БП компьютера – цвета проводов, напряжение на разъемах
Из блока питания компьютера выходит толстый жгут проводов разного цвета и на первый взгляд, кажется, что разобраться с распиновкой разъемов невозможно.
Но если знать правила цветовой маркировки проводов, выходящих из блока питания, то станет понятно, что означает цвет каждого провода, какое напряжение на нем присутствует и к каким узлам компьютера провода подключаются.
Цветовая распиновка разъемов БП компьютера
В современных компьютерах применяются Блоки питания АТХ, а для подачи напряжения на материнскую плату используется 20 или 24 контактный разъём. 20 контактный разъем питания использовался при переходе со стандарта АТ на АТХ. С появлением на материнских платах шины PCI-Express, на Блоки питания стали устанавливать 24 контактные разъемы.
20 контактный разъем отличается от 24 контактного разъема отсутствием контактов с номерами 11, 12, 23 и 24. На эти контакты в 24 контактном разъеме подается продублированное уже имеющееся на других контактах напряжение.
Контакт 20 (белый провод) ранее служил для подачи −5 В в источниках питания компьютеров ATX версий до 1.2. В настоящее время это напряжение для работы материнской платы не требуется, поэтому в современных источниках питания не формируется и контакт 20, как правило, свободный.
Иногда блоки питания комплектуются универсальным разъемом для подключения к материнской плате. Разъем состоит из двух. Один является двадцати контактным, а второй – четырехконтактный (с номерами контактов 11, 12, 23 и 24), который можно пристегнут к двадцати контактному разъему и, получится уже 24 контактный.
Так что если будете менять материнскую плату, для подключения которой нужен не 20, а 24 контактный разъем, то стоит обратить внимание, вполне возможно подойдет и старый блок питания, если в его наборе разъемов есть универсальный 20+4 контактный.
В современных Блоках питания АТХ, для подачи напряжения +12 В бывают еще вспомогательные 4, 6 и 8 контактные разъемы. Они служат для подачи дополнительного питающего напряжения на процессор и видеокарту.
Как видно на фото, питающий проводник +12 В имеет желтый цвет с черной долевой полосой.
Для питания жестких и SSD дисков в настоящее время применяется разъем типа Serial ATA. Напряжения и номера контактов показаны на фотографии.
Морально устаревшие разъемы БП
Этот 4 контактный разъем ранее устанавливался в БП для питания флоппи-дисковода, предназначенного для чтения и записи с 3,5 дюймовых дискет. В настоящее время можно встретить только в старых моделях компьютеров.
В современные компьютеры дисководы Floppy disk не устанавливаются, так как они морально устарели.
Четырехконтактный разъем на фото, является самым долго применяемым, но уже морально устарел. Он служил для подачи питающего напряжения +5 и +12 В на съемные устройства, винчестеры, дисководы. В настоящее время вместо него в БП устанавливается разъем типа Serial ATA.
Системные блоки первых персональных компьютеров комплектовались Блоками питания типа АТ. К материнской плате подходил один разъем, состоящий из двух половинок. Его надо было вставлять таким образом, чтобы черные провода были рядом. Питающее напряжение в эти Блоки питания подавалось через выключатель, который устанавливался на лицевой панели системного блока. Тем не менее, по выводу PG, сигналом с материнской платы имелась возможность включать и выключать Блок питания.
В настоящее время Блоки питания АТ практически вышли из эксплуатации, однако их с успехом можно использовать для питания любых других устройств, например, для питания ноутбука от сети, в случае выхода из строя его штатного блока питания, запитать паяльник на 12 В, или низковольтные лампочки, светодиодные ленты и многое другое. Главное не забывать, что Блок питания АТ, как и любой импульсный блок питания, не допускается включать в сеть без внешней нагрузки.
Справочная таблица цветовой маркировки,
величины напряжений и размаха пульсаций на разъемах БП
Провода одного цвета, выходящие из блока питания компьютера, припаяны внутри к одной дорожке печатной платы, то есть соединены параллельно. Поэтому напряжение на всех провода одного цвета одинаковой величины.
Напряжение +5 В SB (Stand-by) – (провод фиолетового цвета) вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.
Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.
При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.
Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютеры не устанавливают. Поэтому в блоках питания последних моделей это напряжение может отсутствовать.
Отклонение питающих напряжений от номинальных значений не должно превышать значений, приведенных в таблице.
При измерении напряжения на проводах блока питания, он должен быть обязательно подключен к нагрузке, например, к материнской плате или самодельному блоку нагрузок.
Установка в БП компьютера
дополнительного разъема для видеокарты
Иногда бывают, казалось бы, безвыходные ситуации. Например, Вы купили современную видеокарту, решили установить в компьютер. Нужный слот на материнской плате для установки видеокарты есть, а подходящего разъема на проводах, для дополнительного питания видеокарты, идущих от блока питания нет. Можно купить переходник, заменить блок питания целиком, а можно самостоятельно установить на блок питания дополнительный разъем для питания видеокарты. Это простая задача, главное иметь подходящий разъем, его можно взять от неисправного блока питания.
Сначала нужно подготовить провода, идущие от разъемов для соединения со сдвигом, как показано на фотографии. Дополнительный разъем для питания видеокарты можно присоединить к проводам, идущим, например, от блока питания на дисковод А. Можно присоединиться и к любым другим проводам нужного цвета, но с таким расчетом, чтобы хватило длины для подключения видеокарты, и желательно, чтобы к ним ничего больше не было подключено. Черные провода (общие) дополнительного разъема для питания видеокарты соединяются с черным проводом, а желтые (+12 В), соответственно с проводом желтого цвета.
Провода, идущие от дополнительного разъема для питания видеокарты, плотно обвиваются не менее чем тремя витками вокруг провода, к которому они присоединяются. Если есть возможность, то лучше соединения пропаять паяльником. Но и без пайки в данном случае контакт будет достаточно надежным.
Завершается работа по установке дополнительного разъема для питания видеокарты изолированием места соединения, несколько витков и можно подключать видеокарту к блоку питания.
Благодаря тому, что места скруток сделаны на удалении друг от друга, каждую скрутку изолировать по отдельности нет необходимости. Достаточно покрыть изоляцией только участок, на котором оголены провода.Доработка разъема БП
для подключения материнской платы
При выходе из строя материнской платы или модернизации (апгрейде) компьютера, связанного с заменой материнской платы, неоднократно приходилось сталкиваться с отсутствием у блока питания разъема для подачи питающего напряжения с 24 контактами.
Имеющийся разъем на 20 контактов хорошо вставлялся с материнскую плату, но работать компьютер при таком подключении не мог. Необходим был специальный переходник или замена блока питания, что являлось дорогим удовольствием.
Но можно сэкономить, если немного самому поработать руками. У блока питания, как правило, есть много незадействованных разъемов, среди них может быть и четырех, шести или восьми контактный. Четырехконтактный разъем, как на фотографии выше, отлично вставляется в ответную часть разъема на материнской плате, которая осталась незанятой при установке 20 контактного разъема.
Обратите внимание, как в разъеме, идущем от блока питания компьютера, так и в ответной части на материнской плате каждый контакт имеет свой ключ, исключающий неправильное подключение. У некоторых изоляторов контактов форма с прямыми углами, а у иных углы срезаны. Нужно разъем сориентировать, чтобы он входил. Если не получится подобрать положение, то срезать мешающий угол.
По отдельности как 20 контактный, так и 4 контактный разъемы вставляются хорошо, а вместе не вставляются, мешают друг другу. Но если немного сточить соприкасаемые стороны обоих разъемов напильником или наждачной бумагой, то хорошо вставятся.
После подгонки корпусов разъемов можно приступать к присоединению проводов 4 контактного разъема к проводам 20 контактного. Цвета проводов дополнительного 4 контактного разъема отличаются от стандартного, поэтому на них не нужно обращать внимания и соединить, как показано на фотографии.
Будьте крайне внимательными, ошибки недопустимы, сгорит материнская плата! Ближний левый, контакт №23, на фото черный, подсоединяется к красному проводу (+5 В). Ближний правый №24, на фото желтый, подсоединяется к черному проводу (GND). Дальний левый, контакт №11, на фото черный, подсоединяется к желтому проводу (+12 В). Дальний правый, контакт №12, на фото желтый, подсоединяется к оранжевому проводу (+3,3 В).
Осталось покрыть места соединения несколькими витками изоляционной ленты и новый разъем будет готов к работе.
Для того, чтобы не задумываться как правильно устанавливать сборный разъем в разъем материнской платы следует нанести с помощью маркера метку.
Как на БП компьютера
подается питающее напряжение от электросети
Для того чтобы постоянные напряжения появились на цветных проводах блока питания, на его вход нужно подать питающее напряжение. Для этого на стенке, где обычно установлен кулер, имеется трехконтактный разъем. На фотографии этот разъем справа вверху. В нем есть три штыря. На крайние с помощью сетевого шнура подается питающее напряжение, а средний является заземляющим, и он через сетевой шнур при его подключении соединяется с заземляющим контактом электрической розетки.
В домах старой постройки электропроводка выполнена без заземляющего контура, в этом случае заземляющий проводник компьютера остается не подключенным. Опыт эксплуатации компьютеров показал, что если заземляющий проводник не подключен, то это на работу компьютера в целом не сказывается.
Сетевой шнур для подключения Блока питания к электросети представляет собой трехжильный кабель, на одном конце которого имеется трех контактный разъем для подключения непосредственно к Блоку питания. На втором конце кабеля установлена вилка C6 с круглыми штырями диаметром 4,8 мм с заземляющим контактом в виде металлических полосок по бокам ее корпуса.
Если вскрыть пластмассовую оболочку кабеля, то можно увидеть три цветных провода. Желто – зеленый – является заземляющим, а по коричневому и синему (могут быть и другого цвета), подается питающее напряжение 220В.
Желто – зеленый провод в вилке С6 присоединяется к заземляющим боковым полоскам. Так что если придется заменять вилку, не забудьте об этом. Все о электрических вилках и правилах их подключения можете узнать из статьи сайта «Электрическая вилка».
О сечении проводов, выходящих из БП компьютера
Хотя токи, которые может отдавать в нагрузку блок питания, составляют десятки ампер, сечение выходящих проводников, как правило, составляет всего 0,5 мм2, что допускает передачу тока по одному проводнику величиной до 3 А. Более подробно о нагрузочной способности проводов Вы можете узнать из статьи «О выборе сечения провода для электропроводки». Однако все провода одного цвета запаяны на печатной плате в одну точку, и если блок или модуль в компьютере потребляет больший, чем 3 А ток, через разъем подводится напряжение по нескольким проводам, включенным параллельно. Например к материнской плате напряжение +3,3 В и +5 В подводится по четырем проводам. Таким образом, обеспечивается подача тока на материнскую плату до 12 А.
Сколько ампер выдает блок питания компьютера
Бывает такое что надо в гараже например подкачать колеса на авто, или колеса при замене (летозима) или даже на велосипеде качнуть)
Для адекватной работы компрессора надо заводить авто.
можно и не заводить но мощность не та, и акб нагружать не хочется…
Решил замутить блок питания для компрессора.
Всякие блоки на 12 вольт с силой тока до 2А включительно не походят 100% проверено! компрессор высасывает весь ток мгновенно! и работает 0,2 сек потом 0,5 сек тишина потом 0,2 сек работает, 0,5 тишина…
Посмотрев сколько ампер выдает блок питания от компа на 12 вольт — 40А и больше
Решил из него и собрать такой блок
Вот что получилось:
Есть видео как все это работает:
блоком пользуюсь раз в месяц точно !
Блок питания на 350W
взял с бу компа который по сути просто списали)
Затрат с моей стороны разве что время и усилия)
просто и подробно о персональном компьютере,его устройстве, настройке и сборке.
Популярные сообщения
Pеклама
Реклама
четверг, 2 августа 2012 г.
Блок питания для компьютера
Основные характеристики современных блоков питания:
Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.
На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.
Указано, что максимальная суммарная мощность по линиям +3. 3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.
Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.
Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.
Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.
Активный и пассивный PFC
PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.
Система охлаждения блоков питания.
Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.
Современный блок питания имеет следующие разъемы:
1 – 24-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.
23 – Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4 – Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.
6 – Разъем SATA для подключения жестких дисков и оптических приводов.
5 – 4-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.
7 – 4-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.
Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.
Производители.
Производители блоков питания делятся на три группы:
1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.
4 коммент.:
Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
[email protected]
10 марта 2019 г., 01:48 Сергей Ветров комментирует.
просто и подробно о персональном компьютере,его устройстве, настройке и сборке.
Популярные сообщения
Pеклама
Реклама
четверг, 2 августа 2012 г.
Блок питания для компьютера
Основные характеристики современных блоков питания:
Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.
На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.
Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.
Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.
Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.
Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.
Активный и пассивный PFC
PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.
Система охлаждения блоков питания.
Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.
Современный блок питания имеет следующие разъемы:
1 – 24-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.
23 – Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4 – Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.
6 – Разъем SATA для подключения жестких дисков и оптических приводов.
5 – 4-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.
7 – 4-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.
Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.
Производители.
Производители блоков питания делятся на три группы:
1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.
4 коммент.:
Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
Storkmany@mail. ru
10 марта 2019 г., 01:48 Сергей Ветров комментирует.
Простой блок питания на 12 вольт для вентилятора от компьютера своими руками. _v_
Тема: как сделать источник питания под компьютерный вентилятор самому.
Когда получает какое либо электротехническое устройство широкое распространение, то также повсюду можно встретить его части и комплектующие. В компьютерах для охлаждения его плат применяются вентиляторы. Их разновидности поражают воображение. Когда нужен какой-нибудь вентилятор, первым делом в голову приходит подыскать себе подходящий, взяв его именно из компьютерного блока. Основным напряжением, от которого питаются компьютерные вентиляторы, является 12 вольт. Обычно мощность таких вентиляторов невысокая, где-то до 6 Вт. Токи потребления лежат в пределах 0,1 – 0,5 ампер.
К примеру, у меня возникла необходимость в использовании одного из таких компьютерных вентиляторов. Нужно было, чтобы он не шумел. Для этого обычно применяют малооборотистые вентиляторы, которые по размеру больше, чем большинство обычных кулеров. Питается от 12 вольт. Потребляемая величина постоянного тока равна 0,1 ампер. Питать его от компьютерного блока, как-то не совсем удобно. Решил быстренько собрать отдельный блок питания именно под этот компьютерный вентилятор. Схема блока питания простая и самая обычная, которая содержит в себе только основные элементы: понижающий трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит.
Итак, когда начинаешь собирать какой-нибудь блок питания под конкретные нужды, то сначала нужно четко определится с его общей мощностью, которую он свободно может обеспечить (без режима перегрузки). Для этого нужно знать мощность, которую потребляет сама нагрузка, что будет питать источник электричества. Напомню, что мощность вычисляется следующим образом — напряжение нужно умножить на силу тока. В моем случае это 12 вольт (напряжение питания вентилятора) умножаю на 0,1 ампера (сила тока, которую потребляет мой компьютерный вентилятор). Получаю мощность равную 1,2 Вт. Не забываю о небольшом запасе по мощности. В результате мне нужен блок питания с мощностью не менее 1,5-2 ватта.
Теперь мне нужно найти понижающий трансформатор на эту мощность. Мощность в 2 ватта является небольшой. Подойдет любой трансформатор от большинства электротехники, взятый из блока питания (БП телефонных аппаратов, старых магнитофонов, CD проигрывателей, приставок и т.д.). Его первичная обмотка, естественно, должна быть рассчитана на напряжение 220 вольт. Вторичная обмотка должна выдавать 10 вольт. Почему 10, а не 12 вольт? А потому, что есть такой вот эффект — переменное напряжение после выпрямление диодным мостом и фильтрацией конденсатором увеличивается где-то примерно на 17%. В итоге мы получим свои 12 В. Как известно, выходной ток трансформатора зависит от диаметра вторичной обмотки. В нашем случае для тока в 0,1 ампер диаметр провода вторичной обмотки должен быть не менее 0,3 мм (это даже с небольшим запасом).
На выходе нашего понижающего трансформатора мы будем иметь пониженное, но все же переменное напряжение, а нам нужно постоянное (для питания компьютерного вентилятора). Чтобы переменный ток сделать постоянным используют выпрямительный диодный мост. Он состоит из 4 одинаковых диодов, параметры которых зависят, опять же, от той нагрузки, которую нужно питать. Для диодного моста основными параметрами являются обратное напряжение и сила прямого тока. Поскольку наш простой блок питания под вентилятор от компьютера питается от 12 вольт, то и диоды должны быть рассчитаны на напряжение не меньше этого (обычно выпрямительные диоды рассчитаны на большее напряжение, около 1000 В). Ну, и прямой ток диоды моста должны выдерживать 0,1 ампер (поскольку это маленький ток, то подойдут практически любые выпрямительные диоды).
Теперь мы на выходе диодного моста (выпрямителя) имеет постоянное напряжение, но, к сожалению, оно скачкообразной формы. Для того, чтобы это исправить и сделать постоянный ток, действительно, постоянным нужен еще фильтрующий конденсатор электролит. Его задача заключается в сглаживании этих скачков напряжения. В нашем случае нужен конденсатор, рассчитанный на напряжение более 12 вольт (берем кондеры с напряжением 16 – 25 вольт) и емкостью от 470 до 1000 микрофарад.
Вентиляторы особо не нуждаются в сильно стабилизированном напряжении и токе. Вполне хватает фильтрующего конденсатора, что сглаживает скачки после моста. Данный блок питания для компьютерного вентилятора будет вращать его на полных оборотах (максимальные, что имеет данный кулер). Если поставить хотя бы обычный переменный резистор в цепь питания (последовательно вентилятору), то уже можно будет регулировать частоту вращения лопастей вентилятора. Хотя лучше вместо резистора поставить специальную плату частоты вращения постоянного электродвигателя, схема которой может быть самой простой.
Видео по этой теме:
P. S. Хотелось бы заметить, что при сборке любого блока питания, будь то на компьютерный вентилятор, либо же на иное электротехническое устройство, всегда учитывайте некий запас по мощности. Если подбирать, делать источники питания впритык по мощности, это чревато тем, что они попросту будут греться, а в худшем случае вовсе сгорят.
Опасны ли просадки напряжения в блоке питания? | mizhgunit
Всем привет, дорогие друзья. Рад вас видеть! Качественные БП от некачественных отличаются элементной базой, которая в качественных моделях может выдерживать несколько большие нагрузки.
Но что, если нагрузить некачественный блок питания? В первую очередь – просядет напряжение, а вот чем это чревато – разберемся в данной статье.
Начнем с допустимого
Напряжение на комплектующие не подается идеально равномерно – у блока питания есть пульсации, а системы стабилизации не могут обеспечить “идеальные” 12В.
В компьютере гораздо больше стабилизаторов напряжения, чем вам может показаться. Они служат для того, чтобы не совсем точные 12В с блока питания преобразовать в 12В той точности, на которой комплектующие могут работать (чем выше точность – тем ближе значение к 12В).
Таким образом, допустимый диапазон напряжений – 11.4В – 12.6В. Но что если выйти за рамки этого диапазона?
Опасный рубеж
Меньшее напряжение означает меньший ток при равной его силе. По-простому – силу тока умножаем на напряжение – получаем мощность.
Пускай наша видеокарта потребляет 250 ватт. Для того, чтобы ее запитать, нам нужно подать 21 ампер при напряжении 12 вольт. Если мы снизим напряжение до 11.6, то сила тока вырастет до 22 ампер. А что, если напряжение упало до 10.9? Уже 23 ампера. При этом просадки до 10.9 – все еще оставят компьютер включенными.
Провода начнут сильнее греться, хоть и не критично, но блок не всегда успеет среагировать на просевшее напряжение, чтобы увеличить силу тока там, где это нужно. Как следствие – компьютер может выключиться или перезагрузиться.
Пожалуй, это наилучший исход. Но есть и блоки с групповой стабилизацией: когда на одной линии просадка – напряжение поднимается на всех линиях. Это значит, что при сильной нагрузке на 12В, напряжение на 12В может быть ниже 12В, на 5В – выше 5В.
Смешная ситуация с блоками питания Aerocool VX, у которых групповая стабилизация, но нет защиты от КЗ по линиям 5 и 3.3 вольта. Замыкание на них приведет к сильному повышению напряжения на 12В линии, а вот это чревато уже куда более серьезными последствиями.
Превышение напряжения
Из-за просадки компьютер может выключиться, либо подать большее напряжение на другие линии. Если же напряжение выше, то железо может просто сгореть.
Конечно, сейчас очень много предохранителей везде, где только можно, но факта это не отменяет: компьютер вполне можно спалить, сильно просадив какую-либо линию в дешевом блоке питания.
Для этого должны сойтись все звезды: БП без защит по КЗ на 5 или 3.3В линии, без защит от перегрузки, без защиты от высокого напряжения. Простое замыкание приведет не только к смерти БП, но и к смерти железа, если блок успел поднять напряжение.
Кстати, не забудь подписаться на нашу группу ВК со статьями, смешными картинками, а также обсуждениями и криворуким оператором.
И на этом я прощаюсь. Спасибо за внимание, если статья понравилась – не забудь поставить лайк и подписаться на канал. До скорого!
Читайте также:
Ардуино питание от 5, 9, 12 вольт, можно ли подключить или надо использовать преобразователь 📹
Ардуино один из популярнейших микроконтроллеров на сегодняшний день. Описывать все плюсы этой сборки мы не будем, ведь если вы зашли сюда, то явно не просто так, а видимо поняли, что без него вам не обойтись. Мы догадываемся и о том, что вас мучает совсем другой вопрос… Можно ли питать Ардуино напряжением 12 вольт? Ведь когда мы работаем с компьютером от USB, то Ардуино питается от того же компьютера – 5 вольтами. Здесь все хорошо, все согласовано и нет никаких проблем! Но как только Ардуино “отправляется на службу”, ее питание по проводу от компьютера прерывается словно пуповина у новорожденного, а кормиться должны все:) Здесь и приходиться что-то мудрить. Так вот, как можно запитать Ардуино?
Большинство плат требует наличие питания в диапазоне от 4.5 до 9 вольт через разъем внешнего питания и 4.5-5 вольт через USB. Однако в инструкции написано 7-12 вольт, то есть будем считать, что оптимальным вариант это 9 вольт.
На самом деле из 9 вольт на плате получается 5 и 3,3 вольта. Для каждой цепочки питания на 5 и на 3.3 в на плате установлен свой стабилизатор напряжения. Вот как скажем на фото это lm1117 стабилизатор для 5 вольт, а далее на 3,3 вольта. Нас будет интересовать именно стабилизатор на 5 вольт, так как именно на нем будет гаситься напряжение, а значит рассеиваться мощность при подаче завышенного напряжения. Давайте прикинем что и как.
Сколько жрет Ардуинка
Не трудно прикинуть что в среднем это выходы по 20-40 мА пусть штуки 3-4 и собственное энергопотребление и потери, порядка 50-70 мА. То есть 40*3+70=190 мА, ну так и есть! Однако если начнете вешать активные датчики, то есть то что еще надо и питать, то здесь еще плюсом 20-30 мА на каждый датчик. Обычно силы тока в 200-300 мA хватает, на этом и остановимся.
Ардуино при питании меньше 5 вольт
При меньшем напряжении работа будет нестабильной, порядка 3,4-4 вольт, а при последующем понижении не будет работать вовсе.
Ардуино питание от 5 вольт
Этот вариант питание от компьютера. Реализовать такое питание можно также от зарядного устройства телефона или купив преобразователь на Али. В этом случае напряжение будет номинально и lm1117 не придется стараться над тем, чтобы понизить напряжение, а значит рассеивать будет нечего, разве что собственные потери. Однако это вариант подходит лишь для того чтобы “заливать” Ардуино. Если же уже все сделано и программа залита, то напряжение 5 вольт маловато. В этом случае при значительных нагрузках на выходы, возможны провалы в работе.
Ардуино питание от 9 вольт
Можно ли запитать Ардуину от батарейки “Крона” или блока пальчиковых батареек? Можно! На холостом ходу или с минимальной нагрузкой она проработает у Вас не один месяц. А вот уже с небольшим увеличением нагрузки время автономной работы быстро сойдет на нет. Если как мы рассматривали выше повесить на батарейку что-то посложнее, вроде датчиков любящих покушать и светодиодов индикации в особом изобилии, то батарейки может хватить совсем не надолго. Говорить предметно в этом случае можно только лишь относительно каждого конкретного случая.
Что же касается блока питания, то его необходимо подключать к разъему внешнего питания. То есть lm1117 надо будет погасить 4 вольт. Давайте прикинем какую мощность надо будет рассеять lm1117. Пусть ток потребления 250 мА.
P=U*I=4*0.25=1 Вт.
Вроде не так уж и много, да к тому же и спецификация 9 вольт для питания вполне допускает. Это напряжение учитывает все потери в элементах и стабилизаторе, а значит является одним из наиболее предпочтительных. Я бы сказал , что напряжение 79 вольт идеальный вариант для Ардуино.
Ардуино питание от 12 вольт
Здесь опять же два варианта где взять 12 вольт, это либо БП, либо аккумулятор. Да, да Ардуино довольно активно используется в автомобилях, а там 12-14 вольт – везде! Именно на автомобилистов и будем ориентироваться. Итак 14 вольт, сколько же надо погасить lm1117. Несложно посчитать 14-5=9 вольт. Считаем сколько надо рассеять.
P=U*I=9*0.25= 2.25 Вт. Здесь рассеиваемая мощность подлетела аж в 2,5 раза, все в общем-то пропорционально напряжению. Здесь вопрос уже о том, выдержит ли lm1117 или нет. Если заглянуть в даташит это малышки, то там выходной ток 0,8 А, но на напряжении 1,2 в, то есть она выдает мощность 1,2*0,8=0,96 Вт. Конечно, мощность возможная рассеиваемая и возможная выходная это все же разные вещи, но как-то все же эти величины должны сопоставляться… Кроме того, напряжение с которыми работает lm1117 до 13,8 вольт. Что может спасти, так это реализованная защита от перегрева и КЗ в микросхеме. По крайней мере в корпусе SOT-223 как у нас, подключать к 14 вольтам lm1117 не стоит. Все это на ваш страх и риск, а если уж сильно хочется, то с током не более чем на 1-2 светодиода, то есть 70-80 мА.
Как же подключить все-таки к 12 вольтам, получив 7-9 вольт и запитав Ардуино? Лучше всего использовать преобразователь или микросхему стабилизатор напряжения с более развитым корпусом скажем применяем микросхему lm7809 или КРЕН9, что одно и тоже. Корпус ТО-220, да еще лучше посадить на радиатор 5-10 кв. см из алюминия. Ток в этом случае до 2 А. Такой микросхемы с радиатором должно хватить! Далее приведена схема подключения для 7805, но 7809 подключается один в один!
Само собой ставим эту сборку до разъема питания. В итоге рассеиваемая мощность на падение напряжения в 2.,25 Вт будет рассеиваться частично на lm7809 и часть в самой Ардуино lm1117.
Как повысить напряжение в блоке питания компьютера
Основа современного бизнеса – получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, – просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно – различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат – импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.
Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках “Дефект” столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все – “труба”, то хоть какую-нить запцацку снять и вкидануть в другое оборудование.
Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак – несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель – не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.
Часть 1. Так себе.
Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает – можно делать пробный пуск и измерить все напряжения.
+3,3 В – оранжевый
По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.
Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть – блок включится и вентилятор – индикатор включения – начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это “черный” и “зеленый”. Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.
Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.
Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.
Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.
Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.
Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.
Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.
Замеряем все напряжения по шинам
Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины – 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод – вполне.
Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром – вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.
Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке – типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.
Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.
Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.
Часть 2. Более-менее.
Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения – достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.
Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор – для подбора срабатываний по току. Но получилось неважно – нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.
Измерение параметров дало следующие результаты:
Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL494 или КА7500 с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL494 или ее аналога КА7500. Снимите верхнюю крышку и проверьте на какой микросхеме собран блок.
Прежде чем приступить к переделке компьютерного блока питания в зарядное устройство, проверьте исправность блока питания. Как включить блок питания без компьютера? Замкните зеленый провод с любым черным. Блок должен включиться.
Для нормальной зарядки аккумулятора требуется напряжение 14,5 вольт, а на выходе из компьютерного блока питания напряжение 12 вольт. Поэтому, надо сделать блок питания регулируемым, то есть поднять напряжение до максимального значения в 16 вольт. На этом рисунке изображена схема переделки компьютерного блока питания в зарядное устройство.
Схема переделки компьютерного блока питания в зарядное устройство
В каждом блоке питания, собранном на микросхемах TL494 или КА7500, имеется защита от короткого замыкания и высокого напряжения, которая отключает блок питания в случае нештатной ситуации. Чтобы повысить выходное напряжение до 16 вольт, надо отключить защиту. Для этого отрежьте дорожку от 4 ноги микросхемы. Далее 4 ногу микросхемы соедините куском провода на минус, это большой пучок черных проводов, обозначенных на плате GND. Чтобы сделать блок питания регулируемым, надо удалить резистор, через который подается напряжение с выхода блока питания, обозначенного на плате +12V (пучок желтых проводов) на первую ногу микросхемы и на его место поставить переменный резистор сопротивлением 50 кОм или 100 кОм. Для каждого блока подбирается индивидуально ведь блоки питания у всех разные.
Для начинающих радиолюбителей это очень сложная задача потому, что этот самый резистор очень любят прятать от зорких глаз и умелых рук начинающих радиолюбителей хитрые производители компьютерных блоков питания. Каких либо стандартов расположения резистора на печатной плате нет. Все производители блоков питания по своему располагают и нумеруют детали на плате. Поэтому, искать надо от выхода +12V до первой ноги микросхемы или наоборот, кому как удобно. На этой плате я отключил защиту, отрезав дорожку от 4 ноги микросхемы. Потом соединил 4 ногу на минус. После включения в сеть блок питания запускается без замыкания зеленого провода с черным, это означает, что защита отключена.
В этом компьютерном блоке питания, резистор находится здесь, рядом с первой ногой микросхемы. Напряжение на резисторе около 12 вольт.
После установки переменного резистора на 100 кОм. Напряжение плавно регулируется от 4,5 вольт до 16 вольт и обратно. Поскольку выходное напряжение увеличилось до 16 вольт, а в некоторых блоках питания возможно поднять напряжение до 20 вольт. Во избежание мощного взрыва выходных конденсаторов настоятельно рекомендую заменить 16 вольтовые конденсаторы на выходе из блока питания на 25 вольтовые, они по диаметру идеально становятся на свои места, а по высоте немного длиннее. Вентилятор подключите через резистор от 20 до 100 ом.
Для визуального контроля процесса зарядки аккумулятора желательно установить универсальный вольт амперметр китайского производства. Схема подключения изображена на рисунке внизу. Не смотря на свою универсальность, чудо прибор для точности измерительных показаний нуждается в небольшой настройке. На задней плате прибора имеется два маленьких подстроечных SMD резистора. Левый резистор предназначен для калибровки амперметра, а правый показаний вольтметра. Как откалибровать китайский вольт амперметр?
После подключения прибора к выходу компьютерного блока питания, подключите мультиметр в режиме вольтметра. Сравните показания двух приборов. В случае необходимости подкорректируйте показания вольт амперметра правым подстроечным резистором. Чтобы откалибровать амперметр, переключите мультиметр в режим амперметра и соедините последовательно с вольт амперметром через лампу накаливания 12 Вольт 21 Ватт. Точность показаний амперметра установите левым подстроечным резистором. На этом калибровка вольт амперметра окончена.
Схема подключения универсального вольт амперметра к зарядному устройству из компьютерного блока питания
Так выглядит готовое зарядное устройство, все детали легко разместились внутри стандартного корпуса. Поскольку в зарядном устройстве отсутствует защита от короткого замыкания, не забудьте установить предохранитель на 10А в разрыв (желтого) провода выходящего из линии +12V, который надежно защитит блок питания от короткого замыкания.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать зарядное устройство из компьютерного блока питания!
Греется блок питания компьютера | Компьютерный Мастер
Блок питания компьютера (БП) преобразовывает переменное напряжение электросети 220 Вольт в постоянные напряжения 12 Вольт, 5 Вольт и 3,3 Вольта, которые необходимы для питания компонентов компьютера. Неисправности блока питания приводят к нестабильной работе компьютера. Перегрев блока питания явно свидетельствует о неполадках в его работе.
Как узнать температуру блока питания компьютера
В компьютерном блоке питания не предусмотрены температурные датчики, поэтому замерить его температуру программным методом не получится. Перегрев можно определить на ощупь или по запаху гари. Если блок питания оснащен защитой от перегрева, то он будет отключаться при превышении порога температуры 50 градусов.
Блок питания компьютера
При желании можно замерить температуру потока исходящего воздуха. Для этого подойдет термометр, охватывающий диапазон до 100о С. Также можно воспользоваться термопарой, предварительно заизолированной термоусадочной трубкой. Термопару вставляют внутрь блока питания через воздушные прорези и подключают к мультиметру с поддержкой измерения температуры. При перегреве температура воздушного потока из корпуса блока питания будет значительно выше температуры остальных компонентов компьютера. Для получения более точных результатов блок питания желательно вынести за пределы корпуса компьютера, насколько хватит проводов.
Почему греется блок питания компьютера
Блок питания ПК может перегреваться из-за нескольких причин:
- Неисправность вентилятора;
- Запыленность внутри корпуса БП;
- Увеличение потребляемой компонентами компьютера мощности (повышенная нагрузка на БП).
Что делать если перегревается блок питания
Системный блок нужно отключить от сети. Затем снять боковую панель и отключить все штекеры блока питания от материнской платы и других устройств компьютера. Далее открутить блок питания и извлечь его из корпуса компьютера.
Блок питания компьютера
После этого БП можно вскрыть. Сложного ничего в этом нет, нужно только отвернуть винты крышки блока питания. Пыль, скопившаяся внутри корпуса, препятствует воздушному потоку и снижает эффективность охлаждения.
Чистка блока питания
Пыль нужно удалить, воспользовавшись кисточкой и баллончиком со сжатым воздухом.
Чистка блока питания
Неисправный вентилятор рекомендуется сразу заменить новым. Если просто почистить и смазать втулку старого вентилятора, не исключено, что через пару недель, снова придется разбирать блок питания.
Кулер блока питания компьютера
Если блок питания греется во время игр, наверняка он работает в режиме перегрузки – потребляемая мощность компонентов компьютера близка к максимальной мощности БП. В этом случае придется заменить блок питания более мощным. Для расчета мощности можно воспользоваться одним из онлайн-калькуляторов. В анкете, предложенной сайтом, нужно указать комплектующие входящие в состав компьютера. Калькулятор рассчитает максимальную мощность, потребляемую всеми устройствами. При выборе нового блока питания следует ориентироваться на это значение.
Как Intel меняет будущее блоков питания с помощью спецификации ATX12VO
Мы не часто говорим о блоках питания, но новая спецификация Intel ATX12VO – это «О» для «Оскара», а не ноль – скоро начнет появляться в готовых ПК от OEM-производителей и системных интеграторов, и она представляет собой существенное изменение в конструкции блока питания.
Спецификация ATX12VO убирает шины напряжения с блока питания, чтобы повысить стандарты эффективности на ПК и соответствовать строгим правительственным постановлениям.Но хотя спецификация по существу исключает + 3,3 В, + 5 В, -12 В и + 5 В в режиме ожидания от блока питания, они никуда не денутся – они просто переходят на материнскую плату. Это еще одно большое изменение, поэтому продолжайте читать, чтобы узнать больше.
Не забирайте мой блок питания ATX12V!
Не паникуйте, домашние мастера: агенты по контролю за блоком питания не придут, чтобы забрать ваш блок питания ATX мощностью 1500 Вт (в любом случае, полиция блока питания не существует). ATX12VO в настоящее время нацелен в основном на OEM-производителей ПК и поставщиков систем, некоторые из которых уже пошли по этому пути самостоятельно.
ATX12VO не заменит ATX12V для индивидуальных сборщиков ПК. «Intel планирует продолжить публикацию спецификации ATX Multi Rail для обеспечения совместимости с существующими материнскими платами и блоками питания, чтобы предоставить нашим OEM-производителям и клиентам больше возможностей», – сообщили PCWorld представители Intel.
IDGСравнивая БП 2006 года (слева) с версией 2016 года (справа), мы видим, что напряжение изменилось с 3,3 до 5,5 вольт в сторону 12 вольт.
Почему к бордюру пинают 3,3 вольт и 5 вольт?
Тем не менее, устранение производства 3.Питание на 3 и 5 В, или «рейки», в самом блоке питания – это серьезное изменение. Первоначально компьютеры работали в основном от 5 вольт, но со временем они перешли в основном на 12 вольт. Один производитель блоков питания, например, указал на созданный им примерно в 2006 году блок питания мощностью 600 Вт, из которого 25 процентов мощности было выделено на 3,3-вольтовые и 5-вольтовые шины. Переместите время на десять лет вперед, и аналогичный блок питания на 600 Вт, произведенный той же компанией, теперь имеет бюджет всего 15 процентов на 3,3 и 5 вольты.
Эффективность (насколько эффективно блок питания преобразует переменный ток от стены в постоянный ток, необходимый ПК) также выросла.Блок питания 2006 года работал с КПД 78%, а блок питания 2016 года имел рейтинг КПД 98%. Это означает, что блок питания 2006 года должен будет потреблять около 127 Вт переменного тока от стены для выработки около 99 Вт, в то время как блок питания 2016 года будет потреблять около 100 Вт для выработки мощности 98 Вт.
Поскольку ATX12VO удаляет так много направляющих, толстый 24-контактный разъем основного питания резко упадет до крошечного 10-контактного разъема, аналогично тому, что мы видели с Intel Compute Element ранее в этом году.
Gordon Mah UngВ новой спецификации Intel ATX12VO будет 10-контактный разъем, аналогичный разъему Compute Element.
Речь идет об эффективности
Повышение эффективности является основной причиной перехода к ATX12VO. «Поскольку настольные компьютеры продолжают становиться более энергоэффективными, потери при преобразовании переменного тока в постоянный могут стать самым большим потребителем энергии для компьютера в режиме ожидания», – заявили PCWorld представители Intel. «Существующие многорельсовые блоки питания ATX (5 В, 3.3V, 12V, -12V, 5VSB) не очень эффективны при низкой нагрузке на современные настольные компьютеры в простое », – заявляет Intel. Поскольку многорельсовый источник питания передает очень низкий ток на все шины напряжения, эффективность составляет всего от 50 до 60 процентов.
Новая спецификация ATX12VO значительно повышает эту эффективность. «Преобразование в источник питания с одной шиной питания, – поясняет Intel, – позволяет минимизировать потери при преобразовании, достигая КПД до 75 процентов при тех же уровнях нагрузки постоянного тока».
В то время как повышенная эффективность означает меньшее потребление энергии и меньшие деньги, поступающие в энергетическую компанию, поставщики ПК не делают этого по собственной воле.Они делают это, чтобы соответствовать все более жестким государственным нормам, регулирующим потребление энергии персональными компьютерами, в частности, требованию Tier 2 Title 20 Комиссии по энергетике Калифорнии, которое вступает в силу в июле 2021 года. OEM-производители должны использовать чрезвычайно низкие уровни мощности системы в режиме ожидания, чтобы снизить энергопотребление настольных компьютеров в режиме ожидания », – пояснила Intel.
Хотя можно ожидать, что CEC Калифорнии сосредоточится в основном на том, сколько энергии потребляет настольный компьютер или рабочая станция под нагрузкой, регуляторы на самом деле сосредоточены на повышении эффективности в режиме ожидания и ожидания, что, по их мнению, дает наибольшую выгоду для экономии энергии.Предполагается, что рабочие столы больше простаивают, чем находятся под нагрузкой.
Gordon Mah Ung Производителизаявляют, что трудно достичь все более жестких требований к питанию в режиме ожидания с помощью блоков питания, вырабатывающих 3,3 и 5 Вольт, поэтому новая спецификация ATX12VO перенесет эту поддержку на материнские платы.
Как ATX12VO может удешевить блоки питания
ATX12VO означает изменение, и изменение может быть пугающим, но не все так плохо. Один производитель блоков питания сообщил PCWorld, что переход на ATX12VO должен «значительно» удешевить сборку блоков питания.Джон Джероу, директор по исследованиям и разработкам другого производителя блоков питания, Corsair, согласился с тем, что затраты должны снизиться, а эффективность повысится.
Но силовая нагрузка никуда не делась, потому что людям все еще нужны эти рельсы. «5V по-прежнему широко используются», – пояснил Героу. «Это то, что питает ваши твердотельные накопители, порты USB и всю вашу RGB-подсветку». По словам Героу, хотя 3.3V не так широко используется, он добавил, что Corsair использует его для питания светодиодов в кулерах AIO компании.
Вместо этого движется силовая нагрузка.Вместо того, чтобы быть маленькой печатной платой в блоке питания, в материнскую плату будет встроено питание на 3,3 и 5 вольт.
У этого изменения есть плюсы и минусы. По словам Героу из Corsair, этот шаг открывает больше возможностей для настройки. «Вы можете масштабировать + 3,3 В и + 5 В в соответствии с потребностями сборки и не более того», – сказал Джероу. С другой стороны, вы добавляете функции на материнскую плату, что означает большую стоимость и больший спрос на ограниченное пространство на плате. И, конечно же, эти контуры необходимо поддерживать в прохладном состоянии, что делает вентиляцию более серьезной проблемой.
PCWorld спросил Героу, какая из них лучше по энергоэффективности материнская плата или блок питания. Героу сказал, что ответ зависит от обстоятельств. «Материнские платы должны делать это в таком меньшем масштабе, чтобы легче регулировать эти меньшие нагрузки с помощью более мелких компонентов», – пояснил он. Но, как всем известно, материнские платы могут быть деликатными созданиями. «Эти более мелкие компоненты также более восприимчивы к повреждению из-за« плохого питания », – сказал Героу, – поэтому блок питания и материнская плата действительно должны работать вместе, как одна команда.
Что думают производители материнских плат
Поставщики материнских плат, к которым PCWorld обратился за комментариями, в целом оптимистично оценили ATX12VO. Один из участников сказал PCWorld, что этот шаг позволит материнской плате лучше управлять последовательностью питания во время загрузки, которая может зависнуть при использовании нестандартного блока питания. Благодаря тому, что материнская плата контролирует все три шины, она может лучше контролировать и рассчитывать энергопотребление, а также снижает риск аномальных скачков мощности блока питания.
Опрошенные производители материнских платтакже считают, что местное управление 5 и 3 вольтами.3-вольтовые шины могут быть более динамичными, что потенциально может принести пользу чувствительным к мощности устройствам, таким как USB и аудиоконтроллеры. Вендорд также сказал, что наличие напряжения на плате может улучшить защиту от перегрузки по току и перенапряжения.
Тем не менее, наши источники на материнских платах заявили, что перемещение направляющих и разъемов питания на материнскую плату означает большую нагрузку на компоненты, больший размер печатной платы и большее количество слоев печатных плат, что означает большую сложность и большую стоимость. Кроме того, когда вы переходите к потреблению более высокой мощности, скажем, 1500 Вт, рассеивание тепла становится проблемой.
Другой производитель плат сказал, что ATX12VO «интересен» и действительно может помочь с внутренней эстетикой системы. Сегодняшние главные разъемы питания ATX12V представляют собой толстые неудобные кабели. ATXV12VO сделает разъем меньше, а кабели тоньше, так что их будет легче строить, и их будет легче завязать или спрятать.
Один поставщик заметил, что управление шумом на печатной плате может быть проблемой, не говоря уже о производительности. Первая материнская плата, совместимая с ATX12VO, в результате, вероятно, будет дорогой, но стоимость может снизиться по мере увеличения объема.
Intel В новом ATX12VOIntel используется крошечный 10-контактный разъем по сравнению с типичным 24-контактным разъемом основного питания, который сегодня используется на большинстве настольных компьютеров для дома.
Еще не для домашних мастеров
Intel впервые выпустила спецификацию ATXV12VO в июле 2019 года, но пока нет установленного графика выхода на улицу. Intel заявила, что OEM-производители действительно должны представить оборудование на его основе, когда они будут готовы.
По большей части это не относится к группе DIY, по крайней мере, пока. Мало того, что потребители склонны волноваться, если им внезапно требуется новая материнская плата, но и спрос и предложение застревают в том, что один поставщик назвал «игрой в курицу».«Производители блоков питания не хотят выпускать продукты ATX12VO для домашних сборщиков, пока не появятся материнские платы, поддерживающие ATX12VO. Производители материнских плат не хотят создавать продукты, пока производители блоков питания не поддержат их.
Gordon Mah UngОдна фракция, которая может выиграть от ATX12VO, – это платы Mini-ITX, которые могут сэкономить место только в самом разъеме. Вопрос только в том, сколько места потребуется для добавления на плату 3,3-вольтовых и 5-вольтовых шин, а также разъемов питания SATA.
Как может выглядеть будущая сборка с ATX12VO?
Мы до сих пор не знаем, как будет выглядеть материнская плата ATX12VO и сколько она будет стоить. Сама плата, вероятно, будет немного мощнее, так как преобразование мощности 3,3 В и 5 В будет обрабатываться модулями на ней. Однако, прочитав спецификацию и поговорив с поставщиками, будущая сборка DIY с ATX12VO, вероятно, будет аналогична сегодняшним сборкам.
Главный разъем питания ATX12VO будет намного меньше, а кабель будет более гибким.Если на плате достаточно питания от единственного разъема, производитель платы может даже не потребовать от вас подключения вспомогательного 8-контактного разъема питания. Спецификация допускает подачу дополнительного 12-вольтового питания через разъем EPS12V.
Одна сложная часть может быть связана с подключением любых дисков с питанием от SATA, таких как жесткие диски или 2,5-дюймовые твердотельные накопители. Сегодня вы подключите их непосредственно к блоку питания. В сборке ATX12VO вам нужно сначала подключить кабель питания к материнской плате, а затем к накопителю. Спецификация позволяет использовать до шести разъемов питания, но поставщик материнской платы определяет, сколько разъемов питания имеется.Эти же разъемы питания SATA будут использоваться для питания ваших дисков, а также вашего кулера AIO / CLC или светодиодов RGB.
Если вы хотите подключить старый коннектор Molex, новая спецификация позволяет поставщикам блоков питания предлагать его напрямую от блока питания, но, конечно, только с напряжением 12 вольт. Если вы подключаете действительно старое 5-вольтовое устройство Molex, вам нужно будет получить его от питания материнской платы с помощью разъема SATA-to-Molex.
Для домашнего мастера все будет по-другому. Реальный вопрос в том, как это будет работать с материнскими платами и блоками питания.
Gordon Mah Ung Башня Apple Mac Proобеспечивает подачу питания на графические процессоры через материнскую плату. Аналогичная система будет и в ATX12VO, но только для разъемов питания SATA.
Примечание. Когда вы покупаете что-то после перехода по ссылкам в наших статьях, мы можем получить небольшую комиссию.Прочтите нашу политику в отношении партнерских ссылок для получения более подробной информации. Разъем питания P1 24 Разъем питания P1 24 служит для подключения источника питания к материнской плате. Его можно подключить к 20-контактному или 24-контактному разъему. «Первые блоки питания и материнские платы ATX использовали один разъем питания, называемый разъемом P1, который имел 20 контактов. Эти контакты обеспечивали +3,3 В, +5 В, +12 В, -12 В и дополнительный и редко используемый -5 В. .Электрические требования к материнским платам со временем меняются, поскольку новые технологии предъявляют дополнительные требования к мощности. Когда процессорам стало требоваться больше энергии, спецификации ATX версии 2.1 добавили 4-контактный вспомогательный разъем рядом с процессорным сокетом, обеспечивающий дополнительные 12 В. “(Эндрюс, 2010). (Computerhope.com, 2015) Источники питания Блок питания преобразует и снижает получаемую электроэнергию в напряжение, которое может обрабатываться компьютером. Без источника питания различные компоненты внутри компьютера работать не будет.Новые блоки питания обеспечивают 3,3 В, 5 В и 12 В постоянного тока (DC). При создании компьютера с нуля и выборе блока питания учитывайте форм-фактор, количество энергии, необходимое для работы каждого компонента компьютера плюс 30%, и номинальную мощность. (Andrews, 2010) (scan.co.uk, 2015) Управление питанием (Andrews, 2010) | Разъемы питания Разъем P1 – Разъем P1 или разъем материнской платы подключает материнскую плату к источнику питания. P4 MB – Эти разъемы используются для подключения материнских плат со встроенными ЦП к источникам питания. Это либо 4-, либо 8-контактные разъемы. Molex – Большинство компьютерных блоков питания имеют хотя бы один из этих разъемов.Они используются для питания жестких дисков и приводов CD / DVD ROM. Floppy – это 4-контактный разъем, используемый для питания дисководов гибких дисков, устройств чтения карт и других подобных дисководов. SATA – Эти разъемы предназначены для устройств интерфейса SATA, таких как жесткие диски. PCI-E – Используется для подключения видеокарт PCI Express, которые получают питание непосредственно от источника питания, а не от материнской платы. (globalspec.com, 2015) Потребности в блоке питания для ПК Этот веб-сайт поможет определить потребности в блоке питания для вашего конкретного ПК, рассчитав потребности в питании различных компонентов вашего компьютера.Ниже приведен снимок экрана с моими результатами с рекомендованным блоком питания. |
Блок питания ATX
Диаграмма справа показывает главный выходной разъем блока питания, если смотреть со стороны конец. Цвета соответствуют разноцветным проводам, идущим в него. Общий цвета обозначают общие функции, т.е. все красные провода на +5 вольт, все черные провода общие и тд. Наиболее полезные для нас связи как Призраками являются + 5 В (красные провода), + 12 В (желтый провод) и общий или земля (черные провода).Обе линии на 5 и 12 вольт обычно обеспечивают достаточную мощность. ток для наших нужд.
Из других напряжений доступно, подключение + 3,3 В обеспечивает достаточный ток, это просто не очень полезное напряжение. + 5VSB (5 В, всегда включен), -12 В и -5 В как правило, линии с очень низким током и малопригодны для нас.
Провод зеленый, пин 14 – линия включения / выключения. Чтобы включить питание, зеленый линию необходимо замкнуть на общую.Самый простой способ сделать это – вставьте перемычку между контактом 14 и контактом 13.
Большинство блоков питания для работы требуется нагрузка на один или несколько выходов. Связь Я привел выше показывает, как добавить резистор на стороне 5 В Поставка действует как нагрузка.
Разъемы меньшего размера выходящие из источника питания используйте те же цветовые коды. В качестве примера, разъем с желтым, красным и двумя черными проводами будет иметь +12 вольт (желтый), +5 вольт (красный) и два общих.
Для использования мощности питания, для 12 вольт, вы должны подключить желтый провод к + входу вашего проект и черный провод ко входу -. На 5 вольт подключаешь красный провод к + и черный провод к -.
Возврат на страницу электродвигателя стеклоочистителя.
Intel ATX12VOи характеристики 12 В: объяснение и мнение производителей | ГеймерыNexus
Мы должны начать с этого примечания: 12VO, в определенном смысле, на самом деле не новость.Такие компании, как Dell, HP и Lenovo, особенно HP, уже давно используют в своих системах блоки питания с напряжением всего 12 В. В этих системах материнские платы снабжены всеми необходимыми для приводов преобразователями постоянного тока в постоянный ток и повышениями. Хотя они существовали, они не были стандартизованы и часто использовались проприетарные разъемы или блоки питания. Сегодняшняя разница заключается в том, что Intel движется к стандартизации этих типов источников питания, и основная причина заключается в том, чтобы упростить соблюдение требований к эффективности, установленных государственными органами.Эти правила применяются к предварительно созданным системам, а не к системам для домашних мастеров, но недавно возник вопрос, будет ли это медленно расползаться от предварительно собранных к DIY. Во многих сборках, особенно от традиционных OEM-производителей, используются материнские платы, которые нельзя купить в розницу. В предустановленных играх более высокого класса используются материнские платы, продающиеся в розницу, и именно здесь начинают возникать вопросы.
Обратите внимание, что это уже было опубликовано как видео на нашем канале:
Начнем с предыстории.Intel опубликовала исходную спецификацию ATX (без -12VO) для материнских плат и блоков питания еще в 1995 году и спецификацию ATX12V (без -O) в 2000 году, из которых мы можем сделать два важных вывода: во-первых, ATX12VO – это ревизия собственной технологии Intel. чем Intel пытается схватить бразды правления из ниоткуда, и, во-вторых, спецификация ATX12V устарела. Технически ATX относится к форм-фактору и общему дизайну (в настоящее время в версии 2.2), а ATX12V относится к конкретным функциям блока питания (в настоящее время в версии 2.52). Обратите внимание, что спецификация Intel ATX12V также отвечает за такие вещи, как требование пульсации 120 мВ, подчеркивая, сколько ему лет.
Блоки питанияобеспечивают питание материнских плат 12 В, 5 В и 3,3 В, разделенных на три отдельных «направляющих». Из кабелей, поставляемых с большинством современных блоков питания, контакты 5 В или 3,3 В имеются только в 24-контактных разъемах питания ATX, 4-контактных MOLEX и SATA. 6/8-контактные разъемы PCIe, разъемы ATX12V и EPS12V используют только 12 В и заземление. Рельсы 3,3 В и 5 В в основном используются для таких вещей, как некоторые полосы RGB на 5 В, некоторые периферийные устройства и устройства хранения. Большинство 4-контактных разъемов MOLEX используют только 12 В и землю, полностью пропуская линию 5 В.
Питание 3,3 В и 5 В в ПК сейчас используется гораздо меньше, чем это было, когда десятилетия назад писалась спецификация ATX, и используется реже все время, поэтому Intel опубликовала спецификацию блока питания, которую они называют «только 12 вольт» ( 12VO). ATX12VO использует один 10-контактный разъем для замены существующего 24-контактного разъема ATX, и, как следует из названия, блок питания не будет обеспечивать ничего, кроме единой шины 12 В для всех кабелей. Спецификация включает в себя полный набор электрических и физических рекомендаций по созданию блока питания, который будет совместим с системами 12 В, включая версии CFX, LFX, SFX, TFX и Flex ATX (CFX12VO, LFX12VO и т. Д.), а также рекомендации по разъемам и кабелям. Мы сосредоточились на ATX12VO, но идея у них одна.
Когда мы спросили Intel, каковы их цели в отношении 12VO, они ответили: «ATX12VO – это одна из усилий Intel по повышению эффективности OEM / SI-систем и продуктов отраслевых партнеров. Одна из ближайших задач ATX12VO – обеспечить соответствие множеству государственных нормативов в области энергетики. Согласно последним правительственным постановлениям в области энергетики, производители оборудования должны использовать крайне низкие уровни мощности системы в режиме ожидания, чтобы снизить энергопотребление настольных компьютеров […] Все сегменты настольных ПК обладают множеством преимуществ, включая меньший размер разъема, более гибкую конструкцию плат и улучшенное преобразование энергии. ATX12VO предназначен не только для небольших настольных компьютеров ».
Основным преимуществом устранения других напряжений является эффективность с точки зрения кабелей, цены и энергопотребления. Во-первых, удаление более половины контактов из основного разъема питания делает его менее громоздким, как мы уже видели на Intel Compute Element (или Ghost Canyon NUC), в котором используется 10-контактный штекер 12 Вольт.24-контактный кабель ATX – это неизменно самый большой и сложный для закрепления кабель на настольном компьютере, и он определяет размер вырезов для кабеля в каждом корпусе ПК.
В новой спецификации Intel говорится о разъемах материнской платы и сквозной передаче питания:
ATX12VO делает основной разъем питания меньше, но это не устраняет необходимость понижения мощности 12 В для таких вещей, как устройства SATA и USB – он просто переключает его на материнскую плату, занимая там ценную недвижимость и снижая затраты с один продукт к другому.Материнская плата также должна иметь собственные разъемы питания SATA, так что еще неизвестно, насколько аккуратнее будет полноразмерная компоновка ATX12VO. Это создает значительную нагрузку на недвижимость для материнских плат, особенно материнских плат для энтузиастов, которые уже оснащены интегральными схемами и интерфейсами.
От Intel: «Разъемы материнской платы для этого типа устройств необходимы и описаны в разделе 4.3 спецификации ATX12VO. Разработчикам материнских плат придется решить, сколько устройств и мощность обеспечить для этих типов устройств с питанием 5 В и 12 В.Если устройство работает только на 12 В – как некоторые светодиоды, вентиляторы или системы жидкостного охлаждения – периферийный разъем 1×4 все еще существует как дополнительный разъем, но источник питания может обеспечить только 12 В и контакты заземления ». Разъем 1×4 относится к MOLEX, который может обеспечивать питание как 5В, так и 12В, но иногда используется только для 12В. Производители блоков питания могли бы предоставить разъемы MOLEX только с подключенными контактами 12 В и заземлением. 4- и 8-контактные разъемы процессора остались без изменений.
Сделать блок питания, который подает исключительно питание 12 В, очевидно, проще, чем сделать блок питания на 12 В, 5 В и 3 В.3 В, и это потенциально дешевле. Меньше кабелей, меньше внутреннего оборудования и меньше инженерных работ, необходимых для изготовления блока питания ATX12VO. Опять же, работа, устраняемая со стороны блока питания, просто перекладывается на сторону материнской платы, поэтому стоимость системы в целом может не снизиться. Логично предположить, что, поскольку разъем питания ATX12VO представляет собой урезанную версию существующего 24-контактного разъема, существующие блоки питания ATX будут совместимы с материнскими платами ATX12VO с помощью переходного кабеля, но это намного сложнее.На вопрос, можно ли использовать пассивный переходной кабель, Intel ответила следующим образом:
«Основная проблема при использовании существующего блока питания Multi-Rail ATX для питания новой материнской платы ATX12VO – это шина ожидания 12V. Существующие блоки питания Multi Rail ATX используют шину 5VSB. Для работы с материнскими платами ATX12VO его необходимо преобразовать в шину 12VSB. Новая резервная шина 12 В была определена в результате совместной работы с поставщиками блоков питания и производителями материнских плат для определения наилучшей общей эффективности.Между 12VSB и 5VSB были незначительные различия в эффективности. Сохранение новых блоков питания только на 12 В / 12 В SB было лучшим вариантом для повышения общей энергоэффективности ».
Похоже, совместимость не исключена полностью, но это будет не так просто, как просто подключить правильные контакты. Ожидается, что блоки питания будут иметь более длительный срок полезного использования, чем в среднем материнские платы, поэтому это может быть важным моментом, если ATX12VO когда-либо собирается победить сообщество DIY. Мы связались с инженером по источникам питания в крупной компании и подтвердили, что переходник с 5VSB на 12VSB возможен и уже существует, потому что ATX12VO похож на блоки питания, которые Lenovo, HP и Dell уже имеют для OEM-систем.Можно, например, взять переходник HP-ATX12V и повторно подключить его для работы с 12В.
Любой, кто лично проверял спецификацию, мог заметить, что она озаглавлена «Форм-факторы настольной платформы с одинарной шиной питания ATX12VO (только 12 В)». Мы подтвердили с Intel, что «одинарная шина» означает отсутствие шин 5 В или 3,3 В; спецификация позволяет использовать несколько шин 12 В. «Множественные» шины 12 В в настольном блоке питания обычно означают разделение одной шины 12 В для повышения безопасности, а не буквальные дискретные шины, но это тема другого дня.Intel заявила, что «OEM-производители могут рассмотреть возможность использования нескольких шин 12 В для удовлетворения требований безопасности 240 ВА, которые ограничивают каждую шину 12 В до 20 ампер каждая».
Во многом теперь ответственность за готовые системы ложится на производителей материнских плат. Производители блоков питания просто должны разобрать свои существующие блоки питания, чтобы соответствовать новой спецификации, в то время как производители материнских плат должны интегрировать новую технологию в и без того переполненные печатные платы, а затем найти способ их охладить. Еще раз запомните один важный момент: это не обязательно означает переход на платформы для энтузиастов DIY – по крайней мере, не сразу – потому что это объединяет существующие проприетарные блоки питания от OEM-производителей и системных интеграторов.Цель состоит в том, чтобы соответствовать государственным нормам для готовых систем. Эти правила не распространяются на энтузиастов DIY, и, кроме того, в нормативных актах есть лазейка с «высокой расширяемостью», которая, по сути, гласит, что любая система с дискретным графическим процессором в настоящее время неуязвима для этих требований. Это означает, что высокопроизводительные системы Origin, Maingear, Cyberpower или другие системы для энтузиастов смогут продолжать использовать стандартные материнские платы без особых затрат на платы.
Как упоминалось ранее, основной мотивацией для принятия стандарта ATX12VO является новый, более строгий стандарт для собранных систем, продаваемых в штате Калифорния в июле 2021 года.OEM-производители теперь должны будут соответствовать строгим требованиям к эффективности при нагрузке 20% и 50%, а не только при 100%. Кроме того, Intel пытается заставить компании ускорить работу с требованием к эффективности нагрузки 2%, первоначально предложенным производителям блоков питания примерно в 2018 году. Соответствующий раздел Раздела 20 для блоков питания и ATX12VO – 1605.3, хотя есть еще много других, окружающих этот раздел, который регулирует другие аспекты компьютеров и мониторов. Эти правила будут применяться ТОЛЬКО к новым комплексным системам, продаваемым OEM-производителями и системными интеграторами, но не к ПК для самостоятельной сборки и ПК, проданным до вступления в силу Уровня 2.Уровень 1 уже действует, и по оценкам Intel, большинству моделей настольных ПК потребуется снизить энергопотребление в режиме ожидания еще на 5 Вт, чтобы перейти на следующий уровень.
Предыдущие диаграммы были примерами требований Energy Star и CEC, которые производители блоков питания могут захотеть или должны выполнить, в то время как эти диаграммы представляют собой собственные требования Intel, встроенные в спецификацию. Самая большая разница в том, что Intel указывает эффективность при нагрузке 10 Вт или 2%, в зависимости от размера блока питания. Эффективность энергопотребления в режиме ожидания должна быть одним из основных преимуществ ATX12VO, и Intel упреждает дальнейшие нормативы энергопотребления, устанавливая это требование к эффективности 2%.
Intel утверждает, что использование единой шины сократит потери при преобразовании переменного тока в постоянный; инженеры блока питания, с которыми мы говорили, подтвердили, что использование только 12 В позволит блокам питания быть более эффективными. Как сообщил Гордон Ма Унг из PCWorld, постоянная подача низкого тока по шинам 3,3 В, 5 В и 12 В делает блоки питания эффективными только на 50–60% в режиме ожидания. Переход на одну шину 12 В повышает эффективность простоя и должен помочь OEM-производителям соответствовать этим требованиям, но, конечно же, они могут выбирать другие варианты.
В разговоре с инженером производителя блоков питания, которого мы не можем назвать, мы спросили, каково общее мнение об ATX12VO в настоящее время. Ответ начинался так:
«Я думаю, что это хорошая перемена по неправильным причинам. Они делают это, потому что некоторые поставщики блоков питания утверждали, что это было слишком сложно / слишком дорого для удовлетворения требований к эффективности нагрузки 2% с блоком питания с несколькими выходами, так что это, вероятно, будет то, что вы увидите только с SI, поскольку они должны соответствовать что 2% требования для прохождения ЦИК.И это требование применимо только в том случае, если у вас есть ПК, который не отвечает требованиям «высокой расширяемости», так что это практически любой ПК с дискретной видеокартой. Фактически, даже современный режим ожидания (в настоящее время) не работает с установленной дискретной видеокартой ».
Мы спросили, повлияет ли это на рынок энтузиастов или DIY, и наш тот же контакт сказал:
«Не пойдет. На мой взгляд, они должны держать БП как + 12В, так и + 5В. Избавьтесь от + 3,3 В и -12 В. Уменьшите размер основного разъема.Но это все. Это было бы намного легче принять / переварить ».
В разговоре с источником на заводе по производству электроснабжения мы задали некоторые из тех же вопросов. Контакт подтвердил, что эффективность источника питания легче повысить, используя только шину 12 В, и отметил, что это снижает стоимость для отрасли блоков питания, но увеличивает ее для материнских плат. Что касается покупателя того и другого – в основном это OEM-производители и системные интеграторы, – стоимость в значительной степени уравняется. Стоимость кабеля снижается, стоимость компонентов DC-to-DC снижается и переходит на материнскую плату, а эффективность повышается.Наш контакт сказал нам, что, по их личному мнению, способы обновления становятся более ограниченными для потребителей, а смешанные стандарты для розничной торговли также усложняют ситуацию, заявив, что они не думали, что это «имеет смысл» в целом.
Затем мы спросили Джона Героу из Corsair, ранее работавшего в JonnyGuru, не перенесет ли это часть требований с источника питания на материнскую плату. Он ответил:
“Да. Вам все еще нужны + 3,3 В и + 5 В, поэтому вы просто переключаете постоянный ток на постоянный ток с блока питания на материнскую плату.А поскольку в новом стандарте был установлен источник питания +12 В, вам также понадобится постоянный ток в постоянный, чтобы порты USB работали и работали в режиме ожидания ».
Мы также спросили Gerow, будет ли экономия на масштабе и массовое производство сдвигать стандарты блоков питания ATX12VO и ATX12V друг к другу, в конечном итоге попадая в сферу DIY. Он ответил: «Не совсем. Dell, HP и Lenovo уже используют решения типа 12 В, но их разъемы проприетарные. Intel просто берет эту идею и пытается ее стандартизировать.
ATX12VO – это попытка усовершенствовать древний стандарт.Таким образом, он удаляет некоторые функции, не добавляя ничего действительно интересного для сборщиков ПК своими руками, но он также не является стандартом, предназначенным для сборщиков ПК своими руками (на данный момент). В конечном итоге OEM-производители должны решить, преуспеет ли этот стандарт и получит ли он более широкое распространение, но фабрика, с которой мы говорили, не торопится начинать продавать блоки питания ATX12VO. Intel подтвердила, что продолжит публиковать обычные спецификации ATX. Никто не обязан использовать ATX12VO, даже производители оригинального оборудования. Их единственное обязательство – соответствовать стандартам CEC, а ATX12VO – один из инструментов, который Intel предлагает в помощь.Это не чистый альтруизм – у Intel должны быть свои мотивы для продвижения ATX12VO – но небо не падает, 12VO не такая уж и плохая вещь, и принятие на рынке DIY будет постепенным, если оно вообще произойдет. .
Редакция: Патрик Латан
Дополнительная отчетность, Ведущий: Стив Берк
Видео: Киган Галлик, Эндрю Коулман, Джош Свобода
ATX
Блоки питания компьютера (PSU) подают питание на оборудование ПК по номеру кабелей с разъемами.Их общие спецификации для различных настольных систем определены в руководствах Intel по проектированию, которые раньше периодически пересматривались. Их последний стандарт – это руководство по проектированию блоков питания версии 1.31, выпущенное в апреле 2013 года. Этот документ объединяет требования для ATX12V v2.4 и его пяти вариантов. Обратите внимание, что некоторые производители торговых марок не следовали рекомендациям Intel и использовали нестандартные распиновки. Также смотрите информацию о новом стандарте ATX12VO. Стандартные блоки питания ATXобычно имеют основной разъем питания P1, дополнительные разъемы 12 В, а также разъемы для периферийных устройств, дисковода гибких дисков, последовательного ATA и PCI Express®, которые мы опишем ниже.
Основы работы с блоком питания SMPS см. В нашем руководстве по источникам питания. Оригинальные системы ATX имели 20-контактный главный разъем P1. Когда была представлена шина PCI Express®, картам PCIe требовалось до 75 Вт дополнительно. Чтобы обеспечить дополнительную мощность, старая часть была заменена новым 24-контактным P1. Соответственно, разные блоки питания в стиле ATX могут использовать разное количество проводов питания: см. Схему расположения выводов справа. Цвета в этой таблице представляют собой рекомендуемые цвета проводов в кабелях блока питания. Эти диаграммы отражают вид спереди .Цвета показаны здесь только для справки (вы не увидите их спереди). В P1 используется корпус Molex Mini-Fit Jr. P / N № 39-01-2240 (старый номер детали был 5557-24R), контакты: 44476-1112. Подключаемый разъем материнской платы – Molex 44206-0007. Старое гнездо было 39-01-2200, а ответный заголовок – 39-29-9202. Люди часто хотят знать, что делать, если есть несоответствие. Что ж, при определенных условиях новый блок питания все еще можно использовать со старым ПК, и наоборот, см. Наше руководство по подключению 20-контактного блока питания к 24-контактной материнской плате.
Если вы хотите провести тестирование автономного устройства, чтобы запустить его вне корпуса ПК, вам нужно замкнуть линию PS_ON # на общую. В противном случае будет присутствовать только резервное напряжение 5 В.
При нормальной работе PS_ON # активируется, когда вы нажимаете и отпускаете кнопку питания компьютера, когда он находится в режиме ожидания. В некоторых моделях Apple этот сигнал перевернут.Также обратите внимание, что многие бренды, такие как Apple Power Mac, Dell (в определенные годы), Compaq и HP, использовали проприетарные платы с совершенно разными обозначениями контактов – см. Здесь информацию о некоторых фирменных источниках питания.
Все напряжения относятся к одному и тому же общему проводу (если вам нужно измерить какое-либо напряжение, подключите обратный провод вольтметра к любому из контактов COM).
Номинальный ток основного разъема Molex составляет 6 А на контакт. Это означает, что со старым 20-контактным типом вы не можете получить больше 18 А от 3,3 В и 24 А от 5 В. Вот почему в начале 2000-х на некоторых материнских платах с 3,3 В> 18 А и 5 В> 24 А (в основном, двухпроцессорные системы AMD) использовался вспомогательный 6-контактный кабель питания. Он был удален из спецификации ATX12V v2.0 в 2003 году, потому что к P1 были добавлены дополнительные провода. Для получения дополнительной информации о форм-факторах см. Наше руководство по компьютерному блоку питания.
Когда промышленность начала использовать модули регулирования напряжения (VRM), работающие от 12 В2, для питания ЦП и других компонентов материнской платы, большая часть мощности перешла на шину 12 В. Большинство современных материнских плат снабжают свой ЦП отдельным кабелем на 12 В, который имеет 4 контакта для стиля ATX (иногда называемый P4) или 8 или более контактов для EPS и нестандартных систем высокой мощности.Некоторые блоки питания могут иметь три или четыре 12-вольтовых 4-контактных разъема. Номер детали для стандартного P4 – 39-01-2040 или аналогичный.
Разъем периферийного питания для подключения дисководов, охлаждающих вентиляторов и других устройств меньшего размера. Также может быть кабель дисковода гибких дисков.
Обратите внимание, что номера проводов в разъеме Serial Power ATA ( SATA ) не равны 1: 1. Для каждого напряжения есть три контакта. Один вывод от каждого напряжения используется для предварительной зарядки на объединительной плате. Ответный последовательный разъем устройств ATA содержит как сигнальный, так и силовой сегменты.
Некоторые устройства могут также иметь дополнительную розетку 2×3, которая может использоваться для дополнительных функций, таких как мониторинг и управление вентиляторами, источник питания IEEE-1394 и дистанционное считывание 3,3 В.
Блок питания мощностью более 450 Вт, предназначенный для дискретных видеокарт высокого класса, обычно имеет дополнительные разъемы 2×3 или 2×4. Они обеспечивают дополнительный ток для графики, которая требует общей мощности более 75 Вт.
Шестиконтактный разъем PCI Express® – Molex p / n 04555
.
напряжений 12 В, 5 В и 3,3 В, какое из них использует каждый компонент ПК?
Когда вы посмотрите на таблицу мощности современного источника питания, вы увидите, что, как правило, они будут иметь эти три напряжения (некоторые все еще поддерживают шины -12V и + 5Vsb , но они уже устарело в более современных системах).Кроме того, каждая из рельсов, помимо выражения своего напряжения в вольтах, сопровождается силой тока, которую они способны обеспечить, измеряемой в амперах.
Почему блоки питания ПК работают при разных напряжениях?
Первый ПК, созданный IBM, подавал только два разных типа напряжения: +12 В и + 5 В (он также подавал -12 В и -5 В, но с очень ограниченным количеством энергии). Большинство микрочипов того времени работали при 5 В, но для некоторых деталей с двигателями, таких как жесткие диски и вентиляторы, требовалось более высокое напряжение, и поэтому шина +12 В была включена.Кроме того, по мере роста спроса на периферийные устройства шина +12 В источников питания становилась все более важной, потому что она была той, которую они использовали.
В свою очередь, шина -12V предназначалась в основном для последовательного порта RS-232, в то время как шина -5V предназначалась для периферийных устройств на шине ISA, таких как звуковые карты, но она никогда не использовалась ничем, кроме этого. и вот почему он исчез.
Позже, когда Intel разработала стандарт ATX для источников питания в 1995 году, микрочипы стали использовать более низкое напряжение, и было необходимо реализовать + 3.Рейка 3В. Таким образом, с 1995 года и знаменитые блоки питания 80486DX4 стали иметь три основные шины, которые есть у современных блоков питания: 12, 5 и 3,3 вольта.
Разъем ATX на блоке питания обеспечивает все необходимое напряжение непосредственно на материнской плате по ее многочисленным кабелям и разъемам питания. Еще одним дополнением к стандарту ATX было добавление шины + 5Vsb (резервная) для обеспечения небольшого количества «резервного» питания даже при выключенном ПК, но, как мы обсуждали в начале, учитывая состояние питания ПК, это уже ненужное.по сей день, а во многих источниках его даже нет.
Какое напряжение использует каждый компонент ПК?
После того, что было объяснено ранее, вы уже будете знать, что блоки питания имеют несколько разных напряжений из-за электрических требований каждого из аппаратных компонентов ПК, поэтому теперь самое время посмотреть, какой компонент использует каждое из напряжений, и особенно почему все не унифицировано, чтобы все работало с одним значением напряжения.
- + 12V : процессор, видеокарта, вентиляторы и некоторые карты расширения PCIe.Это также основное напряжение материнской платы, хотя для его регулирования оно должно проходить через собственные VRM. Как правило, именно шина обслуживает компоненты оборудования с наибольшим потреблением.
- + 5V: механические жесткие диски, оптические приводы, некоторые карты расширения PCIe и USB. Все USB-порты на ПК работают от 5 В, включая периферийные устройства, которые к ним подключаются.
- + 3,3 В: ОЗУ и твердотельные накопители в формате M.2. Кроме того, все разъемы PCIe также могут предоставлять +3.3В.
Причина, по которой источники имеют разные значения напряжения и, следовательно, разные шины, связана с электрическими требованиями компонентов. Поскольку транзисторы становились все меньше и меньше на микросхемах, для них стало предпочтительнее работать с меньшими значениями напряжения, и это становилось все более и более необходимым по мере увеличения плотности транзисторов в процессорах.
Для подачи большого количества низковольтного питания к процессору, начиная с эры Pentium, материнские платы начали включать в себя стабилизатор напряжения, чтобы иметь возможность самостоятельно контролировать, какое напряжение и ток подается на каждый компонент.Большинству современных процессоров может потребоваться до 100 А при 2 В или меньше, поэтому нецелесообразно брать эти значения с шины +12 В и иметь возможность делать это с другой, которая работает с более низким напряжением, поскольку это означает меньше работы для регулятор.
Автомобильное зарядное устройство для ноутбука 12 В – питание моего ноутбука без инвертора
Я использую свой ноутбук много для работы, редактирования фотографий, Интернета и, чаще всего, для создания музыки. По этой причине мне нужно надежное зарядное устройство для ноутбука в моем фургоне. Что-то, что я могу использовать каждый день, что не разряжает аккумуляторные батареи фургона.
Питание моего ноутбука в моем фургоне.
Я также хотел зарядное устройство для ноутбука, которое работает без использования моего инвертора, поэтому мне понадобилось зарядное устройство, которое работает напрямую от 12 В, через гнездо прикуривателя. Я, конечно, могу использовать свой инвертор мощностью 1000 Вт и подключить к нему свое оригинальное зарядное устройство для ноутбука, но это избыточно и не очень энергоэффективно, поэтому я начал изучать возможность питания ноутбука от автомобильного аккумулятора (или аккумуляторов для отдыха в моем случае).
Мои требования были:
- Зарядное устройство для ноутбука от 12 В до 19 В (для моего ноутбука Acer Aspire)
- Подключается непосредственно к розетке прикуривателя (у меня в фургоне их несколько)
- Энергоэффективность
- Но все же достаточно мощный, чтобы быстро зарядить мой ноутбук
- Качество – это необходимо для питания моего ноутбука, не мешая моему аудиооборудованию
Я начал копать, читать множество форумов и даже изучать DC-DC преобразователи, чтобы лучше понять, что именно мне нужно.После долгих поисков я нашел универсальное зарядное устройство для ноутбука на 12 В (Amazon).
Это зарядное устройство определенно выглядело как отвечающее всем требованиям. Он выглядел хорошо построенным, имел выходную мощность 90 Вт (более чем достаточно для большинства ноутбуков), вставлялся прямо в гнездо прикуривателя и даже имел 2 гнезда USB для питания планшетов, телефонов или любого другого USB-устройства на 5 В, которое у вас могло быть. Так что я решился и купил его на Amazon.
У меня уже пару месяцев, и пользуюсь каждый божий день. Должен сказать, что я очень впечатлен.Теперь я могу питать свой ноутбук прямо от аккумуляторов для отдыха без использования инвертора, что более энергоэффективно и намного удобнее.
Примечание по инверторам:
Преобразователи изменяют напряжение с 12 В постоянного тока на 220 В переменного тока (110 В в некоторых странах) и делают это одним из двух способов. 1 – это модифицированная синусоида (MSW), которая отличается от электросети в вашем доме, а 2 – это чистая синусоида (PSW), которая является «чистым» типом питания переменного тока, аналогичным тому, что у вас дома.
К сожалению, дешевые инверторы почти всегда представляют собой модифицированные синусоидальные инверторы, и это проблема ноутбуков. В некоторых случаях дешевый инвертор MSW приведет к мерцанию экрана вашего ноутбука при подключении к сети, что в значительной степени делает ваш ноутбук бесполезным, поэтому это не практичное решение для ноутбуков.
Инвертор с чистой синусоидой отлично работает с ноутбуками, но даже в этом случае инверторы не очень эффективны для зарядки ноутбуков.Инвертор увеличивает напряжение с 12 В до 220 В (или 110 В), а затем зарядное устройство для ноутбука понижает мощность до 18,5 В, 19 В, 20 В и т. Д. В зависимости от вашего ноутбука.
На каждом из этих шагов наблюдается потеря мощности. Кроме того, если вы оставите инвертор включенным, даже если он не заряжает ноутбук, он все равно потребляет энергию из аккумулятора.
Итак, хотя у меня в фургоне стоит чистый синусоидальный инвертор мощностью 1000 Вт, мне все еще хотелось что-то, что было бы эффективным (и удобным) для зарядки моего ноутбука.
Давайте взглянем на зарядное устройство для ноутбука на 12 В, которое у меня есть:
Универсальное зарядное устройство для ноутбуков ZOZO 12 В хорошо сконструировано и подходит для большинства производителей ноутбуков.
Это зарядное устройство поставляется с 14 «советами» и таблицей данных, которые помогут вам определить правильное подключение и напряжение для вашего устройства. Все, что вам нужно сделать, это найти напряжение и ток на вашем оригинальном зарядном устройстве и связать их вместе с маркой вашего ноутбука с техническими данными. Как только у вас будет правильный наконечник, подключите его к концу кабеля и вставьте в розетку.
Техническая информация
Вход: 11 В постоянного тока – 15 В постоянного тока
Выход: 18,5 В / 19 В / 19,5 / 20 В постоянного тока
Выход USB: 5 В 2,1 А, 5 В 1 А
Детали наконечников и совместимые бренды:
Наконечник | Напряжение и ток | Размер | Совместимые бренды |
---|---|---|---|
M1 | 15V, 4A / 5A / 6A | 6,3 * 3,0 мм | TOSHIBA |
M3 | 16 В, 4A | 6,5 * 4,5 * 1.35 мм | SONY, Fujitsu |
M4 | 18,5 В, 3,5 A / 4,9 A | 4,8 * 1,7 мм | HP |
M5 | 19V, 2.37A / 3.42A / 4.74A | 5.5 * 2.5 мм | TOSHIBA, ASUS |
M6 | 19V, 3.16A / 4.74A | 5.0 * 3.0 мм со штифтом | SAMSUNG |
M8 | 19,5 В, 2 А / 3,9 А / 4,7 А | 6,5 * 4,4 мм со штифтом | SONY |
M9 | 19.5 В, 3,34 А / 4,62 А | 7,4 * 5,0 мм со штифтом | DELL |
M11 | 20 В, 3,25 A / 4,5 A | 7,9 * 5,4 мм со штифтом | LENOVO / IBM |
M12 | 18,5 В, 3,5 A / 4,74 A | 7,4 * 5,0 мм со штифтом | HP |
M13 | 1,58A / 2,31A / 2,37A | 4,0 * 1,7 мм | TOSHIBA |
M18 | 19V, 2.1A / 2.37A / 3.42A | 3.0 * 1.0 мм | Acer, SAMSUNG, ASUS |
M19 | 19В, 2.37A / 3.42A | 4.0 * 1.35 мм | ASUS |
M20 | 19V, 3.42A / 4.74A | 5.5 * 1.7 мм | ACER, GATEWAY |
M21 | 19,5 В, 2,31 A / 3,33 A | 4,5 * 3,0 мм со штифтом | HP |
M22 | 19,5 В, 2,31 A / 3,34 A / 4,62 A | 4,5 * 3,0 мм со штифтом | DELL |
M27 | 20 В, 3,25 A / 4,5 A | 11 * 5,0 мм Квадратный желтый наконечник | LENOVO |
M28 | 19.5V, 2.31A / 3.33A | 4.8 * 1.7 мм с пластиковым уступом | HP |
Окончательный приговор:
Это зарядное устройство для ноутбука подходит для моих нужд. Единственное, что у меня есть, это то, что кабель немного короткий. На высоте 4 фута он просто не достигает того, чего я хотел. Это не серьезная проблема, и я только что купил себе удлинитель гнезда прикуривателя (Amazon), чтобы решить эту проблему. Если вам нужен один из них, убедитесь, что он может выдерживать более высокий ток – 10А будет достаточно.
Стоит отметить, что есть и «кирпичная» версия этого продукта.Несмотря на то, что он больше, в некоторых автомобилях «вставной» разъем, который у меня есть, не подходит к вашей розетке прикуривателя, в зависимости от того, где он находится, так что просто имейте это в виду.
В целом, я очень доволен этим зарядным устройством, оно значительно облегчило мне жизнь.
Надеюсь, вам понравился мой обзор. Если у вас есть вопросы, оставьте комментарий ниже. Если вы хотите пойти дальше и приобрести себе его сейчас, вы можете получить зарядное устройство от Amazon прямо здесь (Amazon).
Обновление(9 июля 2020 г.):
Некоторые люди спрашивали меня об автомобильных зарядных устройствах для Macbook, поэтому я провел небольшое исследование и нашел пару.Первое – автомобильное зарядное устройство BatPower USB C (для новых Macbook, которые заряжаются через USB C), которое можно найти здесь.