Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Сопротивление тока: формула нахождения сопротивления электротока

Сопротивление – способность материала препятствовать направленному движению заряженных частиц. Определяется величина согласно закону Ома. Точные значения параметра требуются во многих сферах, включая электронику и радиодетали. Определенным уровнем сопротивления обладает каждый материал на планете, вне зависимости от агрегатной формы. Некоторые вещества имеют настолько высокое сопротивление, что проведение через них электрического тока практически невозможно.

Формула удельного сопротивления

Формулировка закона Ома

Закон Ома имеет следующую формулировку. Чтобы рассчитать сопротивления, нужно напряжение разделить на силу тока в электрической цепи. Физическая величина обуславливается количеством свободных заряженных частиц в материале.

Какой буквой обозначается сопротивление? В системе измерений СИ на конгрессе ООН символом для записи физического явления была избрана латинская R (от английского resistance).

Отличные степени величины присущи каждому материалу из-за разной концентрации носителей электрического тока. Наибольшая концентрация присуща металлам, поэтому именно они являются лучшими проводниками. Особенность заключается в максимальном количестве проводящих электронов, представляющих собой заряженные частицы, не принадлежащие ни одной элементарной частице в металле или другом сырье. Возникновение тока и как следствие движение заряженных частиц возникают под действием внешних электрических полей.

Определение единицы сопротивления Ом

Как обозначается сопротивление? Величина измеряется в Омах (русское обозначение), в то время как в других странах символ для маркировки – омега (Ω). Единица представляет собой значение силы препятствия прохождению электрического тока проводника, по которому течет напряжение в 1В с силой постоянного электрического тока в 1А.

Единица измерения была введена в 1960 году, вместе с принятием международной системы величин в целом. Существующая величина имеет обратное значение в виде проводимости электрического тока, которая измеряется в сименсах.

Расчет сопротивления последовательных резисторов

При последовательном сопротивлении нескольких резисторов соответственно увеличивается эквивалентная величина. Расчет сопротивления нескольких элементов, соединенных между собой последовательно, проводится за счет суммирования номиналов каждого элемента. Например, при соединении нескольких элементов, которые соединены в одну цепь последовательно, величина электрического сопротивления будет равной сумме уровня противодействия каждого из резисторов. Формула имеет одинаковый вид для любого количества резисторов.

Как найти сопротивление формула для последовательной цепи

Если заменить в последовательной цепи один из элементов, то соответственно изменится уровень противодействия направленному движению частиц в этой цепи. Это также повлечет изменение силы тока.

Резистор

Расчет сопротивления параллельных резисторов

Сопротивление формула для параллельного соединения имеет несколько другой вид.

Формула

Относительно большого количества последовательных элементов при увеличении количества резисторов в цепи соответственно возрастает сложность проведения расчета. Удельное сопротивление буква, которая ему соответствует, – латинская ρ.

Использование параллельного соединения оправдано в цепях, в которых требуется высокая величина параметра. Тогда применяются радиоэлементы с одинаковым параметром мощности и сопротивления. Например, 10 элементов, обладающих уровнем сопротивления 1000 Ом, которые объединены в единую цепь с параллельным соединением, на выходе будут иметь величину препятствия движению заряженных частиц в 100 Ом.

Удельное электрическое сопротивление

Удельное сопротивление представляет собой параметр, который определяет уровень препятствия движению электрического тока через проводник определенной длины. Зависит от параметра конкретного вещества, от длины. Для материала с однородными свойствами и известной величиной сопротивления и длиной проводника расчет удельного параметра идет по формуле ниже.

Расчет удельного объемного электрического сопротивления

Фактически смысл уравнение имеет следующий. Удельное сопротивление – величина сопротивления при прохождении через проводник определенной длины, с одинаковой площадью поперечного сечения на протяжении всего маршрута.

Параметр измеряется в Ом*метр. Таким образом, один Ом*метр равняется уровню препятствия направленному движению заряженных частиц через однородную проводящую среду с длиной в 100 см и площадью сечения в 1 квадратный метр.

Значение сопротивления

Таблица параметров для различных проводников

НазваниеВеличина удельного сопротивления
Провод из алюминия2.7•10^-8
Вольфрам5.5•10^-8
Графит8.0•10^-6
Чистое железо2.2•10^-8
Золото2.2•10^-8
Иридий4.74•10^-8
Сталь1.3•10^-7
Магний4.4•10^-8
Медь1.72•10^-8
Никель8.7•10^-8
Платина1.07•10^-7
Ртуть9.6•10^-7
Свинец2.08•10^-7
Серебро1.6•10^-8

Величины сопротивлений для некоторых диэлектриков

Показатели для жидких проводников

Жидкими проводниками электричества чаще всего выступают расплавленные металлы и другие электролиты (кислоты и щелочи). Обычно температура плавления жидких проводников достаточно высока, исключая ртуть. Поэтому в нормальных условиях примерами жидкого вещества, проводящего электрический ток, могут быть только ртуть и галлий.

Величины удельного препятствия направленному движению заряженных частиц у растворенных электролитов (солей и кислот) являются динамическими характеристиками. На величину влияют концентрация активного проводящего вещества и температура. Влияние последней противоположно металлам. Во время нагрева жидких проводников соответственно снижается уровень сопротивления. И, наоборот, при существенных снижениях температуры проводимость падает. При переходе жидких проводников в твердое агрегатное состояние проводимость электрического тока снижается до нуля.

Явным примером последнего является влияние температуры на автомобильные аккумуляторные батареи во время сильного мороза. При этом жидкость, проводящая электрический ток (раствор сернистой кислоты), замерзает, из-за чего сопротивление внутреннего контура аккумулятора возрастает до максимума, и питание стартера и электроники не представляется возможным.

Катушка индуктивности

Катушки индуктивности представляет собой устройство, главной частью которого является проводящий металл, скрученный в некое подобие колец либо обернутый вокруг диэлектрического сердечника. Если через такое устройство проходит электрический ток, то формируется местное магнитное поле. Это происходит из-за концентрации переменного магнитного поля.

Для вычислительной техники используется дроссель, который применяется для питания различного высокоточного оборудования. Устройство требуется для снижения колебаний переменного напряжения. С добавлением частоты сопротивление соответственно увеличивается. Технические параметры дросселя зависят от площади поперечного сечения проводящего материала, числа витков вокруг сердечника из диэлектрика.

Катушка индуктивности

Пример из практики

Последовательно с источником освещения включен тестер. Напряжение осветительного прибора = 220 Вольт. Мощность неизвестна. На показателе амперметра указано 276 миллиампер тока. Какая величина у спирали лампы при последовательном включении в схему резисторов?

Формула нахождения сопротивления спирали

Электросопротивление представляет собой физическую величину, которая соответствует степени препятствия движению электрических частиц у каждого материала. Возможно измерить уровень величины мультиметром. В таком случае придется находить значение по формуле. Для предотвращения попадания электрического тока на непредназначенные для этого участки желательно заземлять линии передачи. Данная физическая величина используется во многих радиодеталях, например, светодиодах. В электрической цепи, чтобы узнать величину, требуется подключить к вольтметру фазу и ноль при известной силе тока, затем рассчитать по закону Ома.

Видео

amperof.ru

Формула сопротивления

   

Здесь – сопротивление, – удельное сопротивление проводника, – длина проводника, – площадь его сечения.

Единица измерения сопротивления – Ом.

Удельное сопротивление проводника зависит от материала, из которого он сделан. При расчётах эту величину берут из таблиц. Наименьшим среди распространённых металлов удельным сопротивлением обладают цинк, медь и алюминий.

То, что сопротивление проводника обратно пропорционально площади его сечения означает, что чем толще провод, по которому течёт электрический ток, тем больше потери электроэнергии. Поэтому электроснабжение устраивается таким образом, что там, где это возможно, вместо одного толстого провода используются несколько тонких.

Примеры решения задач по теме «Сопротивление»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Удельное электрическое сопротивление — Википедия

Уде́льное электри́ческое сопротивле́ние (удельное сопротивление) — физическая величина, характеризующая способность материала препятствовать прохождению электрического тока, выражается в Ом·метр. Удельное электрическое сопротивление принято обозначать греческой буквой ρ. Значение удельного сопротивления зависит от температуры в различных материалах по-разному: в проводниках, удельное электрическое сопротивление с повышением температуры возрастает, а в полупроводниках и диэлектриках — наоборот, уменьшается. Величина, учитывающая изменение электрического сопротивления от температуры называется температурный коэффициент удельного сопротивления. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только

вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле R=ρ⋅lS{\displaystyle R={\frac {\rho \cdot l}{S}}} (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется ρ=R⋅Sl.{\displaystyle \rho ={\frac {R\cdot S}{l}}.}

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м[1]. Из соотношения ρ=R⋅Sl{\displaystyle \rho ={\frac {R\cdot S}{l}}} следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом

[2]. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м[1]. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

В проводниках удельное электрическое сопротивление увеличивается с увеличением температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов[3].

В полупроводниках и диэлектриках удельное электрическое сопротивление уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация основных носителей заряда.

Величина, учитывающая изменение удельного электрического сопротивление от температуры называют температурным коэффициентом удельного сопротивления.

Обобщение понятия удельного сопротивления[править | править код]

Кусок резистивного материала с электрическими контактами на обоих концах

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается законом Ома в дифференциальной форме:

E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением

Ei(r→)=∑j=13ρij(r→)Jj(r→).{\displaystyle E_{i}({\vec {r}})=\sum _{j=1}^{3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}

В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.

Тензор ρij{\displaystyle \rho _{ij}} симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.

Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую

Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}

Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.

В изотропных материалах связь между удельным сопротивлением ρ{\displaystyle \rho } и удельной проводимостью σ{\displaystyle \sigma } выражается равенством

ρ=1σ.{\displaystyle \rho ={\frac {1}{\sigma }}.}

В случае анизотропных материалов связь между компонентами тензора удельного сопротивления ρij{\displaystyle \rho _{ij}} и тензора удельной проводимости σij{\displaystyle \sigma _{ij}} имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:

Ji(r→)=∑j=13σij(r→)Ej(r→).{\displaystyle J_{i}({\vec {r}})=\sum _{j=1}^{3}\sigma _{ij}({\vec {r}})E_{j}({\vec {r}}).}

Из этого равенства и приведённого ранее соотношения для Ei(r→){\displaystyle E_{i}({\vec {r}})} следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:

ρ11=1det(σ)[σ22σ33−σ23σ32],{\displaystyle \rho _{11}={\frac {1}{\det(\sigma )}}[\sigma _{22}\sigma _{33}-\sigma _{23}\sigma _{32}],}
ρ12=1det(σ)[σ33σ12−σ13σ32],{\displaystyle \rho _{12}={\frac {1}{\det(\sigma )}}[\sigma _{33}\sigma _{12}-\sigma _{13}\sigma _{32}],}

где det(σ){\displaystyle \det(\sigma )} — определитель матрицы, составленной из компонент тензора σij{\displaystyle \sigma _{ij}}. Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1, 2 и 3[4].

Удельное электрическое сопротивление некоторых веществ[править | править код]

Металлические монокристаллы[править | править код]

В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C[5].

Кристалл ρ12, 10−8 Ом·м ρ3, 10−8 Ом·м
Олово 9,9 14,3
Висмут 109 138
Кадмий 6,8 8,3
Цинк 5,91 6,13
Теллур 2,90·109 5,9·109

Металлы и сплавы, применяемые в электротехнике[править | править код]

Разброс значений обусловлен разной химической чистотой металлов, способов изготовления образцов, изученных разными учеными и непостоянством состава сплавов.

Металл ρ, Ом·мм²/м
Серебро 0,015…0,0162
Медь 0,01724…0,018
Золото 0,023
Алюминий 0,0262…0,0295
Иридий 0,0474
Молибден 0,054
Вольфрам 0,053…0,055
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,217…0,227
Титан 0,5562…0,7837
Висмут 1,2
Сплав ρ, Ом·мм²/м
Сталь 0,103…0,137
Никелин 0,42
Константан 0,5
Манганин 0,43…0,51
Нихром 1,05…1,4
Фехраль 1,15…1,35
Хромаль 1,3…1,5
Латунь 0,025…0,108
Бронза 0,095…0,1

Значения даны при температуре t = 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.

Другие вещества[править | править код]

Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», RSq.{\displaystyle R_{\mathrm {Sq} }.} Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: RSq=RW/L,{\displaystyle R_{\mathrm {Sq} }=RW/L,} где R — измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в плёнке неоднородное, используют метод ван дер Пау.

  1. 1 2 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 93. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — 287 с.
  3. Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд. — М.: Высшая школа, 1986. — 208 с.
  4. Давыдов А. С. Теория твёрдого тела. — М.: «Наука», 1976. — С. 191—192. — 646 с.
  5. Шувалов Л. А. и др. Физические свойства кристаллов // Современная кристаллография / Гл. ред. Б. К. Вайнштейн. — М.: «Наука», 1981. — Т. 4. — С. 317.
  • Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд., переработанное и дополненное. — М.: Высшая школа, 1986. — С. 6—7. — 208 с.

ru.wikipedia.org

Формула сопротивления тока. Как найти, вычислить электрическое сопротивление.

 

 

 

Тема: по какой форуле можно рассчитать электрическое сопротивление.

 

В сфере электрики и электроники такая вещь (и понятие) как сопротивление встречается повсеместно. Хоть может и показаться, что электрическое сопротивление это плохо, так как она препятствует свободному течению электрических зарядов по проводникам, но это не совсем так. Возможно вы уже сталкивались с тем, что во всем нужна своя мера. Любой вид энергии (в нашем случае электрической, электромагнитной) в той или иной системе нуждается в своем определенном количестве. Если энергии становится больше или меньше нужной меры, то как правило возникают различные нарушения правильной ее работы. Так что сопротивление в определенных случаях это даже очень хорошо.

 

Ну, а какая есть формула сопротивления тока? Основополагающей формулой, по которой можно найти электрическое сопротивление является та, которая исходит из обычного закона Ома.

 

 

Сама формула электрического сопротивления выражается так — сопротивление это отношение напряжения к силе тока. То есть, чтобы найти электрическое сопротивление нужно напряжение (разность потенциалов) разделить на силу тока. Все очень просто. Единицей измерения электрического сопротивления является «Ом» (названная в честь своего ученого открывателя). Напряжение измеряется в вольтах, а сила тока в амперах. В итоге мы имеем, 1 Ом равен 1 вольт деленный на 1 ампер. Используется и другие более крупные единицы измерения сопротивления — это килоомы (1 кОм = 1000 Ом), мегаомы (1 мОм = 1000 кОм = 1000 000 Ом).

 

 

 

 

Но всеже есть одно НО! Формулу нахождения сопротивления по закону Ома можно применять для постоянного и переменного тока лишь при наличии именно активного сопротивления (обычные резисторы, нагреватели, лампы накаливания и т.д.). Для случая реактивного сопротивления используется немного другая формула сопротивления тока. Она учитывает кроме напряжения и силы тока еще частоту, индуктивность, ёмкость.

 

 

Помимо этих формул еще можно привести такую, которая показывает зависимость сопротивления от вида и размеров проводника. Формула сопротивления тока уже будет содержать такие понятия как сечение проводника, его длина, удельное сопротивления (зависящее от конкретного материала).

 

 

А что собственно представляет собой это самое электрическое сопротивление? Думаю не лишним будет пояснить это. Итак, из физики нам известно, что любой проводник имеет так называемую кристаллическую решетку, состоящую из атомов и молекул, соединенных достаточно жесткими связями, что формирует устойчивую, фиксированную структуру. Атомы имеют ядро (состоящее из протонов и нейтронов), у которого положительный заряд. Вокруг ядра вращаются более мелкие частицы, называемые электронами, имеющими отрицательный электрический заряд.

 

 

Так вот, те электроны, что удалены от ядра дальше всего могут достаточно легко отрываться от своего атома и переходить к соседнему. При определенных условиях, а именно при подключении внешнего источника питания (а конкретнее внешнего электромагнитного поля) эти свободные электроны могут уже перемещаться упорядоченно в одном направлении. что порождает электрический ток. Но при своем движении электроны постоянно сталкиваются с другими атомами, что находятся на их пути. Вот именно это и является фактором электрического сопротивления. Следовательно предположить, что чем длиннее и тоньше будет проводник, тем больше препятствий будет на пути движения электронов, тем больше будет электрическое сопротивление. Ну, а еще одни проводники, в силу особенностей своей кристаллической решетки, будут иметь большее сопротивление, а другие — меньшее.

 

Напряжение можно еще сравнить с давлением (по аналогии с водой в трубах, к примеру), электрический ток это упорядоченное движение заряженных частиц, то есть в прямом смысле «поток зарядов (их количество, которое движется в одном направлении)». Вот и получается, что чем больше мы имеем (видим) напряжение на определенном участке электрической цепи (давление воды в водопроводе), при определенном потоке электронов, тем значит больше будет электрическое сопротивление, которое оказывается на движение этого самого потока электрических зарядов, внутри проводника. Все логично.

 

P.S. Если хорошо уметь представлять те физические процессы, что происходят внутри электрических схем, цепей, будет намного проще понять их изначальную суть. После этого любая формула становится более понятной, с точки зрения зависимости определенных физических величин. Это уже не просто набор каких-то знаков, это конкретная зависимость единиц измерения, что строго отображают в теории то, что работает на практике (в схемах, электрических устройствах и т.д.).

 

electrohobby.ru

Индуктивное сопротивление | Формулы и расчеты онлайн

Индуктивность L в электрической цепи вызывает запаздывание тока (см Самоиндукция). Вследствие этого ток достигает максимального значения Im позже напряжения. Если R = 0, приложенное напряжение противоположно индуцированному напряжению:

\[ u = L \frac{di}{dt} = \frac{d}{dt}(LI_{m} \sin(ωt)) \]

отсюда

\[ u = ωLI_{m} \cos(ωt) \]

или

\[ u = ωLI_{m} \sin(ωt + \frac{π}{2}) \]

Индуктивное сопротивление — графики тока и напряжения

Между напряжением и током возникает разность фаз (сдвиг фаз) равная +π/2.

B цепи переменного тока, содержащей только индуктивность, напряжение опережает ток на π/2 (или Т/4).

Из написанного выше равенства следует, что амплитуда напряжения Um = ωLIm. Сопоставляя это выражение с законом Ома Um = RIm, мы видим, что величина ωL играет роль сопротивления.

Цепь переменного тока, содержащая индуктивность L, обладает сопротивлением переменному току; оно называется индуктивным сопротивлением XL.

Единица СИ индуктивного сопротивления: [XL] = Ом.

Если

XLиндуктивное сопротивление цепи переменного тока,Ом
Lиндуктивность цепи,Генри
ω = 2πfкруговая частота переменного тока,Радиан/Секунда

то имеем

\[ X_{L} = ωL \]

При наличии в цепи только индуктивного сопротивления сила тока определяется выражением

\[ I = \frac{U}{ωL} \]

Вычислить, найти индуктивное сопротивление

В помощь студенту

Индуктивное сопротивление
стр. 686

www.fxyz.ru

формула и примеры расчета сопротивления, напряжения, тока и мощности

При проектировании электрических схем возникает необходимость использования последовательного и параллельного соединений резисторов. Соединения применяются также и при ремонтах электрооборудования, поскольку в некоторых ситуациях невозможно найти эквивалентный номинал резистора. Выполнить расчет просто, и справиться с этой операцией может каждый.

Типы проводников

Проводимость веществом электрического тока связана с наличием в нем свободных носителей заряда. Их количество определяется по электронной конфигурации. Для этого необходима химическая формула вещества, при помощи которой можно вычислить их общее число. Значение для каждого элемента берется из периодической системы Дмитрия Ивановича Менделеева.

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок. К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда. При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы. После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника. Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра. Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются. При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a<0. Для получения формулы, определяющей все зависимости, необходимо подставить все соотношения в общую формулу зависимости R от типа материала, температуры, длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S. Формулы используются только для расчетов и изготовления резисторов. Для быстрого измерения величины сопротивления применяется омметр.

Объединение резистивных радиокомпонентов

Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.

Каждое из соединений обладает определенными характеристиками. Кроме того, последовательно или параллельно могут объединяться несколько резисторов. Соединения также могут быть смешанными, т. е. применяться оба типа объединения радиокомпонентов.

Параллельное соединение

При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.

Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).

При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:

  1. Номинал резистора в 16 Ом подойдет.
  2. Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).

В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:

  1. Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
  2. Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.

Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).

Последовательное подключение

Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:

  1. Ток не изменяется на участке цепи.
  2. Общее напряжение равно сумме падений напряжений на каждом резисторе.
  3. Rобщ = R1 + R2 + … + Rn.

Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:

  1. I = I1 = I2 = 0,5 (А).
  2. Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
  3. Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).

Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.

Таким образом, параллельное и последовательное соединения резисторов применяются для получения более точных значений сопротивлений, а также при отсутствии необходимого номинала радиокомпонента при проектировании или ремонте устройств.

rusenergetics.ru

Удельное сопротивление и электропроводимость: формулы и объяснение

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2, если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8  Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2, что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

ПроводникУдельное сопротивление
ρ

Температурный коэффициент α
Алюминий0,0284,2
Бронза0,095 — 0,1
Висмут1,2
Вольфрам0,055
Железо0,16
Золото0,0234
Иридий0,0474
Константан0,50,05
Латунь0,025 — 0,1080,1-0,4
Магний0,0453,9
Манганин0,43 — 0,510,01
Медь0,01754,3
Молибден0,059
Нейзильбер0,20,25
Натрий0,047
Никелин0,420,1
Никель0,0876,5
Нихром1,05 — 1,40,1
Олово0,124,4
Платина0.1073,9
Ртуть0,941,0
Свинец0,223,7
Серебро0,0154,1
Сталь0,103 — 0,1371-4
Титан0,6
Фехраль1,15 — 1,350,1
Хромаль1,3 — 1,5
Цинк0,0544,2
Чугун0,5-1,01,0

Где: удельное сопротивление ρ измеряется в Ом*мм2 и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3*C-1(или K -1) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

meanders.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о