Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Модифицированная синусоида, что это, как сделать чистый синус после инвертора?

Как получить чистую синусоиду из модифицированной. Часть 1

Однако в этих мытарствах были и положительные элементы. Например, резко возрос спрос на разные бензо- и дизель-генераторы, а также на электронные преобразователи и бесперебойные источники тока. Последнее обстоятельство позволило людям творческим применить свои профессиональные навыки и даже немного улучшить на этом поприще свое финансовое положение. А там, глядишь, появились различные фирмочки, выпускающие эти самые преобразователи и бесперебойники. Какой-никакой подъем в экономике образовался, дополнительные рабочие места и т. п. Собственно, и Ваш покорный слуга, примерно в те времена, из электроники слабосильной подался в электронику силовую.

Нельзя сказать, что тогда с этой самой электроникой сильно мудрили. Делали, чтобы было просто, надежно и дешево. В принципе, для того чтобы питать одну-две лампочки, больше ничего и не требовалось. Однако по мере развития процесса конкуренция ужесточалась. Народу уже стало из чего выбирать. Особо привередливые начали интересоваться формой напряжения на выходе преобразователей и бесперебойников. На что им очень обтекаемо отвечали, что форма там практически синусоидальная, но лишь слегка модифицированная. Более честные говорили, что там присутствует синусоида, но только квадратная. А уж совсем честные говорили напрямую, что их преобразователи и бесперебойники формируют на выходе прямоугольное напряжение с паузой. Но параметры этого напряжения (амплитудное и действующее значение, а также частота) практически соответствуют аналогичным параметрам однофазного переменного напряжения бытовой электросети. В принципе, такое напряжение вполне подходило для основных бытовых электропотребителей, таких телевизоры, компьютеры, а также накальные и люминесцентные лампы. Те же электропотребители, которые требовали чисто синусоидального напряжения (асинхронные двигатели, например), были в меньшинстве и погоды особой не делали.

Однако такое положение не могло длиться вечно. Количество отключений сокращалось и в какой-то момент они практически вообще прекратились. Однако параллельно на рынке бытовых товаров стали появляться отопительные котлы, оборудованные циркуляционными насосами, приводными задвижками и электронным управлением. Такие котлы требовали высококачественного бесперебойного электропитания. В противном случае, при отключении электричества работа системы отопления полностью нарушалась.

И вот тут возникала некая дилемма. Многие владельцы отопительного чуда уже обладали бесперебойными источниками, мощности которых с лихвой хватало для питания котла. Однако, вот беда, циркуляционные насосы ни в какую не хотели крутиться от «прямоугольной синусоиды». Для чудо-котла надо было приобретать новый чудо-бесперебойный источник, формирующий на выходе чистейшую синусоиду. А куда же теперь девать старый, к которому уже душой прикипели. Нехорошо как-то все это!

Но положение не безвыходное и старый друг нам еще послужит! Для питания асинхронного двигателя от прямоугольного напряжения можно использовать фильтр Отто. Есть множество положительных примеров практического воплощения такого подхода. Однако такой вариант не самый простой и, уж точно, не универсальный. После продолжительной и утомительной настройки фильтр можно будет использовать только с конкретным двигателем. Хотелось бы чего-то более универсального. Таким более универсальным решением будет использование в качестве фильтра феррорезонансного или подобного ему стабилизатора. При этом феррорезонансный стабилизатор, включенный после бесперебойного источника, будет не только исправлять форму его выходного напряжения в периоды отсутствия сети (работа от аккумулятора), но и будет стабилизировать напряжение сети в моменты его присутствия.

Ниже приводится описание и принципиальная электрическая схема феррорезонансного стабилизатора мощностью 1000 Вт. В статье приведены формулы и методика расчета, которая позволит вам пересчитать стабилизатор на другую мощность, если это потребуется.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы имеют ряд достоинств, таких как высокая надежность и быстродействие, широкий диапазон входных напряжений, хорошая стабильность выходного напряжения, способность к исправлению формы сильно искаженного входного напряжения. Однако, не смотря на все свои достоинства, эти стабилизаторы имеют и некоторые недостатки, к которым можно отнести относительно низкую удельную мощность и высокий уровень шумов, создаваемых при работе.

Не так давно, в 60-80-х годах прошлого века, феррорезонансные стабилизаторы широко использовались в быту для питания ламповых телевизоров. И старшее поколение читателей, скорей всего, до сих пор помнит тот надрывный гул, которым сопровождалась работа этих аппаратов, которые различались формой и расцветкой, но имели вес 10-15 кг при мощности 250-350 Вт.

Основным источником шумов в феррорезонансном стабилизаторе является насыщающийся дроссель. В работе сердечник этого дросселя постоянно насыщается, что приводит к изменению его линейных размеров. Это явление называется магнитострикционным эффектом. О «шумности» этого эффекта говорит хотя бы тот факт, что он широко используется в гидроакустике для генерации мощных акустических волн. Следовательно, если мы хотим построить тихий стабилизатор, то в первую очередь должны избавиться от насыщающегося дросселя. Однако нельзя просто так выбрасывать неугодные комплектующие из стабилизатора. В этом случае мы рискуем потерять его функциональность. Чтобы этого не произошло, сначала нужно найти достойную замену. И на нашу удачу такая достоянная замена имеется. Еще в 70-х годах прошлого столетия была доказана возможность замены насыщающегося дросселя последовательной цепочкой, состоящей из линейного дросселя и двух встречно-параллельных тиристоров . Такая цепь ведет себя аналогично насыщающемуся дросселю, но в отличие от него имеет меньшие размеры и массу, может оперативно регулироваться за счет управления тиристорами, обеспечивает меньшие потери и, самое главное, гораздо меньше шумит. В технической литературе такая цепочка зачастую называется резонансным тиристорным регулятором (РТР) . При необходимости, два встречно-параллельных тиристора РТР можно с успехом заменить одним симистором.

Работа стабилизатора

Функциональная схема стабилизатора с РТР изображена на Рисунке 1.

Рисунок 1. Функциональная схема стабилизатора с РТР.

Стабилизатор с РТР имеет практически тот же принцип действия, что и феррорезонансный стабилизатор. Выходное напряжение UН поддерживается на требуемом уровне (220 В). Когда напряжение питающей сети UС имеет минимальное значение, симистор VS1 заперт. При этом напряжение UН поднимается до требуемого уровня за счет резонанса в колебательном контуре L1C1. Если же напряжение питающей сети UС имеет максимально допустимое значение, то симистор VS1 постоянно открыт. При этом дроссели L1 и L2 образуют делитель переменного напряжения, уменьшающий сетевое напряжение до требуемого уровня. В феррорезонансном стабилизаторе насыщающийся дроссель также максимально используется при максимальном входном напряжении, и минимально при минимальном. Дроссель L3 совместно с конденсатором С1 образует фильтр третьей гармоники, улучшающий форму выходного напряжения стабилизатора.

Рисунок 2. Осциллограммы основных напряжений и токов стабилизатора с РТР.

Рассмотрим подробнее работу стабилизатора с РТР. На Рисунке 2 изображены осциллограммы основных напряжений и токов стабилизатора с РТР. Выходное напряжение стабилизатора UН выпрямляется при помощи выпрямителя В2. Выпрямленное напряжение UВ2 поступает на фильтр Ф, который выделяет из него среднее, действующее или амплитудное значение, в зависимости от того, какое значение выходного напряжения UН требуется стабилизировать. Далее напряжение с выхода фильтра поступает на сумматор, где сравнивается с опорным напряжением UОП. С выхода сумматора напряжение ошибки поступает на регулятор Рег, который формирует управляющий сигнал, призванный компенсировать отклонение выходного напряжения стабилизатора. Выходное напряжение регулятора UПОР поступает на вход порогового устройства ПУ и определяет его порог срабатывания. На другой вход порогового устройства подается синхронизирующее напряжение UВ1, привязанное к моментам перехода через ноль выходного напряжения UН стабилизатора.

На выходе порогового устройства ПУ формируются импульсы управления UУПР, которые усиливаются усилителем мощности УМ и в требуемой полярности поступают на управляющий электрод симистора VS1. Синхронизирующее напряжение создается при помощи интегратора Инт и выпрямителя В1. Благодаря интегратору, импульсы выпрямленного напряжения UВ1 отстают от импульсов UВ2 на 5 мс (фазовый сдвиг –90°).

Импульсы управления UУПР формируются на нарастающем фронте UВ1 между нулевым и амплитудным значением этого напряжения. При увеличении порогового напряжения UПОР импульсы управления максимально сдвигаются к амплитудному значению UВ1 и, соответственно, к нулевому значению UВ2. В этом случае симистор открывается в районе нулевого значения UН и через линейный дроссель L2 протекает незначительный ток IL2, который не оказывает существенного влияния на выходное напряжение стабилизатора. При уменьшении порогового напряжения Uпор импульс управления сдвигается в сторону амплитудного значения UН и через линейный дроссель L2 начинает протекать существенный ток, который шунтирует выход стабилизатора и уменьшает величину его выходного напряжения.

Если выходное напряжение стабилизатора меньше требуемого, то регулятор Рег увеличивает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, уменьшается, и выходное напряжение стабилизатора возрастает за счет резонанса в колебательном контуре L1C1. Если выходное напряжение больше требуемого, то регулятор Рег уменьшает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, увеличивается и выходное напряжение стабилизатора уменьшается.

Расчет силовой схемы стабилизатора

Рассмотрим практическую методику расчета стабилизатора мощностью 1000 ВА. Такой стабилизатор может использоваться как независимое устройство или совместно с устаревшими источниками бесперебойного питания для получения синусоидальной формы напряжения.

Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью SН = 1000 ВА изображена на Рисунке 3. Стабилизатор рассчитан на работу от сети переменного тока 220 В 50 Гц c нагрузкой, имеющей коэффициент мощности cos φН ≥ 0. 7, и формирует выходное напряжение UН = 220 В ±1% во всем диапазоне нагрузок при изменении входного напряжения от 150 до 260 В.

Рисунок 3. Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью 1000 ВА.

Первым делом необходимо определить емкость резонансного конденсатора. Реактивную мощность резонансного конденсатора для стабилизатора без фильтра третьей гармоники можно найти по формуле:

где:

– угловая частота сетевого напряжения, рад/с.

Зная реактивную мощность резонансного конденсатора, найдем его емкость:

Найдем индуктивность линейного дросселя L1:

Найдем индуктивность линейного дросселя L2:

Найдем индуктивность линейного дросселя L3:

Так как в стабилизаторе для улучшения формы выходного напряжения установлен фильтр третьей гармоники, емкость резонансного конденсатора можно уменьшить:

В качестве C1 можно использовать компенсирующие конденсаторы типа К78-99 или аналогичные, предназначенные для коррекции коэффициента мощности электромагнитных дросселей газоразрядных ламп. Например, можно использовать два включенных параллельно конденсатора К78-99 емкостью 50 мкФ, рассчитанных на напряжение 250 В переменного тока. Для этой же цели можно использовать конденсатор типа МБГВ 100 мкФ на напряжение 1000 В.

Окончание

Схема

Инверторы данного типа могут устанавливаться для преобразования напряжения в сетях, в которых имеются аккумуляторные батареи служащие накопителями электрической энергии, а также в прочих электрических сетях, когда форма напряжения (выходного сигнала) не соответствует требуемой конфигурации.

Ниже приведена принципиальная схема инвертора типа «чистый синус» в которой учтены разные варианты использования.

Фильтр «Ф» и диодный мост «М» работают, когда инвертор улучшает качество напряжения и не требуются — при подключении прибора к аккумуляторам.

При работе с накопителями энергии (аккумуляторными батареями), выпрямление напряжения осуществляет диодный мост М1.

Генератор, задающий сигнал напряжением 220 В частотой 50 Гц, построен на основе микросхемы D5, а контроллеры D1, D2 формируют сигнал синусоидальной формы.

С контроллеров, выходной сигнал поступает на микросхемы D3, D4, где формируется сигнал управления транзисторами.

Силовая схема построена по мостовому принципу. Нагрузка подключается в одно плечо диодного моста, питающее напряжение – в другое.

Защита по тока собрана на резисторах R17-19, R22 и диодах VD11,12.

Где купить

Инвертор — это прибор, который не относится к товарам повседневного спроса, поэтому его нельзя приобрести в простом магазине или супермаркете. Реализацией подобных изделий занимаются специализированные организации и торговые сети, ориентированные на альтернативные виды энергии, используемые для автономного электроснабжения объектов различных типов.

Если у потребителя уже установлена солнечная электростанция или ветровой генератор, то лучше всего приобрести модель того производителя, оборудование которого уже используется. Для этого необходимо найти дилера этой компании и заключить с ним договор поставки.

Если создается новая система автономного электроснабжения и пользователь самостоятельно выполняет ее комплектацию, то можно пойти несколькими путями, это:

  1. Опять же найти дилера компании, производящей подобные устройства и приобрести товар у него.
  2. Обратиться в торговую компанию, реализующую приборы из этой группы товаров.
  3. Поискать необходимое устройство в сети интернет, где представлен достаточно широкий ассортимент подобных устройств.

Как сделать своими руками

При желании изготовить инвертор типа «чистый синус» своими руками, необходимо помнить, что это достаточно сложное электронное устройство. При самостоятельном изготовлении необходимо не только уметь работать с паяльником, а также нужно знать, как правильно монтировать микросхемы и прочие электронные комплектующие. Уметь работать с электронными приборами, с помощью которых можно отслеживать форму выходного сигнала, а также подстраивать элементы схемы, обеспечивающие соответствие формы и силы выходного сигнала, предъявляемым требованиям.

Ниже, приведена одна из схем, используя которую, можно самостоятельно собрать подобный прибор. Это достаточно простая схема, но тем не менее, она широко используется и промышленными производителями таких устройств.

В качестве генератора сигналов используется микросхема КР1211ЕУ1, а в качестве ключей — транзисторы IRL2505. Повышающий трансформатор повышает напряжение на выходе до 220 вольт, а снижение высокочастотных помех осуществляет конденсатор.

Мощность устройства, собранного по этой схеме – до 0,5 кВт, в зависимости от мощности трансформатора.

Ступенчатая аппроксимация синусоиды при работе от аккумуляторов, ИБП синус

ИБП с чистым синусом

Когда ИБП с аппроксимированной синусоидой применять нельзя?

Для устройств со значительной реактивной составляющей расходуемой мощности, индуктивной нагрузкой и для помеховосприимчивых приборов подойдёт только чистый сигнал. К таким устройствам относятся асинхронные двигатели и оборудование, содержащее их – насосы, отопительные котлы, трансформаторы и старая электроника с трансформаторными блоками питания. ИБП с модифицированной синусоидой генерируют помехи, дают низкий эффективный ток (среднее напряжение), превышение силы потребляемого тока.

На практике это означает, в лучшем случае, невозможность включения оборудования, в худших вариантах – нехватку мощности при возрастающей силе тока, перегрев, быстрый выход приборов из строя или значительное уменьшение жизненного цикла. У лучших линейно-интерактивных ИБП коэффициент искажений не превышает 3–5%, у источников с двойным преобразованием синусоида чистая – сигнал формируется инвертором заново.

В каталоге интернет-магазина 220 Volt имеются сотни моделей ИБП оффлайн, интерактивного и онлайн типов в широчайшем ценовом разнообразии. Если вы сомневаетесь в том, какой ИБП купить, – специалисты магазина ответят на все вопросы и помогут в выборе бесперебойника и другой электротехники.

Читайте также: Новости Харькова.

Источник: https://MyKharkov.info/news/kogda-mozhno-ispolzovat-ibp-s-approksimirovannoj-sinusoidoj-24538.html

impulsnik ›


Блог ›
Самодельный инвертор 12-220 вольт с чистым синусом

Напрягает ситуация когда отключают свет, я живу в частном доме и воду добываю с помощью погружного вибрационного насоса, не то чтобы часто отключают, но пару раз без воды оставался, неприятно. Так вот, что бы исключить повторения такой ситуации в будущем, решил собирать инвертор, решался честно долго, не мог подобрать оптимальный вариант получения синуса, мучить насос модифицированной синусоидой не стал, и вот как то наткнулся на специальный модуль под названием EGS002. Модуль представляет из себя плату, на которой расположена микросхема eg8010, этот контроллер заточен для получения синуса, и пары драйверов.

Для получения синуса одной платки конечно мало, самое главное нам потребуется преобразователь напряжения с 12 до 350 вольт ватт на 300, четыре полевых транзистора для коммутации постоянного напряжения (350в) и выходной фильтр, для превращения прямоугольных импульсов разной длительность в синусоиду.
На схеме все что выделено слева, это сам модуль, а то что с права это то что нам нужно прикрутить.

Первая версия печатной платы была испытана Николаем Шумиловым на радиоскоте.

Все заработало практически с первого раза, форму сигнала на выходе было нечем посмотреть, работало все исправно, но только на лампочках, стоило подключить индукционную нагрузку и через некоторое время броском напряжения вышибло выходные ключи, так как я допустил фатальную ошибку, не предусмотрел места на печатке для снабберов.
А это уже исправленная версия платы, со всем необходимым для нормальной работы инвертора.
Прилагаю пока только скрины печатки, те кто ждал готовое устройство, уж простите) работаю сейчас над плазморезом) за инвертор возьмусь после.

Источник: https://www.drive2.ru/b/492980882794086771/

Как получить чистую синусоиду из модифицированной. Часть 1

Журнал РАДИОЛОЦМАН, ноябрь 2013

Валентин Володин

Вступление

Еще не стерлись из памяти события «лихих» 90-х. Помнится МММ, разгул криминала, веерные отключения электроэнергии. На Украине, например, во второй половине 90-х дело доходило до того, что свет в жилых районах выключали на 2 часа через каждые 2 часа. Помнится, наиболее коварным был зимний период темноты между пятью и семью часами вечера. Как раз, когда народ возвращался с работы. Выгружаешься на остановке, автобус уезжает, и ты остаешься в полной темноте. Пытаешься привыкнуть, трешь глаза, давишь на глазные яблоки. Все безрезультатно, вокруг полная темнота. Делать нечего, осторожно ступаешь во мраке, пытаясь нащупать заветный забор, который должен вывести к родной калитке и потихоньку, на ощупь, домой.

Однако в этих мытарствах были и положительные элементы. Например, резко возрос спрос на разные бензо- и дизель-генераторы, а также на электронные преобразователи и бесперебойные источники тока. Последнее обстоятельство позволило людям творческим применить свои профессиональные навыки и даже немного улучшить на этом поприще свое финансовое положение. А там, глядишь, появились различные фирмочки, выпускающие эти самые преобразователи и бесперебойники. Какой-никакой подъем в экономике образовался, дополнительные рабочие места и т. п. Собственно, и Ваш покорный слуга, примерно в те времена, из электроники слабосильной подался в электронику силовую.

Нельзя сказать, что тогда с этой самой электроникой сильно мудрили. Делали, чтобы было просто, надежно и дешево. В принципе, для того чтобы питать одну-две лампочки, больше ничего и не требовалось. Однако по мере развития процесса конкуренция ужесточалась. Народу уже стало из чего выбирать. Особо привередливые начали интересоваться формой напряжения на выходе преобразователей и бесперебойников. На что им очень обтекаемо отвечали, что форма там практически синусоидальная, но лишь слегка модифицированная. Более честные говорили, что там присутствует синусоида, но только квадратная. А уж совсем честные говорили напрямую, что их преобразователи и бесперебойники формируют на выходе прямоугольное напряжение с паузой. Но параметры этого напряжения (амплитудное и действующее значение, а также частота) практически соответствуют аналогичным параметрам однофазного переменного напряжения бытовой электросети. В принципе, такое напряжение вполне подходило для основных бытовых электропотребителей, таких телевизоры, компьютеры, а также накальные и люминесцентные лампы. Те же электропотребители, которые требовали чисто синусоидального напряжения (асинхронные двигатели, например), были в меньшинстве и погоды особой не делали.

Однако такое положение не могло длиться вечно. Количество отключений сокращалось и в какой-то момент они практически вообще прекратились. Однако параллельно на рынке бытовых товаров стали появляться отопительные котлы, оборудованные циркуляционными насосами, приводными задвижками и электронным управлением. Такие котлы требовали высококачественного бесперебойного электропитания. В противном случае, при отключении электричества работа системы отопления полностью нарушалась.

И вот тут возникала некая дилемма. Многие владельцы отопительного чуда уже обладали бесперебойными источниками, мощности которых с лихвой хватало для питания котла. Однако, вот беда, циркуляционные насосы ни в какую не хотели крутиться от «прямоугольной синусоиды». Для чудо-котла надо было приобретать новый чудо-бесперебойный источник, формирующий на выходе чистейшую синусоиду. А куда же теперь девать старый, к которому уже душой прикипели. Нехорошо как-то все это!

Но положение не безвыходное и старый друг нам еще послужит! Для питания асинхронного двигателя от прямоугольного напряжения можно использовать фильтр Отто. Есть множество положительных примеров практического воплощения такого подхода. Однако такой вариант не самый простой и, уж точно, не универсальный. После продолжительной и утомительной настройки фильтр можно будет использовать только с конкретным двигателем. Хотелось бы чего-то более универсального. Таким более универсальным решением будет использование в качестве фильтра феррорезонансного или подобного ему стабилизатора. При этом феррорезонансный стабилизатор, включенный после бесперебойного источника, будет не только исправлять форму его выходного напряжения в периоды отсутствия сети (работа от аккумулятора), но и будет стабилизировать напряжение сети в моменты его присутствия.

Ниже приводится описание и принципиальная электрическая схема феррорезонансного стабилизатора мощностью 1000 Вт. В статье приведены формулы и методика расчета, которая позволит вам пересчитать стабилизатор на другую мощность, если это потребуется.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы имеют ряд достоинств, таких как высокая надежность и быстродействие, широкий диапазон входных напряжений, хорошая стабильность выходного напряжения, способность к исправлению формы сильно искаженного входного напряжения. Однако, не смотря на все свои достоинства, эти стабилизаторы имеют и некоторые недостатки, к которым можно отнести относительно низкую удельную мощность и высокий уровень шумов, создаваемых при работе.

Не так давно, в 60-80-х годах прошлого века, феррорезонансные стабилизаторы широко использовались в быту для питания ламповых телевизоров. И старшее поколение читателей, скорей всего, до сих пор помнит тот надрывный гул, которым сопровождалась работа этих аппаратов, которые различались формой и расцветкой, но имели вес 10-15 кг при мощности 250-350 Вт.

Основным источником шумов в феррорезонансном стабилизаторе является насыщающийся дроссель. В работе сердечник этого дросселя постоянно насыщается, что приводит к изменению его линейных размеров. Это явление называется магнитострикционным эффектом. О «шумности» этого эффекта говорит хотя бы тот факт, что он широко используется в гидроакустике для генерации мощных акустических волн. Следовательно, если мы хотим построить тихий стабилизатор, то в первую очередь должны избавиться от насыщающегося дросселя. Однако нельзя просто так выбрасывать неугодные комплектующие из стабилизатора. В этом случае мы рискуем потерять его функциональность. Чтобы этого не произошло, сначала нужно найти достойную замену. И на нашу удачу такая достоянная замена имеется. Еще в 70-х годах прошлого столетия была доказана возможность замены насыщающегося дросселя последовательной цепочкой, состоящей из линейного дросселя и двух встречно-параллельных тиристоров . Такая цепь ведет себя аналогично насыщающемуся дросселю, но в отличие от него имеет меньшие размеры и массу, может оперативно регулироваться за счет управления тиристорами, обеспечивает меньшие потери и, самое главное, гораздо меньше шумит. В технической литературе такая цепочка зачастую называется резонансным тиристорным регулятором (РТР) . При необходимости, два встречно-параллельных тиристора РТР можно с успехом заменить одним симистором.

Работа стабилизатора

Функциональная схема стабилизатора с РТР изображена на Рисунке 1.

Рисунок 1. Функциональная схема стабилизатора с РТР.

Стабилизатор с РТР имеет практически тот же принцип действия, что и феррорезонансный стабилизатор. Выходное напряжение UН поддерживается на требуемом уровне (220 В). Когда напряжение питающей сети UС имеет минимальное значение, симистор VS1 заперт. При этом напряжение UН поднимается до требуемого уровня за счет резонанса в колебательном контуре L1C1. Если же напряжение питающей сети UС имеет максимально допустимое значение, то симистор VS1 постоянно открыт. При этом дроссели L1 и L2 образуют делитель переменного напряжения, уменьшающий сетевое напряжение до требуемого уровня. В феррорезонансном стабилизаторе насыщающийся дроссель также максимально используется при максимальном входном напряжении, и минимально при минимальном. Дроссель L3 совместно с конденсатором С1 образует фильтр третьей гармоники, улучшающий форму выходного напряжения стабилизатора.

Рисунок 2. Осциллограммы основных напряжений и токов стабилизатора с РТР.

Рассмотрим подробнее работу стабилизатора с РТР. На Рисунке 2 изображены осциллограммы основных напряжений и токов стабилизатора с РТР. Выходное напряжение стабилизатора UН выпрямляется при помощи выпрямителя В2. Выпрямленное напряжение UВ2 поступает на фильтр Ф, который выделяет из него среднее, действующее или амплитудное значение, в зависимости от того, какое значение выходного напряжения UН требуется стабилизировать. Далее напряжение с выхода фильтра поступает на сумматор, где сравнивается с опорным напряжением UОП. С выхода сумматора напряжение ошибки поступает на регулятор Рег, который формирует управляющий сигнал, призванный компенсировать отклонение выходного напряжения стабилизатора. Выходное напряжение регулятора UПОР поступает на вход порогового устройства ПУ и определяет его порог срабатывания. На другой вход порогового устройства подается синхронизирующее напряжение UВ1, привязанное к моментам перехода через ноль выходного напряжения UН стабилизатора. На выходе порогового устройства ПУ формируются импульсы управления UУПР, которые усиливаются усилителем мощности УМ и в требуемой полярности поступают на управляющий электрод симистора VS1. Синхронизирующее напряжение создается при помощи интегратора Инт и выпрямителя В1. Благодаря интегратору, импульсы выпрямленного напряжения UВ1 отстают от импульсов UВ2 на 5 мс (фазовый сдвиг –90°).

Импульсы управления UУПР формируются на нарастающем фронте UВ1 между нулевым и амплитудным значением этого напряжения. При увеличении порогового напряжения UПОР импульсы управления максимально сдвигаются к амплитудному значению UВ1 и, соответственно, к нулевому значению UВ2. В этом случае симистор открывается в районе нулевого значения UН и через линейный дроссель L2 протекает незначительный ток IL2, который не оказывает существенного влияния на выходное напряжение стабилизатора. При уменьшении порогового напряжения Uпор импульс управления сдвигается в сторону амплитудного значения UН и через линейный дроссель L2 начинает протекать существенный ток, который шунтирует выход стабилизатора и уменьшает величину его выходного напряжения.

Если выходное напряжение стабилизатора меньше требуемого, то регулятор Рег увеличивает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, уменьшается, и выходное напряжение стабилизатора возрастает за счет резонанса в колебательном контуре L1C1. Если выходное напряжение больше требуемого, то регулятор Рег уменьшает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, увеличивается и выходное напряжение стабилизатора уменьшается.

Расчет силовой схемы стабилизатора

Рассмотрим практическую методику расчета стабилизатора мощностью 1000 ВА. Такой стабилизатор может использоваться как независимое устройство или совместно с устаревшими источниками бесперебойного питания для получения синусоидальной формы напряжения.

Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью SН = 1000 ВА изображена на Рисунке 3. Стабилизатор рассчитан на работу от сети переменного тока 220 В 50 Гц c нагрузкой, имеющей коэффициент мощности cos φН ≥ 0.7, и формирует выходное напряжение UН = 220 В ±1% во всем диапазоне нагрузок при изменении входного напряжения от 150 до 260 В.

Рисунок 3. Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью 1000 ВА.

Первым делом необходимо определить емкость резонансного конденсатора. Реактивную мощность резонансного конденсатора для стабилизатора без фильтра третьей гармоники можно найти по формуле:

где:

– угловая частота сетевого напряжения, рад/с.

Зная реактивную мощность резонансного конденсатора, найдем его емкость:

Найдем индуктивность линейного дросселя L1:

Найдем индуктивность линейного дросселя L2:

Найдем индуктивность линейного дросселя L3:

Так как в стабилизаторе для улучшения формы выходного напряжения установлен фильтр третьей гармоники, емкость резонансного конденсатора можно уменьшить:

В качестве C1 можно использовать компенсирующие конденсаторы типа К78-99 или аналогичные, предназначенные для коррекции коэффициента мощности электромагнитных дросселей газоразрядных ламп. Например, можно использовать два включенных параллельно конденсатора К78-99 емкостью 50 мкФ, рассчитанных на напряжение 250 В переменного тока. Для этой же цели можно использовать конденсатор типа МБГВ 100 мкФ на напряжение 1000 В.

Окончание

Источник: https://www.rlocman.ru/shem/schematics.html?di=152071

Из меандра получить синусоиду

Практический опыт повторения конструкции преобразователя меандра в синусоиду на основе резонансного фильтра. (10+)

Опыт повторения конструкции фильтра

Материал является пояснением и дополнением к статье:
Получаем синусоиду от инвертора
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы запитать бытовые и специальные электроприборы. Применяем инвертор и оригинальную схему фильтра.

Хотел бы поблагодарить автора статьи за замечательную реализацию идеи резонансных LC фильтров. Моя ситуация заключалась в следующем: я приобрел небольшой инверторный генератор на 6кВА. Большим его преимуществом стало для меня то, что он весьма легковесный (58кг), соответственно, его не нужно устанавливать стационарно на улице или в отдельном помещении. Можно выкатывать на улицу и закатывать обратно в гараж по мере необходимости. Также он обеспечивает стабильное напряжение и частоту. Недостаток был один и весьма существенный — на выходе генератора не синусоида, а модифицированный меандр.

Осциллограмма напряжения на выходе генератора

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Подобный тип выходного напряжения очень пагубно сказывается на реактивных нагрузках. Блоки питания телевизоров жужжат, трансформаторы, электродвигатели и насосы греются, и вполне вероятен выход их из строя. Сигнал содержит большое количество высокочастотных составляющих.

Решения проблемы было два: первое мне не подходило по определению. Это приобретение генератора с чистой синусоидой на выходе. Во-первых, потому что такие генераторы требуют уличной стационарной установки, либо установки в специальном помещении, которого у меня нет. Во, вторых, они тяжелы. Устанавливать на улице я не очень хотел, потому что зимняя эксплуатация сразу доставит много проблем, учитывая то, что это аварийное питание и включается нечасто. В-третьих, они дороже минимум в 2.5 раза, чем мой. Второе решение заключалось в поиске схемы, которая уберет высокочастотные составляющие из спектра тока и, в идеале, приблизит подаваемый на вход сигнал к чистой синусоиде 50 Гц.

После изучения всех вариантов я остановился на описанном в статье решении на базе силовых резонансных фильтров. Автор статьи любезно отвечал мне на все возникавшие вопросы и благодаря ему я быстро смог продвинуться в создании своего собственного фильтра. Рассчитывал я его на ток 18А. С запасом, чтобы предотвратить насыщение сердечника на больших токах — до 16А. Параллельный контур я оставил как в статье — на 10А. Там большие токи не проходят.

Медь для обмотки я нашел достаточно быстро. Конденсаторы тоже. Сразу на 100мкФ — пусковые. Определенные проблемы возникли только с поиском трансформаторного железа. Но и это было преодолено, и я приступил к сборке.

Настраивал я контуры не последовательно, а параллельно. Мне так было удобнее. В нагрузку включал также лампу накаливания. После намотки первого дросселя (10А) — для параллельного фильтра, я замерил индуктивность катушки без прокладки. Прибор показал 120мГн. Чему я был очень рад. Дальше я начал настраивать контур в резонанс, увеличивая толщину прокладки.

Второй контур с дросселем на 18А я также настраивал в резонанс на параллельном включении. Тут уже катушка без прокладки показала мне 420мГн.

В результате тонкой настройки я получил на выходе обоих контуров вот такой сигнал (порядка 20В действующего). Спираль лампы накаливания была еле красноватой:

Выход параллельного LC фильтра. 20В/деление.

Это минимальное напряжение, которое мне удалось получить на фильтре.

Затем я собрал схему уже как положено. На стенде.

Трансформаторные пластины были стянуты, залиты. Дроссели были стянуты диэлектрическими бандажами и помещены в корпус.

На вход фильтра я подал напряжение сети 220В. С нагрузкой в виде лампы накаливания 100Вт на выходе получилось падение 13В. Это составило 207В.

Самое приятное меня ожидало впереди. Я подал напряжение с генератора на фильтр и получил на выходе: о чудо! Только первую гармонику! Сигнал с фильтра опередил по качеству сигнал с трансформаторной подстанции.

Выход с резонансного LC — фильтра. 100В/деление.

Под нагрузкой я получил некоторое весьма незначительное искажение синусоиды по верхнему фронту, но график все равно остался лучше, чем с подстанции. Также получил падение напряжения, которое зависит от нагрузки. Но в среднем рабочем режиме я имею порядка 205В. Меня и мои домашние приборы это вполне устроило. Но тем, кто будет собирать эти фильтры после меня, могу порекомендовать: делайте все возможное, чтобы сократить количество витков на дросселях и наматывайте их проводом максимально возможного сечения. Это уменьшит падение напряжения под нагрузкой!

Сегодня я все же провел небольшой апгрейд. На дроссель параллельного фильтра намотал еще около 25 витков изолированным проводом и сделал вольтодобавку. Вот по этой схеме:

Схема фильтра с вольтодобавочным трансформатором

Получил +8 Вольт к напряжению источника. Теперь на холостом ходу при входном напряжении 222В у меня не 212, как раньше, а 230В.

Осциллограмма с выхода фильтра с вольтодобавочным трансформатором. На входе — генератор. Частота по входу — 50.0Гц +/- 0.3Гц. 100В/деление.

Теперь у меня спокойно работают от генератора через фильтр: холодильники, насосы (глубинный и циркуляционные), газовый котел, трансформаторы и прочее, чувствительное к синусоиде, оборудование. И самое главное — я нашел на самом деле реальное практическое решение для преобразования меандра в синусоиду. В единственном, на просторах Интернет, месте. Да, и еще я получил очень хороший экономический эффект. Выражаю еще раз благодарность команде hw4.ru и автору статьи!

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Ребята! Было бы очень круто если бы Вы пояснили. Хочу тоже сделать, но на ток 6 ампер (1200W). Для двухтактного дросселя какое значение индуктивности? (для каждой обмотки, которые потом соединены последовательно). Кондеры по 100 мкф? Второй дроссель (однотактный) какой индуктивности? Читать ответ.

Здравствуйте! Опишите пожалуйста подробнее процесс настройки (как и на сколько меняются значения напряжения). У меня при расчетном зазоре напряжение на дросселе равно сетевому напряжению. При уменьшении зазора напряжение начинает занижаться относительно входного. Читать ответ.

Реактивный ток через конденсатор, по моему, не должен его греть, все, по моему, зависит от материала конденсатора и максимально возможного тока через него — на 50гц и 300в и 100мкф максимальный ток составит около 10а это при прямом включении в сеть и нагрузку (он греться не должен), но в резонансе сопротивление LC контура ничтожно и ток превышает рабочий — тут вот при 16 А Читать ответ.

Совершенно верно, что параллельный контур на резонансе имеет очень большое сопротивление току — это верно равноценно обрыву цепи, Вопрос: так может быть его вообще убрать (с последовательным все понятно -максимальный ток в резонансе и превращение меандра в синусоиду)? Читать ответ.

Уважаемый автор, можно ли вместо двух дросселей, используемых в резонансном фильтре, использовать один ЛАТР подходящей мощности с движком, установленным посредине? Заранее благодарен за любой ответ. Читать ответ.

Отписываюсь по итогам сборки, наладки и испытания фильтра. Фильтр собран подобный вашему, только у вас Г-образный, а у меня Т-образный. Но главное отличие в том, что в вашем фильтре параллельный колебательный контур настроен на частоту 50 Гц, что совершенно недопустимо, т.к. при таком режиме он имеет минимальное сопротивление, равное активному сопротивлению катушки — а это пра Читать ответ.

Всё очень красиво смотрится, особенно синусоида на выходе фильтра. Только вызывает сомнение, что неполярные конденсаторы (изображённые на фото) будут достаточно долго работать на токах порядка 15А. На взгляд умудрённого опытом электрика маловат их габарит и сечение выводов. Подобный фильтр я изготовлю, только на рабочий ток 1А (для циркуляционного насоса и лампочки аварий Читать ответ.

А автор статьи не думал делать такие фильтры на заказа? У провайдеров есть довольно таки существенный спрос на такие вещи. Мы бы вот купили себе тоже такой фильтр именно для того что бы во время отключения электроэнергии на генераторе висеть без проблем. Реально не могли бы такой один фильтр собрать за деньги на заказ? Думаю после нас еще подтянутся провайдеры. Читать ответ.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Опыт повторения, сборки, наладки резонансного фильтра для получения си.
Расчет, сборка и наладка фильтра высших гармоник для получения мощного синусоида.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

устройство для резервного, аварийного, запасного питания котла, циркул.
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр.

Силовой импульсный преобразователь, источник синуса, синусоиды, синусо.
Принцип работы, самостоятельное изготовление и наладка импульсного силового прео.

Практический опыт повторения конструкции преобразователя меандра в синусоиду на основе резонансного фильтра. (10+)

Опыт повторения конструкции фильтра

Материал является пояснением и дополнением к статье:
Получаем синусоиду от инвертора
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы запитать бытовые и специальные электроприборы. Применяем инвертор и оригинальную схему фильтра.

Хотел бы поблагодарить автора статьи за замечательную реализацию идеи резонансных LC фильтров. Моя ситуация заключалась в следующем: я приобрел небольшой инверторный генератор на 6кВА. Большим его преимуществом стало для меня то, что он весьма легковесный (58кг), соответственно, его не нужно устанавливать стационарно на улице или в отдельном помещении. Можно выкатывать на улицу и закатывать обратно в гараж по мере необходимости. Также он обеспечивает стабильное напряжение и частоту. Недостаток был один и весьма существенный — на выходе генератора не синусоида, а модифицированный меандр.

Осциллограмма напряжения на выходе генератора

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Подобный тип выходного напряжения очень пагубно сказывается на реактивных нагрузках. Блоки питания телевизоров жужжат, трансформаторы, электродвигатели и насосы греются, и вполне вероятен выход их из строя. Сигнал содержит большое количество высокочастотных составляющих.

Решения проблемы было два: первое мне не подходило по определению. Это приобретение генератора с чистой синусоидой на выходе. Во-первых, потому что такие генераторы требуют уличной стационарной установки, либо установки в специальном помещении, которого у меня нет. Во, вторых, они тяжелы. Устанавливать на улице я не очень хотел, потому что зимняя эксплуатация сразу доставит много проблем, учитывая то, что это аварийное питание и включается нечасто. В-третьих, они дороже минимум в 2.5 раза, чем мой. Второе решение заключалось в поиске схемы, которая уберет высокочастотные составляющие из спектра тока и, в идеале, приблизит подаваемый на вход сигнал к чистой синусоиде 50 Гц.

После изучения всех вариантов я остановился на описанном в статье решении на базе силовых резонансных фильтров. Автор статьи любезно отвечал мне на все возникавшие вопросы и благодаря ему я быстро смог продвинуться в создании своего собственного фильтра. Рассчитывал я его на ток 18А. С запасом, чтобы предотвратить насыщение сердечника на больших токах — до 16А. Параллельный контур я оставил как в статье — на 10А. Там большие токи не проходят.

Медь для обмотки я нашел достаточно быстро. Конденсаторы тоже. Сразу на 100мкФ — пусковые. Определенные проблемы возникли только с поиском трансформаторного железа. Но и это было преодолено, и я приступил к сборке.

Настраивал я контуры не последовательно, а параллельно. Мне так было удобнее. В нагрузку включал также лампу накаливания. После намотки первого дросселя (10А) — для параллельного фильтра, я замерил индуктивность катушки без прокладки. Прибор показал 120мГн. Чему я был очень рад. Дальше я начал настраивать контур в резонанс, увеличивая толщину прокладки.

Второй контур с дросселем на 18А я также настраивал в резонанс на параллельном включении. Тут уже катушка без прокладки показала мне 420мГн.

В результате тонкой настройки я получил на выходе обоих контуров вот такой сигнал (порядка 20В действующего). Спираль лампы накаливания была еле красноватой:

Выход параллельного LC фильтра. 20В/деление.

Это минимальное напряжение, которое мне удалось получить на фильтре.

Затем я собрал схему уже как положено. На стенде.

Трансформаторные пластины были стянуты, залиты. Дроссели были стянуты диэлектрическими бандажами и помещены в корпус.

На вход фильтра я подал напряжение сети 220В. С нагрузкой в виде лампы накаливания 100Вт на выходе получилось падение 13В. Это составило 207В.

Самое приятное меня ожидало впереди. Я подал напряжение с генератора на фильтр и получил на выходе: о чудо! Только первую гармонику! Сигнал с фильтра опередил по качеству сигнал с трансформаторной подстанции.

Выход с резонансного LC — фильтра. 100В/деление.

Под нагрузкой я получил некоторое весьма незначительное искажение синусоиды по верхнему фронту, но график все равно остался лучше, чем с подстанции. Также получил падение напряжения, которое зависит от нагрузки. Но в среднем рабочем режиме я имею порядка 205В. Меня и мои домашние приборы это вполне устроило. Но тем, кто будет собирать эти фильтры после меня, могу порекомендовать: делайте все возможное, чтобы сократить количество витков на дросселях и наматывайте их проводом максимально возможного сечения. Это уменьшит падение напряжения под нагрузкой!

Сегодня я все же провел небольшой апгрейд. На дроссель параллельного фильтра намотал еще около 25 витков изолированным проводом и сделал вольтодобавку. Вот по этой схеме:

Схема фильтра с вольтодобавочным трансформатором

Получил +8 Вольт к напряжению источника. Теперь на холостом ходу при входном напряжении 222В у меня не 212, как раньше, а 230В.

Осциллограмма с выхода фильтра с вольтодобавочным трансформатором. На входе — генератор. Частота по входу — 50.0Гц +/- 0.3Гц. 100В/деление.

Теперь у меня спокойно работают от генератора через фильтр: холодильники, насосы (глубинный и циркуляционные), газовый котел, трансформаторы и прочее, чувствительное к синусоиде, оборудование. И самое главное — я нашел на самом деле реальное практическое решение для преобразования меандра в синусоиду. В единственном, на просторах Интернет, месте. Да, и еще я получил очень хороший экономический эффект. Выражаю еще раз благодарность команде hw4.ru и автору статьи!

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Ребята! Было бы очень круто если бы Вы пояснили. Хочу тоже сделать, но на ток 6 ампер (1200W). Для двухтактного дросселя какое значение индуктивности? (для каждой обмотки, которые потом соединены последовательно). Кондеры по 100 мкф? Второй дроссель (однотактный) какой индуктивности? Читать ответ.

Здравствуйте! Опишите пожалуйста подробнее процесс настройки (как и на сколько меняются значения напряжения). У меня при расчетном зазоре напряжение на дросселе равно сетевому напряжению. При уменьшении зазора напряжение начинает занижаться относительно входного. Читать ответ.

Реактивный ток через конденсатор, по моему, не должен его греть, все, по моему, зависит от материала конденсатора и максимально возможного тока через него — на 50гц и 300в и 100мкф максимальный ток составит около 10а это при прямом включении в сеть и нагрузку (он греться не должен), но в резонансе сопротивление LC контура ничтожно и ток превышает рабочий — тут вот при 16 А Читать ответ.

Совершенно верно, что параллельный контур на резонансе имеет очень большое сопротивление току — это верно равноценно обрыву цепи, Вопрос: так может быть его вообще убрать (с последовательным все понятно -максимальный ток в резонансе и превращение меандра в синусоиду)? Читать ответ.

Уважаемый автор, можно ли вместо двух дросселей, используемых в резонансном фильтре, использовать один ЛАТР подходящей мощности с движком, установленным посредине? Заранее благодарен за любой ответ. Читать ответ.

Отписываюсь по итогам сборки, наладки и испытания фильтра. Фильтр собран подобный вашему, только у вас Г-образный, а у меня Т-образный. Но главное отличие в том, что в вашем фильтре параллельный колебательный контур настроен на частоту 50 Гц, что совершенно недопустимо, т.к. при таком режиме он имеет минимальное сопротивление, равное активному сопротивлению катушки — а это пра Читать ответ.

Всё очень красиво смотрится, особенно синусоида на выходе фильтра. Только вызывает сомнение, что неполярные конденсаторы (изображённые на фото) будут достаточно долго работать на токах порядка 15А. На взгляд умудрённого опытом электрика маловат их габарит и сечение выводов. Подобный фильтр я изготовлю, только на рабочий ток 1А (для циркуляционного насоса и лампочки аварий Читать ответ.

А автор статьи не думал делать такие фильтры на заказа? У провайдеров есть довольно таки существенный спрос на такие вещи. Мы бы вот купили себе тоже такой фильтр именно для того что бы во время отключения электроэнергии на генераторе висеть без проблем. Реально не могли бы такой один фильтр собрать за деньги на заказ? Думаю после нас еще подтянутся провайдеры. Читать ответ.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Опыт повторения, сборки, наладки резонансного фильтра для получения си.
Расчет, сборка и наладка фильтра высших гармоник для получения мощного синусоида.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

устройство для резервного, аварийного, запасного питания котла, циркул.
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр.

Силовой импульсный преобразователь, источник синуса, синусоиды, синусо.
Принцип работы, самостоятельное изготовление и наладка импульсного силового прео.

Вступление

Еще не стерлись из памяти события «лихих» 90-х. Помнится МММ, разгул криминала, веерные отключения электроэнергии. На Украине, например, во второй половине 90-х дело доходило до того, что свет в жилых районах выключали на 2 часа через каждые 2 часа. Помнится, наиболее коварным был зимний период темноты между пятью и семью часами вечера. Как раз, когда народ возвращался с работы. Выгружаешься на остановке, автобус уезжает, и ты остаешься в полной темноте. Пытаешься привыкнуть, трешь глаза, давишь на глазные яблоки. Все безрезультатно, вокруг полная темнота. Делать нечего, осторожно ступаешь во мраке, пытаясь нащупать заветный забор, который должен вывести к родной калитке и потихоньку, на ощупь, домой.

Однако в этих мытарствах были и положительные элементы. Например, резко возрос спрос на разные бензо- и дизель-генераторы, а также на электронные преобразователи и бесперебойные источники тока. Последнее обстоятельство позволило людям творческим применить свои профессиональные навыки и даже немного улучшить на этом поприще свое финансовое положение. А там, глядишь, появились различные фирмочки, выпускающие эти самые преобразователи и бесперебойники. Какой-никакой подъем в экономике образовался, дополнительные рабочие места и т. п. Собственно, и Ваш покорный слуга, примерно в те времена, из электроники слабосильной подался в электронику силовую.

Нельзя сказать, что тогда с этой самой электроникой сильно мудрили. Делали, чтобы было просто, надежно и дешево. В принципе, для того чтобы питать одну-две лампочки, больше ничего и не требовалось. Однако по мере развития процесса конкуренция ужесточалась. Народу уже стало из чего выбирать. Особо привередливые начали интересоваться формой напряжения на выходе преобразователей и бесперебойников. На что им очень обтекаемо отвечали, что форма там практически синусоидальная, но лишь слегка модифицированная. Более честные говорили, что там присутствует синусоида, но только квадратная. А уж совсем честные говорили напрямую, что их преобразователи и бесперебойники формируют на выходе прямоугольное напряжение с паузой. Но параметры этого напряжения (амплитудное и действующее значение, а также частота) практически соответствуют аналогичным параметрам однофазного переменного напряжения бытовой электросети. В принципе, такое напряжение вполне подходило для основных бытовых электропотребителей, таких телевизоры, компьютеры, а также накальные и люминесцентные лампы. Те же электропотребители, которые требовали чисто синусоидального напряжения (асинхронные двигатели, например), были в меньшинстве и погоды особой не делали.

Однако такое положение не могло длиться вечно. Количество отключений сокращалось и в какой-то момент они практически вообще прекратились. Однако параллельно на рынке бытовых товаров стали появляться отопительные котлы, оборудованные циркуляционными насосами, приводными задвижками и электронным управлением. Такие котлы требовали высококачественного бесперебойного электропитания. В противном случае, при отключении электричества работа системы отопления полностью нарушалась.

И вот тут возникала некая дилемма. Многие владельцы отопительного чуда уже обладали бесперебойными источниками, мощности которых с лихвой хватало для питания котла. Однако, вот беда, циркуляционные насосы ни в какую не хотели крутиться от «прямоугольной синусоиды». Для чудо-котла надо было приобретать новый чудо-бесперебойный источник, формирующий на выходе чистейшую синусоиду. А куда же теперь девать старый, к которому уже душой прикипели. Нехорошо как-то все это!

Но положение не безвыходное и старый друг нам еще послужит! Для питания асинхронного двигателя от прямоугольного напряжения можно использовать фильтр Отто. Есть множество положительных примеров практического воплощения такого подхода. Однако такой вариант не самый простой и, уж точно, не универсальный. После продолжительной и утомительной настройки фильтр можно будет использовать только с конкретным двигателем. Хотелось бы чего-то более универсального. Таким более универсальным решением будет использование в качестве фильтра феррорезонансного или подобного ему стабилизатора. При этом феррорезонансный стабилизатор, включенный после бесперебойного источника, будет не только исправлять форму его выходного напряжения в периоды отсутствия сети (работа от аккумулятора), но и будет стабилизировать напряжение сети в моменты его присутствия.

Ниже приводится описание и принципиальная электрическая схема феррорезонансного стабилизатора мощностью 1000 Вт. В статье приведены формулы и методика расчета, которая позволит вам пересчитать стабилизатор на другую мощность, если это потребуется.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы имеют ряд достоинств, таких как высокая надежность и быстродействие, широкий диапазон входных напряжений, хорошая стабильность выходного напряжения, способность к исправлению формы сильно искаженного входного напряжения. Однако, не смотря на все свои достоинства, эти стабилизаторы имеют и некоторые недостатки, к которым можно отнести относительно низкую удельную мощность и высокий уровень шумов, создаваемых при работе.

Не так давно, в 60-80-х годах прошлого века, феррорезонансные стабилизаторы широко использовались в быту для питания ламповых телевизоров. И старшее поколение читателей, скорей всего, до сих пор помнит тот надрывный гул, которым сопровождалась работа этих аппаратов, которые различались формой и расцветкой, но имели вес 10-15 кг при мощности 250-350 Вт.

Основным источником шумов в феррорезонансном стабилизаторе является насыщающийся дроссель. В работе сердечник этого дросселя постоянно насыщается, что приводит к изменению его линейных размеров. Это явление называется магнитострикционным эффектом. О «шумности» этого эффекта говорит хотя бы тот факт, что он широко используется в гидроакустике для генерации мощных акустических волн. Следовательно, если мы хотим построить тихий стабилизатор, то в первую очередь должны избавиться от насыщающегося дросселя. Однако нельзя просто так выбрасывать неугодные комплектующие из стабилизатора. В этом случае мы рискуем потерять его функциональность. Чтобы этого не произошло, сначала нужно найти достойную замену. И на нашу удачу такая достоянная замена имеется. Еще в 70-х годах прошлого столетия была доказана возможность замены насыщающегося дросселя последовательной цепочкой, состоящей из линейного дросселя и двух встречно-параллельных тиристоров [1]. Такая цепь ведет себя аналогично насыщающемуся дросселю, но в отличие от него имеет меньшие размеры и массу, может оперативно регулироваться за счет управления тиристорами, обеспечивает меньшие потери и, самое главное, гораздо меньше шумит. В технической литературе такая цепочка зачастую называется резонансным тиристорным регулятором (РТР) [2]. При необходимости, два встречно-параллельных тиристора РТР можно с успехом заменить одним симистором.

Работа стабилизатора

Функциональная схема стабилизатора с РТР [2] изображена на Рисунке 1.

Рисунок 1. Функциональная схема стабилизатора с РТР.

Стабилизатор с РТР имеет практически тот же принцип действия, что и феррорезонансный стабилизатор. Выходное напряжение UН поддерживается на требуемом уровне (220 В). Когда напряжение питающей сети UС имеет минимальное значение, симистор VS1 заперт. При этом напряжение UН поднимается до требуемого уровня за счет резонанса в колебательном контуре L1C1. Если же напряжение питающей сети UС имеет максимально допустимое значение, то симистор VS1 постоянно открыт. При этом дроссели L1 и L2 образуют делитель переменного напряжения, уменьшающий сетевое напряжение до требуемого уровня. В феррорезонансном стабилизаторе насыщающийся дроссель также максимально используется при максимальном входном напряжении, и минимально при минимальном. Дроссель L3 совместно с конденсатором С1 образует фильтр третьей гармоники, улучшающий форму выходного напряжения стабилизатора.

Рисунок 2. Осциллограммы основных напряжений и токов стабилизатора с РТР.

Рассмотрим подробнее работу стабилизатора с РТР. На Рисунке 2 изображены осциллограммы основных напряжений и токов стабилизатора с РТР. Выходное напряжение стабилизатора UН выпрямляется при помощи выпрямителя В2. Выпрямленное напряжение UВ2 поступает на фильтр Ф, который выделяет из него среднее, действующее или амплитудное значение, в зависимости от того, какое значение выходного напряжения UН требуется стабилизировать. Далее напряжение с выхода фильтра поступает на сумматор, где сравнивается с опорным напряжением UОП. С выхода сумматора напряжение ошибки поступает на регулятор Рег, который формирует управляющий сигнал, призванный компенсировать отклонение выходного напряжения стабилизатора. Выходное напряжение регулятора UПОР поступает на вход порогового устройства ПУ и определяет его порог срабатывания. На другой вход порогового устройства подается синхронизирующее напряжение UВ1, привязанное к моментам перехода через ноль выходного напряжения UН стабилизатора. На выходе порогового устройства ПУ формируются импульсы управления UУПР, которые усиливаются усилителем мощности УМ и в требуемой полярности поступают на управляющий электрод симистора VS1. Синхронизирующее напряжение создается при помощи интегратора Инт и выпрямителя В1. Благодаря интегратору, импульсы выпрямленного напряжения UВ1 отстают от импульсов UВ2 на 5 мс (фазовый сдвиг –90°).

Импульсы управления UУПР формируются на нарастающем фронте UВ1 между нулевым и амплитудным значением этого напряжения. При увеличении порогового напряжения UПОР импульсы управления максимально сдвигаются к амплитудному значению UВ1 и, соответственно, к нулевому значению UВ2. В этом случае симистор открывается в районе нулевого значения UН и через линейный дроссель L2 протекает незначительный ток IL2, который не оказывает существенного влияния на выходное напряжение стабилизатора. При уменьшении порогового напряжения Uпор импульс управления сдвигается в сторону амплитудного значения UН и через линейный дроссель L2 начинает протекать существенный ток, который шунтирует выход стабилизатора и уменьшает величину его выходного напряжения.

Если выходное напряжение стабилизатора меньше требуемого, то регулятор Рег увеличивает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, уменьшается, и выходное напряжение стабилизатора возрастает за счет резонанса в колебательном контуре L1C1. Если выходное напряжение больше требуемого, то регулятор Рег уменьшает пороговое напряжение UПОР. В результате ток, протекающий через дроссель L2, увеличивается и выходное напряжение стабилизатора уменьшается.

Расчет силовой схемы стабилизатора

Рассмотрим практическую методику расчета стабилизатора мощностью 1000 ВА. Такой стабилизатор может использоваться как независимое устройство или совместно с устаревшими источниками бесперебойного питания для получения синусоидальной формы напряжения.

Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью SН = 1000 ВА изображена на Рисунке 3. Стабилизатор рассчитан на работу от сети переменного тока 220 В 50 Гц c нагрузкой, имеющей коэффициент мощности cos φН ≥ 0.7, и формирует выходное напряжение UН = 220 В ±1% во всем диапазоне нагрузок при изменении входного напряжения от 150 до 260 В.

Рисунок 3. Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью 1000 ВА.

Первым делом необходимо определить емкость резонансного конденсатора. Реактивную мощность резонансного конденсатора для стабилизатора без фильтра третьей гармоники можно найти по формуле:

– угловая частота сетевого напряжения, рад/с.

Зная реактивную мощность резонансного конденсатора, найдем его емкость:

Найдем индуктивность линейного дросселя L1:

Найдем индуктивность линейного дросселя L2:

Найдем индуктивность линейного дросселя L3:

Так как в стабилизаторе для улучшения формы выходного напряжения установлен фильтр третьей гармоники, емкость резонансного конденсатора можно уменьшить:

В качестве C1 можно использовать компенсирующие конденсаторы типа К78-99 или аналогичные, предназначенные для коррекции коэффициента мощности электромагнитных дросселей газоразрядных ламп. Например, можно использовать два включенных параллельно конденсатора К78-99 емкостью 50 мкФ, рассчитанных на напряжение 250 В переменного тока. Для этой же цели можно использовать конденсатор типа МБГВ 100 мкФ на напряжение 1000 В.

Конструкция/устройство винтового компрессора

В данной статье мы расскажем об основных элементах конструкции винтового компрессора и о его устройстве.

В настоящее время производством винтовых компрессоров занимается достаточно большое количество компаний по всему миру. Однако, как автомобиль состоит из кузова, двигателя и трансмиссии, так и винтовой компрессор разных производителей состоит из компонентов, имеющих различия в конструкции, но выполняющих одну и ту же задачу при работе агрегата.

Любой винтовой компрессор может быть схематично представлен следующим образом:

Основные элементы винтового компрессора

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – электродвигатель

5 – масляный резервуар

6 – сепаратор

7 – клапан минимального давления

8 – термостат

9 – масляный фильтр

10 – воздушный радиатор

11 – масляный радиатор

12 – вентилятор

13 – обратный клапан

14 – сетчатый фильтр

15 – выход сжатого воздуха

Входной фильтр

На входе винтового компрессора обязательно устанавливается фильтр, задачей которого является предотвращение проникновения в компрессор вместе с засасываемым воздухом пыли и твердых механических частиц.

Он представляет собой, как правило, цилиндрический патрон из гофрированной бумаги и может устанавливаться как открыто, так и в корпусе.

Воздушный фильтр винтового компрессора

Размер ячейки входного фильтра в большинстве случаев составляет 10 мкм, а площадь его поверхности соответствует производительности компрессора.

Всасывающий клапан

Наличие на входе винтового компрессора всасывающего клапана (иногда его еще называют регулятором всасывания) является отличительной особенностью компрессоров данного типа. Закрытие и открытие всасывающего клапана позволяет легко переводить компрессор в режим холостого хода и работы под нагрузкой соответственно.

Запорный элемент всасывающего клапана имеет вид поворотного (заслонки) или поступательно двигающегося диска с уплотнением. Положение запорного элемента изменяется под действием сжатого воздуха, подаваемого во внутренний или внешний пневмоцилиндр из масляного резервуара через управляющий электромагнитный клапан.

Всасывающий клапан винтового компрессора

Всасывающий клапан винтового компрессора

Запуск винтового компрессора всегда происходит при закрытом всасывающем клапане. Но для того, чтобы в масляном резервуаре произошло накопление сжатого воздуха с давлением, достаточным для последующего воздействия на поршень управляющего пневмоцилиндра, всасывающий клапан имеет канал небольшого сечения с обратным клапаном.

Обратный клапан

Винтовой блок

Основным рабочим элементом компрессора является винтовой блок, в котором собственно и происходит процесс сжатия всасываемого через входной фильтр воздуха.

Винтовой блок

В корпусе винтового блока расположены два вращающихся ротора – ведущий и ведомый. При их вращении происходит движение воздуха от всасывающей стороны к нагнетающей с одновременным уменьшением объема межроторных полостей, т.е. сжатие.

Принцип сжатия воздуха в винтовом блоке

Зазор между роторами уплотняется находящимся в корпусе винтового блока маслом. Масло также служит для смазывания подшипников и отвода тепла, образующегося при сжатии воздуха.

Также существуют безмасляные винтовые компрессоры классического исполнения (без уплотняющей жидкости) и с водяным впрыском в камеру сжатия вместо масла.

Электродвигатель

Для передачи вращения ведущему ротору винтового блока, как правило, используется обычный трехфазный асинхронный электродвигатель.

Электродвигатель

Исключение составляют мобильные винтовые компрессоры, в которых в качестве источника вращения используется дизельный двигатель.

Дизельный компрессор

Вращение от вала двигателя ведущему ротору винтового блока может передаваться как при помощи клиноременной передачи:

Ременной привод

или через муфту с эластичным элементом (так называемый «прямой привод»).

Муфта эластичная

В некоторых случаях применяется шестеренчатый привод (в компрессорах большой производительности).

Нередко бывает необходимо регулировать производительность винтового компрессора, изменяя частоту вращения вала двигателя. В этом случае электропитание двигателя осуществляют при помощи специального устройства – частотного преобразователя.

Частотный преобразователь

Применение частотного преобразователя позволяет в широких пределах регулировать производительность винтового компрессора в зависимости от реальной потребности в сжатом воздухе, не прибегая к переводу агрегата в режим холостого хода закрытием всасывающего клапана.

Масляный резервуар

Масляный резервуар играет очень важную роль в работе винтового компрессора:

  • выполняет роль первичного аккумулятора сжатого воздуха;
  • увеличивает объем масляной системы компрессора и, соответственно, количества масла, необходимого для эффективного отвода тепла, образовывающегося при сжатии воздуха;
  • работает, как отделитель основной массы масла от сжатого воздуха, т.к. масло-воздушный поток попадает в резервуар из винтового блока по касательной к его цилиндрической поверхности – как бы «закручивается».

Масляный резервуар

Масляный резервуар

Сепаратор

Для того, чтобы выходящий из винтового компрессора сжатый воздух содержал минимальное количество масла, в его конструкции обязательно применяется сепаратор.

Сепаратор может быть внешним (в компрессорах небольшой мощности) и встроенным в масляный резервуар.

Внешний вид встроенного сепаратора:

Сепаратор встроенный

Сепаратор внешний:

Сепаратор внешний

Сепаратор в разрезе с указанием потока масла и воздуха:

Сепаратор в разрезе

Благодаря наличию в конструкции винтового компрессора сепаратора содержание масла в сжатом воздухе на выходе не превышает 3 мг/м3.

Клапан минимального давления

Для нормальной циркуляции масла при работе винтового компрессора необходимо, чтобы давление в масляном резервуаре не опускалось ниже определенного минимально необходимого уровня.

Когда в магистрали, на которую работает винтовой компрессор, уже присутствует давление, это условие выполняется. А вот в случае, когда компрессор используется для заполнения пустого воздухосборника, для создания в масляном резервуаре повышенного давления используется клапан минимального давления.

Клапан минимального давления

Клапан минимального давления в разрезе:

Клапан минимального давления в разрезе

Этот клапан открывается при давлении на его входе, превышающем определенное значение, которое задается регулировкой сжатия закрывающей клапан пружины. Типичным для винтовых компрессоров давлением открытия клапана является значение 4÷4,5 бар.

Термостат

В винтовом компрессоре, как и в двигателе автомобиля, существует два круга системы охлаждения – малый и большой.

Сразу после запуска компрессора масло в нем циркулирует по малому кругу, что обеспечивает довольно быстрый рост температуры. Это необходимо, чтобы при сжатии воздуха не происходило выпадение конденсата и смешивание его с маслом, значительно ухудшающее его эксплуатационные свойства.

Малый круг охлаждения

После достижения определенного значения температуры масла термостат открывается, направляя поток циркуляции по большому кругу – через охлаждаемый вентилятором радиатор.

Большой круг охлаждения

Как правило, открытие термостата начинается при температуре масла +55°С и полностью завершается при температуре +70°С.

Масляный фильтр

В процессе работы винтового компрессора в масле могут присутствовать механические примеси – продукты износа движущихся частей и частицы пыли, размер которых меньше размера ячейки входного фильтра.

Для очистки масла от этих примесей в циркуляционный контур компрессора включается масляный фильтр.

Масляный фильтр в разрезе

Воздушный радиатор / Масляный радиатор / Вентилятор

Для охлаждения сжимаемого винтовым компрессором воздуха его пропускают через радиатор, который обдувается вентилятором. Температура сжатого воздуха на выходе компрессора, как правило, превышает температуру окружающей среды не более, чем на 20÷30 °С.

Для охлаждения циркулирующего в компрессоре масла служит масляный радиатор. Обычно воздушный и масляный радиаторы объединены в единый блок и обдуваются одним вентилятором (двумя в компрессорах большой мощности).

Обычно вентилятор приводится в действие отдельным электродвигателем.

Вентиляторы охлаждения

В небольших компрессорах зачастую для обдува радиаторов используется вентилятор, входящий в состав приводного двигателя.

Вентилятор охлаждения на двигателе

Обратный клапан / Сетчатый фильтр

Масло, отделяемое от сжатого воздуха в сепараторе, требуется вернуть в циркуляционный контур компрессора. Для этого используется специальная масловозвратная линия, имеющая в своем составе обратный клапан и сетчатый фильтр.


Масловозвратная линия

Для того, чтобы процесс возврата масла можно было наблюдать в реальном времени (это необходимо в диагностических целях), некоторые детали масловозвратной линии выполняют прозрачными.

Масловозвратная линия

Выход сжатого воздуха

На выходной патрубок винтового компрессора необходимо установить запорный кран, позволяющий отключить компрессор от магистрали сжатого воздуха на время проведения технического обслуживания или ремонта.

Также для соединения выхода компрессора с магистралью рекомендуется использовать гибкое соединение (металлорукав) для устранения влияния температурных и вибрационных деформаций трубопровода на соединение.

Шаровый кран и металлорукав

Когда можно использовать ИБП с аппроксимированной синусоидой

С продукцией PowerCom российские потребители уже знакомы, да и мы не раз писали о ее представителях. В прошлый раз, например, в фокус нашего внимания попал достаточно серьезный аппарат PowerCom Smart King XL : весьма качественный, но объективно избыточный для большинства домашних применений. На этот раз в нашу лабораторию поступил компактный источник бесперебойного питания из новой серии Phantom, который как раз и должен в первую очередь заинтересовать тех, кто собирается обеспечить надежным питанием одно рабочее место.

Описание

Данная модель является линейно-интерактивным ИБП, то есть имеет встроенный AVR-регулятор, позволяющий при отклонении напряжения в достаточно широком диапазоне обойтись без перехода на батарейное питание и при этом поддерживать выходное напряжение в стандартном диапазоне.

У нас на тестировании побывала средняя (600 В·А) модель из линейки производителя, включающей варианты с мощностью от 500 до 1000 В·А. Производитель заявляет следующие характеристики изделия:

Технические характеристики

Входное напряжение, частота

140—300 В, 50 или 60 Гц (±1 Гц)

Выходное (при работе от батарей) напряжение, частота

220 В ±5%

Автоматический регулятор напряжения

да

Выходная мощность (заявленная)

600 В·А (360 Вт)

Выходная мощность (активная, измеренная)

410 Вт

Форма выходного сигнала при работе от батарей

ступенчатая аппроксимация синусоиды

Время автономной работы от батареи для стандартного ПК

13 минут для стандартной конфигурации с 17-дюймовым монитором (экв. 150 Вт)

Функция запуска оборудования без подключения к электросети

есть

Тип, напряжение и емкость батареи

Yuasa NPW36-12, 12 В 7,2 А·ч — необслуживаемая герметичная свинцово-кислотная батарея

Время перезарядки батареи

не более 4 часов (до 90%)

Индикация

Звуковая сигнализация

отключается программно;
режимы: включение, переход в режим работы от аккумуляторов, сигнал низкого заряда батареи, перегрузка

Самодиагностика

при включении и по команде из ПО

Фильтрация импульсных помех

импульная защита: 460 Дж, 8/20 мкс

Защита от перегрузки

автоматически выключается, если перегрузка превышает 110% от номинала в течение 60 секунд или 130% в течение 3 секунд, также имеется автоматический предохранитель для защиты от короткого замыкания

Выходные разъемы

3 евророзетки: две с резервным питанием, третья — только фильтрация помех

Защита линий передачи данных

защита сети 10/100/1000 Base-T Ethernet, две розетки RJ-45

Интерфейс

USB

Размеры (Ш×Д×В)

102×350×148 мм
6,2 кг
менее 40 дБА

Условия работы

влажность 0—95% (без конденсации)
температура от 0 до +40 °C
Описание на сайте производителя PowerCom Phantom 600AP
Комплектация и гарантия


Комплект поставки:

  • инструкция по эксплуатации на русском языке
  • гарантийный талон
  • интерфейсный кабель USB
  • кабель для сети Ethernet с разъемами RJ-45
  • CD с программным обеспечением

Гарантийный срок эксплуатации: 2 года

Внешний вид


ИБП имеет классическую «башенную» компоновку, достаточно узкий корпус (10 см) и умеренный вес. Обращает на себя внимание черная передняя панель с единственной кнопкой включения по центру, которая при включении подсвечивается синим индикатором питания.


На задней панели имеются 3 стандартные евророзетки, что несомненно порадует домашних пользователей. Они хоть и занимают больше места на корпусе, чем розетки «компьютерного формата» IEC 320, но зато никаких проблем при подключении как самого компьютера, так и периферии не возникнет. Для взаимодействия с компьютерным ПО служит USB-интерфейс. Также имеются разъемы для защиты сетевого оборудования, подключаемого к сети Ethernet, и автоматический предохранитель.

Внутреннее устройство


Внутри корпуса обнаруживается минимум электронных компонентов, способ охлаждения пассивный, для чего силовые транзисторы прикручены к двум радиаторам (точнее: тепловым аккумуляторам). Соответственно, устройство практически бесшумное: как в пассивном режиме, так и при задействовании схем AVR и при работе от аккумуляторов, а также, что очень важно, и во время их заряда. Незначительный шум от самой электроники возникает лишь при работе с максимальной нагрузкой от батарей. Но этот режим, естественно, очень кратковременный, и даже тут шум с запасом укладывается в заявленные 40 дБА. Так что устройство 100-процентно домашнее.


Переключением между ступенями AVR-регулятора занимаются механические реле, рассчитанные на максимальный ток 7 А, что также означает солидный запас прочности. Инвертор построен на 4 транзисторах UTC UT108N03L производства компании Unisonic.


Трансформатор этому ИБП достался также достаточно адекватный, способный выдержать заявленную нагрузку.


Так выглядит фильтр импульсных помех в цепи передачи данных, имеется контакт с заземлением.

Батарея


Для замены аккумулятора пользователю придется отсоединить заднюю панель и разделить корпус самого ИБП на две половинки (в верхней находится электроника, а нижнюю занимает трансформатор и аккумулятор). В качестве аккумулятора компания PowerCom традиционно предпочитает изделия Yuasa. И этот выбор, надо сказать, достаточно неплохой из того, что есть сейчас на рынке.

В ИБП установлен аккумулятор модели NPW36-12 емкостью 7 А·ч, нормированной для режима 10-минутного разряда.

Тестирование

Работа от электросети

Мы использовали регулируемый автотрансформатор (ЛАТР), для того чтобы определить пороги переключения и фактическое напряжение на выходах при входном напряжении в диапазоне 0—263 В. Тестирование проводилось при полностью заряженном аккумуляторе и подключенной нагрузке около 100 Вт. Это типичное значение для современного компьютера в режиме простоя (или редактирования текста) с включенными опциями энергосбережения, учитывая, что значительную часть из этого потребляет включенный 20-дюймовый монитор.

Входное напряжение (при повышении от 0 до 263 В) Выходное напряжение Режим работы
223 В от батарей
147—170 В 208—238 В повышение (AVR 2 ст.)
171—208 В 198—236 В повышение (AVR 1 ст.)
209—246 В 209—246 В напрямую от сети
247—263 В 200—211 В понижение (AVR)

Входное напряжение (при понижении от 263 до 0 В) Выходное напряжение Режим работы
263—246 В 212—198 В понижение (AVR)
245—206 В 245—206 В напрямую от сети
206—170 В 226—192 В повышение (AVR 1 ст.)
169—134 В 236—190 В повышение (AVR 2 ст.)
223 В от батарей

Устройство отрабатывает как пониженное, так и повышенное напряжение в очень широком диапазоне без перехода на батарейное питание. Диапазон входного напряжения, при котором не требуется переход на батареи, составляет 134—263 В, при этом выходное напряжение держится в диапазоне 190—236 В. Формально, нижняя граница выходного напряжения слегка не соответствует заявленному отклонению в 5% от номинала. Но мне сложно представить современную (да и не очень) электронику, для которой напряжение 190 В являлось бы слишком низким для стабильной работы.

Скорость переключения между ступенями стабилизации и перехода на батарейное питание очень высока (в пределах заявленных 4 мс). Проблем при работе с устройствами, имеющими блок питания с активным PFC и поддерживающими широкий диапазон входного напряжения, зафиксировано не было.

Работа от батареи

При выходе напряжения из упомянутого диапазона ИБП переходит на аккумуляторное питание. Работа от батарей сопровождается звуковым сигналом умеренной громкости (50 дБА), раз в 5 секунд, а при исчерпании ресурса батареи — раз в секунду. Сигнализация отключается в настройках программного обеспечения и сохраняется в памяти устройства. В тихом режиме сигнализация остается лишь на случай перегрузки и полного исчерпания ресурса батареи — в таких случаях пользователь услышит либо непрерывный сигнал, либо частый прерывистый (с частотой раз в полсекунды).

Время работы от батарей при нагрузке 100 Вт составило 25 минут, при нагрузке 250 Вт (индикатор в ПО сообщил о 50%-ной нагрузке) время резервирования резко сократилось до 6 минут, а при полной нагрузке (410 Вт, индикатор указывает 108%, но устройство не сигнализирует о перегрузке и корректно работает) аккумулятор продержался всего 45 секунд, что, впрочем, вполне достаточно для корректного перевода компьютера в спящий режим.

Работа от батарей (при отсутствии нагрузки)

Работа в режиме понижения напряжения (на входе 250 В)

Работа в режиме повышения напряжения (1-я ступень, на входе 204 В)

Работа в режиме повышения напряжения (2-я ступень, на входе 150 В)

В любом случае на работоспособности цифрового оборудования помехи такого рода сказаться не могут.

Что касается режима автономной работы, то здесь никаких претензий нет. Форма аппроксимации остается корректной практически в любых режимах работы, даже при самой высокой нагрузке, ИБП отключается до того, как напряжение и форма могут «уплыть» за приемлемые границы. А при малой нагрузке форма напряжения вообще не меняется по мере разряда аккумулятора. Небольшие отклонения становятся заметны, только когда источник нагружен более чем на 50%. Ну а в трапецию форма напряжения превращается лишь в случае максимальной нагрузки в сочетании с практически севшей батареей. В целом — отличный результат для источника из этой ценовой категории.

Интерфейс и программное обеспечение

Источник совместим со стандартом Smart Battery, уровень заряда батареи корректно определяется штатными средствами операционной системы. Для управления и мониторинга служит комплектное ПО под названием UPSMon Plus.

Основные параметры демонстрируются в главном окне программы в наглядной форме.

Пользователь будет в курсе режима работы AVR, уровня заряда батареи, входной и выходной частоты.

Также пользователь может определить алгоритм работы при отключении питающей сети и задать выполнение определенных действий перед отключением. Ну а главное — отключить звуковую сигнализацию или настроить ее таким образом, чтобы она не побеспокоила домашних в ночное время.

Существует функция ведения логов. Кстати, на этом экране продемонстрирован режим заряда аккумулятора после экспресс-разряда максимальным током. Набор емкости до 90% занимает чуть более 10 минут (исходно, после подачи питания, источник сигнализирует о заряде в 80%), а достижение уровня 100% потребовало заряда еще в течение 1 часа 20 минут. Да, это лишь подтверждает тот факт, что аккумуляторы, используемые в современных ИБП, изначально рассчитаны на длительный цикл разряда. А разрядка высоким током позволяет использовать лишь долю их реальной емкости.

В ПО имеются также и возможности, которые будут востребованы в основном при коммерческом применении — например, развитые функции удаленного мониторинга.

Выводы

Эту модель можно смело назвать отличным «домашним» ИБП, хотя, конечно же, и в офисе для защиты отдельно взятых рабочих мест она может послужить неплохо. Но главные достоинства модели — возможность работы в широком диапазоне входных напряжений, бесшумность, компактность — востребованы в первую очередь в бытовом использовании.

Наличие стандартных евророзеток также повышает удобство в быту — возможно, кто-то захочет использовать такой источник и для подключения домашнего кинотеатра или любой другой цифровой техники. Для аналоговой аппаратуры это устройство применять нежелательно по причине использования аппроксимированной (в режиме автономной работы) и просто неидеальной сетевой (в режиме AVR) синусоиды.

Достоинства:
  • компактность и бесшумность
  • соответствие (и даже превышение) заявленной максимальной мощности
  • широкий диапазон входных напряжений без перехода на батарейное питание
  • отключаемая звуковая сигнализация
  • поддержка стандарта Smart Battery
Недостатки:
  • неидеальная синусоида в режиме стабилизации напряжения

Средняя текущая цена (в скобках: количество предложений, на которое можно щелкнуть для перехода к списку доступных в московской рознице): Н/Д(0)

Понятие «аппроксимированная синусоида» обозначает форму выходного сигнала ИБП, условно приближенную к синусоидальной форме. В обозначениях производителей также встречаются наименования «модифицированная синусоида», «квази-синусоида» и другие. Форма сигнала аппроксимированной синусоиды может быть трапецеидальной или ступенчатой. Аппроксимированным считается сигнал, отличающийся по форме от синусоиды более чем на 8%. Эта разница называется коэффициентом нелинейных искажений.

Варианты применения источников питания с аппроксимированной синусоидой

Жмите для подписки на в Фейсбуке!

Достижение высокой степени приближения к графику синуса обозначает усложнение конструкции ИБП и увеличение его цены. Правильный сигнал выдают источники бесперебойного питания типа on-line (с двойным преобразованием тока), наиболее качественные off-line и line-interactive. В ряде случаев целесообразно использование менее дорогостоящих off-line или line-interactive моделей. Это справедливо для большинства бытовой электроники с импульсными блоками питания и приборов с активной нагрузкой: компьютеров и компьютерной периферии;

  • телевизионного и звукового оборудования;
  • кухонных приборов;
  • электрических обогревателей;
  • ламп накаливания и иных средств освещения.

Когда ИБП с аппроксимированной синусоидой применять нельзя?

Для устройств со значительной реактивной составляющей расходуемой мощности, индуктивной нагрузкой и для помеховосприимчивых приборов подойдёт только чистый сигнал. К таким устройствам относятся асинхронные двигатели и оборудование, содержащее их – насосы, отопительные котлы, трансформаторы и старая электроника с трансформаторными блоками питания. ИБП с модифицированной синусоидой генерируют помехи, дают низкий эффективный ток (среднее напряжение), превышение силы потребляемого тока.

На практике это означает, в лучшем случае, невозможность включения оборудования, в худших вариантах – нехватку мощности при возрастающей силе тока, перегрев, быстрый выход приборов из строя или значительное уменьшение жизненного цикла. У лучших линейно-интерактивных ИБП коэффициент искажений не превышает 3–5%, у источников с двойным преобразованием синусоида чистая – сигнал формируется инвертором заново.

В каталоге интернет-магазина 220 Volt имеются сотни моделей ИБП оффлайн, интерактивного и онлайн типов в широчайшем ценовом разнообразии. Если вы сомневаетесь в том, какой ИБП купить, – специалисты магазина ответят на все вопросы и помогут в выборе бесперебойника и другой электротехники.

Нажмите и читайте в Фейсбуке!

Валентин Володин

Вступление

Еще не стерлись из памяти события «лихих» 90-х. Помнится МММ, разгул криминала, веерные отключения электроэнергии. На Украине, например, во второй половине 90-х дело доходило до того, что свет в жилых районах выключали на 2 часа через каждые 2 часа. Помнится, наиболее коварным был зимний период темноты между пятью и семью часами вечера. Как раз, когда народ возвращался с работы. Выгружаешься на остановке, автобус уезжает, и ты остаешься в полной темноте. Пытаешься привыкнуть, трешь глаза, давишь на глазные яблоки. Все безрезультатно, вокруг полная темнота. Делать нечего, осторожно ступаешь во мраке, пытаясь нащупать заветный забор, который должен вывести к родной калитке и потихоньку, на ощупь, домой.

Однако в этих мытарствах были и положительные элементы. Например, резко возрос спрос на разные бензо- и дизель-генераторы, а также на электронные преобразователи и бесперебойные источники тока. Последнее обстоятельство позволило людям творческим применить свои профессиональные навыки и даже немного улучшить на этом поприще свое финансовое положение. А там, глядишь, появились различные фирмочки, выпускающие эти самые преобразователи и бесперебойники. Какой-никакой подъем в экономике образовался, дополнительные рабочие места и т. п. Собственно, и Ваш покорный слуга, примерно в те времена, из электроники слабосильной подался в электронику силовую.

Нельзя сказать, что тогда с этой самой электроникой сильно мудрили. Делали, чтобы было просто, надежно и дешево. В принципе, для того чтобы питать одну-две лампочки, больше ничего и не требовалось. Однако по мере развития процесса конкуренция ужесточалась. Народу уже стало из чего выбирать. Особо привередливые начали интересоваться формой напряжения на выходе преобразователей и бесперебойников. На что им очень обтекаемо отвечали, что форма там практически синусоидальная, но лишь слегка модифицированная. Более честные говорили, что там присутствует синусоида, но только квадратная. А уж совсем честные говорили напрямую, что их преобразователи и бесперебойники формируют на выходе прямоугольное напряжение с паузой. Но параметры этого напряжения (амплитудное и действующее значение, а также частота) практически соответствуют аналогичным параметрам однофазного переменного напряжения бытовой электросети. В принципе, такое напряжение вполне подходило для основных бытовых электропотребителей, таких телевизоры, компьютеры, а также накальные и люминесцентные лампы. Те же электропотребители, которые требовали чисто синусоидального напряжения (асинхронные двигатели, например), были в меньшинстве и погоды особой не делали.

Однако такое положение не могло длиться вечно. Количество отключений сокращалось и в какой-то момент они практически вообще прекратились. Однако параллельно на рынке бытовых товаров стали появляться отопительные котлы, оборудованные циркуляционными насосами, приводными задвижками и электронным управлением. Такие котлы требовали высококачественного бесперебойного электропитания. В противном случае, при отключении электричества работа системы отопления полностью нарушалась.

И вот тут возникала некая дилемма. Многие владельцы отопительного чуда уже обладали бесперебойными источниками, мощности которых с лихвой хватало для питания котла. Однако, вот беда, циркуляционные насосы ни в какую не хотели крутиться от «прямоугольной синусоиды». Для чудо-котла надо было приобретать новый чудо-бесперебойный источник, формирующий на выходе чистейшую синусоиду. А куда же теперь девать старый, к которому уже душой прикипели. Нехорошо как-то все это!

Но положение не безвыходное и старый друг нам еще послужит! Для питания асинхронного двигателя от прямоугольного напряжения можно использовать фильтр Отто. Есть множество положительных примеров практического воплощения такого подхода. Однако такой вариант не самый простой и, уж точно, не универсальный. После продолжительной и утомительной настройки фильтр можно будет использовать только с конкретным двигателем. Хотелось бы чего-то более универсального. Таким более универсальным решением будет использование в качестве фильтра феррорезонансного или подобного ему стабилизатора. При этом феррорезонансный стабилизатор, включенный после бесперебойного источника, будет не только исправлять форму его выходного напряжения в периоды отсутствия сети (работа от аккумулятора), но и будет стабилизировать напряжение сети в моменты его присутствия.

Ниже приводится описание и принципиальная электрическая схема феррорезонансного стабилизатора мощностью 1000 Вт. В статье приведены формулы и методика расчета, которая позволит вам пересчитать стабилизатор на другую мощность, если это потребуется.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы имеют ряд достоинств, таких как высокая надежность и быстродействие, широкий диапазон входных напряжений, хорошая стабильность выходного напряжения, способность к исправлению формы сильно искаженного входного напряжения. Однако, не смотря на все свои достоинства, эти стабилизаторы имеют и некоторые недостатки, к которым можно отнести относительно низкую удельную мощность и высокий уровень шумов, создаваемых при работе.

Не так давно, в 60-80-х годах прошлого века, феррорезонансные стабилизаторы широко использовались в быту для питания ламповых телевизоров. И старшее поколение читателей, скорей всего, до сих пор помнит тот надрывный гул, которым сопровождалась работа этих аппаратов, которые различались формой и расцветкой, но имели вес 10-15 кг при мощности 250-350 Вт.

Основным источником шумов в феррорезонансном стабилизаторе является насыщающийся дроссель. В работе сердечник этого дросселя постоянно насыщается, что приводит к изменению его линейных размеров. Это явление называется магнитострикционным эффектом. О «шумности» этого эффекта говорит хотя бы тот факт, что он широко используется в гидроакустике для генерации мощных акустических волн. Следовательно, если мы хотим построить тихий стабилизатор, то в первую очередь должны избавиться от насыщающегося дросселя. Однако нельзя просто так выбрасывать неугодные комплектующие из стабилизатора. В этом случае мы рискуем потерять его функциональность. Чтобы этого не произошло, сначала нужно найти достойную замену. И на нашу удачу такая достоянная замена имеется. Еще в 70-х годах прошлого столетия была доказана возможность замены насыщающегося дросселя последовательной цепочкой, состоящей из линейного дросселя и двух встречно-параллельных тиристоров . Такая цепь ведет себя аналогично насыщающемуся дросселю, но в отличие от него имеет меньшие размеры и массу, может оперативно регулироваться за счет управления тиристорами, обеспечивает меньшие потери и, самое главное, гораздо меньше шумит. В технической литературе такая цепочка зачастую называется резонансным тиристорным регулятором (РТР) . При необходимости, два встречно-параллельных тиристора РТР можно с успехом заменить одним симистором.

Работа стабилизатора

Функциональная схема стабилизатора с РТР изображена на Рисунке 1.

Стабилизатор с РТР имеет практически тот же принцип действия, что и феррорезонансный стабилизатор. Выходное напряжение U Н поддерживается на требуемом уровне (220 В). Когда напряжение питающей сети U С имеет минимальное значение, симистор VS1 заперт. При этом напряжение U Н поднимается до требуемого уровня за счет резонанса в колебательном контуре L1C1. Если же напряжение питающей сети U С имеет максимально допустимое значение, то симистор VS1 постоянно открыт. При этом дроссели L1 и L2 образуют делитель переменного напряжения, уменьшающий сетевое напряжение до требуемого уровня. В феррорезонансном стабилизаторе насыщающийся дроссель также максимально используется при максимальном входном напряжении, и минимально при минимальном. Дроссель L3 совместно с конденсатором С1 образует фильтр третьей гармоники, улучшающий форму выходного напряжения стабилизатора.

Рассмотрим подробнее работу стабилизатора с РТР. На Рисунке 2 изображены осциллограммы основных напряжений и токов стабилизатора с РТР. Выходное напряжение стабилизатора U Н выпрямляется при помощи выпрямителя В2. Выпрямленное напряжение U В2 поступает на фильтр Ф, который выделяет из него среднее, действующее или амплитудное значение, в зависимости от того, какое значение выходного напряжения U Н требуется стабилизировать. Далее напряжение с выхода фильтра поступает на сумматор, где сравнивается с опорным напряжением U ОП. С выхода сумматора напряжение ошибки поступает на регулятор Рег, который формирует управляющий сигнал, призванный компенсировать отклонение выходного напряжения стабилизатора. Выходное напряжение регулятора U ПОР поступает на вход порогового устройства ПУ и определяет его порог срабатывания. На другой вход порогового устройства подается синхронизирующее напряжение U В1 , привязанное к моментам перехода через ноль выходного напряжения U Н стабилизатора. На выходе порогового устройства ПУ формируются импульсы управления U УПР, которые усиливаются усилителем мощности УМ и в требуемой полярности поступают на управляющий электрод симистора VS1. Синхронизирующее напряжение создается при помощи интегратора Инт и выпрямителя В1. Благодаря интегратору, импульсы выпрямленного напряжения U В1 отстают от импульсов U В2 на 5 мс (фазовый сдвиг -90°).

Импульсы управления U УПР формируются на нарастающем фронте U В1 между нулевым и амплитудным значением этого напряжения. При увеличении порогового напряжения U ПОР импульсы управления максимально сдвигаются к амплитудному значению U В1 и, соответственно, к нулевому значению U В2 . В этом случае симистор открывается в районе нулевого значения U Н и через линейный дроссель L2 протекает незначительный ток I L2 , который не оказывает существенного влияния на выходное напряжение стабилизатора. При уменьшении порогового напряжения Uпор импульс управления сдвигается в сторону амплитудного значения U Н и через линейный дроссель L2 начинает протекать существенный ток, который шунтирует выход стабилизатора и уменьшает величину его выходного напряжения.

Если выходное напряжение стабилизатора меньше требуемого, то регулятор Рег увеличивает пороговое напряжение U ПОР. В результате ток, протекающий через дроссель L2, уменьшается, и выходное напряжение стабилизатора возрастает за счет резонанса в колебательном контуре L1C1. Если выходное напряжение больше требуемого, то регулятор Рег уменьшает пороговое напряжение U ПОР. В результате ток, протекающий через дроссель L2, увеличивается и выходное напряжение стабилизатора уменьшается.

Расчет силовой схемы стабилизатора

Рассмотрим практическую методику расчета стабилизатора мощностью 1000 ВА. Такой стабилизатор может использоваться как независимое устройство или совместно с устаревшими источниками бесперебойного питания для получения синусоидальной формы напряжения.

Принципиальная электрическая схема силовых цепей стабилизатора с РТР мощностью S Н = 1000 ВА изображена на Рисунке 3. Стабилизатор рассчитан на работу от сети переменного тока 220 В 50 Гц c нагрузкой, имеющей коэффициент мощности cos φ Н ≥ 0.7, и формирует выходное напряжение U Н = 220 В ±1% во всем диапазоне нагрузок при изменении входного напряжения от 150 до 260 В.

  • Я думаю что с появлением мощных транзисторов все добросовестные производители должны были бы перейти на импульсные блоки питания. Для импульсника вообще без разницы какая там форма входящего сигнала, он все равно первым делом превращает ее в постоянку. Я бы вообще ввел стандарт для бытовой сети к примеру 12V постоянного тока. Это позволило бы унифицировать приборы для автомобилей и для дома, упростить подключение бесперебойников и альтернативных источников. При этом вероятно все таки следует сохранить мощную высоковольтную сеть для передачи больших мощностей. Просто на входе в квартиру ставим один выпрямитель / преобразователь, отдельную подводку для плиты или кондиционера, а все остальное от 12V. Однако я пока не видел ни одной микроволновки чтобы в ней не было громоздкого трансформатора весом ни как не меньше 5 кг. Кстати, электродвигатели тоже можно было бы существенно уменьшить в размерах если бы питать их от высокочастотных преобразователей многофазным током. Но похоже все дело в инерции мышления.
  • Инерция мышления? Вы представьте себе провода для утюга 3Квт при питании от 12 вольт! Проводку в квартирах вы собираетесь медной шиной прокладывать?! Если в среднем взять нормальное потребление квартиры на уровне 1,5 кВт, то при 12 вольтах в сети получаем всего-то 125 Ампер ток, что при норме 4,5 А/кв.мм. дает провод сечением 27 кв.мм. ничего себе, отсутствие инерции мышления!
  • Появятся, когда импульсники для микроволновки станут дешевле трансформатора. Когда-то и микроволновок не было. Про 12 вольтовую сеть уже писали. Хотелось бы, чтобы инерция мышления относительно этой идеи продолжалась как можно дольше.
  • Новое не значит лучшее. Идеальный стабилизатор или точней близкий можно создать на основе механического преобразователя эл.двигатель- генератор. 12 в. никто даже не будет рассматривать как бытовой стандарт. Как компромис существует стандарт 28 вольт. Импульсный блок питания сам большая проблема. Экономия в весе выливается в высокочастотные помехи и почти нерегулируемое напряжение на выходе.
  • =Незарегистрированный;150554] Однако я пока не видел ни одной микроволновки чтобы в ней не было громоздкого трансформатора весом ни как не меньше 5 кг...Позвольте не согласиться-а инверторные модули м/в Панасоник?
  • Есть у панасоника микроволновки с высоковольтными импульсными блоками питания. На выходе удвоитель стоит - с 1.5 кВ до 3 повышает. Чуть магнетрон подседает диоды со свистом летят. А магнетрон специфический. Другим не заменишь и по цене проще новую купить. Помехи тоже имеются. А насчет 12 В на проводах разоришься. Такого типа феррорезонансные стабилизаторы хорошо работают.
  • То, что вы не видели, говорит только о том, как мало вы знаете...И СВЧ-печи, и кондиционеры, и холодильники уже давно придуманы, называются "инверторные", используют выпрямленное сетевое напряжение и преобразователь...Правда пока цена высоковата...
  • Вместо философии нужно теорию хотя-бы немного читать. В микроволновке трансформатор не понижающий а наоборот повышающий. Магнетрон от 12 вольт работать не будет. Напряжение чем выше, тем меньше ток при той же передаваемой мощности, и соответственно меньше потери на тепловыделение в проводах, и меньше расход материала на их изготовление.
  • Высокое напряжение позволяет экономить на проводах, а то обстоятельство, что ток переменный, позволяет, для изменения напряжения, использовать простой, надежный и весьма эффективный элемент - трансформатор.
  • Купил инвертор типа на 2 квт. Работает но смущает что стали трещать автомат и некоторые лампы. Это из за пилы? Как ее сгладить?
  • Экспериментировал с дросселями и ёмкостями, добился нормальной синусоиды. Но при изменении нагрузки меняется напряжение. Если постоянная нагрузка в каких то приделах то можно попробовать дросселями.
  • А схемку дадите?
  • В начале темы дана ссылка на статью, в которой описан способ решения проблемы формы и стабильности напряжения. Там же есть схема, перечень деталей и методика настройки. Как получить чистую синусоиду из модифицированной. Часть 1 Как получить чистую синусоиду из модифицированной. Часть 2
  • Я эту схему брал за основу и подбирал дросселя. Которая схема в этой теме не пробовал. Будет время или прежмет отключение электро-энергии тогда займусь.
  • Это фильтр Отто. Его имеет смысл использовать только с фиксированной нагрузкой. Например, для питания асинхронного двигателя. Фильтр Отто
  • У меня нагрузка освещение, то есть переменная мощность. Не устраивает: лампы горят тусклее чем от сети (любые накаливания, светодиодные и ртутные) трещит автомат и лампы некоторые.

Система управления двигателем гибридного транспортного средства и гибридное транспортное средство

Область техники, к которой относится изобретение

Настоящее изобретение в основном относится к способам и системам увеличения выходной мощности гибридного транспортного средства.

Уровень техники

Двигатели в гибридных транспортных средствах могут работать по циклу Аткинсона, что способствует более высокой экономии топлива по сравнению с работой по циклу Отто. При работе по циклу Аткинсона впускной клапан могут удерживать в открытом положении более длительное временя по сравнению с периодом открытого положения впускного клапана в течение цикла Отто. Ввиду более длительного открытия впускного клапана, эффективный коэффициент сжатия в цикле Аткинсона ниже, чем соответствующий коэффициент сжатия, достигаемый для цикла Отто. Для цикла Аткинсона, эффективный коэффициент расширения выше, чем коэффициент сжатия, что обеспечивает более высокую эффективность использования топлива. В связи с этим, мощность, переданная посредством работы двигателя по циклу Аткинсона, может быть меньше, чем мощность, переданная посредством работы двигателя по циклу Отто. В дополнение к этому, при работе двигателя по циклу Аткинсона может быть использовано топливо с пониженным октановым числом.

Были использованы различные подходы для работы двигателей транспортных средств по циклу Аткинсона. В одном из примеров подхода, представленного Кларком в патентном документе US 7765806, цикл Аткинсона использован в двигателе гибридного транспортного средства для увеличения эффективности использования топлива. В данном документе, для увеличения выходной мощности двигателя цикла Аткинсона во время повышения требования водителя, компрессор может быть использован для выборочного увеличения давления всасываемого воздуха и обеспечения желаемой мощности. Электромотор может быть использован для работы компрессора. Дополнительно, на основании желаемого требования мощности, электромотор в гибридном силовом агрегате может быть использован для приведения в движение транспортного средства и обеспечения желаемой мощности для эффективной работы транспортного средства.

Авторами настоящего изобретения определены потенциальные проблемы вышеупомянутого подхода. В качестве одного из примеров, посредством использования компрессора с электрическим приводом во время требований повышенной мощности, потребление энергии двигателя может увеличиться, что можно отнести к паразитным потерям мощности двигателя и/или к питанию аккумуляторной батареи, что снижает эффективность двигателя. Дополнительно, в условиях низкой степени заряженности аккумуляторной батареи, электромотор не может быть эффективно использован для вращения компрессора и/или приведения в движение транспортного средства. Авторами настоящего изобретения также определено, что даже с увеличением подачи всасываемого воздуха, выходной мощности двигателя, работающего по циклу Аткинсона, может быть недостаточно для удовлетворения требования водителя, что влияет на характеристики транспортного средства и увеличивает уровни шума, вибрации, жесткости (ШВЖ).

Сущность изобретения

В одном из примеров, проблемы, раскрытые выше, могут быть устранены посредством способа для гибридного транспортного средства, содержащего двигатель и электромотор, включающего в себя: в ответ на более низкий, чем пороговое значение, требуемый крутящий момент, и более низкую, чем пороговое значение, степень заряженности системной аккумуляторной батареи, работу двигателя с использованием цикла Аткинсона; и в ответ на более высокий, чем пороговое значение, требуемый крутящий момент, работу двигателя с использованием цикла Отто с добавлением во впрыскиваемое топливо присадки, повышающей октановое число. Таким образом, в ответ на увеличение требуемого водителем крутящего момента, посредством впрыска октановой добавки в топливо и посредством регулировки впускной фазы газораспределения для работы двигателя по циклу Отто, вместо цикла Аткинсона, может быть обеспечена желаемая мощность.

В качестве одного из примеров, в гибридном транспортном средстве, в условиях, когда мощность, желаемая для работы транспортного средства ниже, чем пороговое значение, и при невозможности использования электромотора для отбора желаемой мощности, например, когда заряд аккумуляторной батареи находится ниже, чем пороговое значение, двигатель транспортного средства может работать по циклу Аткинсона для обеспечения желаемой мощности. Во время работы по циклу Аткинсона, впускная фаза газораспределения может быть подходящим образом отрегулирована для обеспечения пониженного коэффициента сжатия компрессора. Топливо с более низким октановым числом может быть впрыснуто во время работы двигателя по циклу Аткинсона. Во время работы двигателя по циклу Аткинсона, аккумуляторная батарея электромотора может быть заряжена. Если желательна более высокая, чем пороговое значение, мощность, то впускная фаза газораспределения может быть отрегулирована для работы двигателя по циклу Отто. При работе по циклу Отто, двигатель может работать с повышенным коэффициентом сжатия компрессора для обеспечения более высокой выходной мощности. Для того, чтобы в дальнейшем облегчить работу двигателя по циклу Отто, присадка, повышающая октановое число, (добавка) может быть впрыснута в топливную систему для увеличения октанового числа в топливе, подводимом к цилиндрам для сгорания. Величина впрыскиваемой присадки, повышающей октановое число, может быть определена на основании текущего октанового числа относительно желаемого уровня мощности. Также, момент зажигания может быть отрегулирован для работы двигателя по циклу Отто, вместо цикла Аткинсона.

Таким образом, посредством своевременного впрыскивания присадки, повышающей октановое число, в топливную систему и регулировки впускной фазы газораспределения, двигатель может работать по циклу Отто для достижения требуемого повышенного крутящего момента во время работы гибридного транспортного средства. Посредством работы двигателя по циклу Аткинсона в условиях, когда желательна пониженная выходная мощность и/или при пониженной степени заряженности аккумуляторной батареи, эффективность использования топлива может быть улучшена и аккумуляторная батарея может быть заряжена. Технический эффект добавления присадки, повышающей октановое число, во впрыскиваемое топливо во время работы двигателя по циклу Отто заключается в том, что октановое число топлива может быть отрегулировано во время работы двигателя по циклу Отто, что способствует увеличению эффективной мощности двигателя с улучшением эффективности использования топлива. Таким образом, посредством рациональной работы двигателя транспортного средства по циклу Аткинсона и по циклу Отто, эффективность использования топлива может быть улучшена, и может быть обеспечена желаемая выходная мощность.

Следует понимать, что приведенная выше сущность изобретения предусмотрена для введения в упрощенном виде набора идей, которые подробно раскрыты в осуществлении изобретения. Это не означает, что данный раздел предназначен для определения ключевых или существенных признаков заявленного изобретения, объем которого однозначно определен пунктами формулы изобретения, которая следует за осуществлением изобретения. Более того, заявленное изобретение не ограничено реализациями, которые устраняют любые недостатки, отмеченные выше или в любой другой части данного раскрытия.

Краткое описание чертежей

На Фиг. 1 показан схематический чертеж примера системы обеспечения движения гибридного транспортного средства.

На Фиг. 2 показан схематический чертеж системы двигателя гибридного транспортного средства.

На Фиг. 3 показана схема работы, отображающая способ, который может быть реализован для увеличения выходной мощности и эффективности использования топлива гибридного транспортного средства.

На Фиг. 4 показан пример работы двигателя гибридного транспортного средства для обеспечения желаемой выходной мощности в соответствии с настоящим раскрытием.

Осуществление изобретения

Нижеследующее раскрытие относится к системам и способам увеличения выходной мощности гибридного транспортного средства. Пример системы транспортного средства с двигателем и мотором показан на Фиг. 1, а подробное раскрытие системы двигателя, содержащей топливную систему и систему присадки, повышающей октановое число, показано на Фиг. 2. Контроллер двигателя может быть выполнен с возможностью выполнения процедуры управления, например, примера процедуры, представленной на Фиг. 3, для регулирования работы двигателя для обеспечения желаемого выходного крутящего момента при повышении эффективности использования топлива. Пример работы двигателя для обеспечения желаемого выходного крутящего момента показан на Фиг. 4.

На Фиг. 1 представлен пример системы 100 обеспечения движения транспортного средства. Например, система 100 транспортного средства может быть гибридным электрическим транспортным средством или может быть встроена в гибридное электрическое транспортное средство. Однако, следует понимать, что, хотя на Фиг. 1 показана система гибридного транспортного средства, в других примерах, система 100 транспортного средства может не являться системой гибридного транспортного средства и может быть приведена в движение исключительно посредством двигателя 110.

Система 100 обеспечения движения транспортного средства содержит двигатель внутреннего сгорания 110 и мотор 120. В качестве неограничивающего примера, двигатель 110 содержит двигатель внутреннего сгорания, а мотор 120, содержит электромотор. Мотор 120 может быть выполнен с возможностью использования или потребления другого источника энергии, отличного от источника энергии двигателя 110. Например, двигатель 110 может быть выполнен с возможностью потребления жидкого топлива (например, бензина) для создания эффективной мощности двигателя, в то время как мотор 120 может быть выполнен с возможностью потребления электроэнергии для создания эффективной мощности мотора. В связи с этим, транспортное средство с системой 100 обеспечения движения может быть упомянуто в качестве гибридного электрического транспортного средства (ГЭТС). При том, что на Фиг. 1 представлено ГЭТС, данное раскрытие не является ограничивающим и следует понимать, что системы и способы, представленные в данном документе, могут быть применены к не ГЭТС, в пределах объема настоящего изобретения.

В некоторых примерах, система 100 обеспечения движения транспортного средства может использовать множество различных режимов работы в зависимости от условий работы, встречаемых в системе обеспечения движения транспортного средства. Некоторые из данных режимов могут позволить поддерживать двигатель 110 в отключенном состоянии (установить в отключенное состояние), в котором сгорание топлива в двигателе не происходит. Например, при выбранных условиях работы мотор 120 может приводить в движение транспортное средство через ведущее колесо 130, как показано указателем 122, в то время как двигатель 110 отключен.

В других условиях работы, двигатель 110 может быть установлен в отключенное состояние (как раскрыто выше) в то время, как мотор 120 может работать для подзарядки устройства 150 накопления энергии. Например, мотор 120 может получать крутящий момент на колесе от ведущего колеса 130, как показано указателем 122, причем мотор может быть выполнен с возможностью преобразования кинетической энергии транспортного средства в электрическую энергию для устройства 150 накопления энергии, как показано указателем 124. Данный режим работы может быть упомянут в качестве рекуперативного торможения транспортного средства. Так, в некоторых вариантах осуществления, мотор 120 может быть выполнен с возможностью обеспечения функции генератора. Однако, в других вариантах осуществления, генератор 160, наоборот, может быть выполнен с возможностью получения крутящего момента на колесе от ведущего колеса 130, причем генератор может быть выполнен с возможностью преобразования кинетической энергии транспортного средства в электрическую энергию для устройства 150 накопления энергии, как показано посредством указателя 162.

Также в других условиях работы, двигатель 110 может работать посредством сгорания топлива, полученного от топливной системы 140, как показано указателем 142. Например, двигатель 110 может работать для приведения в движение транспортного средства через ведущее колесо 130, как показано указателем 112, в то время, как мотор 120 отключен. В других условиях работы, двигатель 110 или мотор 120 могут работать для приведения в движение транспортного средства через ведущее колесо 130, как показано указателями 112 и 122, соответственно. Конфигурация, в которой двигатель и мотор могут выборочно приводить в движение транспортное средство, может быть упомянута как система обеспечения движения транспортного средства параллельного типа. Следует обратить внимание, что в некоторых вариантах осуществления, мотор 120 может быть выполнен с возможностью приведения в движение транспортного средства посредством первой установки ведущих колес, а двигатель 110 может быть выполнен с возможностью приведения в движение транспортного средства посредством второй установки ведущих колес.

В других вариантах осуществления, система 100 обеспечения движения транспортного средства может быть выполнена в качестве системы обеспечения движения транспортного средства последовательного типа, на основании чего двигатель не напрямую приводит в движение ведущие колеса. В некоторых случаях, двигатель 110 может быть выполнен с возможностью обеспечения энергией мотора 120, который, в свою очередь, приводит в движение транспортное средство через ведущее колесо 130, как показано указателем 122. Например, во время выбранных условий работы, двигатель 110 может приводить в движение генератор 160, который может, в свою очередь, снабжать электроэнергией мотор 120, как показано указателем 114, и/или устройство 150 накопления энергии, как показано посредством указателя 162. В качестве другого примера, двигатель 110 может работать для приведения в движение мотора 120, который может, в свою очередь, быть снабжен функцией генератора для преобразования мощности двигателя в электрическую энергию, причем электрическая энергия может быть запасена в устройстве 150 накопления энергии для использования ее позднее мотором.

Топливная система 140 может содержать один или более топливных баков 144 для хранения топлива, расположенного на борту транспортного средства. Например, топливный бак 144 может хранить один или более видов жидкого топлива, включающих в себя, но без ограничения: бензин, дизельное топливо, и спиртовое топливо. В некоторых примерах, топливо может храниться на борту транспортного средства как смесь из двух или более разных видов топлива. К примеру, топливный бак 144 может быть выполнен с возможностью хранения смеси из бензина и этанола (например, Е10, Е85, и т.д.) или смеси из бензина и метанола (например, М10, М85, и т.д.), таким образом эти виды топлива или виды смесей топлива могут быть доставлены к двигателю 110, как показано посредством указателя 142. Также другие подходящие виды топлива или виды смесей топлива могут быть доставлены к двигателю 110, причем они могут сгорать в двигателе для генерирования эффективной мощности двигателя. Система 146 присадки, повышающей октановое число, может быть соединена с топливной системой посредством трубопровода 147 присадки, повышающей октановое число. Система улавливания топливных паров (в данном документе также упомянута, как система улавливания топливных паров) может быть соединена с топливной системой 140.

Эффективная мощность двигателя может быть использована для приведения в движение транспортного средства, как показано указателем 112, или для перезарядки устройства 150 накопления энергии посредством мотора 120 или генератора 160. В случае более низкого, чем пороговое значение, требуемого крутящего момента, когда степень заряженности устройства 150 накопления энергии находится ниже пороговой величины, двигатель может работать, используя цикл Аткинсона, с пониженным коэффициентом сжатия, и при более высоком, чем пороговое значение, требуемом крутящем моменте, двигатель может работать с повышенным коэффициентом сжатия, используя цикл Отто. В качестве одного из примеров, система 146 присадки, повышающей октановое число, может содержать резервуар для хранения присадки, повышающей октановое число (жидкость), трубопровод 147 присадки, повышающей октановое число, насос, и инжектор для подачи желаемой величины присадки, повышающей октановое число, к топливопроводу, в ответ на сигнал от контроллера. Во время работы двигателя с использованием цикла Отто, октановое число топлива, впрыскиваемого в цилиндры для сгорания, может быть отрегулировано посредством выборочного впрыскивания необходимого количества присадки, повышающей октановое число, в топливную систему, например, в ответ на детонацию двигателя. Впрыскивание присадки, повышающей октановое число, может включать в себя впрыскивание присадки, повышающей октановое число, в топливопровод ниже по потоку от резервуара топлива и выше по потоку от топливного инжектора. Система может регулировать присадку, повышающую октановое число, со впрыском во время работы цикла Отто отличным по сравнению с двигателем цикла Аткинсона, в частности для различных уровней СЗ аккумуляторной батареи, температуры двигателя, температуры каталитического нейтрализатора, желаемого крутящего момента двигателя и других факторов. Дополнительно, особенности работы двигателя, использующего цикл Аткинсона и цикл Отто, раскрыты согласно Фиг. 3.

В некоторых вариантах осуществления, устройство 150 накопления энергии может быть выполнено с возможностью хранения электроэнергии, которая может быть подведена к другим электрическим нагрузкам, расположенным на борту транспортного средства (отличных от мотора), включающим в себя обогрев салона и кондиционирование воздуха, запуск двигателя, свет фар, аудио и видео системы салона и т.д. В качестве неограничивающего примера, устройство 150 накопления энергии может содержать одну или более аккумуляторных батарей и/или конденсаторов.

Система 190 управления может быть соединена с одним или более из следующего: двигателем 110, мотором 120, топливной системой 140, устройством 150 накопления энергии и генератором 160. Система 190 управления может получать данные посредством сигналов обратной связи от одного или более из следующих элементов: двигателя 110, мотора 120, топливной системы 140, системы 146 присадки, повышающей октановое число, устройства 150 накопления энергии, генератора 160, системы 193 глобального геопозиционирования (СГГ), расположенной на борту, и бортовых камер 195. Дополнительно к этому, система 190 управления может быть выполнена с возможностью отправки управляющих сигналов к одному или более из следующего: двигателю 110, мотору 120, топливной системе 140, системе 146 присадки, повышающей октановое число, устройству 150 накопления энергии, генератору 160, бортовым камерам 195, в ответ на данные сигналов обратной связи. Система 190 управления может быть выполнена с возможностью получения показаний оператора в ответ на выходной сигнал системы обеспечения движения транспортного средства от оператора 102 транспортного средства. Например, система 190 управления может быть выполнена с возможностью получения сигнала обратной связи от датчика 194 положения педали, который соединен с педалью 192. Педаль 192 может быть схематически отнесена к педали тормоза и/или педали акселератора.

Устройство 150 накопления энергии может быть выполнено с возможностью периодического получения электроэнергии от источника энергии 180, расположенного на внешней стороне транспортного средства (например, не являющегося частью транспортного средства), как показано указателем 184. В качестве неограничивающего примера, система 100 обеспечения движения транспортного средства может быть выполнена в качестве дополнительного элемента гибридного электрического транспортного средства (ГЭТС), тем самым электроэнергия может быть передана устройству 150 накопления энергии от источника 180 энергии посредством электрического кабеля 182 трансмиссии. Во время работы перезарядки устройства 150 накопления энергии от источника 180 энергии, кабель 182 трансмиссии может электрически соединять устройство 150 накопления энергии и источник 180 энергии. В то время, как система обеспечения движения работает для приведения в движение транспортного средства, электрический кабель 182 трансмиссии может быть отсоединен между источником 180 энергии и устройством 150 накопления энергии. Система 190 управления может определять и/или контролировать величину электроэнергии, хранимой на устройстве накопления энергии, которая может быть упомянута в качестве степени заряженности (СЗ).

В других вариантах осуществления, электрический кабель 182 трансмиссии может быть исключен, причем электрическая энергия может быть получена беспроводным способом на устройстве 150 накопления энергии от источника 180 электроэнергии. Например, устройство 150 накопления энергии может получать электрическую энергию от источника 180 электроэнергии посредством одного или более из следующего: электромагнитной индукции, радиоволн и электромагнитного резонанса. В связи с этим, следует понимать, что любой допустимый подход может быть использован для перезарядки устройства 150 накопления энергии от источника питания, который не является частью транспортного средства. Таким образом, электромотор 120 может приводить в движение транспортное средство, используя источник энергии, отличный от топлива, используемого двигателем 110.

Топливная система 140 выполнена с возможностью периодического получения топлива от источника топлива, находящегося вне транспортного средства. В качестве неограничивающего примера, система 100 обеспечения движения транспортного средства может быть заправлена топливом, посредством получения топлива через топливораздаточное устройство 170, как показано указателем 172. В некоторых вариантах осуществления, топливный бак 144 может быть выполнен с возможностью хранения топлива, полученного от топливораздаточного устройства 170, пока оно не будет подано в двигатель 110 для сгорания. В некоторых вариантах осуществления, система 190 управления выполнена с возможностью получения показаний уровня топлива, хранимого в топливном баке 144, посредством датчика уровня топлива. Уровень топлива, хранимого в топливном баке 144 (например, определенный посредством датчика уровня топлива), может быть передан оператору транспортного средства, например, с помощью указателя уровня топлива или отображения на приборной панели 196 транспортного средства.

Система 100 обеспечения движения транспортного средства может также содержать датчик 198 условий окружающей среды, например, для оценки температуры окружающей среды или влажности окружающей среды. Приборная панель 196 транспортного средства может содержать световой индикатор (индикаторы) и/или текстовый дисплей, на котором отображены сообщения оператору. Приборная панель 196 транспортного средства может также содержать различные входные блоки для получения входного сигнала оператора, например, кнопки, наборные диски, сенсорные экраны, голосовые входы/распознавание речи и т.д. В альтернативном варианте осуществления, приборная панель 196 транспортного средства может передавать аудиосообщения оператору без отображения. Данные устройства могут быть соединены с системой 190 управления.

На Фиг. 2 представлен пример варианта 200 осуществления камеры сгорания или цилиндра двигателя 10 внутреннего сгорания. Управление двигателем 10 по меньшей мере частично может быть осуществлено системой управления, содержащей контроллер 12, и посредством входного сигнала от оператора 230 транспортного средства через устройство 232 ввода. В данном примере, устройство 232 ввода содержит педаль акселератора и датчик 234 положения педали для формирования сигнала ПП, пропорционального положению педали. Требуемый крутящий момент (требуемый водителем) может быть определен из положения педали акселератора посредством входного сигнала от датчика 234 положения педали. На основании условий эксплуатации, двигатель может работать в соответствии с циклом Отто, либо циклом Аткинсона. Работа по циклу Отто включает в себя работу двигателя с повышенным коэффициентом сжатия, в то время, как работа по циклу Аткинсона включает в себя работу двигателя с пониженным коэффициентом сжатия. Например, в ответ на более низкое, чем пороговое значение, требование крутящего момента, и более низкое, чем пороговое значение, состояние заряда системной аккумуляторной батареи, двигатель может работать, используя цикл Аткинсона, и в ответ на более высокое, чем пороговое значение, требование крутящего момента, двигатель может работать, используя цикл Отто. Пороговое значение требуемого крутящего момента определяют на основании максимально допустимой мощности двигателя. Во время работы двигателя по циклу Аткинсона, аккумуляторная батарея электромотора может быть заряжена. Как только степень заряженности аккумуляторной батареи увеличена до степени, превышающей пороговое значение заряда, как электромотор, так и двигатель могут работать одновременно для обеспечения требования желаемого крутящего момента (например, как определено из положения педали и таблицы преобразования скорости транспортного средства для текущего передаточного коэффициента трансмиссии).

Цилиндр 14 (т.е. камера сгорания) двигателя 10 может содержать стенки 236 камеры сгорания с расположенным там поршнем 238. Поршень 238 может быть соединен с коленчатым валом 240 так, чтобы была возможность преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Коленчатый вал 240 может быть соединен по меньшей мере с одним ведущим колесом пассажирского транспортного средства через систему трансмиссии. Также стартерный электромотор может быть соединен с коленчатым валом 240 посредством маховика для обеспечения запуска работы двигателя 10.

Цилиндр 14 может быть выполнен с возможностью получения всасываемого воздуха через ряд впускных воздушных каналов 242, 244 и 246. Впускной воздушный канал 246, в дополнение к цилиндру 14, может быть соединен и с другими цилиндрами двигателя 10. Впускной канал 244 может содержать дроссель 262, имеющий дроссельную заслонку 264. В данном конкретном примере, положение дроссельной заслонки 264 может быть изменено с помощью контроллера 12 посредством сигнала, подаваемого на электромотор или исполнительный механизм, входящий в состав дросселя 262, в конфигурации, которую обычно называют электронным управлением дросселем (ЭУД). Таким образом, дроссель 262 может быть регулируемым для изменения всасываемого воздуха, поступающего в камеру сгорания, а также в другие цилиндры двигателя. Расположение дроссельной заслонки 264 может быть передано на контроллер 12 посредством сигнала положения дроссельной заслонки (ПДЗ). Впускной воздушный канал 242 может содержать датчик температуры всасываемого воздуха (ТВВ) и датчик барометрического давления (БД). Датчиком ТВВ оценивают температуру всасываемого воздуха для использования в работе двигателя и подают сигнал на контроллер 12. Подобным образом, датчиком БД оценивают давление окружающей среды для работы двигателя и подают сигнал на контроллер 12. Впускной канал 242 может дополнительно содержать датчик массового расхода воздуха и датчик 222 давления воздуха в коллекторе для подачи соответствующих сигналов МРВ и ДВК контроллеру 12.

Датчик 228 отработавших газов показан соединенным с выхлопным каналом 248, расположенным выше по потоку от устройства 278 снижения токсичности выбросов. Датчик 228 может быть любым подходящим датчиком для определения показаний воздушно-топливного отношения (ВТО) отработавших газов, например, линейным датчиком содержания кислорода или универсальным датчиком содержания кислорода в отработавших газах (УДКОГ), двухрежимным датчиком содержания кислорода или датчиком КОГ, датчиком НКОГ (нагреваемым КОГ), датчиком оксидов азота, датчиком углеводородов, или датчиком монооксида углерода. Датчик содержания кислорода может быть использован для оценки ВТО всасываемого и отработавшего газа. На основании оценки ВТО можно регулировать рабочие параметры двигателя, например, подачу топлива.

Каждый цилиндр двигателя 10 может содержать один или более впускных клапанов и один или более выпускных клапанов. Например, показано, что цилиндр 14 содержит по меньшей мере один впускной тарельчатый клапан 250 и по меньшей мере один выпускной тарельчатый клапан 256, расположенные в верхней области цилиндра 14. В некоторых вариантах осуществления, каждый цилиндр двигателя 10, включая цилиндр 14, может содержать по меньшей мере два впускных тарельчатых клапана и по меньшей мере два выпускных тарельчатых клапана, расположенных в верхней области цилиндра.

Впускным клапаном 250 могут управлять посредством контроллера 12 через исполнительный механизм 252. Аналогичным образом, выпускным клапаном 256 могут управлять посредством контроллера 12 через исполнительный механизм 254. В некоторых условиях, контроллер 12 может изменять сигналы, подаваемые на исполнительные механизмы 252 и 254, для управления открытием и закрытием соответствующих впускных и выпускных клапанов. Положение впускного клапана 250 и выпускного клапана 256 может быть определено посредством соответствующих датчиков положения клапана (не показаны). Исполнительные механизмы клапанов могут являться приводами клапанов электроприводного типа или кулачкового типа, или их комбинацией. Установка фаз газораспределения впускного и выпускного клапанов может управляться одновременно или может быть использована любая возможная установка фаз кулачкового распределения, изменения фаз кулачкового распределения выхлопного кулачка, двойного независимого изменения фаз кулачкового распределения или фиксированная установка фаз кулачкового распределения. Каждая система кулачкового привода может содержать один или более кулачков и может быть выполнена с возможностью использования одного или более переключателей профиля кулачков (ППК), изменения фаз кулачкового распределения (ИФКР), изменения фаз газораспределения (ИФГ) и/или изменения высоты подъема клапанов (ИВПК), что может быть выполнено с возможностью управления посредством контроллера 12 для изменения работы клапана. Например, в качестве альтернативы, цилиндр 14 может содержать впускной клапан, управляемый посредством электропривода клапанов, и выхлопной клапан, управляемый посредством кулачкового привода, содержащего системы ППК и/или ИФКР. В других вариантах осуществления, впускной и выхлопной клапаны могут управляться посредством общего привода клапанов или системы привода, или привода или приводной системы изменения фаз газораспределения. Работа двигателя с использованием цикла Аткинсона включает в себя работу двигателя с первым коэффициентом сжатия и первой впускной фазой газораспределения, а работа двигателя с использованием цикла Отто включает в себя работу двигателя со вторым коэффициентом сжатия и второй впускной фазой газораспределения, причем первый коэффициент сжатия меньше, чем второй коэффициент сжатия, причем первая впускная фаза газораспределения длительнее, чем вторая впускная фаза газораспределения. Более длительная впускная фаза газораспределения включает в себя задержку закрытия впускного клапана после такта впуска.

В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может содержать свечу 292 зажигания для инициирования горения. Система 290 зажигания может обеспечивать формирование искры зажигания в камере 14 сгорания посредством свечи 292 зажигания в ответ на сигнал опережения зажигания (ОЗ) от контроллера 12 при определенных режимах работы. Работа двигателя с использованием цикла Аткинсона дополнительно включает в себя работу с первым моментом зажигания, а работа двигателя с использованием цикла Отто дополнительно включает в себя работу со вторым моментом зажигания, причем второй момент зажигания опережает первый момент зажигания. В качестве альтернативы, второй момент зажигания может отставать относительно первого момента зажигания. Однако, в некоторых вариантах осуществления, свеча 292 зажигания может быть исключена, например, в случаях, когда двигатель 10 может инициировать зажигание посредством самовоспламенения или посредством впрыска топлива, что может иметь место в некоторых дизельных двигателях.

В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может быть выполнен с одним или более топливным инжектором для подачи топлива в цилиндр. В качестве неограничивающего примера, цилиндр 14 показан содержащим два топливных инжектора 266 и 270. Топливный инжектор 266 показа соединенным непосредственно с цилиндром 14 для прямого впрыска топлива в цилиндр в количестве, пропорциональном сигналу ширины топливного импульса ШТИ-1, получаемого от контроллера 12 через электронный драйвер 268. Таким образом, топливный инжектор 266 обеспечивает так называемый прямой впрыск топлива в цилиндр 14 сгорания. Хотя инжектор 266 показан на Фиг. 1 в качестве бокового инжектора, он может также быть расположен и над поршнем, например, вблизи расположения свечи 292 зажигания. Такое расположение может улучшить процесс смешивания и сгорания, когда двигатель работает на спиртосодержащем топливе, поскольку некоторые разновидности спиртосодержащего топлива обладают пониженной летучестью. С другой стороны, инжектор может быть расположен над поршнем и вблизи впускного клапана для улучшения смешивания. Топливо может быть передано к топливному инжектору 266 от топливной системы 272 высокого давления, содержащей топливный бак, топливные насосы, топливную рампу и драйвер 268. В качестве альтернативы, доставка топлива может быть осуществлена посредством одноступенчатого топливного насоса при более низком давлении, в таком случае установка фаз прямого впрыска топлива может быть более ограниченной на такте сжатия, чем в случае использования топливной системы высокого давления. Кроме того, хотя это и не показано, топливный бак может содержать датчик давления, обеспечивающий сигнал для контроллера 12.

Топливный инжектор 270 показан расположенным во впускном канале 246, а не в цилиндре 14, в конфигурации, которая обеспечивает так называемый впрыск топлива во впускные каналы, расположенные выше по потоку от цилиндра 14. Топливный инжектор 270 может быть выполнен с возможностью впрыска топлива пропорционально сигналу ширины топливного импульса ШТИ-2, полученного от контроллера 12 через электронный драйвер 271. Топливо может быть передано в топливный инжектор 270 посредством топливной системы 272.

В течение одного цикла цилиндра топливо может быть передано посредством двух инжекторов в цилиндр. Например, каждый инжектор может подавать часть от общего впрыска топлива, которая сжигается в цилиндре 14. Кроме того, распределенное и/или относительное количество топлива, подаваемого от каждого инжектора, может изменяться в зависимости от условий работы, например, нагрузки на двигатель и/или детонации, например, как раскрыто ниже в данном документе.

Топливные инжекторы 166 и 170 могут иметь различные характеристики. Они могут включать в себя различия в размере, например, один инжектор может иметь большее отверстие для впрыска, чем другой. Другие отличия включают в себя, но не ограничены этим, различные углы распыления, различные рабочие температуры, различные траектории, различные моменты впрыска, различные характеристики распыления, различные местоположения и т.д. Более того, в зависимости от коэффициента распределения впрыска топлива между инжекторами 270 и 266 могут быть достигнуты различные эффекты.

Топливный бак в топливной системе 272 может содержать разновидности топлива, обладающие различными свойствами, например, различным составом. Данные различия могут заключаться в различном содержании спирта, различном октановом числе, различной теплоте парообразования, различном сочетании компонентов и/или в комбинации указанных свойств. В одном из примеров, топливо из нескольких баков, каждый из которых содержит топливо с различным октановым числом, может одновременно быть подано к топливным инжекторам 270 и 266 для сгорания. В другом примере, топливный бак 272 может иметь отдельные отсеки с топливом с различным октановым числом, и один или более типов топлива могут одновременно быть впрыснуты для сгорания.

Система 280 присадки, повышающей октановое число, может быть соединена с топливной системой 272 для впрыска измеренных количеств присадки, повышающей октановое число, в топливную систему во время работы двигателя с использованием цикла Отто. Система добавления присадки, повышающей октановое число, может содержать резервуар 280 присадки, повышающей октановое число, один или более насосов 284 присадки, повышающей октановое число, трубопровод 287 присадки, повышающей октановое число, и инжектор 287 присадки, повышающей октановое число. При пониженном требуемом крутящем моменте двигателя, двигатель может работать с использованием цикла Аткинсона для увеличения эффективности использования топлива (ввиду меньшего коэффициента сжатия). Для работы двигателя с использованием цикла Аткинсона, топливо с пониженным октановым числом может быть использовано для сгорания. Вследствие этого, во время такой работы двигателя может быть нежелателен впрыск присадки, повышающей октановое число. Однако, при более высоком требуемом крутящем моменте двигателя, двигатель может работать с использованием цикла Отто для увеличения выходного крутящего момента двигателя (ввиду повышенного коэффициента сжатия). Для работы двигателя с использованием цикла Отто может быть необходимо топливо с повышенным октановым числом. Для увеличения октанового числа в сгораемом топливе в топливную систему может быть введена присадка, повышающая октановое число. В одном из примеров, дозированное количество присадки, повышающей октановое число, может быть впрыснуто в топливопровод посредством инжектора 287 присадки, повышающей октановое число. В одном из примеров, количество впрыскиваемой присадки, повышающей октановое число, может быть основано на октановом числе впрыскиваемого топлива, причем количество увеличивают при уменьшении октанового числа впрыскиваемого топлива. Количество впрыскиваемой присадки, повышающей октановое число, может быть дополнительно основано на разности между фактическим требуемым крутящим моментом и пороговым требуемым крутящим моментом, причем количество увеличивают при увеличении данной разности. Подробное раскрытие работы двигателя с использованием цикла Аткинсона и цикла Отто представлено на Фиг. 3. Таким образом, отдельный топливный бак может быть использован для хранения топлива, и топливо с различными октановыми числами может быть своевременно впрыснуто с использованием октановой добавки на основании работы двигателя.

Устройство 278 снижения токсичности отработавших газов показано расположенным вдоль выхлопного канала 248 ниже по потоку от датчика 228 отработавших газов. Устройство 278 снижения токсичности отработавших газов может представлять собой трехкомпонентный каталитический нейтрализатор, уловитель NOx, различные другие устройства снижения токсичности отработавших газов, или сочетание вышеупомянутых устройств.

Контроллер 12 показан на Фиг. 2 в качестве микрокомпьютера, содержащего микропроцессорное устройство 206, порты 208 ввода/вывода, электронное устройство хранения данных для исполняемых программ и калибровочных значений, показанное в качестве микросхемы 210 постоянного запоминающего устройства в данном конкретном примере, оперативное запоминающее устройство 212, энергонезависимую память 214 и шину данных. Контроллер 12 может принимать различные сигналы от датчиков, соединенных с двигателем 10, в дополнение к сигналам, рассмотренным ранее, содержащие значение измерения требуемого водителем крутящего момента от датчика 234 положения педали, массового расхода всасываемого воздуха (МРВ) от датчика 222 массового расхода воздуха; температуру хладагента двигателя (ТХД) от датчика 216 температуры, соединенного с охлаждающей рубашкой 218; сигнал о положении двигателя (СПД) от датчика 220 на эффекте Холла (или датчика другого типа), положения дроссельной заслонки (ПДЗ) от датчика положения дроссельной заслонки, и сигнал абсолютного давления коллектора (АДК) от датчика 224. Сигнал частоты вращения двигателя (ЧВД), может быть сгенерирован посредством контроллера 12 из сигнала СПД. Сигнал АДК давления в коллекторе от датчика давления в коллекторе может быть использован для обеспечения показаний вакуума, или давления во впускном коллекторе.

Контроллер 12 может быть выполнен с возможностью получения сигналов от различных датчиков, представленных на Фиг. 1 и Фиг. 2, и использования различных исполнительных механизмов, представленных на Фиг. 1 и Фиг. 2, для регулировки работы двигателя на основании полученных сигналов и инструкций, хранимых в памяти контроллера 12. В одном из примеров, контроллер 12 может быть выполнен с возможностью оценки требуемого крутящего момента на основании входного сигнала от датчика 234 положения педали и на основании более низкого, чем пороговое значение, крутящего момента, и более низкого, чем пороговое значение, уровня заряженности аккумуляторной батареи (электромотора в гибридном транспортном средстве), причем контроллер может быть выполнен с возможностью отправки сигнала к одному или более исполнительным механизмам двигателя для работы двигателя по циклу Аткинсона. В качестве примера, для работы двигателя по циклу Аткинсона, контроллер 12 может посылать сигнал к исполнительному механизму 252, соединенному с впускным клапаном, для увеличения периода открытия впускного клапана во время такта впуска. Если оценка крутящего момента выше порогового значения, то контроллер может послать сигнал к одному или более исполнительным механизмам двигателя для работы двигателя по циклу Отто. В качестве примера, для работы двигателя по циклу Отто, контроллер 12 может посылать сигнал к исполнительному механизму 252, соединенному с впускным клапаном, для уменьшения периода открытия впускного клапана во время такта впуска. Также, контроллер 12 может посылать сигнал ширины импульса к инжектору 287 присадки, повышающей октановое число, для впрыска желаемой величины присадки, повышающей октановое число, в топливопровод, передающий топливо к цилиндрам для сгорания.

Таким образом, в системах, представленных на Фиг. 1 и Фиг. 2, предусмотрена система для гибридного транспортного средства, содержащая: электромотор с аккумуляторной батареей, двигатель с множеством цилиндров, педаль акселератора с датчиком положения педали, впускной клапан, выхлопной клапан и свеча зажигания для каждого из цилиндров, топливную систему, содержащую топливный бак, топливный насос, топливопровод и топливный инжектор, систему добавления присадки, повышающей октановое число, содержащую трубопровод присадки, повышающей октановое число, и инжектор присадки, повышающей октановое число, соединенный с топливопроводом, и контроллер с машиночитаемыми инструкциями, хранимыми в долговременной памяти, для: определения более высокого, чем пороговое значение, требования крутящего момента на основании входного сигнала от датчика положения педали, и, в ответ на более высокое, чем пороговое значение, требование крутящего момента, приведения в действие инжектора присадки, повышающей октановое число, для впрыскивания некоторого количества присадки, повышающей октановое число, в топливопровод, и работу двигателя с повышенным коэффициентом сжатия, более короткой впускной фазой газораспределения и более поздним моментом зажигания.

На Фиг. 3 представлен пример способа 300, который может быть реализован для регулировки работы двигателя для обеспечения желаемого выходного крутящего момента, при одновременном увеличении эффективности использования топлива. Инструкции для осуществления способа 300 и остальных способов, включенных в настоящее раскрытие, могут быть выполнены при помощи контроллера на основании инструкций, хранимых в памяти контроллера, и в сочетании с сигналами, полученными от датчиков системы двигателя, например, датчиков, раскрытых выше со ссылкой на Фиг. 1-2. Контроллер может быть выполнен с возможностью использования исполнительных механизмов двигателя системы двигателя для регулировки работы двигателя, в соответствии со способами, раскрытыми ниже.

На шаге 302, процедура включает в себя оценку и/или измерение текущих условий работы транспортного средства. Оцениваемые условия могут включать в себя, например, степень заряженности аккумуляторной батареи, соединенной с электромотором, требуемый крутящий момент водителя, температуру двигателя, нагрузку двигателя, частоту вращения двигателя, положение дроссельной заслонки, давление отработавших газов, воздушно-топливное отношение отработавших газов и т.д. Также, октановое число топлива, в данный момент доступного для сгорания, может быть определено посредством датчика топлива. В одном из примеров, датчик топлива может содержать датчик содержания спирта.

На шаге 304 процедура включает в себя определение того, превышает ли желаемый требуемый крутящий момент (мощность) пороговое значение крутящего момента. Оценка требуемого крутящего момента может быть основана на положении педали акселератора. При увеличении положения педали акселератора может соответственно увеличиваться требуемый крутящий момент. В одном из примеров, контроллер может определять положение педали акселератора на основании входного сигнала от датчика, связанного с педалью акселератора. Пороговое значение требуемого крутящего момента может быть основано на максимальной эффективной мощности двигателя. В качестве примера, пороговое значение крутящего момента может соответствовать 85% максимальной эффективной мощности двигателя.

Если определено, что требуемый крутящий момент ниже порогового значения, на шаге 306 процедура включает в себя определение того, превышает ли степень заряженности аккумуляторной батареи (СЗ) пороговый заряд. Пороговый заряд может соответствовать степени заряженности, требуемой для работы транспортного средства и обеспечения желаемого крутящего момента, посредством работы электромотора, соединенного с аккумуляторной батареей (то есть, посредством работы гибридного транспортного средства в электрическом режиме). Если определено, что степень заряженности аккумуляторной батареи достаточна для обеспечения желаемого крутящего момента, на шаге 308 двигатель может быть отключен, и транспортное средство может работать, используя электромотор.

Однако, если определено, что степень заряженности аккумуляторной батареи недостаточна для обеспечения желаемого крутящего момента, на шаге 310, двигатель транспортного средства может работать, используя цикла Аткинсона. Так, транспортное средство может быть переведено в режим двигателя и работать по циклу Аткинсона. В одном из примеров, транспортное средство может быть приведено в движение с использованием крутящего момента мотора, поступающего от электромотора во время меньшего, чем пороговое значение, требуемого крутящего момента, и в ответ на падение степени заряженности аккумуляторной батареи системы, работа транспортного средства переходит к приведению в движение транспортного средства с использованием крутящего момента двигателя с работой двигателя с пониженным коэффициентом сжатия. Коэффициент сжатия в цикле Аткинсона ниже, чем коэффициент расширения, что обеспечивает повышенную эффективность использования топлива. В одном из примеров, во время работы двигателя с использованием цикла Аткинсона коэффициент сжатия может составлять 10:1.

Работа двигателя с использованием цикла Аткинсона включает в себя, на шаге 311, впрыскивание топлива из топливного бака, в исходном состоянии, для сжигания. Таким образом, впрыскиваемое топливо может являться топливом с более низким октановым числом, которое по умолчанию доступно в топливном баке. В частности, работа двигателя с топливом с пониженным октановым числом не включает в себя добавление присадки, повышающей октановое число, в топливопровод. Поскольку добавление октановой добавки не требуется во время работы двигателя с использованием цикла Аткинсона, работа двигателя по циклу Аткинсона может быть экономически эффективной. Работа двигателя с использованием цикла Аткинсона дополнительно включает в себя, на шаге 312, смещение впускной фазы газораспределения текущего события сгорания до фазы газораспределения цикла Аткинсона. Контроллер может быть выполнен с возможностью отправки сигнала к исполнительному механизму, соединенному с впускным клапаном для удержания впускного клапана открытым в течение более длительного времени. В одном из примеров, во время цикла Аткинсона впускной клапан может быть удержан открытым в течение такта впуска и части такта сжатия. Также, для работы двигателя с использованием цикла Аткинсона, на шаге 313, момент зажигания текущего события сгорания может быть отрегулирован к моменту зажигания цикла Аткинсона. В одном из примеров, контроллер может быть выполнен с возможностью отправки сигнала к свече зажигания для замедления момента зажигания во время данной работы двигателя. В другом примере, контроллер может быть выполнен с возможностью отправки сигнала к свече зажигания для ускорения момента зажигания во время работы двигателя с использованием цикла Аткинсона.

На шаге 318, во время работы двигателя по циклу Аткинсона аккумуляторная батарея электромотора может быть заряжена. При более низком, чем пороговое значение, требуемом крутящем моменте двигателя, когда степень заряженности аккумуляторной батареи увеличена выше порогового заряда, как электромотор, так и двигатель могут работать (пока двигатель работает по циклу Аткинсона) одновременно для обеспечения требуемого крутящего момента.

Однако, если определено (на шаге 304), что требуемый крутящий момент выше, чем пороговое значение, может быть выявлено, что транспортное средство не может быть приведено в движение с использованием крутящего момента мотора от электромотора или крутящего момента двигателя от двигателя, работающего по циклу Аткинсона. В одном из примеров, транспортное средство может быть приведено в движение с использованием крутящего момента двигателя от электромотора при более низком, чем пороговое значение, требуемом крутящем моменте и в ответ на увеличение требуемого крутящего момента двигателя выше порогового значения требуемого крутящего момента, работа транспортного средства переходит к приведению в движение транспортного средства с использованием крутящего момента двигателя при работе двигателя с повышенным коэффициентом сжатия. Вследствие этого, для создания требуемого крутящего момента, на шаге 314, двигатель может работать с использованием цикла Отто. Коэффициент сжатия в цикле Отто выше, чем коэффициент расширения, что тем самым обеспечивает повышенный выходной крутящий момент. В одном из примеров, при работе двигателя с использованием цикла Отто коэффициент сжатия может составлять 12:1. Для достижения повышенного выходного крутящего момента посредством работы двигателя с использованием цикла Отто, топливо с повышенным октановым числом может быть впрыснуто для сгорания. Впрыск топлива с повышенным октановым числом включает в себя, на шаге 315, перед впрыском топлива, добавление некоторого количества присадки, повышающей октановое число из резервуара присадки, повышающей октановое число в топливопровод посредством инжектора присадки, повышающей октановое число. Количество впрыскиваемой присадки, повышающей октановое число, может быть основано на октановом числе топлива, доступного в топливном баке, и желаемом выходном крутящем моменте. В одном из примеров, текущий (увеличенный) требуемый крутящий момент может сравниваться с пороговым значением требуемого крутящего момента, причем может быть вычислена разность между повышенным требуемым крутящим моментом и пороговым значением крутящего момента, и количество впрыскиваемой присадки, повышающей октановое число, в топливопровод может быть отрегулировано на основании разности между повышенным требуемым крутящим моментом и пороговым значение требуемого крутящего момента. Регулировка может включать в себя увеличение количества присадки, повышающей октановое число, добавляемой в топливопровод по мере увеличения данной разности. Данная регулировка количества присадки, повышающей октановое число, впрыскиваемой в топливопровод, может быть дополнительно основана на октановом числе топлива, причем увеличение количества происходит по мере снижения октанового числа. Контроллер может быть выполнен с возможностью отправки сигнала, например, ширины импульса, к инжектору присадки, повышающей октановое число, для впрыска желаемой порции присадки, повышающей октановое число. Присадка, повышающая октановое число, может увеличить октановое число топлива, впрыскиваемого в цилиндры для сгорания, и увеличение октанового числа может в результате повысить выходной крутящий момент.

Работа двигателя с использованием цикла Отто дополнительно включает в себя, на шаге 316, смещение впускной фазы газораспределения для события сгорания к фазе газораспределения цикла Отто. Контроллер может быть выполнен с возможностью отправки сигнала к исполнительному механизму, соединенному с впускным клапаном для удержания впускного клапана открытым в течение более короткого периода, например, только в течение такта впуска. Работа двигателя с использованием цикла Отто дополнительно включает в себя, на шаге 317, регулировку момента зажигания для события сгорания для момента зажигания цикла Отто. В одном из примеров, контроллер может быть выполнен с возможностью отправки сигнала к свече зажигания для того, чтобы больше не применять позднее зажигание во время такой работы двигателя. В другом примере, может быть использован поздний момент зажигания во время работы двигателя с использованием цикла Отто.

Далее процедура переходит на шаг 318, и в течение работы двигателя по циклу Отто, аккумуляторная батарея электромотора может быть заряжена. После удовлетворения требования мощности двигателя для работы транспортного средства, любая избыточная мощность, производимая двигателем, может быть использована для зарядки системной аккумуляторной батареи. Таким образом, двигатель может в нужное время работать по циклу Аткинсона и циклу Отто для увеличения эффективности использования топлива и заряда аккумуляторной батареи электромотора.

Таким образом, способ для гибридного транспортного средства включает в себя: приведение в движение транспортного средства с использованием крутящего момента двигателя посредством впрыска топлива с пониженным октановым числом в двигатель, работающий с пониженным коэффициентом сжатия, более длительной впускной фазой газораспределения и первым моментом зажигания, и в ответ на увеличение в требуемом крутящем моменте до превышения порогового значения крутящего момента, переход к приведению в движение транспортного средства с использованием крутящего момента двигателя посредством впрыска топлива с повышенным октановым числом в двигатель, работающий с более высоким коэффициентом сжатия, более короткой впускной фазой газораспределения и вторым моментом зажигания повышенным, относительно первого момента зажигания. При этом топливо с пониженным октановым числом и топливо с повышенным октановым числом содержат одно и то же базовое топливо, причем топливо с повышенным октановым числом производят посредством добавления присадки, повышающей октановое число, в базовое топливо, тогда как топливо с пониженным октановым числом образуется посредством отсутствия добавления присадки, повышающей октановое число, в базовое топливо.

На Фиг. 4 показан пример последовательности 400 операций, представляющий регулирование рабочих параметров двигателя для обеспечения желаемого выходного крутящего момента при увеличении эффективности использования топлива. Горизонтальной осью (осью х) обозначено время, а вертикальными отметками t1-t6 обозначены основные моменты времени в работе транспортного средства.

На первом графике, кривой 402 показано изменение положения педали акселератора (требование водителя) со временем. На втором графике, кривой 404 показан желаемый выходной крутящий момент двигателя транспортного средства. Требуемый крутящий момент может быть оценен на основании положения педали. Пунктирной линией 405 показано пороговое значение крутящего момента двигателя. Когда желаемый крутящий момент двигателя ниже порогового крутящего момента, двигатель может работать с пониженным коэффициентом сжатия посредством цикла Аткинсона для увеличения экономии топлива, и, когда желаемый крутящий момент двигателя увеличен выше порогового крутящего момента, двигатель может работать с использованием повышенного коэффициента сжатия посредством цикла Отто для обеспечения желаемого крутящего момента. На третьем графике, кривой 406 показан коэффициент сжатия цилиндров во время работы двигателя транспортного средства в различных циклах. На четвертом графике, кривой 408 показано добавление присадки, повышающей октановое число, в топливную систему. Кривыми 409 и 410 обозначены количества присадки, повышающей октановое число, добавляемые в топливо между различными временными интервалами. На пятом графике, кривой 412 показана ширина импульса, представляющего продолжительность открытия впускного клапана во время работы двигателя. На шестом графике, кривой 414 показано степень заряженности аккумуляторной батареи (СЗ), питающей электромотор, используемый для приведения в движение транспортного средства. Пунктирной линией 415 показано пороговое значение СЗ аккумуляторной батареи, ниже которого транспортное средство больше не может быть приведено в движение только при использовании электромотора. На седьмом графике, кривой 416 показана работа двигателя с использованием цикла Аткинсона, и на седьмом графике, кривой 418, показана работа двигателя с использованием цикла Отто.

До момента времени t1 двигатель транспортного средства может не работать, и транспортное средство может быть приведено в движение с использованием крутящего момента электромотора. В течение данного времени, поскольку энергию от аккумуляторной батареи, подводящей питание к электромотору, используют для работы транспортного средства, степень заряженности аккумуляторной батареи (СЗ) может быть уменьшаться монотонно.

В момент времени t2 СЗ аккумуляторной батареи может быть уменьшена ниже порогового значения СЗ, и электромотор больше не может быть использован для приведения в движение транспортного средства. В ответ на уменьшение СЗ аккумуляторной батареи, пуск двигателя транспортного средства может происходить после периода бездействия. Между моментами времени t1 и t2 положение педали находится ниже порогового значения, и соответствующий требуемый крутящий момент двигателя может быть ниже порогового уровня. Вследствие этого, для работы двигателя при эффективном использовании топлива, в момент времени t2, двигатель работает с использованием цикла Аткинсона, посредством регулировки впускной фазы газораспределения для удержания впускных клапанов открытыми более продолжительное время (большая ширина импульса). Во время работы с использованием цикла Аткинсона коэффициент сжатия может быть ниже, что приводит к повышению эффективности использования топлива. Во время работы двигателя по циклу Аткинсона СЗ аккумуляторной батареи может оставаться неизменной, так как аккумуляторную батарею не используют для подачи питания для приведения в движение транспортного средства, и также аккумуляторная батарея не может быть существенно заряжена во время работы двигателя с использованием цикла Аткинсона. В качестве альтернативы, аккумуляторная батарея может быть своевременно заряжена во время работы двигателя с использованием цикла Аткинсона.

В момент времени t2 положение педали может быть увеличено выше порогового значения положения, и, соответственно, требуемый крутящий момент двигателя может также быть увеличен выше порогового значения. В ответ на увеличение желаемого выходного крутящего момента, двигатель может быть переключен на работу с использованием цикла Отто. Между моментами времени t2 и t3, для работы двигателя с использованием цикла Отто, впускная фаза газораспределения может быть отрегулирована для удержания впускного клапана открытым на более короткие промежутки времени (меньшая ширина импульса). Во время работы с использованием цикла Отто присадка, повышающая октановое число, может быть введена в топливопровод. Присадка, повышающая октановое число, может увеличить октановое число топлива, впрыскиваемого в цилиндры для сгорания, и увеличение октанового числа может в результате повысить выходной крутящий момент. Впрыск данного количества присадки, повышающей октановое число, в топливопровод включает в себя впрыск присадки, повышающей октановое число, из резервуара присадки, повышающей октановое число, в топливопровод посредством трубопровода присадки, повышающей октановое число, насоса присадки, повышающей октановое число и инжектора присадки, повышающей октановое число. Количество впрыскиваемой присадки, повышающей октановое число (как показано посредством кривой 409) увеличивают по мере увеличения разности между требуемым крутящим моментом и увеличением порогового значения крутящего момента, причем количество дополнительно увеличивают при уменьшении в топливном баке доступной присадки, повышающей октановое число. Во время работы двигателя по циклу Отто, мощность двигателя, доступная после обеспечения желаемого крутящего момента двигателя, может быть использована для зарядки аккумуляторной батареи, питающей электромотор, вследствие этого можно наблюдать увеличение СЗ аккумуляторной батареи.

В момент времени t3, положение педали может быть уменьшено ниже порогового положения, и, следовательно, требуемый крутящий момент двигателя может быть также уменьшен ниже порогового значения. Ввиду пониженного требуемого крутящего момента, между моментами времени t3 и t4, двигатель может работать с использованием цикла Аткинсона для повышения эффективности использования топлива. Для перехода от работы двигателя с использованием цикла Отто к работе двигателя с использованием цикла Аткинсона впускная фаза газораспределения может быть отрегулирована для увеличения периода времени открытия впускного клапана. Также, инжектор присадки, повышающей октановое число, может быть отключен для ожидания впрыска присадки, повышающей октановое число, и может быть возобновлена передача по умолчанию топлива с пониженным октановым числом. Во время работы двигателя с циклом Аткинсона СЗ аккумуляторной батареи может существенно не измениться.

В момент времени t4 происходит увеличение в положении педали; однако положение педали не увеличивают выше порогового значения положения. Соответственно, требуемый крутящий момент двигателя может быть увеличен, но по-прежнему быть ниже порогового крутящего момента. Между моментами времени t4 и t5 двигатель может продолжать работать с пониженным коэффициентом сжатия, используя цикл Аткинсона.

В момент времени t5 может происходить уменьшение в положении педали. Можно также сделать вывод, что в данный момент времени СЗ аккумуляторной батареи увеличено до уровня выше порогового значения СЗ. Вследствие этого между моментами времени t5 и t6 двигатель может быть отключен, и транспортное средство может быть приведено в движение исключительно с использованием мощности от электромотора.

В момент времени t6 положение педали может быть увеличено до уровня выше, чем пороговое значение, и, соответственно, требуемый крутящий момент может также быть увеличен выше порогового значения. Для обеспечения желаемой мощности, двигатель может быть запущен повторно и работа двигателя может быть инициирована с использованием цикла Отто, имеющего повышенный коэффициент сжатия. В топливную систему могут добавить присадку, повышающую октановое число, для увеличения октанового числа топлива, впрыскиваемого в цилиндры для сгорания. Поскольку требуемый крутящий момент двигателя в данным момент времени выше, чем требуемый крутящий момент двигателя между моментами времени t2 и t3, количество присадки, повышающей октановое число, впрыскиваемой после момента времени t6 (как показано посредством кривой 410) выше, чем количество присадки, повышающей октановое число, впрыскиваемой между моментами времени t2 и t3 (как показано посредством кривой 409). Повышенное октановое число топлива может способствовать достижению желаемого уровня мощности. Двигатель может продолжать работать по циклу Отто, пока желаемая мощность двигателя не будет уменьшена ниже порогового значения, а затем данный двигатель может работать по циклу Аткинсона для увеличения экономии топлива. Во время работы по циклу Отто, может генерироваться крутящий момент двигателя для удовлетворения требуемого крутящего момента, большего порогового значения, и одновременно может быть заряжена системная аккумуляторная батарея.

Таким образом, в ответ на увеличение требуемого крутящего момента двигателя октановая добавка может быть своевременно впрыснута в топливную систему, и один или более исполнительных механизмов двигателя могут быть отрегулированы для перехода от работы двигателя с использованием цикла Аткинсона к циклу Отто для обеспечения желаемой выходной мощности.

Таким образом, для системы гибридного транспортного средства, посредством своевременного переключения работы двигателя между циклом Аткинсона и циклом Отто на основании требуемого крутящего момента двигателя и степени заряженности системной аккумуляторной батареи может быть оптимизирована производительность транспортного средства и эффективность использования электроэнергии. При работе двигателя по циклу Аткинсона в условиях, когда требуется пониженная выходная мощность, и/или, когда понижена степень заряженности аккумуляторной батареи, эффективность использования топлива может быть улучшена. Также, во время работы двигателя с использованием цикла Отто, системная аккумуляторная батарея может быть одновременно заряжена. Технический эффект добавления присадки, повышающей октановое число, в топливо во время работы по циклу Отто заключается в том, что октановое число топлива может быть соответствующим образом отрегулировано без необходимости наличия нескольких видов топлива в топливной системе двигателя, и может быть обеспечен желаемый крутящий момент двигателя. Посредством регулировки впускной фазы газораспределения и момента зажигания во время работы по циклу Отто и циклу Аткинсона, может быть увеличена общая производительность двигателя.

Пример способа для гибридного транспортного средства, содержащего двигатель и мотор, включает в себя: в ответ на более низкий, чем пороговое значение, требуемый крутящий момент, и более низкую, чем пороговое значение, степень заряженности системной аккумуляторной батареи, обеспечивают работу двигателя с использованием цикла Аткинсона; и в ответ на более высокий, чем пороговое значение, требуемый крутящий момент, обеспечивают работу двигателя с использованием цикла Отто с добавлением во впрыскиваемое топливо присадки, повышающей октановое число. В любом предыдущем примере, дополнительно или опционально, работа двигателя с использованием цикла Аткинсона включает в себя работу двигателя с первым коэффициентом сжатия и первой впускной фазой газораспределения, а работа двигателя с использованием цикла Отто включает в себя работу двигателя со вторым коэффициентом сжатия и второй впускной фазой газораспределения, причем первый коэффициент сжатия меньше, чем второй коэффициент сжатия, причем первая впускная фаза газораспределения длительнее, чем вторая впускная фаза газораспределения. В любом или во всех предыдущих примерах, дополнительно или опционально, более длительная впускная фаза газораспределения включает в себя замедление закрытия впускного клапана после такта впуска. В любом или во всех предыдущих примерах, дополнительно или опционально, работа двигателя с использованием цикла Аткинсона дополнительно включает в себя работу с первым моментом зажигания, а работа двигателя с использованием цикла Отто дополнительно включает в себя работу со вторым моментом зажигания, причем второй момент зажигания является более ранним относительно первого момента зажигания. В любом или всех предыдущих примерах, дополнительно или опционально, впрыскивание присадки, повышающей октановое число, включает в себя впрыскивание присадки, повышающей октановое число, в топливопровод ниже по потоку от резервуара топлива и выше по потоку от топливного инжектора. В любом или во всех предыдущих примерах, дополнительно или опционально, количество впрыскиваемой присадки, повышающей октановое число, основано на октановом числе впрыскиваемого топлива, причем данное количество увеличивают при снижении октанового числа впрыскиваемого топлива. В любом или во всех предыдущих примерах, дополнительно или опционально, количество впрыскиваемой присадки, повышающей октановое число, дополнительно основано на разности между фактическим требуемым крутящим моментом и пороговым значением требуемого крутящего момента, причем данное количество увеличивают при увеличении разности. В любом или во всех предыдущих примерах, дополнительно или опционально, пороговое значение требуемого крутящего момента зависит от максимально допустимой мощности двигателя. В любом или всех предыдущих примерах, дополнительно или опционально, работа двигателя с использованием цикла Аткинсона или цикла Отто также включает в себя зарядку системной аккумуляторной батареи.

В качестве другого примера, способ для гибридного транспортного средства включает в себя приведение в движение транспортного средства с использованием крутящего момента двигателя посредством впрыска топлива с пониженным октановым числом в двигатель, работающий с пониженным коэффициентом сжатия, более длительной впускной фазой газораспределения и первым моментом зажигания; и, в ответ на увеличение в требуемом крутящем моменте выше порогового значения крутящего момента, переход к приведению в движение транспортного средства с использованием крутящего момента двигателя посредством впрыска топлива с повышенным октановым числом в двигатель, работающий с более высоким коэффициентом сжатия, более короткой впускной фазой газораспределения и вторым моментом зажигания, более ранним относительно первого момента зажигания. Любой предыдущий пример также включает в себя, дополнительно или опционально, приведение в движение транспортного средства с использованием крутящего момента мотора от электромотора во время меньшего, чем пороговое значение, требуемого крутящего момента, и, в ответ на падение степени заряженности системной аккумуляторной батареи, переход к приведению в движение транспортного средства с использованием крутящего момента двигателя с работой двигателя с пониженным коэффициентом сжатия. Любой или все предыдущие примеры также включают в себя, дополнительно или опционально, приведение в движение транспортного средства с использованием электромотора при более низком, чем пороговое значение, требуемом крутящем моменте и, в ответ на увеличение требуемого крутящего момента двигателя выше порогового значения требуемого крутящего момента, переход к приведению в движение транспортного средства с использованием крутящего момента двигателя при работе двигателя с повышенным коэффициентом сжатия. В любом или во всех предыдущих примерах, дополнительно или опционально, впрыскивание топлива с повышенным октановым числом включает в себя, перед впрыскиванием топлива из топливного бака, добавление некоторого количества присадки, повышающей октановое число, из резервуара присадки, повышающей октановое число, в топливопровод, соединяющий топливный бак с двигателем, посредством инжектора присадки, повышающей октановое число, и причем впрыскивание топлива с пониженным октановым числом, включает в себя впрыскивание топлива из топливного бака без добавления присадки, повышающей октановое число, в топливопровод. В любом или во всех предыдущих примерах, дополнительно или опционально, увеличение требуемого крутящего момента основано на положении педали, причем данный требуемый крутящий момент увеличивают при увеличении положения педали, и причем пороговое значение требуемого крутящего момента основано на максимальной выходной мощности двигателя. Любой или все предыдущие примеры, также содержат, дополнительно или опционально, сравнение увеличенного требуемого крутящего момента с пороговым значением требуемого крутящего момента, вычисление разности между увеличенным требуемым крутящим моментом и пороговым значением требуемого крутящего момента, и, в ответ на более высокий, чем пороговое значение, требуемый крутящий момент, регулирование количества впрыскиваемой в топливопровод присадки, повышающей октановое число, на основании разности между увеличенным требуемым крутящим моментом и пороговым значением требуемого крутящего момента. В любом или во всех предыдущих примерах, дополнительно или опционально, регулировка включает в себя увеличение количества присадки, повышающей октановое число, добавляемой в топливопровод при увеличении разности, причем регулировка дополнительно основана на октановом числе топлива, находящегося в топливном баке, причем количество впрыскиваемой присадки, повышающей октановое число, увеличивают при уменьшении октанового числа топлива, находящегося в топливном баке. В любом или во всех предыдущих примерах, дополнительно или опционально, более длительная впускная фаза газораспределения включает в себя поддержание впускного клапана в открытом положении в течение более длительного промежутка времени, а более короткая впускная фаза газораспределения включает в себя поддержание впускного клапана в открытом положении более короткий промежуток времени.

Также в другом примере, система для гибридного транспортного средства содержит: электромотор с аккумуляторной батареей, двигатель с множеством цилиндров, педаль акселератора с датчиком положения педали, впускной клапан, выхлопной клапан и свечу зажигания, соединенные с каждым из цилиндров, топливную систему, содержащую топливный бак, топливный насос, топливопровод и топливный инжектор, систему добавления присадки, повышающей октановое число, содержащую резервуар присадки, повышающей октановое число, насос присадки, повышающей октановое число, трубопровод присадки, повышающей октановое число, и инжектор присадки, повышающей октановое число, соединенный с топливопроводом, и контроллер с машиночитаемыми инструкциями, хранимыми в долговременной памяти, для: определения более высокого, чем пороговое значение, требуемого крутящего момента на основании входного сигнала от датчика положения педали, и, в ответ на более высокий, чем пороговое значение, требуемый крутящий момент, приведения в действие инжектора присадки, повышающей октановое число, для впрыскивания некоторого количества присадки, повышающей октановое число, в топливопровод, и работу двигателя с повышенным коэффициентом сжатия, более короткой впускной фазой газораспределения и более поздним моментом зажигания. В предыдущем примере, дополнительно или опционально, контроллер содержит дополнительные инструкции для: в ответ на более низкий, чем пороговое значение, требуемый крутящий момент и более низкую, чем пороговое значение, степень заряженности аккумуляторной батареи, приведения в действие инжектора присадки, повышающей октановое число для приостановки впрыскивания присадки, повышающей октановое число, и работы двигателя с повышенным коэффициентом сжатия, более короткой впускной фазой газораспределения и более поздним моментом зажигания. В любом или всех предыдущих примерах, дополнительно или опционально, впрыскивание данного количества присадки, повышающей октановое число, в топливопровод включает в себя впрыскивание присадки, повышающей октановое число, из резервуара присадки, повышающей октановое число, в топливопровод посредством трубопровода присадки, повышающей октановое число, насоса присадки, повышающей октановое число, и инжектора присадки, повышающей октановое число, причем данное количество увеличивается при увеличении разности между требуемым крутящим моментом и пороговым значением требуемого крутящего момента, причем данное количество дополнительно увеличивается при уменьшении октанового числа топлива. В любом или во всех предыдущих примерах, дополнительно или опционально, предусмотрена возможность, при управлении работой двигателя с более высоким коэффициентом сжатия, создания крутящего момента двигателя для удовлетворения большего, чем пороговое значение, требуемого крутящего момента, и одновременной подзарядки аккумуляторной батареи.

В качестве альтернативы и/или в любом из предыдущих примеров, система может быть выполнена с возможностью различной регулировки впрыскивания присадки, повышающей октановое число, в течение работы двигателя по циклу Отто и работы двигателя по циклу Аткинсона. Впрыскивание присадки, повышающей октановое число, может быть более активным в ответ на детонацию во время работы цикла Отто, чем во время работы цикла Аткинсона (например, увеличение впрыскивания может быть обеспечено в ответ на индикацию детонации, и/или более длительное удержание впрыска присадки, повышающей октановое число, может быть обеспечено в ответ на детонацию), по сравнении с работой двигателя по циклу Аткинсона. Разница в повышении между режимами работы может быть дополнительно отрегулирована для различных СЗ аккумуляторной батареи, что включает в себя следующее: при повышении СЗ обеспечение повышенной степени разности между режимами в ответ на детонацию, по меньшей мере в одном из примеров, что обеспечивает возможность более активной работы по циклу Отто при повышенной СЗ и/или повышенной температуре окружающего воздуха.

Следует отметить, что примеры процедур измерения и управления, приведенные в настоящем раскрытии, могут быть использованы для различных двигателей и/или конфигураций системы транспортного средства. Раскрытые здесь способы и программы управления могут быть сохранены в виде исполняемых инструкций в долговременной памяти, и могут быть реализованы системой управления, содержащей контроллер в комбинации с различными датчиками, исполнительными механизмами и другими аппаратными средствами двигателя. Конкретные способы, раскрытые в данном документе, могут представлять собой одну или более из любого количества стратегий обработки, например, обработку событий, обработку прерываний, многозадачную обработку, много поточную обработку, и тому подобные. В связи с этим, различные действия, способы и/или представленные функции могут быть выполнены в отображенной последовательности, параллельно, или с пропуском некоторых способов. Аналогично, указанный порядок обработки не обязателен для получения признаков и преимуществ вариантов осуществления, раскрытых в настоящем документе, но приведен в целях упрощения представления и раскрытия. Одно или несколько из проиллюстрированных действий, операций и/или функций могут быть выполнены повторно, в зависимости от конкретной используемой стратегии. Кроме того, раскрытые действия, операции и/или функции могут наглядно представлять программный код, записанный в долговременную память машиночитаемого носителя в системе управления двигателем, в которой раскрытые действия осуществлены путем выполнения инструкций в системе, содержащей различные аппаратные компоненты двигателя в сочетании с электронным контроллером.

Следует понимать, что конфигурации и процедуры, раскрытые в настоящем документе, по сути являются примерами, и что данные конкретные варианты осуществления не следует рассматривать как ограничительные в отношении раскрытия изобретения, поскольку возможно существование их многочисленных модификаций. Например, вышеупомянутая технология может быть применена к типам двигателей V-6, I-4, I-6, V-12, двигателю с 4-мя оппозитными цилиндрами, и к двигателям других типов. Предмет настоящего раскрытия включает в себя все новые и не очевидные комбинации и частичные комбинации различных систем и конфигураций и другие признаки, функции и/или свойства, раскрытые в настоящем документе.

Представленная ниже формула изобретения раскрывает определенные комбинации и частичные комбинации, рассмотренные в качестве новых и не очевидных, на которые следует обратить внимание. В данной формуле изобретения могут иметь ввиду «любой» элемент или «первый» элемент, или их эквиваленты. Следует понимать, что такие пункты формулы могут заключать в себе один или несколько таких элементов, ни требуя наличия, ни исключая два или несколько данных элементов. Другие комбинации и частичные комбинации раскрытых признаков, функций, элементов и/или свойств могут быть включены в объем настоящего изобретения, путем внесения изменений в данные пункты формулы или посредством добавления новых пунктов в данную формулу изобретения или в приложение к ней. Такие пункты формулы изобретения, будь они более полными, ограничивающими, эквивалентными или отличными по объему от изначальной формулы изобретения, также считаются входящими в объем настоящего изобретения.






%d0%b4%d0%b2%d0%b8%d0%b3%d0%b0%d1%82%d0%b5%d0%bb%d1%8c — с русского на все языки

Все языкиАнглийскийРусскийКитайскийНемецкийФранцузскийИспанскийШведскийИтальянскийЛатинскийФинскийКазахскийГреческийУзбекскийВаллийскийАрабскийБелорусскийСуахилиИвритНорвежскийПортугальскийВенгерскийТурецкийИндонезийскийПольскийКомиЭстонскийЛатышскийНидерландскийДатскийАлбанскийХорватскийНауатльАрмянскийУкраинскийЯпонскийСанскритТайскийИрландскийТатарскийСловацкийСловенскийТувинскийУрдуФарерскийИдишМакедонскийКаталанскийБашкирскийЧешскийКорейскийГрузинскийРумынский, МолдавскийЯкутскийКиргизскийТибетскийИсландскийБолгарскийСербскийВьетнамскийАзербайджанскийБаскскийХиндиМаориКечуаАканАймараГаитянскийМонгольскийПалиМайяЛитовскийШорскийКрымскотатарскийЭсперантоИнгушскийСеверносаамскийВерхнелужицкийЧеченскийШумерскийГэльскийОсетинскийЧеркесскийАдыгейскийПерсидскийАйнский языкКхмерскийДревнерусский языкЦерковнославянский (Старославянский)МикенскийКвеньяЮпийскийАфрикаансПапьяментоПенджабскийТагальскийМокшанскийКриВарайскийКурдскийЭльзасскийАбхазскийАрагонскийАрумынскийАстурийскийЭрзянскийКомиМарийскийЧувашскийСефардскийУдмурдскийВепсскийАлтайскийДолганскийКарачаевскийКумыкскийНогайскийОсманскийТофаларскийТуркменскийУйгурскийУрумскийМаньчжурскийБурятскийОрокскийЭвенкийскийГуараниТаджикскийИнупиакМалайскийТвиЛингалаБагобоЙорубаСилезскийЛюксембургскийЧерокиШайенскогоКлингонский

 

Все языкиАнглийскийТатарскийКазахскийУкраинскийВенгерскийТаджикскийНемецкийИвритНорвежскийКитайскийФранцузскийИтальянскийПортугальскийТурецкийПольскийАрабскийДатскийИспанскийЛатинскийГреческийСловенскийЛатышскийФинскийПерсидскийНидерландскийШведскийЯпонскийЭстонскийЧеченскийКарачаевскийСловацкийБелорусскийЧешскийАрмянскийАзербайджанскийУзбекскийШорскийРусскийЭсперантоКрымскотатарскийСуахилиЛитовскийТайскийОсетинскийАдыгейскийЯкутскийАйнский языкЦерковнославянский (Старославянский)ИсландскийИндонезийскийАварскийМонгольскийИдишИнгушскийЭрзянскийКорейскийИжорскийМарийскийМокшанскийУдмурдскийВодскийВепсскийАлтайскийЧувашскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийБашкирскийБаскский

Детали

- Педали Line 6 - Фильтр Отто

Переключатель фильтра - этот переключатель используется для выбора три совершенно разных типа фильтров:
    BP Band Pass - Низкие и высокие частоты частоты обрезаются, остается только частоты между ними. Центральная частота полоса движется в ответ на динамику ваша игра.

    TF Twin Filter - Два полосовых фильтра двигаться в противоположных направлениях друг к другу.Один полоса движется от высокого к низкому, другая от низкого к высокому. Центральная частота каждой полосы перемещается в ответ на динамику вашей игры.

    LP Low Pass - Низкие частоты пропущены в то время как высокие частоты обрезаются. Отсечка частота полосы движется в ответ на динамика вашей игры.

Переключатель режима - Выбирает, если фильтр перемещается вверх или вниз по частотному спектру.
    вверх - фильтр движется снизу частоты (при мягкой игре) на более высокие частоты (когда играешь громче).

    Вниз - Фильтр движется сверху частоты (при игре софт) на низкие частоты (при игре громче).

Sens - Ручка чувствительности определяет, как фильтр реагирует на динамику вашей игры.Более высокие настройки чувствительности облегчают получение фильтр в движении во время тихих пассажей. На низком настройки чувствительности, вы должны играть усерднее, чтобы получить фильтр движущийся.

Диапазон - Ручка диапазона указывает фильтру, насколько далеко вверх или вниз по частотному спектру, который вы хотите фильтр для путешествий. Настройки нижнего диапазона подчеркнут более низкие частоты; увеличенный диапазон подчеркнет более высокие частоты.

Peak - Ручка Peak управляет фильтром. форма.Увеличьте пик, чтобы сузить фильтр для большей драматический эффект. Для более мягкого эффекта уменьшите пик. чтобы расширить фильтр.

MJC Engineering анонсирует Green Hydraulic Power System

MJC Engineering анонсирует Green Hydraulic Power System

31 октября 2016 г. - MJC Engineering, производитель металлопрядильных, кузнечно-штамповочных станков с ЧПУ и формовочных машин, объявила о разработке своей гидроэнергетической системы Green Hydraulic Power. Эта система разработана для обеспечения более высокой производительности машины, снижения уровня шума на 20 дБА, уменьшения тепловыделения и сокращения времени цикла на различных типах машин.MJC - крупный поставщик автомобильной, аэрокосмической и колесной промышленности.

Green Hydraulic Power предлагается в стандартной комплектации для гидравлических силовых агрегатов, поставляемых на станки MJC, и использует уникальный сервопривод сервонасоса с регулируемой скоростью Siemens SINAMICS. Впоследствии компания создала дочернее подразделение Green Hydraulic Power, Inc. и отдельный отдел продаж для развития подразделения на рынке.

Эта новая концепция системы имеет множество применений, так как почти все станки, использующие гидравлическую энергию, являются кандидатами для технологии привода сервонасосов с регулируемой скоростью.Термопластавтоматы, подъемно-транспортное оборудование, штамповочные прессы, другие металлообрабатывающие станки и многое другое могут использовать Green Hydraulic Power.

Система имеет управляющие данные, выводимые с помощью встроенной функции диагностики в приводе, которая предоставляет информацию для протокола профилактического обслуживания в сценарии Индустрии 4.0. Основы измерения данных давления, температуры и ускорения являются стандартными, с дополнительными выводами данных об уровне масла, состоянии фильтра, эффективности работы и других доступных параметрах.

Эта новая линейка предлагается с резервуарами на 100, 200 и 300 галлонов с номинальным давлением до 4000 фунтов на квадратный дюйм и доступна в двух стилях: один с частотно-регулируемым приводом, асинхронным двигателем и шестеренчатым насосом с внутренним зацеплением, а второй - с сервоинвертором и синхронным серводвигателем. и шестеренчатый насос с внутренним зацеплением.

Учить больше


Калькулятор ввода-вывода

Этот калькулятор помогает определить выходное напряжение схемы делителя с учетом входного (или исходного) напряжения и значений резистора.Обратите внимание, что выходное напряжение в реальных цепях может отличаться ...

Рассчитайте уменьшение, разделив 12 на 5, что равно 2,4. Число оборотов в минуту в сборе - это число оборотов двигателя, разделенное на редуктор. В нашем примере это будет 5000 об / мин / 2,4 = 2083 об / мин.

Калькулятор ввода-вывода - это онлайн-инструмент, который может принимать любое входное значение, чтобы найти выходное значение в любом заданном выражении.

Выходное сопротивление операционного усилителя. Одно из практических ограничений операционного усилителя - конечный выходной импеданс.Для 741 оно составляет около 75 Ом, но может достигать нескольких тысяч Ом для некоторых операционных усилителей малой мощности. Эффективный выходной импеданс дополнительно снижается за счет использования отрицательной обратной связи, поэтому фокус становится не одним из количества Ом ...

Пример входного изображения, если мы используем шаг 1 и нулевое заполнение 1, тогда выходной объем также равен "" ", если также есть ограничения на размер входа в сверточный слой, я использую вход как 32,32,3 и ...

Метод калькулятора выходной индуктивности остается одинаковым для всех топологий силовой электроники.Выходной индуктор используется для хранения энергии нагрузки, когда входное питание отключено. В электрических терминах выходной дроссель преобразует прямоугольные коммутационные импульсы в постоянный ток. После катушки индуктивности конденсатор производит чистое выходное напряжение постоянного тока. Спроектировать выходной дроссель очень просто.

Анализ ввода-вывода: особенности, статическая и динамическая модель! Затраты-выпуск - это новый метод, изобретенный профессором Василием Леонтьевым в 1951 году. Он используется для анализа межотраслевых отношений, чтобы понять взаимозависимости и сложности экономики и, следовательно, условия для поддержания равновесия между спросом и предложением. .

Таблицы ввода-вывода Рабочие листы - Заполните таблицы ввода-вывода, используя правила, приведенные под каждой таблицей, используя этот математический рабочий лист для детей. Инструкции: Заполните таблицу, следуя правилам, приведенным под каждой таблицей. Добавьте 0,5 в первую таблицу, добавьте 1,5 во вторую таблицу и добавьте 0,6 в третью таблицу.

Сверхпрочный стабильный мешок с песком Утяжеленная сумка для ног 4 шт. / Упак. Грузики для ног Мешки с песком для мгновенного действия на открытом воздухе укрытие от солнца Ножки с навесом ESINGMILL Весовые мешки с навесом для выдвижных палаток Аксессуары для патио, лужайки и сада kanakadurgamma.org

ESINGMILL Весовые мешки с навесом для выдвижной палатки, 4 шт. / Упак. Весы для ног, мешки с песком для мгновенного действия на открытом воздухе, укрытие от солнца. Ножки с навесом, сверхмощный устойчивый мешок с песком. Мешок для ног: промышленный и научный. ESINGMILL Весовые мешки с навесом для выдвижной палатки, 4 шт. / Упак. Весы для ног, мешки с песком для мгновенного действия на открытом воздухе, укрытия от солнца, навесы, сверхмощный, стабильный мешок с песком, утяжеленный мешок для ног: промышленный и научный. МАТЕРИАЛ - Изготовлен из оксфордского волокна Heavy Duty 600D, покрытого полиуретаном для дополнительной водонепроницаемости, более прочной, чем у большинства сумок на рынке США.Кроме того, водонепроницаемость ПУ лучше, чем у ПВХ на рынке. 。 СПЕЦИФИКАЦИЯ - Всего 4 шт. Весовых мешков. Размер: 15,7 дюйма / 40 см * 14 дюймов / 35,5 см. Длина ручки: 3,5 дюйма / 9 см. Установите размер ножек от 20 мм до 60 мм. Подходит для любого навеса или палатки весом 25-30 фунтов на каждом углу. 。 ПРОСТОТА ИСПОЛЬЗОВАНИЯ - Наполните грузовые мешки песком, гравием, снегом, камнями или любым доступным материалом поблизости. Не нужно носить с собой лишний песок, когда вас нет дома. (Песок в комплект не входит. ТОЛЬКО в мешках!)。 ИСКЛЮЧИТЕЛЬНОЕ ИСПОЛЬЗОВАНИЕ - Двойные прошитые швы усиливают стабильность и прочность, делая его более прочным и долговечным.Ремешок на липучке позволяет быстро и легко прикреплять и снимать весовые мешки. 。 ПОДХОДИТ - для БОЛЬШИНСТВА мгновенных навесов и всплывающих окон на рынке, включая навес для прицепов, мгновенный навес, мгновенные укрытия E-Z UP. 。





Сверхпрочный стабильный мешок с песком Утяжеленная сумка для ног 4 шт. / Упак. Утяжелители для ног Мешки с песком для мгновенного использования на открытом воздухе укрытие от солнца Ножки навеса ESINGMILL Весовые мешки для навеса для всплывающей палатки

Прочная, простая установка, гибкая, на 500% более устойчивая к проколам, чем только ПВХ-вкладыш. Индивидуальный профессиональный ПВХ-вкладыш для пруда и защитное покрытие 12x15 футов комбинированный комплект Прочный сейф для рыб и растений.Коричневый LOKATSE HOME 15 футов двухсторонний открытый зонтик прямоугольный большой с кривошипом для тени патио вне палубы или бассейна, 26x20 балдахин DELTA Бюджетная палатка для вечеринки из полиэтилена, навес белого цвета. Esschert Design TG236 Мистер Медь. XLBHSH 305 × 76 см Круглый бассейн Металлический каркас Бассейн Надземный бассейн Пруд Семейный бассейн Металлический каркас Бассейн Отдых. Нассау Электроснабжение 50 4/2 SOOW Wire Cord Cable Portable Power. MOLECOLE Ice Scraper Magic Funnel Инструмент для удаления снега, Стеклоочиститель для удаления снега с лобового стекла автомобиля, Открытый инструмент для очистки льда, Круглый инструмент для очистки от обледенения Скребок для снега лобового стекла автомобиля 4Pack.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *