство в течение 3 – 4 сут. оперативного тока и при возможности рабочих токов и напряжений с включением устройства с действием на сигнал. По истечении срока тренировки проводится тестовый контроль и при отсутствии каких-либо неисправностей устройство РЗА переводится с действием на отключение.

2.3.10. Удаление пыли с внешних поверхностей, проверка надежности контактных соединений, проверка целости стекол, состояния уплотнений кожухов и т.п. микропроцессорных и электромеханических устройств РЗА выполняются обычным образом. Чистка от пыли внутренних модулей микропроцессорных устройств РЗА при внутреннем осмотре должна производиться пылесосом для исключения повреждения устройств статическим разрядом. Следует учитывать, что заводы-изготовители гарантируют нормальную работу электронных устройств и выполнение гарантийного ремонта РЗА в течение ограниченного периода эксплуатации при сохранности пломб завода. С учетом этого вскрывать кожухи этих устройств РЗА в течение гарантийного срока эксплуатации не рекомендуется.

2.3.11. При неисправности устройств РЗА на микроэлектронной базе ремонт устройства в период гарантийного срока эксплуатации должен производиться на заводе-изготовителе. В последующий период эксплуатации ремонт производится по договору с заводом-изготовителем или в базовых лабораториях квалифицированными специалистами.

2.3.12. Методики проверки микропроцессорных устройств РЗА приведены в технических описаниях и инструкциях по эксплуатации заводов-изготовителей .

Вот исходя из вышеизложенного, можно легко составить график проверки автоматических выключателей в соответствии с вашими условиями.

А теперь из личного опыта.

Автоматические выключатели проверяются перед вводом в эксплуатацию. Проверка производится в соответствии с требованиями ПУЭ глава 1.8 пункт 1.8.37. Электрические аппараты, вторичные цепи и электропроводки до 1 кВ.

Проверка действия расцепителей. Проверяется действие расцепителей мгновенного действия. Выключатель должен срабатывать при токе не более 1,1верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем.

В электроустановках, выполненных по требованиям раздела 6 глав 7.1 и 7.2, проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей.

В других электроустановках испытываются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 1% остальных выключателей.

При выявлении выключателей, не отвечающих установленным требованиям, дополнительно проверяется удвоенное количество выключателей.

В дальнейшем про выключатели в большинстве электрохозяйств просто забывают. Инспектора при проверках требуют протоколы, как правило, четырех видов:

  1. Измерение сопротивления заземляющего устройства.
  2. Проверка цепи заземления (Металлическая связь).
  3. Сопротивление изоляции электрооборудования, кабельных линий и электропроводок.
  4. Проверка сопротивления петли «фаза-нуль».

Проверка параметров автоматов производится лишь после их несрабатывания или ложного срабатывания или ремонта или изменения уставок (где это возможно). Но такие проверки проводятся на единичных экземплярах автоматов.

Надеюсь, эта статья окажется полезной.

В данной статье мы расскажем вам и даже покажем на фотографиях и видео как происходит проверка расцепителей автоматических выключателей. Проверять будем тепловой и электромагнитный расцепители трех-полюсного автоматического выключателя марки ВА47-29 С16 фирмы IEK. Для проверки будем использовать прибор марки УПТР-1МЦ.

В начале работы собираем испытательную схему. соединяем трансформаторный блок с регулировочным блоком с помощью силового и контрольного кабелей. Затем, с помощью соединительных проводов сечением 16 квадратных миллиметров, подключаем в цепь испытуемый автоматический выключатель. Теперь все готово для испытания расцепителей данного автомата.

Начнем с испытания теплового расцепителя. Для этого будем пропускать через испытуемый автомат ток, равный приблизительно 2,55 тока номинального. В нашем случае, номинальный ток автоматического выключателя равен 16 амперам, следовательно испытательный ток будем подбирать равным 41-45 ампер. Отключиться исправный автомат должен не позднее чем через 60 секунд после включения испытательного тока. Время срабатывания теплового расцепителя было зафиксировано секундомером, встроенным в прибор.

Даем автомату немного времени остынуть и производим проверку электромагнитного расцепителя. Испытуемый автоматический выключатель имеет категорию “С”, значит уставка электромагнитного расцепителя настроена на ток, равный 5-10 номинального. В нашем случае это 80-160 ампер. Исходя из этого, пропускать ток через автоматический выключатель будем дважды. Сначала пропускаем ток, равный 80 с небольшим ампер. Время пропуска устанавливаем 500 миллисекунд. Реакция расцепителя: не должен сработать.

Затем пропускаем ток, равный 160 ампер. Время пропуска оставляем 500 миллисекунд. Теперь расцепитель должен сработать. В нашем случае автоматический выключатель прошел все испытания, для его срабатывания потребовалось 108 ампер.

Время срабатывания теплового и электромагнитного расцепителей соответствуют нормативным документам и данным завода изготовителя.

Испытание автоматических выключателей входит в программу приёмо-сдаточных испытаний электрооборудования. Как можно убедиться из данного примера, работа это требует определенного количества временных затрат. Согласно нормативным документам, не обязательно проверять все сто процентов имеющихся в электроустановке автоматических выключателей. В обязательном порядке испытанию подвергаются все вводные и межсекционные автоматы, а также десять процентов автоматов, непосредственно питающих электроприемники. В случае, если среди этих десяти процентов будет выявлен хотя бы один неисправный автоматический выключатель, то он заменяется на исправный, и производится проверка еще десяти процентов автоматов. Проверку могут производить только квалифицированные специалисты, имеющие соответствующие допуски и разрешения. Компания должна иметь свидетельство о регистрации электроизмерительной лаборатории, а также свидетельства о ежегодной поверке всех измерительных и испытательных приборов.

Напоминаем, что наша компания ООО “Олимп-02” проводит испытания всех видов автоматических выключателей с тепловыми, электромагнитными и электронными расцепителями. В нашей компании работают только специалисты самого высокого уровня, они имеют обширные знания и большой опыт работы в данной сфере. В нашей компании вы можете бесплатно получить консультацию по любым вопросам, связанным с электрооборудованием и электроустановками. Мы всегда онлайн!

Проверка электромагнитного расцепителя видео

Проверка теплового расцепителя видео

Тег video не поддерживается вашим браузером.

Принцип работы автоматического выключателя. Как работает автоматический выключатель

Для защиты бытовых электрических цепей обычно используются автоматические выключатели модульной конструкции. Компактность, легкость монтажа и замены, в случае необходимости, объясняет их широкое распространение.

Внешне такой автомат представляет собой корпус из термостойкой пластмассы. На лицевой поверхности расположена рукоятка включения и выключения, сзади – фиксатор-защелка для крепления на DIN-рейке, а сверху и снизу – винтовые клеммы. В данной статье рассмотрим принцип работы автоматического выключателя.

Как работает автоматический выключатель?

В режиме штатной работы через автомат протекает ток, меньший или равный номинальному значению. Питающее напряжение от внешней сети подается на верхнюю клемму, соединенную с неподвижным контактом. С неподвижного контакта ток поступает на замкнутый с ним подвижный контакт, а от него, через гибкий медный проводник – на катушку соленоида. После соленоида ток подается на тепловой расцепитель и уже после него – на нижнюю клемму, с подключенной к ней сетью нагрузки.

В аварийных режимах автоматический выключатель отключает защищаемую цепь за счет срабатывания механизма свободного расцепления, приводимого в действие тепловым или электромагнитным расцепителем. Причиной такого срабатывания является перегрузка или короткое замыкание.

Тепловой расцепитель – это биметаллическая пластина, состоящая из двух слоев сплавов с различными коэффициентами термического расширения. При прохождении электрического тока пластина нагревается и изгибается в сторону слоя с меньшим коэффициентом термического расширения. При превышении заданного значения силы тока, изгиб пластины достигает величины, достаточной для приведения в действие механизма расцепления, и цепь размыкается, отсекая защищаемую нагрузку.

Электромагнитный расцепитель состоит из соленоида с подвижным стальным сердечником, удерживаемым пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки соленоида, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится магнитное поле, но его силы недостаточно, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Как работает автомат в режиме перегрузки

Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления. Автомат отключается и размыкает цепь.

Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа.

Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи).

Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата.

На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого.

Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита, стиральная и посудомоечная машина, утюг, электрочайник и т.д.) – вполне может привести к срабатыванию теплового расцепителя.

В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете как работает автоматический выключатель при перегрузках

Как работает автомат в режиме короткого замыкания

В случае короткого замыкания принцип работы автоматического выключателя иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает.

Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной.

Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи.

Таким образом, срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур.

В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов.

Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга.

Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры.

Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги.

В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей.

Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно – виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло.

Вот таков принцип работы автоматического выключателя в условиях различных аварийных ситуаций.

Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током.

Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

Проверка действия расцепителей автоматических выключателей

Проверка действия (работоспособности) максимальных (тепловых, электромагнитных и комбинированных) расцепителей автоматических выключателей (АВ), тепловых расцепителей магнитных пускателей (ПМ) производится первичным током от постороннего источника тока как при вводе электроустановок (или отдельного аппарата АВ или ПМ) в эксплуатацию, так и в процессе их эксплуатации в сроки, определяемые графиком планово-предупредительных ремонтов электрооборудования предприятия. Проверка осуществляется при проведении капитального ремонта электрооборудования, за исключением электроустановок взрывоопасных зон, где проверка осуществляется при проведении капитального, текущего ремонта и межремонтных обслуживаний, а также при не правильном действии и отказе аппаратов защиты (ПТЭЭП п. 3.4.8 и приложение 3, раздел 28).
Плавкие вставки предохранителей должны проверяться в те же сроки, что и другие защитные аппараты. При этом проверяется их соответствие номинальным параметрам защищаемого оборудования, отсутствие трещин на корпусах предохранителей, наличие заполнителя.
В зависимости от типа автоматических выключателей в них устанавливаются разные реле защиты прямого действия, так называемые расцепители.
Расцепитель — это устройство, механически связанное с автоматическим выключателем (или встроенное в него), которое освобождает удерживующее устройство в механизме (свободного расцепления) автоматического выключателя и вызывает автоматическое срабатывание (отключение) выключателя.
Максимальный расцепитель тока — расцепитель, вызывающий срабатывание автоматического выключателя с выдержкой времени или без нее, когда ток в этом расцепителе превышает заданное значение.
Расцепитель нагрузки — это максимальный расцепитель, предназначенный для защиты от перегрузок.
Электромагнитный расцепитель для защиты от коротких замыканий представляет собой электромагнит, который при определенной величине тока мгновенно притягивает якорь, вследствие чего освобождается защелка механизма свободного расцепления автоматического выключателя и происходит его отключение.
Тепловой расцепитель -это тепловое реле. Основным элементом теплового реле, реагирующего на количество тепла, выделяемого в его нагревательном элементе при протекании тока, является биметаллическая пластина, выполненная из двух соединенных вместе пластин, изготовленных из металлов имеющих различные коэффициенты линейного расширения, которые при нагревании удлиняются на разную величину. В результате биметаллическая пластина изгибается и освобождает защелку механизма свободного расцепления, производя отключение автоматического выключателя.
Время срабатывания тепловых расцепителей, с помощью которых осуществляется защита от перегрузки, зависит от величины тока и имеет обратно зависимую от тока характеристику.
Комбинированный расцепитель осуществляет защиту как от перегрузки, так и от коротких замыканий и представляет собой комбинацию из двух расцепителей: теплового и электромагнитного.

Промышленные автоматические выключатели с электромагнитным расцепителем

В составе любого электрического оборудования, в котором имеются мощные потребители всегда находит себе место автоматический выключатель с электромагнитным расцепителем. Данное устройство является защитой от перегрузок, которая предотвращает неожиданные поломки, как со стороны потребителя, так и со стороны питающей подстанции.

Как правило, во всей цепи питания используется несколько подобных приборов, но только рассчитаны они на разные токи отключения в зависимости от создаваемой нагрузки в определенных участках цепи.  

Что такое расцепитель в автоматическом выключателе  

В устройстве любого автоматического выключателя имеется расцепитель. Это часть его конструкции, которая определенным образом воздействует на механизм, управляющий включением и отключением контактной группы. Он выполняет защитную функцию и предназначен для экстренного отключения цепи нагрузки от сети, когда в ней возникает токовая перегрузка.  

Разновидности автоматических выключателей по виду расцепителей  

В зависимости от вида электрической переменной, которая контролируется, различают 2 вида автоматических расцепителей:  

  1. Токовые или тепловые. Они срабатывают при увеличении тока в цепи нагрузки, соответственно, настраиваются на его определенную величину.  
  2. Отключаемые по повышению и понижению напряжения в цепи.  

Оба типа узлов применяются в разных случаях. В частности, токовые расцепители или тепловые используются в цепях, где есть риск превышения тока. Это может свидетельствовать об увеличении нагрузки на валу двигателя или его неисправности. Второй тип применяется в тех случаях, кода в цепях используются приборы, критичные к высоким напряжениям.  

Также применяется следующая классификация расцепителей в автоматических выключателях: 

  1. Устройства мгновенного отключения с настройками для работы на минимальном и максимальном токах.  
  2. Компоненты для защиты от сверхтоков и коротких замыканий. 

Комбинированные с расширенной функциональностью, к таким относятся независимого типа, на минимальное и нулевое напряжение. Далее, рассмотрим каждый вид поподробнее.  

Электромагнитные 

Электромагнитный расцепитель автоматического выключателя представляет собой защитный блок, который содержит в себе катушку с наборным стальным сердечником. В соленоиде имеется определенное количество витков, которое рассчитывается на конкретную величину тока срабатывания.

Реализуется такой блок отдельным узлом, поэтому могут быть заменены на более мощные в разных автоматических выключателях для определенных нужд. Устройство такого автоматического выключателя с электромагнитным расцепителем довольно простое.  

Контакты удерживаются за счет системы рычагов. Имеется переключающий элемент, для активации которого достаточно минимального воздействия, которое и создается электромагнитом путем притяжения управляющего элемента. Для срабатывания такого расцепителя требуется сила тока в соленоиде, достаточная для преодоления силы, создаваемой пружиной на контактную группу.  

Автоматические выключатели с подобным расцепителем маркируются буквами от A до D в зависимости от чувствительности срабатывания. Также предусмотрена возможность изменения тока перегрузки в 3-10 кратном размере от номинального значения. К особенностям подобных устройств защиты относится их высокое быстродействие, то есть, они способны сработать за доли секунды, именно поэтому они относятся к категории мгновенного действия.     

Тепловые 

Автоматический выключатель с тепловым расцепителем представляет собой тоже токовое реле. Его также называют тепловым реле, так как в нем принцип работы как раз и связан с нагревом биметаллической пластины.

Происходит это за счет протекания электрического тока через спираль, изготовленную из металла, с высоким содержанием нихрома или молибдена. Пластина нагревается и деформируется, толкая таким образом механизм автоматического выключения. Биметаллическая пластина представляет собой спайку из двух металлов с разной проводимостью.  

Тепловые расцепители бывают двух типов в зависимости от способа нагрева: 

  1. ток протекает непосредственно через пластину; 
  2. ток течет по нагревательной ленте или спирали. 

К особенностям всех тепловых расцепителей, которые могут использоваться как отдельное устройство, относится номинальный предел срабатывания. Как правило, изгибаться пластина начинает при токе в цепи, превышающем 30%.

Это свойство обеспечивает эффективную защиту сети от перегрузки. Используется в паре с пускателями. Имеются устройства, специально адаптированные с выносными штырями для установки в стандартный контактор соответствующего класса.  

Время, а точнее, ток перегрузки настраивается с высокой точностью. При этом время переключения может изменяться в широком пределе от 1 секунды до нескольких часов.  

Комбинированные или термомагнитные  

Для обеспечения комплексной защиты от длительной перегрузки и короткого замыкания в случае аварии со стороны потребителя применяется блок защиты комплексного типа действия.

Автоматический выключатель с комбинированным расцепителем представляет собой составной защитный узел, который может быть выполнен отдельным устройством или входить в состав оборудования автоматического отключения.

Соответственно, контактная группа может содержать 3 или 2 линии. Высокая селективность данного оборудования позволяет построить комбинированную защиту от перегрузок всех видов. Найти в каталогах его можно по двум наименованиям:  

  1. комбинированный расцепитель; 
  2. термомагнитный расцепитель.  

Независимые  

Для дистанционного управления цепями с постоянными и переменными токами применяются независимые расцепители. Они срабатывают независимо от величин токов и напряжений, которые присутствуют в контролируемой цепи.

В конструкции такого прибора имеется отключающий соленоид, который управляется удаленно. Соответственно, при возникновении управляющего воздействия оператор подает отключающий импульс на соленоид. Возводится в исходное состояние такой расцепитель только вручную путем переведения механического переключателя из положения вниз в положение в верх.  

Электронные 

Автоматический выключатель с электронным расцепителем представляет собой защитный элемент силовых цепей, в котором имеется измерительное устройство. Имеется схема с трансформатором, который увеличивает управляющий импульс до величины, достаточной для отключения.

Также в схеме имеется электронный узел, который сравнивает обе величины напряжения и выдает управляющий импульс при их равенстве. В продаже имеется несколько типов устройств в зависимости от количества встроенных функций.  

Полупроводниковые  

В конструкции полупроводникового расцепителя автоматического выключателя имеется исполнительное устройство и измерительный блок, построенный на полупроводниках. При увеличении силы тока в полупроводнике возникает разность потенциалов между его выводами и формируется управляющее воздействие на электромагнит, который своим толкателем воздействует на рычаг переключающего механизма. Такие расцепители можно настроить на токи срабатывания от 1,25 от номинального, также имеется возможность регулирования длительности перегрузки в интервале до 16 секунд.  

Расцепители нулевого или минимального напряжения  

В цепях, где требуется контролировать не ток, а разность потенциалов, применяются расцепители минимального и нулевого напряжения. Это устройства, которые срабатывают при возникновении отклонения в напряжении питания от заданного предела. Можно настраивать момент отключения с высокой точностью в пределах от 0,1 до 0,7 от номинального.   

Сверхтоковые процессы в цепях  

В цепях, где протекает ток, всегда есть риск его резкого увеличения. Это сопровождается определенными процессами: 

  1. В процессе роста тока и при его значительном увеличении по сравнению к номинальному в токопроводящих цепях возникает нагрев. Перегрев может привести к повреждению изоляции. Для исключения такого нежелательного процесса используются расцепители с высоким быстродействием, временем отключения менее 0,005 с.  
  2. В результате длительного воздействия тока на контакты происходит их перегрев и деформация, что ведет к дальнейшей негодности всего АВ. Необходимо не только правильно рассчитывать токи срабатывания, но также и правильно располагать элементы, чтобы между ними не возникало электромагнитной связи.  
  3. Если вблизи от электромагнитного расцепителя находится компьютер или иная техника, то АВ с такой защитой следует закрыть экраном.  

Особенности проверки АВ с расцепителями  

Любая защитная аппаратура нуждается в проверке ее переключения на заданных величинах тока и напряжения. Для этого выполняется сначала визуальный осмотр и первичная проверка взведения и активации, затем он диагностируется под нагрузкой.

Для этих целей существует специальный аппарат, с помощью которого можно проверять срабатывание по всем трем фазам на постоянном или переменном токах с напряжением до 1 кВ.   

Выбор автоматического выключателя по характеристикам.

Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.

Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика – это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.

Принцип работы автоматического выключателя

Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.

Категории (типы) автоматических выключателей

Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.

Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.

Автоматические выключатели типа  K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Автоматические выключатели типа  Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.


Количество полюсов автоматических выключателей

Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.

Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.

В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.

4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.

Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.

Моделирование и анализ электромагнитного расцепителя миниатюрного автоматического выключателя

[1] Лиан Личжи. Автоматический выключатель низкого напряжения и его применение [M]. Пекин: China Electric Power Press, (2006).

[2] Хэ Жуйхуа, Инь Тяньвэнь, Чэнь Дэгуи и т. Д.Китайская электротехническая церемония [М]. Пекин: China Electric Power Press, (2009).

[3] Чжао Бо, Чжан Хунлян.Применение инженерного электромагнитного поля ansoft12 [M]. Пекин: China Water & Power Press, (2010).

[4] LiuGuoJiang.Конечный элементный анализ инженерного электромагнитного поля Ansoft [M]. Пресса электронной промышленности, (2005).

[5] Линдквист, Т.М, Бертлинг, Л. Эрикссон. Данные об отказе выключателя и моделирование надежности. RIET Generation, Transmission & Distribution, 2008, 2 (6): 813-820.

DOI: 10.1049 / iet-gtd: 20080127

[6] Чэнь Дэгуи, Ли Синвэнь.Технология виртуального прототипирования низковольтных выключателей [M]. Пекин: Пресса для механической промышленности, (2009).

Что такое термомагнитные автоматические выключатели?


Практически каждый знаком с последствиями срабатывания выключателя в доме. Внезапно у вас пропадает электричество в одной или нескольких розетках, и вам приходится спускаться в подвал или в гараж, чтобы снова включить электрическую панель.Обычно это происходит, когда слишком много приборов подключено к одной розетке или подключено к одной и той же электрической цепи. Это то, что заставляет сработать автоматический выключатель и защитить вас от потенциальных электрических опасностей.

Но что такое автоматический выключатель и почему он так важен в вашем доме? Давайте посмотрим поближе.

Что такое автоматический выключатель?

Мы начнем с выяснения разницы между функцией автоматического выключателя и ее назначением .

1. Функция автоматического выключателя. Функция автоматического выключателя состоит в «разрыве» (то есть отключении) электрической цепи. Он делает это автоматически, когда обнаруживает:

* электрическую перегрузку – Потребляемая мощность в одной из цепей превышает допустимую, обычно из-за того, что вы подключили слишком много элементов одновременно.

OR

* короткое замыкание – электрическая цепь случайно укорачивается, когда провод под напряжением входит в контакт с другой частью цепи (обычно из-за неисправной изоляции) и выбирает путь наименьшего сопротивления.Это может привести к возникновению электрического заряда в неожиданном месте … например, в выключателе света.

После того, как проблема с электричеством будет решена, выключатель можно вручную или автоматически настроить на возобновление подачи электроэнергии.


2. Назначение автоматического выключателя . Назначение автоматического выключателя – предотвратить повреждение. Перенапряженная или неисправная электрическая система может нанести большой вред бытовой технике и электронике.Что еще более серьезно, это может поставить под угрозу вас и вашу семью с риском поражения электрическим током, поражения электрическим током или электрического пожара.

Автоматические выключатели бывают разных размеров и типов и могут использоваться для защиты всего, от бытовой техники и электронных устройств до высоковольтных цепей, обслуживающих целые города.

Определение термического магнитного прерывателя цепи

Сегодня в американских домах наиболее распространенным типом являются термомагнитные прерыватели цепи.Это автоматические выключатели, в которых используются два компонента для обнаружения электрических неисправностей.

Первый компонент – это электромагнит, чувствительный к большим скачкам электрического тока. Скачки напряжения могут вызвать короткое замыкание, которое может серьезно повредить ваши ценные электрические приборы (такие как сушилка для одежды или кондиционер) или крупную электронику (например, DVD-плеер или настольный компьютер). Электромагнит мгновенно реагирует на такие опасные ситуации, перекрывая подачу электричества, чтобы ваши приборы были защищены.

Второй компонент, используемый в термомагнитном выключателе, представляет собой термобиметаллическую полосу, которая реагирует на продолжительные электрические скачки низкого уровня или перегрузки по току. Чрезмерные электрические токи нагреют биметаллическую полосу до такой степени, что она согнется в направлении планки отключения, которая отключает цепь.

Термомагнитные автоматические выключатели популярны, потому что они могут быстро ограничить короткое замыкание, а затем возобновить подачу электричества после того, как перенапряжение пройдет.

Безопасность автоматического выключателя
  1. Установите термомагнитные выключатели в соответствии с инструкциями производителя для безопасной и эффективной работы.

  2. Ограничьте потребление электроэнергии, чтобы предотвратить перегрузку цепей. (Дополнительное преимущество: этот совет также позволяет сэкономить на счетах за коммунальные услуги). Старайтесь подключать к разным схемам электроприборы с большим потреблением энергии, такие как обогреватели, утюги, тостеры и фены. Избегайте перегрузки системы удлинителями с несколькими розетками. По возможности выключайте бытовые приборы и электронику, когда они не используются.

  3. Установите GFCI (выходы прерывателя цепи замыкания на землю) и проверяйте их ежемесячно.
  4. Переосмыслите существующую электрическую систему, если у вас часто возникают проблемы с отключением выключателя. Вызовите квалифицированного электрика, чтобы оценить систему и произвести необходимые обновления.

Основы автоматических выключателей в литом корпусе

В традиционных автоматических выключателях в литом корпусе используются электромеханические (термомагнитные) расцепители, которые могут быть фиксированными или взаимозаменяемыми. MCCB обеспечивает защиту путем объединения чувствительного к температуре устройства с чувствительным к току электромагнитным устройством.Оба эти устройства механически воздействуют на механизм отключения.

В зависимости от применения и требуемой защиты, MCCB будет использовать один или комбинацию различных элементов отключения, которые защищают от следующих условий:

  • Тепловые перегрузки
  • Короткие замыкания
  • Замыкания на землю

Тепловая перегрузка

В условиях перегрузки между изоляцией и проводником происходит повышение температуры.Если не контролировать, срок службы изоляции резко сократится, что в конечном итоге приведет к короткому замыканию. Это тепло является функцией квадрата среднеквадратичного значения тока (I в квадрате), сопротивления в проводнике (R) и времени протекания тока (t).

Если вы отслеживаете текущий расход и время, вы можете в некоторой степени предсказать и обнаружить условия перегрузки. Используя кривую время-ток, как показано на рис. 1, вы можете увидеть границу между нормальным состоянием и условиями перегрузки. Здесь мы видим, что тепловой элемент или элемент защиты от перегрузки MCCB инициирует отключение через 1800 секунд при 135% номинального значения (показано здесь как точка 1) или через 10 секунд при 500% номинального значения (показано здесь как точка 2).

Состояние короткого замыкания

Обычно короткое замыкание возникает, когда протекают аномально высокие токи в результате выхода из строя системы изоляции. Этот большой ток, называемый током короткого замыкания, ограничен только возможностями распределительной системы. Чтобы быстро остановить этот ток и предотвратить серьезное повреждение, используется короткозамкнутый или мгновенный элемент MCCB.

Типичная временная кривая тока для мгновенного элемента, как показано на рис.2, показывает, что он не инициирует отключение, пока ток повреждения не достигнет или не превысит точку 1.

Состояние замыкания на землю

Замыкание на землю на самом деле является разновидностью короткого замыкания, только между фазой и землей, которое, вероятно, является наиболее распространенным типом короткого замыкания в низковольтных системах (600 В или меньше).

Обычно дуговые токи замыкания на землю недостаточно велики для обнаружения стандартным устройством защиты MCCB. Но, если их не обнаружить, они могут увеличиться настолько, что сработает стандартное защитное устройство.Когда это происходит, обычно уже слишком поздно, а ущерб уже нанесен. Примером этого является двигатель с нарушением внутренней изоляции. Хотя ток может быть небольшим, его необходимо обнаружить и устранить до того, как произойдет серьезное повреждение двигателя.

До появления электронных выключателей для обеспечения этого дополнительного уровня защиты использовались отдельные устройства защиты от замыканий на землю. Современные электронные выключатели имеют защиту от замыканий на землю как неотъемлемую часть расцепителя.

Действие отключения при перегрузке

Для срабатывания защиты от перегрузки или теплового отключения используется кусок биметалла, нагреваемый током нагрузки. Этот биметалл представляет собой две полосы металла, соединенные вместе, каждая из которых имеет разную степень теплового расширения. Они откалиброваны на заводе и не регулируются в полевых условиях.

Как показано на рис. 3, нагрев приведет к изгибу биметалла. Та часть биметалла, которая имеет большую скорость расширения (показана красным), находится за пределами кривой изгиба. Для срабатывания выключателя этот биметалл должен отклоняться достаточно, чтобы физически нажать на расцепитель и разъединить контакты.

Действие отключения при коротком замыкании

В срабатывании отключения при коротком замыкании

используется электромагнит с обмоткой, включенной последовательно с током нагрузки. Когда происходит короткое замыкание, ток, протекающий через проводник цепи, заставляет напряженность магнитного поля электромагнита быстро увеличиваться и притягивать якорь, как показано на рис. 4. Когда это происходит, якорь поворачивает переключающую планку, в результате чего выключатель путешествовать.

Единственный фактор задержки по времени – это время, необходимое контактам для физического размыкания и гашения дуги; обычно это меньше одного цикла.

Магнитные элементы бывают фиксированными или регулируемыми, в зависимости от типа выключателя и размера корпуса. Например, большинство термомагнитных выключателей с размером корпуса выше 150 А имеют регулируемые магнитные расцепители.

Термомагнитное срабатывание срабатывания

Как следует из названия, термомагнитный расцепитель сочетает в себе характеристики теплового и магнитного устройств, как показано на рис. 5. В результате кривая времени тока, показанная на рис. 6, объединяет рабочие характеристики. .Здесь точки 1 и 2 показывают как тепловое, так и магнитное воздействие для типичного MCCB на 100 А. Перегрузка 250% займет примерно 60 секунд, прежде чем биметалл прогнется достаточно сильно, чтобы сработать выключатель (точка 1). Однако при коротком замыкании, составляющем 400% от номинала выключателя, вместо перегрузки электромагнит притянет якорь и отключит выключатель менее чем за один цикл (точка 2).

Термомагнитный расцепитель лучше всего подходит для большинства приложений общего назначения, поскольку он чувствителен к температуре и автоматически отслеживает безопасную нагрузку кабеля и оборудования.Эти нагрузки будут варьироваться в зависимости от температуры окружающей среды. Термомагнитные блоки не срабатывают, если перегрузка не опасна, но мгновенно срабатывают при сильных токах короткого замыкания.

Электронные расцепители

Электронные расцепители

обычно состоят из трансформатора тока (ТТ) для каждой фазы, печатной платы и независимого расцепителя. ТТ контролируют ток и уменьшают его до необходимого коэффициента для прямого ввода в печатную плату, мозг электронного расцепителя.Затем печатная плата интерпретирует информацию о текущем потоке, принимает решения об отключении на основе заранее определенных параметров и сообщает независимому расцепителю о необходимости отключения выключателя.

Пресс-релизы MITSUBISHI ELECTRIC Компания Mitsubishi Electric добилась успешного прерывания тока короткого замыкания с помощью автоматического выключателя постоянного тока 160 кВ

ДЛЯ НЕМЕДЛЕННОГО ВЫПУСКА № 3313

ТОКИО, 10 октября 2019 г. – Mitsubishi Electric Corporation (ТОКИО: 6503) объявила, что ее прототип механического выключателя HVDC на 160 кВ * (механический DCCB) успешно прервал пиковый ток 16 кА, который воспроизводит сбой в реальной системе в течение 7 миллисекунд: требование тестирования, указанное в проекте PROMOTioN ** .Испытания проводились в рамках финансируемого ЕС исследовательского проекта PROMOTioN в мощных лабораториях KEMA международной службы тестирования и сертификации DNV-GL, расположенной в Нидерландах.

После успешного испытания компания Mitsubishi Electric приступила к коммерциализации DCCB. Ожидается, что доказанная надежность его компонентов поможет разработать стабильную, надежную и экономичную сеть постоянного тока.

  1. * Постоянный ток высокого напряжения: напряжение постоянного тока выше 1500 В
  2. ** Прогресс в создании ячеистых морских передающих сетей HVDC

Прототип механического DCCB на 160 кВ, использованный в испытаниях

Общие сведения и результаты испытаний

Передача HVDC является более дешевой альтернативой передаче переменного тока и имеет преимущество за счет более низких потерь мощности на больших расстояниях.Эффективно подключать морские ветряные электростанции к наземным электросетям Европы, особенно в Северном и Балтийском морях. В последние годы возросла потребность в более высокой надежности и более низкой стоимости DCCB, что обусловлено необходимостью расширения сетей передачи постоянного тока высокого напряжения и обеспечения более непрерывной и стабильной работы.

Переменный ток может прерываться при нулевом токе, существующем в каждом полупериоде, но в случае прерывания постоянного тока нулевой ток должен создаваться искусственно, поскольку в нем отсутствует естественный нулевой ток.Кроме того, преобразователи используются для преобразования переменного тока в постоянный перед передачей, и поэтому необходимо отключать любой аномальный ток до отключения преобразователей в случаях падения напряжения, возникающего во время каких-либо неисправностей. Поэтому для DCCB требуется высокоскоростное прерывание в течение нескольких миллисекунд. Компания Mitsubishi Electric успешно прервала постоянный ток с помощью своего механического прототипа DCCB, который способен искусственно создавать нулевой ток за такие крошечные временные рамки.

Характеристики механического DCCB

  1. 1) Высокоскоростное прерывание аномального тока
    • Высокоскоростное прерывание тока короткого замыкания реализовано за счет использования электромагнитных приводов отталкивания в автоматическом выключателе.
  2. 2) Низкие потери проводимости
    • Концепция Mitsubishi Electric – высокоэффективная передача HVDC осуществляется путем передачи тока только физическими средствами, что предполагает минимальные потери проводимости, в отличие от использования полупроводников.
  3. 3) Низкая стоимость и компактность
    • Используется недорогой механический контакт, менее чувствительный к условиям эксплуатации, в отличие от методов прерывания с использованием полупроводниковых элементов.Без необходимости в чистых помещениях и системах охлаждения могут быть реализованы недорогие небольшие средства защиты для передачи постоянного тока высокого напряжения.


Запрос

Контакт для СМИ

Вопросы клиентов


Статьи по теме

  • 18 янв.2021 г.

  • 16 марта 2020 г.

  • 08 июл.2019 г.

автоматических выключателей Архивы | Блог компании Steiner Electric

Предохранители

и автоматические выключатели служат одной цели – защите электрических цепей путем предотвращения перегрузок, которые могут вызвать возгорание.Они оба прерывают поток электричества, но очень по-разному друг от друга. В то время как предохранитель сделан из куска металла, который плавится при перегреве, автоматические выключатели, с другой стороны, имеют внутренние механизмы переключения, которые могут срабатывать небезопасным скачком электричества.

Предохранители могут быстрее прервать подачу энергии, но когда они расплавляются, их необходимо заменить; автоматические выключатели, с другой стороны, просто необходимо сбросить. Сравнивая их, мы рассмотрим некоторые из основных преимуществ и недостатков предохранителей и автоматических выключателей, чтобы различать их.

Предохранители

Предохранители бывают разных типов – как для бытового, так и для коммерческого использования. Самый распространенный тип состоит из металлической проволоки или нити, заключенной в стеклянный или керамический и металлический кожух. В жилых домах предохранитель обычно вставляется в центральный блок предохранителей, через который проходит проводка здания. Когда течет электричество, предохранитель позволяет мощности беспрепятственно проходить через нить между цепями. В случае перегрузки нить накала плавится и прекращает подачу электричества.

Для того, чтобы нить накала расплавилась, потребуется некоторое время, поэтому любой скачок напряжения будет остановлен. Если предохранитель перегорел, его следует выбросить и заменить новым. Существуют разные напряжения и номиналы, которые подходят для разной мощности электричества. Лучшим предохранителем для цепи обычно является тот, который рассчитан на немного больший, чем нормальный рабочий ток.

Автоматические выключатели

Выключатели

могут работать двумя разными способами: первый – с помощью электромагнита, а второй – с использованием биметаллической ленты.В обоих случаях при включении прерыватель позволяет электрическому току проходить от нижнего вывода к верхнему через полосу. Как только ток достигает небезопасного уровня, магнитная сила соленоида или ленты становится достаточно сильной, чтобы бросить металлический рычаг в механизм переключателя, прерывая ток. Другой вариант, который может произойти, заключается в том, что металлическая полоса может погнуться, что приведет к выбросу переключателя и разрыву соединения.

Чтобы сбросить подачу электричества, выключатель можно просто снова включить.Это повторно подключает цепь. Автоматические выключатели во многих случаях находятся в шкафу отдельных выключателей, известном как коробка выключателя. Это простое действие переключателя позволяет легко отключать отдельные цепи в доме, когда это необходимо для работы с проводкой на месте.

У автоматических выключателей

есть и другие применения, такие как использование прерывателя цепи замыкания на землю или GFCI. Это предотвращает поражение электрическим током, а не просто перегрев. Он разрывает цепь в розетке, если ток становится несимметричным.Его можно сбросить нажатием кнопки и, как правило, полезно на кухнях или в ванных комнатах, где существует риск поражения электрическим током из-за использования электроприборов рядом с источниками воды, такими как раковины или краны.

Преимущества и недостатки

Предохранители

дешевле, их можно купить практически в любом хозяйственном магазине. Они быстро реагируют на перегрузку, обеспечивая большую защиту чувствительных электронных устройств. Единственная проблема в том, что если цепь подвержена скачкам напряжения, которые регулярно вызывают перегорание предохранителей, то быстрая реакция на перегрузку может быть недостатком.

Если предохранители перегорели, их необходимо заменить. Это может быть сложно, особенно в темной комнате или если запасной предохранитель недоступен в то время, когда это необходимо. Во многих случаях люди также заменяют предохранитель новыми предохранителями, которые на самом деле имеют более высокое напряжение или ток, который слишком высок для применения или необходимости, что может затем вызвать перегрев цепи.

Предохранители, как правило, легко увидеть, какой переключатель сработал, а какой нужно сбросить.Средний домовладелец сочтет это безопасным, поскольку нет никаких сомнений в выборе правильного номинала предохранителя, а все электрические соединения находятся в коробке выключателя.

Недостатком автоматического выключателя является то, что его установка, ремонт и замена могут быть более дорогими. Автоматические выключатели не среагируют на скачки напряжения так же быстро, как предохранитель. Это означает, что электроника, подключенная к цепи, может быть повреждена из-за энергии, которая просто пропускается. Он может быть более чувствительным к вибрации и движению, что может привести к срабатыванию переключателя по причинам, не связанным с перегрузками электричества.

Автоматические выключатели и предохранители не взаимозаменяемы для всех силовых приложений. Например, предохранитель не следует использовать в ситуациях, требующих GFCI. Электрики имеют лучшую квалификацию, чтобы принимать решения о том, лучше ли использовать предохранитель или автоматический выключатель для любого конкретного случая, сценария или электрического монтажа. Если у вас есть какие-либо вопросы по конкретному проекту и вы хотите узнать больше, вы можете поговорить с опытным профессионалом по телефону 1-800-STEINER (783-4637).

Магнитный расцепитель

МАГНИТНЫЙ ОТКЛЮЧАТЕЛЬ

В автоматическом выключателе с магнитным расцепителем используется электромагнит, включенный последовательно с нагрузка цепи, как на рисунке 2-20. При нормальном токе у электромагнита не будет достаточное притяжение к штанге отключения, чтобы переместить ее, и контакты останутся замкнутыми, как показано на рисунке 2-20, вид А. Напряженность магнитного поля электромагнита увеличивается. по мере увеличения тока через катушку.Как только ток в цепи станет большим достаточно, расцепитель натягивается в сторону магнитного элемента (электромагнита), контакты открыты, и текущие остановки, как показано на рисунке 2-20, вид B.

Рисунок 2-20. – Магнитный отключающий элемент действия; Закрытые контакты;

Величина тока, необходимая для отключения автоматического выключателя, зависит от величины зазора. между штангой отключения и магнитным элементом.На некоторых автоматических выключателях этот разрыв (и поэтому ток срабатывания) регулируется.

ТЕРМО-МАГНИТНЫЙ ОТКЛЮЧАТЕЛЬ

Автоматический выключатель с тепловым расцепителем, как и предохранитель с задержкой, защищает цепь. против небольшой перегрузки, которая продолжается долгое время.

Чем больше перегрузка, тем быстрее сработает автоматический выключатель. Термоэлемент также защитит контур от повышения температуры.Магнитный выключатель мгновенно сработает при наличии предустановленного тока. В некоторых приложениях оба типа защиты желательны. Вместо использования двух отдельных автоматических выключателей можно использовать одно отключение. используется элемент, сочетающий в себе тепловой и магнитный расцепители. Термомагнитный расцепитель элемент показан на рисунке 2-21.

Рисунок 2-21. – Действие термомагнитного элемента:

В автоматическом выключателе с термомагнитным расцепителем магнитный элемент (электромагнит) включен последовательно с нагрузкой цепи, а биметаллический элемент – нагревается током нагрузки.При нормальном токе цепи биметаллический элемент не работает. изгибается, и магнитный элемент не притягивает переключающую планку, как показано на рисунке 2-21, вид A.

Если температура или ток увеличиваются в течение длительного периода времени, биметаллический элемент погнется, нажмите на планку отключения и отпустите защелку. Автоматический выключатель сработает как показано на рисунке 2-21, вид B.

Если ток внезапно или быстро увеличивается достаточно быстро, магнитный элемент будет притягивать планку отключения, отпустите защелку, и автоматический выключатель сработает, как показано на рисунке. 2-21, вид С.(Этот автоматический выключатель сработал, хотя термоэлемент не успел среагировать на повышенный ток.) ​​

Q.30 Каковы пять основных компонентов автоматического выключателя?

Автоматические выключатели Привод

Приводной механизм создает и накапливает энергию для срабатывания выключателя. Он всегда должен отключать автоматический выключатель. В зависимости от силы, необходимой для приведения в действие выключателя, выключатель может быть оборудован одним приводным механизмом для каждой фазы или одним механизмом для всех трех фаз.Рабочий механизм включает в себя накопитель энергии, исполнительную цепь и системы блокировки.

Типы:

  • Пружина; Пружинный механизм – это механизм, приводимый в действие механической энергией, хранящейся в пружинах. Обычно «замыкающая пружина» механически приводится в действие двигателем и удерживается в сжатом положении закрывающей защелкой. Когда сигнал включения освобождает эту защелку, эта пружина нажимает на механическую связь, заставляя контакты выключателя замкнуться, и сразу же заряжает размыкающую пружину.В этом случае замыкающая пружина немедленно перезаряжается двигателем. Другая защелка будет удерживать отключающую пружину в сжатом положении до тех пор, пока сигнал открытия не освободит эту защелку.
  • Гидравлический; Механизм с гидравлическим приводом использует сжатый газ для направления потока масла, таким образом приводя в действие рычажный (ые) рычажный (ые) рычаг (ы), соединенный с прерывателем (ами).
  • Пневматический; Пневматический механизм использует сжатый воздух в качестве источника энергии для включения и отключения.
  • Магнитный; использует соленоид или электромагнит, тянущая сила которого увеличивается с током.В некоторых конструкциях помимо электромагнитных сил используются электромагнитные силы. Контакты выключателя удерживаются замкнутыми защелкой. Когда ток в соленоиде превышает номинал автоматического выключателя, тяга соленоида освобождает защелку, которая позволяет контактам размыкаться под действием пружины.

Согласно исследованию CIGRE CB 2005 года, из общего числа неисправностей, выявленных в компонентах выключателя, 70 процентов были связаны с приводным механизмом, а более 50 процентов основных отказов выключателя были идентифицированы как происходящие с приводным механизмом.(См. Рекомендуемые анализаторы выключателей для тестирования, предназначенного для оценки состояния рабочего механизма.)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *