Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

принцип работы, виды и расчёт

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто  устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Импульсный трансформатор

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Импульсные трансформаторы

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

трансформатор питания импульсный

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

Схема подключения импульсного трансформатора

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.Конструкция тороидального импульсного трансформатора
  • Броневой.Конструкция импульсного трансформатора в броневом исполнении
  • Стержневой.Конструкция стержневого импульсного трансформатора
  • Бронестержневой.

Конструктивные особенности бронестержневого импульсного трансформатора

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Конструктивные особенности бронестержневого импульсного трансформатора

График смещения

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

расчет импульсного трансформатора

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

protransformatory.ru

что это такое и где его применяют

Импульсным трансформатором называется важная деталь, широко применяемая практически во всех радиоэлектронных приборах. Это телевизоры, мониторы компьютеров, все цифровые и аналоговые устройства. Трансформатор обеспечивает передачу импульсных сигналов. Вывод по сравнению с поданной на входе формой получается с минимальным искажением. В основном работают с прямоугольными импульсами.
В статье разобраны главные принципы работы импульсных трансформаторов, приведены характеристики и различия в их устройстве. В качестве бонуса в конце статье читатель найдет видео c наглядным разбором устройства и книгу Вдовина С. С. «Проектирование импульсных трансформаторов». Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Виды импульсных трансформаторов

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации.

Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.

Классификация импульсных трансформаторов Классификация импульсных трансформаторов по виду сердечника и катушек.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

Что такое импульсный трансформатор и как его рассчитать

Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ.

Схема импульсных трансформаторов

Схема подключения импульсных трансформаторов.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Процессы трансформации импульсов

Одним из основных элементов импульсных источников питания является импульсный трансформатор. Особенность работы данного вида трансформатора заключается в том, что на вход подается периодическая последовательность импульсов одной полярности, содержащие постоянную составляющую тока.

Принцип действия импульсного преобразователя напряжения полностью идентичен работе любого другого трансформатора, то есть к обмотке первичной катушки индуктивности подается входное напряжение Uвх, которое в полном соответствии с законом электромагнитной индукции преобразовывается на обмотке вторичной катушки в напряжение выхода Uвых с измененными параметрами.

Коэффициент трансформации напряжения определяется соотношением витков намотки импульсного трансформатора для каждой катушки. Однако в отличие от обычных трансформаторов, работающих с синусоидальными гармониками стандартной частоты 50 Гц, на вход ИТ подаются импульсы длительность несколько десятков мкс, что соответствует частотам в пределах десятков кГц.

Электронный трансформатор

Простая схема электронного трансформатора.

Обычно это электромагнитные сигналы после выпрямления переменного сетевого тока по полумостовым, мостовым или другим схемам, используемым в электронных преобразователях напряжения.

 

 

Особенности конструкции

Сердечники импульсных преобразователей имеют тороидальную или Ш-образную форму. При выполнении намотки импульсного трансформатора своими руками мастера предпочитают кольцевую (тороидальную) конфигурацию магнитопровода, поскольку для него не нужно специально готовить каркас и приспособление под намотку. Для изготовления сердечников используются материалы с повышенной магнитной проницаемостью типа:

  • ферритов;
  • трансформаторной кремнистой стали;
  • пермаллоя.

Ферритовые кольцевые сердечники широко распространены, дешевы и доступны. Обозначение изделия выполняется по типу К Dxdxh, где К – сокращение от слова «кольцо», D, d и h – соответственно, размеры внешнего и внутреннего диаметров кольца, высоты кольца. Размеры обозначают в мм, например, К 28×16х9.
На ферритовом основании наматываются первичная и вторичная обмотки.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Ключевой особенностью конструкции является намотка первичной обмотки против часовой стрелки, вторичной – только по часовой. При изменении направления намоток мощность устройства значительно уменьшается. Обмотки наматываются с обеих сторон кольца, на внутренней стороне – с малым числом витков, на внешней – с большим количеством витков.

Для снижения индуктивности рассеивания считают необходимым наматывать двуслойно одну обмотку, а между ее слоями помещать другую обмотку. Иногда обмотки мотают двумя проводами одновременно, тогда провода витков одной обмотки располагаются между проводами витков другой.

Как проверить устройство

После сборки ИТ, его проверяют. Методик, как проверить собранный собственноручно или приобретенный импульсный трансформатор, предостаточно. Для проверки собирают схемы с использованием частотных генераторов, осциллографов, мультиметров и других приборов, которые не только подтверждают работоспособность ИТ.

Они выполняют его тестирование в различных частотных диапазонах. В импульсном трансформаторе не допускается разомкнутое состояние вторичной обмотки, такой режим относится к категории небезопасных режимов.

Проверка импульсного трансформатора

Как проверить импульсный трансформатор.

Также должны иметь минимальную индуктивность рассеивания, динамическую емкость и сопротивление; быть достаточно прочными механически.

Он должен обладать виброустойчивостью и выдерживать воздействие значительных электродинамических сил, возникающих как в нормальном режиме работы, так и, особенно, при коротких замыканиях цепи нагрузки.

Требования высокой электрической прочности и минимальной индуктивности рассеяния взаимно противоречивы. Так как для увеличения электрической прочности необходимо увеличивать толщину и изоляции, в то время как для уменьшения индуктивности рассеяния требуется уменьшать толщину.

Изоляция проводов и обмоток

Обмотки ИТ должны удовлетворять следующим основным требованиям: быть достаточно электрически прочными, изоляция обмоток должна выдерживать без повреждений длительное воздействие номинальных рабочих напряжений и кратковременное воздействие повышенных напряжений в возможных аварийных ситуациях.

Уменьшение емкости обмоток, в свою очередь, находится в противоречии с требованием минимальной индуктивности рассеяния. Однако в большинстве случаев уменьшение индуктивности рассеяния является более важной задачей, чем уменьшения емкости.

По этим причинам размеры изоляционных промежутков обычно доводят до возможного минимума, определяемого необходимой электрической прочностью обмоток. Уменьшить емкость стремятся применением изоляционных материалов с возможно меньшей диэлектрической проницаемостью, а также за счет конструктивных факторов.

Итак, главные требования к изоляционным материалам состоят в малой диэлектрической проницаемости и пригодности для режимов с высокой напряженностью электрического поля. При больших токах и длительности импульса применяют провода более экономичного прямоугольного сечения или тонкие и широкие медные шины из фольги, иногда из нескольких слоев, проложенных изоляцией.

Как правильно изолировать провода и обмотку

Лучшие материалы для устройства

Практика конструирования ИТ показала, что лучшими изоляционными материалами, наиболее полно удовлетворяющим перечисленным требованиям, являются трансформаторное масло, кабельная и трансформаторная бумага, пропитанная трансформаторным маслом, электрокартон, пленки из фторопласта, чередующиеся со слоями бумаги, органическое стекло.

В качестве несущих элементов конструкции – бумажно-бакелитовые трубки и цилиндры, сборные каркасы из органического стекла. Фторопластмассовые пленки следует применять лишь в таких ИТ, у которых температура обмоток может превышать 95ºС.

Недостаток пленок в том, что по ним в продольном направлении легко развивается поверхностный разряд. Органическое стекло широко применяется в ИТ вследствие высоких изоляционных свойств и возможности механической обработки.

При напряжениях 100 кВ целесообразна изоляция в виде чистого трансформаторного масла. В отличие от слоистой чисто масляная изоляция в высокой степени однородна по свойствам. Это позволяет в конструкциях с ослабленным краевым эффектом практически полностью использовать высокие электроизоляционные свойства трансформаторного масла.

Что такое импульсный трансформатор и как его рассчитать

Масляная изоляция имеет и другие важные достоинства. Трансформаторное масло обладает хорошей текучестью и может свободно конвектировать в пространстве между обмотками и МС. Следствием этого, а также высокой теплоемкости масла является хороший отвод теплоты от обмоток и МС.

Диэлектрическая проницаемость трансформаторного масла примерно в два раза меньше, чем у изоляционной бумаги и электрокартона. Это позволяет во столько же раз уменьшить емкость обмоток ИТ. Важным эксплутационным достоинством масляной изоляции является также ее восстанавливаемость после кратковременных аварийных состояний (единичный пробой или искрение).

Легко осуществима также и замена масла при регламентных работах. Таким образом, при большой мощности и напряжении масляная изоляция является наиболее целесообразным типом изоляции в ИТ. Однако ее применение возможно только в специально разработанных конструкциях, в которых, обеспечена свободная циркуляция масла и отсутствуют пути для распространения поверхностного разряда.

Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.

Конструкция обмотки

Обмотки ИТ отличаются относительно небольшим числом витков. Однако напряжения на обмотках обычно измеряются десятками и сотнями киловольт, вследствие чего напряжение, приходящиеся на один виток обмотки (витковое напряжение), может составлять единицы, а в мощных ИТ – даже десятки киловольт.

Поэтому при конструировании обмоток ИТ приходится уделять особое внимание межвитковой изоляции обмоток. Для обеспечения требуемой электрической прочности межвитковой изоляции в обмотках ИТ используют провода с усиленной изоляцией, в основном марок ПЭВ-2, ПБ, ПБУ. Провода круглого сечения ПЭВ-2 обычно применяют в ИТ малой и средней мощности, а также во вторичных обмотках мощных высоковольтных ИТ.

Провода прямоугольного сечения ПБ, ПБУ, способны выдерживать межобмоточное напряжение 10 кВ, применяют в первичных обмотках ИТ средней мощности и в обеих обмотках весьма мощных ИТ.
В целом, рассматривая обмотки мощных высоковольтных ИТ, необходимо отметить следующее. Принципиальная необходимость малоискаженной трансформации весьма коротких импульсов вынуждает конструировать ИТ с очень малой индуктивностью рассеяния и емкостью обмоток.

Следовательно, с минимальным размером обмоток, в частности с минимальными размерами изоляционных промежутков. Для лучшего понимания предмета рекомендуем посмотреть видеоролик о том, как разобрать импульсный трансформатор.

Как намотать тороидальный трансформатор

При помощи наждачной бумаги стачиваем острые грани. Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку. Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Как намотать импульсный трансформатор

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным. Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок. Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки. Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Самодельный челнок для намотки трансформатора

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05-0,1 мм. Наматываем начало обмотки так, чтобы надёжно закрепить место соединения. Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Намотка обмотки

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика). Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты.

Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно. На картинке вторичная обмотка, намотанная в четыре провода.

Заключение

Надеемся, теперь вам полностью понятен принцип работы трехфазных асинхронных двигателей. Для лучшего понимания вопроса предлагаем скачать книгу Вдовина С. С. “Проектирование-импульсных-трансформаторов”.

Вся самая новая информация по этой теме, а также по теме металлоискателей, размещена также в нашей группе в социальной сети «Вконтакте». Чтобы подписаться на групу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В нашей группе можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков.

В завершение объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.expertelektrik.ru

www.stoom.ru

www.topref.ru

www.sdelaitak24.ru

electroinfo.net

Как работает импульсный трансформатор, чем оличается от обычного

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Импульсный трансформатор в чем основные отличие от обычного

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Основные отличия:

  1. Размер — импульсного трансформатора  обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов 

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.
Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

Импульсный трансформатор принцип работы

Принцип работы импульсных трансформаторов   заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

схема работы импульсного трансформатораВременная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L0/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещенияГрафик смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

График смещения

при этом:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

График смещения

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Um x tu=S x W1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

формула

Здесь:

  • L0 – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

transformator220.ru

принцип действия прибора, показатели, влияющие на работу

Импульсный трансформатор Современные электронные и электрические приборы имеют достаточно сложное устройство. Их эффективную и бесперебойную работу обеспечивает большое количество составляющих. Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

Основная функция

Импульсный трансформатор , принцип работыУстройства, работа которых зависит от электрического тока, часто оснащаются импульсными трансформаторами (ИТ). Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов. Импульсный трансформатор, установленный внутрь блока питания, преобразует напряжение таким образом, что импульс, получаемый на выходе, имеет минимум искажения. Степень преобразования выходного импульса зависит от технических характеристик ИТ.

Использование подобного трансформирующего устройства даёт возможность существенно уменьшить вес, размер и цену приборов, в которых он устанавливается.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Принцип работы импульсного  трансформатора

Требования к производству

Процесс создания импульсного трансформатора проходит с чётким соблюдением определённых требований. Требования, которым должен соответствовать ИТ, делятся на:Технико-экономические. К ним относится вес, габариты, стоимость. Также важно, чтобы для изготовления прибора применялись доступные исходные материалы и производственные технологии. Эта категория требований является весьма условной, так как включённые в неё параметры могут легко изменяться в зависимости от разных факторов. К примеру, в качестве исходных материалов могут выступать проводники, диэлектрики разного типа, которые в дальнейшем могут по-разному повлиять на вес, размер или стоимость готового трансформатора.

  • Эксплуатационные. Определяют степень надёжности исходного сырья, его термостойкость, устойчивость к климатическим факторам и механическим повреждениям. Важным эксплуатационным требованием является обязательная проверка трансформатора на возможность работать в аварийном режиме.

Основные показатели работы ИТ, такие как напряжение, мощность и форма импульса, контролируются функциональными требованиями. Именно от того, насколько точно они будут соблюдены, зависит, как долго и с какой эффективностью импульсный трансформатор будет выполнять свою функцию.

В ходе изготовления сердечника может быть использован разный материал. Наиболее часто в качестве исходного сырья выступает:

  • Электротехническая сталь.
  • Феррит.
  • Пермаллой.

Самым лучшим сырьём для производства трансформаторных сердечников считается альсифер. Он является достаточно редким материалом, поэтому альсиферовые сердечники встречаются довольно редко.

Механизм действия и виды устройств

Где применяется импульсный трансформаторРабота импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации. Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство. Одна из отличительных особенностей конструкции — типы обмотки. В зависимости от неё выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Внутри этих трансформаторов может быть использована разная обмотка. Катушки могут иметь форму:

  • Особенности работы импульсных трансформаторовСпирали. В качестве основного материала используется фольга. Спиральные катушки характеризуются минимальной индуктивностью рассеивания, чаще всего устанавливаются в автотрансформаторы.
  • Цилиндра. Такая катушка отличается простотой формы и низким показателем индуктивности.
  • Конуса. Такая форма получается из-за разной толщины контуров, возрастающей от начала к концу.

Виды и формы обмоток оказывают непосредственное влияние на технические и эксплуатационные параметры ИТ, такие как напряжение, габаритная мощность, размеры и вес.

На каждом трансформаторе присутствует специальная маркировка, содержащая сведения о его разновидности и типе установленной катушки.

Расчёт показателей

Импульсный трансформатор не только выпускается на производстве, но и создаётся самостоятельно. Чтобы изготовленное своими руками устройство выполняло свои функции без ошибок и сбоев, потребуется предварительно рассчитать:

  • площадь сердечника (в его поперечном сечении),
  • минимальное число витков обмотки,
  • диаметр сечения проводов для контуров,

Виды катушек и сердечников

Определив значение основных параметров, не составит труда узнать габаритную мощность ИТ. Верные расчёты помогут создать импульсный трансформатор, который при относительно небольшом весе будет обладать высоким коэффициентом полезного действия, расширенным диапазоном напряжения. При этом затраты на самостоятельное изготовление устройства будут очень небольшими.

220v.guru

Импульсный трансформатор: принцип работы

На данный момент могут существовать различные типы трансформаторного оборудования. Подобное оборудование может применяться в электронных и электротехнических схемах. Особенно часто это оборудование используется в хозяйственной деятельности. Наиболее популярным устройством трансформаторного типа считается импульсный трансформатор.

Это оборудование считается достаточно важным элементом и используется практически во всех современных блоках электропитания.

Импульсный трансформатор и его конструкция

Импульсные трансформаторы разделяют в зависимости от катушек и формы сердечника на следующие виды:

  • Тороидальный.

Бронестержневой.

Вот пояснения к рисункам, которые вы могли увидеть выше:

  1. A – это магнитопроводный контур, который выполняется из марок трансформаторной стали. Обычно эту продукцию изготовляют по технологии холодного или горячего металлопроката.
  2. B – это катушка из специального изолирующего материала.
  3. C – провода для создания индуктивной связи.

Электротехническая сталь содержит в себе мало добавок кремния. Именно он в результате своего использования может стать причиной значительной потери мощности. В импульсном трансформаторе сердечник может производиться из рулонной стали. Если вам будет интересно, тогда можете прочесть про проверку трансформаторного тока.

Все пластины, которые будут использоваться для набора электромагнитного сердечника подбираются в зависимости от толщины. С увеличением параметров вам необходимо устанавливать пластины меньшей величины.

Принцип работы

Основной особенностью импульсного трансформатора считается то, что на них будут подаваться однополярные импульсы, которые будут иметь постоянную токовую составляющую. Если вы желаете изучить принципиальную схему импульсного трансформатора, тогда сделать это можно ниже:

Как видите, схема практически нечем не отличается от обычного трансформатора. Единственным отличием считается временная диаграмма.

Если вы изучите схему, тогда можно будет понять, что на обмотку поступают специальные импульсные сигналы. Временный интервал между этими сигналами считается достаточно коротким. Перепады индукции будут проходить со скоростью, которую можно выразить через формулу τp=L0/Rн.

Коэффициент, который будет описывать разность между индуктивным перепадом можно определить следующим образом: ∆В=Вmax — Вr.

  • Вmax – это уровень максимального значения всех индукций.
  • Вr – это остаточные значения.

Если вы желаете детально изучить разность индукций, тогда выполнить этот процесс можно изучив фото ниже:

Как видите, на временной диаграмме вторичная катушка будет иметь напряжение U2. Именно так будет проявлять себя накопление энергии в магнитопроводе. Все импульсы тока будут проходить через катушку поскольку импульсы тока будут совмещаться. Уровень напряжения считается неизменным и его значение будет составлять еt=Um. Если вам необходимо вычислить напряжение во вторичной катушке, тогда рассчитать его можно по формуле:

В этом случае:

  1. Ψ – это параметр потокосцепления.
  2. S – это величина, которая будет отображать сечение.

Если вы планируете вычислить площадь импульса во вторичной обмотке, тогда вам необходимо обе части формулы умножить на значение tu. В результате этого вы сможете получить формулу: Um x tu=S x W1 x ∆В.

Второй величиной по значимости считается работа ИТ. На перепад индукции будут влиять следующие параметры: сечение, магнитная проницаемость и сердечник магнитопровода. При необходимости вы можете прочесть про подключение трансформатора.

В этой формуле вы сможете найти следующие значения:

  • L0 – это перепад индукции.
  • µа – магнитная проницаемость.
  • W1 – это число витков в первичной обмотке.
  • S – площадь сердечника.
  • l– это длина сердечника.
  • Вr– это величина остаточной индукции.
  • Вmax – уровень максимального значения.
  • Hm – напряженность магнитного поля.

Как видите, параметр индуктивности будет зависеть от импульсного трансформатора. При расчете, вам необходимо исходить из максимального значения µа.

Исходя из этого в качестве сердечника, вы также можете использовать ленту, которая изготовлена из трансформаторной стали. Если вы выберите высокочастотный импульсный трансформатор, тогда помните, что сердечник должен изготовляться из ферритовых сплавов. Если вам необходимо, тогда у нас вы можете найти информацию про измерительные трансформаторы.

Расчет импульсного трансформатора

Теперь мы решили предоставить вам инструкцию, как необходимо выполнять расчет импульсного трансформатора. КПД устройства будет напрямую связано с точностью вычислений.

Сначала вам необходимо вычислить уровень мощности устройства. Для этого можно использовать формулу Р=1,3 х Рн. Теперь вам необходимо выполнить расчет габаритной мощности. Чтобы выполнить подобный расчет, вам необходимо воспользоваться следующей формулой:

Вот основные параметры, которые могут потребоваться для вычисления:

  • Sc – отображает площадь сечения тороидального трансформатора.
  • S0 – это площадь окна сердечника.

  • Вмакс – это максимальный пик индукции. Он зависит от марки ферромагнитного материала.
  • F – параметр, который будет характеризовать частоту.

На следующем этапе, вам необходимо определить количество витков в первичной обмотке Тр2:

Если результат будет неполным, тогда его необходимо округлить в большую сторону. Если вам необходимо определить величину UI, тогда сделать это можно по формуле: UI=U/2-Uэ.Теперь можно перейти к вычислению максимального тока, который будет проходить через первичную обмотку импульсного трансформатора.

Параметр η в этой формуле будет равняться 0.8. Это специальное КПД, с которым должен работать преобразователь. Если необходимо рассчитать диаметр используемого провода для обмотки, тогда следует использовать формулу:

Последним этапом, который необходимо выполнить считается то, что вам следует рассчитать выходную обмотку импульсного трансформатора. Выполнить этот процесс можно по формуле:

Если у вас возникают определенные вопросы, тогда вы можете перейти на тематические сайты. Также в интернете существуют разнообразные программы, которые позволят проводить расчеты с импульсным трансформатором.

Читайте также: защита трансформатора от перегрузки.

vse-elektrichestvo.ru

Импульсный трансформатор, что это такое? Полное описание

Кратковременный импульсный режим работы некоторых электрических устройств служит для обеспечения генерирования больших величин мощности, а ее использование  в течение короткого промежутка времени называется импульсным режимом.

Мощные импульсные трансформаторы ТПИ, применяемые  для импульсных питающих источников служат для подачи электроэнергии во вторичные цепи.  Они выполняют функцию согласующего элемента между генератором первичной сети и потребителем импульсного напряжения. ИТ изменяет уровень и полярность формируемого импульса.

Они служат для создания обратной связи в контурах импульсного устройства, применяются для изменения импульса и формирования его в прямоугольную форму, обладающую величиной напряжения с постоянным периодом действия и наиболее крутым фронтом, что соответствует более широкой сфере применения.

Распределение электрических цепей в зависимости от постоянного и переменного значения тока.

Сфера применения импульсных трансформаторов

Основное предназначение ИТ – работа в импульсных устройствах – это: генераторы на триодах, магнетроны, газовые лазеры и прочая устройства. ИТ также используются в качестве дифференцирующих трансформаторов.

Сфера применения ИТ – это практически вся радиоэлектронная аппаратура, включая телевизоры и компьютерные мониторы, они обязательны для блоков питания импульсного типа. Одна из важных функций – применение для стабилизации выходного напряжения в режиме работы устройств.

Они служат для осуществления защиты от короткого замыкания потребителей в режиме ХХ (холостого хода) и защищают устройство от превышения значения напряжения или при перегреве корпуса прибора.

Основные требования

  1. Функциональность – определение значений всех электрических параметров (мощность, напряжение и вид импульса)
  2. Эксплуатационные требования – надежность и высокая перегрузочная способность, стойкость к механическим повреждениям и климатическому состоянию, повышенная электрическая прочность.
  3. Технико-экономические требования – малые габариты и небольшие потери, трудозатраты при изготовлении зависят от свойств, предъявляемых к сфере использования.

Общие конструктивные схемы и типы импульсных трансформаторов

Различие конструктивных форм продиктовано широким диапазоном использования, зависит от мощности, напряжения и вида форм протяженности импульса, предназначения и эксплуатационных требований.

Основные типы обмоток и импульсных трансформаторов – это:

  1. Стержневой ИТ.
  2. Броневой.
  3. Бронестержневой.
  4. Тороидальный.

Основной тип форм поперечного сечения – круговая или прямоугольная, аналогичная силовым трансформаторам.

Обозначения в схемах:

l – длина магнитной линии средней величины;

l1, l2– внутренняя и наружная протяженность (длина) короткой и длинной линии;

h– длины обмоток, цифровой индекс обозначает катушку,

h0 – ширина окна для стержневых и броневых схем и длина ярма для тороидальных МС.

Δ – толщина катушки, с цифровым индексом – толщина изоляционного материала между двумя обмотками.

А1, А2 толщина обмоток;

a, b, c – стороны сечения прямоугольного МС и диаметр круглого МС;

S и S1–геометрическая и рабочая площадь сечений МС;

ka – коэффициент наполнения сечения электротехнической листовой или ленточной сталью;

w – витки обмотки;

n–коэффициент трансформации;

λ – коэффициент использования протяженности МС.

Импульсные трансформаторы

 

Рис. №1. Конструктивная схема стержневого импульсного трансформатора.

Главная особенность импульсного трансформатора– небольшое количество витков в обмотках. Самыми экономичными считаются тороидальные ИТ, а менее всего – бронестержневые ИТ

 

Импульсные трансформаторы

Рис. №2. Схема обмотки броневого ИТ.

 

Импульсные трансформаторы

Рис. №3. Схема обмотки бронестержневого ИТ.

 

 

Импульсные трансформаторы

Рис. №4. Конструктивная схема ИТв виде торроида.

 

Импульсный трансформатор

Рис. №5. Прямоугольное сечение ИТ поперечного плана.

 

Импульсный трансформатор

Рис. №6. Поперечное сечение ИТ кругового типа.

 

Характерная особенность конструкции импульсного трансформатора

Основное свойство цилиндрической обмотки – невысокая индуктивность рассеяния. Обмотки отличаются простотой конструкции и прекрасной технологичностью. Они могут иметь различное число и расположение слоев и секций, отличаются схемами соединений. В конструкции используется трансформаторное и автотрансформаторное подключение обмоток.

Схема автотрансформаторного подключения используется в случаях, когда нужно снизить индуктивность рассеяния ИТ. Конструкция обмоток может состоять из нескольких слоев, они могут быть однос, и находиться на одном или на двух стержнях МС. Более часты в использовании однослойные обмотки, они простые в плане конструктивного устройства, отличаются большей надежностью. Индуктивность рассеяния достигается за счет наиболее полного использования длины МС обмотки, их располагают на 2-х стержнях.

Какие бывают обмотки

  1. Спиральные обмотки – соответствуют ИТ с минимальной индуктивностью рассеяния, рекомендованы к применению при автотрансформаторном включении. Их намотка осуществляется широкой и тонкой фольгой или токопроводящей лентой.
  2. Конические обмотки – служат для значительного уменьшения индуктивного рассеяния ИТ с малым увеличением емкости обмоток. Особенность – толщина изоляционного слоя между двумя обмотками, она пропорциональна напряжению между отдельными витками «первички» и «вторички». Толщина увеличивается от начала обмоток к концу в соответствии с линейным законом.
  3. Цилиндрические обмотки – обладают невысокой индуктивностью рассеяния, отличаются простой конструкцией и технологичностью.

Что такое потери энергии импульсного трансформатора?

Уменьшение энергетических потерь и создание эффективного КПД – важный вопрос, который стоит при проектировании ИТ. Общие потери суммируются из:

  • потерь на гистерезис;
  • вихревых токов;
  • потерь, связанных с несовершенством изоляции между листами;
  • магнитной вязкости.

Помимо упрощенного расчета и завышения значений существенных потерь, что компенсирует отказ от обоснования потерь и вносит грубые просчеты в расчет, применяют высоколегированные стали и перллои. Благодаря этому, с целью снизить потери, формы петли статического гистеризаса стараются приблизить к прямоугольной форме. Подобные материалы служат для достижения больших индукционных величин.

Вихревые токи разделяют искусственно и с помощью предусмотренных в конструкции магнитной системы (МС) участков с большой, или даже максимально увеличенной магнитной проницаемостью. Таким образом0 получается более-менее удовлетворительное стабильное значение  вихревого тока в стальных листах МС.

Материалы для изготовления импульсного трансформатора

Тип магнитного материала оказывает влияние на качественные показатели и на особенности импульсного режима. Оценка материала осуществляется по величинам и показателям и включает следующие качественные показатели:

  • индукции насыщения;
  • коэрцитивная сила;
  • удельное сопротивление материалов устройства;
  • возможность использования наиболее тонких лент или листов стали.

Электротехническая сталь желательная для создания ИТ включает марки: 3405 – 3408 и 3421 – 3425. Сталь 3425 отличается самым высоким показателем индукции насыщения и малой величиной коэрцитивной силы, самый большой показатель прямоугольности петли гистерезисного цикла. Используется наиболее часто.

Пермаллой (прецизионный сплав), который обладает магнито-мягкими показателями, обычно состоит из никеля и железа, как правило, обработан легирующими компонентами.

Ферриты – еще один материал, который востребован для ИТ с небольшой длительностью трансформированных импульсов, эти МС обладают необыкновенно высоким удельным сопротивлением и полным отсутствием потерь на вихревые токи. Они используются для ИТ с диапазоном импульсов, размер которых определяется в наносекундном диапазоне времени.

Что такое критерий осуществимости импульсного трансформатора

Создание ИТ зависит от искажения изменяемого трансформатором импульса и параметров цепи трансформатора и самого ИТ. Уменьшение удлинения импульсного фронта пропорционально делает большое снижение величины напряжения на вершине импульса и в обратном порядке.

Нелинейные показатели сопротивления способствуют снижению искажений импульса по фронту и по величине, что крайне нежелательно. Искажения необходимо свети к минимуму, происходит это за счет снижения величины коэффициента рассеяния, решение подобного вопроса в выборе соответствующего ИТ с наименьшим коэффициентом рассеяния. Критерий осуществимости выводится при определении параметров цепи трансформатора. Желательно обладание трансформаторной цепью индуктивной реакцией.

Коррекция искажений формы импульса

Не всегда представляется возможным выбрать ИТ, чтобы искажение формы импульса не превышали пределов допустимых. В этом случае для коррекции формы импульса вводят корректирующие двухполюсники или демпфирующие фильтры, состоящие из низкоомных резисторов. Таким способом устраняется выброс напряжения по фронту. В этих целях возможно использование подавляющего диода, его полярность выбирается в соответствии с полярностью напряжению выброса на срезе импульса.

Импульсный трансформатор считается самым важным элементом электронной схемы и несет наибольшую ответственность за ее бесперебойную работу. Он отличается высочайшей надежностью и практически никогда не выходит из строя. Расчет трансформатора индивидуален для всех схем. Вторичная обмотка его обязательно должна быть замкнута на потребительскую нагрузку, ее разомкнутое состояние относится к опасному режиму. Действующие параметры и каскад напряжения находятся в полной зависимости от сборки трансформатора, что влияет на качество схемы радиоэлектронного устройства.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

 

elektronchic.ru

О трансформаторе импульсном замолвите слово / Habr

Несмотря не то, что не так давно проскакивали довольно неплохо написанные статьи о расчете трансформатора импульсного источника питания, я предложу вашему вниманию свою методику, и не просто голую методику, а максимально прозрачное описание принципов, в ней использующихся.

Картинок не будет, будет около 18 несложных формул и много текста. Всех желающих приобщиться прошу на борт.

Я хочу поведать вам о том, как расчитать такого хитрого зверя, как импульсный трансформатор обратноходового источника питания. Обратноходовик, или FlyBack — это, наверное, самая популярная топология импульсного преобразователя. По моему мнению, в ИИП есть два очень важных и тонких момента — это трансформатор и петля обратной связи. В данной статье я хочу показать один из возможных наборов несложных математических уравнений, решая которые мы можем получить данные вполне реального трансформатора для флайбэка.

В интернете, в различных авторских статьях, или в AppNotes различных производетелей, можно найти различные методики расчета, которые зачастую максимально «сжаты», так, что из формул совершенно не понятно, как они получается. Я хочу сделать упор не на точность, а на максимальную наглядность и прозрачность производимых расчетов, так чтобы вы поняли, «почему так».

Далее постараюсь писать кратко и емко, так, чтобы вы смогли сесть и посчитать сразу после прочтения статьи. Эпюры напряжений и токов в обратноходовом источнике рисовать не буду, считаю, что вы достаточно подготовлены для того, что бы такие термины, как «индуктивность рассеяния», «отраженное напряжение», «пиковое значение тока через силовой ключ», «размагничивание магнитопровода» вам понятны.

Итак, считать будем трансформатор обратноходового источника питания, без корректора коэфициента мощности, как наиболее распространенный, да и «расчётка» моя пока только под него заточена.

Отдельно сделаю примечание, что подразумевается т.н. квазирезонансный режим работы преобразователя, когда накачка энергии в трансформатор начинается сразу после полного размагничивания магнитопровода. Т.е. т.н. «коэффициент безразрывности тока» =1, т.е. как только вся энергия вытекла через вторичную обмотку(и рассеялась в снабберной цепи), сразу включаем ключ и накачиваем снова. Такой режим в последнее время очень популярен в обратноходовых источниках питания, т.к. позволяет чуток поднять КПД.

Заранее оговорюсь — нижеприведенная методика весьма груба, но она «железобетонно» работает, многократно проверена на реальных трансформаторах в реальных источниках питания.

Для начала скачайте расчетку, откройте, пробегитесь глазами. В нее уже «вбиты» значения для расчета трансформатора источника питания, с выходной мощностью 100Вт.

Расчетка: к сожалению, по какой-то неведомой мне причине, публичная ссылка не отображается.
Возможно публикация публичных ссылок противоречит правилам. Надеюсь на то, что модераторы услышат этот крик души и снизошлют на меня персональную настройку фильтра, а пока можете переписать в Эксель, или маткад, все нижеприводимые формулы и получить годный результат.

Итак, поехали. Для того, чтобы начать расчет нам потребуется задаться несколькими исходными параметрами (все они выделены зеленым цветом в расчетке), а именно:

1. Выходная мощность источника питания для которого делаем трансформатор (POUTmax).
2. Выходное напряжение источника (Uout)(1).
3. Выходное напряжение служебной обмотки (Ubias)(2).
4. Минимальное напряжение питающей сети (UACmin)(3).
5. Максимальное напряжение в сети (UACmax)(3).
6. Уровень пульсаций на фильтрующем конденсаторе сетевого выпрямителя (Urpl)(4).
7. Ожидаемый КПД трансформатора (берите 0,85 и не прогадаете) (ŋ).
8. Частота работы преобразователя (5).
9. Пиковое значение тока протекающего через ключ коммутирующий первичную обмотку (ILPRpeak) (6).

(1) Если выходные напряжения достаточно низкие- учитывайте прямое падение напряжения на диоде.
(2) В подавляющем большинстве конструкций источников питания, требуется третья обмотка, от которой будет питаться управляющая микросхема.
(3) Всегда берите с запасом, т.е. если указан диапазон 180-264, берите от 160 до 280.
(4) Этот параметр зачастую можно только угадать, берите 10% от постоянной составляющей на нем и не ошибетесь, по факту полученного рабочего прототипа «подрихтуете» расчет.
(5) Частота к преобразователях с ожиданием размагничивания сердечника- плавающая, берем «с потолка» такую, которую хотим получить при полной нагрузке.
(6) Я надеюсь вы в курсе, что форма тока треугольная, что коммутирует ключ, что такое ключ и т.п.

Итак, первая формула:
Начнем с определения индуктивности первичной обмотки, Lpr.

Lpr=(1000×2×POUTmax)/(ŋ×F×ILPRpeak^2 )     	(1)

Для упрощения я выкину КПД, и множитель 1000, который нужен только для приведения результата к микроГенри от Генри, получится нижеследующее уравнение:
Lpr=(2×POUTmax)/(F×ILPRpeak^2 )     		(1.1)

На первый взгляд совершенно непонятно как так получается. Давайте попробуем ее преобразовать. Перенеся множители справа-налево, получим.
(Lpr×ILPRpeak^2)/2=POUTmax/F       (1.2)

Преобразуем правую часть, получим:
(Lpr×ILPRpeak^2)/2=POUTmax×T	(1.3)

Итак, в левой части у нас энергия содержащаяся в индуктивности (учебник физики, если не понятно). В правой части имеем мощность которая расходуется за период работы преобразователя. Т.е. энергия запасенная в индуктивности первичной обмотки (на этапе накачки, от начала периода до размыкания ключа) равна мощности передаваемой в нагрузку за весь период T (от начала накачки, до полного исчерпания энергии в трансформаторе и начала нового импульса).

В установившемся режиме то, что закачали в трансформатор из сети, должно равняться тому, что слили в нагрузку. Т.е. все рассуждения предполагают, что наш источник уже работает, а не стартует.

Оставим-же пока эту формулу (1), мы потом воспользуемся ею в расчётке, я лишь хотел продемонстрировать как она так получается.
Теперь о параметрах. Присмотримся к формуле. Зафиксировав (выбрав на свое усмотрение) три из четырех неизвестных, мы можем получить значение четвертой.

Мощность (POUTmax), мы уже задали.

Частота, ее можно просто выбрать по своему желанию. Не мудрствуя лукаво тыкнем скажем 50кГц и не проиграем. Лезть за 150кГц не стоит, так как потери на переключение станут неоправданно высокими, да еще скинэффект, не нужно это нам во флайбэке.

Пиковое значение тока через первичную обмотку, и одновременно ключ- ILPRPeak, это параметр на нервах которого мы будем играть. Выбирая его значение ILPRPeak, мы изменяем Lpr, а вместе с ней еще много чего другого. В моей расчетке будем менять ILPRpeak и наблюдать за другими ячейками таблицы, в которых будут находится результаты других формул. Опять-же, ближе к реальности, для 100Вт источника можно задаться для начала ILPRpeak= 3…4A.

Просто попробуйте подставить в ячейку различные числа, и вы увидите, как изменятся другие производные параметры. В частности, выбирая пиковый ток «первички», мы смотрим на «отраженное» напряжение, и исходим из соображений наличествующих у нас ключей. Так же этот параметр влияет на пиковое значение тока «вторички», что тоже важно, ибо во флайбэках токи имеют форму прямоугольного треугольника, и пиковые значения в разы превышают действующие, т.е. если ток нагрузки 5А, то пиковое может быть и 50, ориентируйтесь на наличествующие диоды и потери в меди обмотки.

Вторая формула:

UDCmin=UACmin×1.41-Urpl     	(2)

Тут упрощать нечего, думаю понятно, что мы получаем самое худшее значение постоянного напряжения, с учетом просадки на буферном конденсаторе, что стоит за сетевым выпрямителем, или за ККМ.
Ton=(Lpr×ILPRpeak)/UDCmin    	(3)

В формуле (3) мы вычисляем, сколько времени должен быть открыт ключ, чтоб ток в индуктивности, при приложении к ней нашего самого худшего UDCmin вырос от нуля до желаемого ILPRpeak.
T=1/F×1000  		(4) 

Частотой мы задались ранее, период посчитали в (4). На 1000 умножаем потому, что желаемую частоту мы записали в кГц а не в 1000-х Герц.
Toff=T-Ton    	(5)

Оставшаяся часть периода, которая будет посвящена передаче энергии в нагрузку, вычисляется по формуле (5).
Q=Toff/Ton    (6)

Максимальный коэффициент заполнения для худшего напряжения в сети и максимальной просадки на фильтрующем конденсаторе вычисляем в (6).
Urv=UDCmin×Ton/Toff    	(7)

«Отраженное» напряжение. Наш трансформатор, хоть и обратноходовый, но таки трансформатор, а значит коэффициент трансформации к нему так-же применим. Если на нашей вторичной обмотке во время протекания тока через выпрямительный диод, апряжение (например) 12.7В, то через соотношение количества витков это напряжение трансформируется в первичную обмотку (ведь магнитный поток «омывает» одновременно все обмотки).

Формула (7), немного хитрая, попробуем ее «раскрутить». Получим:

UDCmin×Ton=Urv×Toff 		(7.1)

(7.1) Демонстрирует один очень важный момент, называемый в народе «равенство вольт*секундных интервалов». Возможно справедливость утверждения (7.1) не очевидна, или не сразу понятна, пока используем полученное с помощью (7) численное значение как есть, в его правомерности не сомневайтесь.
UVTmax=UACmax×1.41+Urv 	(8)

Надеюсь вы хорошо понимаете, что на обратном ходу, первичная обмотка, для постоянного напряжения, что на фильтрующем конденсаторе- просто кусок проволоки, т.е. если наш фильтрующий конденсатор все еще заряжен до 310В, то при разомкнутом силовом ключе, протекании тока через вторичную обмотку, постоянка попросту «проходит» через первичку и прикладывается к ключу, но вместе с ней, к ключу добавляется еще отраженное напряжение. И самое печальное, что оно суммируется с постоянкой. И это без учета выброса от индуктивности рассеяния, имейте это ввиду, в расчетке данное обстоятельство специально выделено красным шрифтом.

Тогда (8) показывает, какое напряжение будет приложено к силовому ключу на обратном ходу. Можно сразу прибавить к максимальному напряжению, на которое расчитан ключ, еще сверху вольт этак 200 и не ошибетесь. Макетирование покажет реальную амплитуду выброса напряжения порожденного индуктивностью рассеяния.

Теперь можем посчитать коэффициент трансформации трансформатора, например таким образом:

Kfb=Uout/Urv 	(9)

Я называю этот коэффициент трансформации «обратным», т.к. считается он задом наперед. Теперь классический коэффициент трансформации, который можно получить:
K=1/Kfb 	(10)

Далее посчитаем максимальное напряжение, которое будет приложено к выпрямительному диоду на прямом ходу преобразователя. Думаю вы хорошо понимаете, что оно будет складываться из напряжения на фильтрующем конденсаторе нагрузки, которое в рабочем режиме, можно считать постоянным, и трансформированного, через коэффициент трансформации, напряжения приложенного к первичной обмотке.
UVDmax=Uout+(VACmax×1.41)/K  	(11)

И не забываем, что выбросы от паразитных индуктивностей обмоток трансформатора, действуют и на диод в т.ч. Если речь идет о источниках с высокими выходными напряжениями, берите запас по напряжению минимум 200В. Для низковольтных, как минимум 1.5, и внимательно смотрите осциллографом на выпрямитель.

Далее.

Lsec=Lpr/K^2   (12)

Из (12) получаем индуктивность вторичной обмотки трансформатора. Правило которое используется в формуле гласит, что «индуктивности обмоток трансформатора соотносятся как квадраты их витков», т.к. выражение можно представить как:
Lsec/Lpr=N2^2/N1^2   (12.1)  ( N2^2/N1^2 =K^2)

Далее посчитаем пиковый ток вторичной обмотки. Готовьтесь получить тут достаточно большие цифры, потому, что это «обратноход», и ток у него во «вторичке» — треугольный, и пиковое значение может быть ощутимо больше тока нагрузки.
ILSECpeak=√(1000×2×POUTmax)/(F×ŋ×Lsec) 	(13)

Данная формула преобразуется точно также как и первая формула для ILPRpeak.
ILSECrms=ILSECpeak√(1-Q)/3 	(14)

В (14) вычисляется действующее значение тока через вторичную обмотку трансформатора. Обяснить почему корень из (1-Q)/3 я не могу, вероятно это можно объяснить построив эпюры и прибегнув к геометрии. Тут же прикинем и действующее значение тока первичной обмотки.
ILPRrms=ILPRmax√Q/3 	(15)

Итак, индуктивности, токи, частоты посчитали. А как выбрать магнитопровод, спросите вы, как расчитать немагнитный зазор? Для начала мы его «прикинем», основываясь на своем жизненном опыте, а «загнав» его параметры в расчетку, поглядев посчитанную индукцию, можно выбрать другой магнитопровод. Вот захотелось мне источник мощностью 100Вт, с выходным напряжением 12В. Беру я «с потолка» магнитопровод типоразмера PQ2620.

Из его Datasheet выписываю Ae, предполагаемый зазор, и Коэффициент индуктивности для данного зазора (в даташитах Epcos, часто приводится таблица со стандартными зазорами для данного магнитопровода, и значениях Al и эквивалентной проницаемости). Если-же данных о коэфициенте Al для желаемого вами зазора, нет, придется его(зазор) изготовить, намотать пробные 100 витков, и посчитать по простой формуле Al=√(L/N^2), где L- измеренное значение индуктивности на сердечнике с пропиленным вами зазором, N — количество витков, что вы набросали(рекомендую мотать пробных 100 витков).

Объяснять что Такое Ae, G, и Al не буду, предполагая, что вы и сами знаете, зачем нужен зазор в магнитопроводе, и что такое Al. Также в расчетку можно вписать эквивалентную проницаемость сердечника с зазором, но она там не используется, чисто для красоты). В формуле (16) считаем необходимое количество витков.

Npr=√Lpr/Al 	(16)

Один из самых важных параметров для трансформатора- пиковое значение потока магнитной индукции.
B=(Lpr×ILPRpeak)/(Npr×Ae) 	(17)

Превышать значение 0,3 я категорически не рекомендую, а 0,4 это уже катастрофа. Так совпало, что данный магнитопровод вроде как вполне подходит под наши нужды. Индукция меньше 0,3Тл, так и хочется его заложить под наши нужды. К сожалению, расчетка не содержит формул для расчета заполненности окна магнитопровода медью, поэтому дать по ней окончательный вердикт — нельзя.

Если же индукция больше 0,3Тл, можем или выбрать более крупный магнитопровод, или увеличить зазор. Увеличив зазор мы получим уже другое значение Al и соотв. значение потока индукции.

Вообще, жизненный опыт показывает, что лучше не лезть в зазоры более 1.5мм., ибо им свойственны свои паразитные явления, такие как выпучивание линий магнитного поля, разогрев витков находящихся вблизи зазора, до температур, при которых им может настать «хана», короче от 0.2мм до 1.5мм. Меньше 0.2- температурное расширение материала может существенно изменить параметры трансформатора. Больше 1.5мм — написал выше.

Выбирая магнитопровод, а именно сравнивая различные модели, только по поперечному сечению керна (Ae), можно упустить из виду то, что длина магнитной линии тоже влияет на Al при том-же сечении, и зазоре.

Например магнитопровод PQ2620 имеет площадь сечения керна 122мм.кв, а ETD34 только 97мм.кв., но длины магнитных линий этих магнитопроводов различны, и через ETD34 можно так-же успешно прокачать 100Вт, как и через PQ2620. Я к тому, что берите и подставляйте в расчетку все феррриты, что находятся вблизи тех размеров, что, как вам кажется, могут прокачать желаемую мощность.
После расчета магнитной индукции в расчетке идет расчет количества витков вторичной обмотки и вспомогательной обмотки, на них специально останавливаться не буду, методология та-же, что и ранее.

Я надеюсь написанное выше будет вам полезно. Разработка ИИП это огромный пласт прикладной науки, и сия «расчетка» лишь маленький листик одного из талмудов, в котором собран весь опыт человечества, но она крайне полезна в прикладном плане, для разработки простеньких «флайбэков».

Моя «расчетка» (а на самом деле не моя, а унаследованная от идейного вдохновителя) довольно примитивный инструмент, поэтому я могу порекомендовать использовать сборник программ Владимира Денисенко, что легко находятся через поисковик. Тех, кто «рубит» в «силовой» теме, и имеет что сказать- вэлкам в коменты. Любая критика приветствуется!

Что непонятно — спрашивайте, я дополню статью более детальными объяснениями.

habr.com

Отправить ответ

avatar
  Подписаться  
Уведомление о