Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Ротор электродвигателя – что это?

В каждом аппарате, работающем от электрической энергии, используется такое устройство как электродвигатель, который состоит из статора – неподвижной части и ротора – подвижной. Далеко не каждому известно что такое ротор электродвигателя и какие его функции, поэтому, возникают ложные представления.


Состоит ротор из цилиндра, составленного из листов штампованной электротехнической стали, которые одеты на вал. По своей природе роторы бывают фазными и короткозамкнутыми. Фазные роторы имеют обмотку трёхфазного типа со схемой соединения «звезда» и вращающимися вместе с валом контактными кольцами. К данным кольцам с помощью определённых щёток возможно подключить:

  • дроссели для удержания токов ротора и стабилизации работы электродвигателя в моменты возможных перегрузок и падения оборотов;
  • источник постоянного тока;
  • пускорегулирующий реостат, для увеличения пускового момента с помощью снижения пускового тока;
  • инверторное питание, для управления моментных характеристик и оборотов двигателя.

Таким образом, фазные роторы снабжают асинхронные электродвигатели  рабочей стабильностью, позволяя использовать их в различных установках по типу мостовых кранов и других устройств, где не требуются широкая и плавна регулировка скорости электродвигателей большой мощности.

Короткозамкнутый ротор, имеющий обмотку с названием «беличье колесо» состоит из вставленных в сердечник стержней алюминиевого или медного происхождения и коротко замыкающих колец с торцевым лопастями. Для улучшения его пусковые характеристики на роторе выполняют паз специальной формы, создающий из-за своей неординарной относительно оси вращения структуры эффект вытеснения тока, вызывающего большие показатели сопротивлений, например, при пуске. Применяют такие роторы в двигателях асинхронного типа в приводах, которые не используют большие пусковые моменты, например, это могут быть водные насосы небольших мощностей без возможности регулировки рабочей скорости.

Среди всех преимуществ двигателей с короткозамкнутым ротором можно выделить:

  • практически одинаковая скорость с применением разных нагрузок;
  • допустимость больших рабочих перегрузок;
  • простота и удобство автоматизации пуска;
  • высокие показатели КПД;
  • конструктивная простота.

Как видим, хотя внешне и функционально роторы и имеют различия, влияющие существенно на область их применения, используются они в равных долях во всех сферах деятельности человека. Так, электродвигатели от Siemens изготавливаются с роторами и того и другого типа, что способствовало крупному внедрению этих агрегатов во многие производственные процессы.

Так же, кроме вышеперечисленных типов ротора стоит отметить и существование массивного ротора, состоящего из материала ферромагнитного происхождения, играющего роль магнитопровода и проводника одновременно. Быть может он не нашёл столь широкого применения как фазный ли короткозамкнутый, но имеет ряд преимуществ:

  • низкая себестоимость;
  • простота изготовления;
  • высокий пусковой момент;
  • высоких показатель механической прочности, что немаловажно в машинах работающих на высоких скоростях.
Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Строение ротора асинхронного двигателя – Морской флот

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно.

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.

Конструкция фазного ротора

Фазный ротор АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название – “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Асинхронный двигатель с креплением к фланцу

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Устройство асинхронного электродвигателя

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Устройство синхронного электродвигателя

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Электродвигатели

Электрические двигатели обычно состоят из двух частей. Первая – стационарная, или статор. Вторая – подвижная, или ротор, которая вращается внутри статора. В статоре находятся многочисленные обмотки. Проходящий по обмоткам электрический ток создает концентрированное магнитное поле, которое вращает ротор, в результате чего возникает механическая энергия. 

Вдоль оси статора сделаны специальные бороздки, в каждую из которых вставлен моток медной проволоки.

Чем более мощный двигатель, тем больше статор, и тем крупнее бороздки с мотками проволоки.

Первый шаг в производстве электрических двигателей – покрытие изоляцией бороздок, что обеспечивает поддержание напряжения на выводах мотков проволоки. Мотки состоят из множества витков медной проволоки, намотанных на станке с компьютерным управлением. Чем мощнее двигатель, тем больше витков в мотке.

Рабочие скрепляют витки проволоки на мотках для того, чтобы проволока не расходилась во время операции по установке мотков в бороздки статора. Каждый моток накрывается изоляцией из стекловолокна. Затем стекловолокном изолируется часть мотков, оставшихся за пределами бороздок. Далее, вставляются клинья из стекловолокна, чтобы заблокировать мотки в бороздках.

Когда все мотки вставлены и изолированы, рабочие начинают подготовку к сборке двигателя. Они надевают акриловые изоляционные трубки на оба конца мотка с проволокой, который имеет два вывода. Далее, изолированные провода собираются в силовые кабели. Количество проводов в силовом кабеле сильно варьируется в зависимости от напряжения данного типа оборудования.

Рабочие спаивают провода мотков и изолируют их, затем провода укладываются внутри статора и выводятся таким образом, чтобы они были доступны для последующего соединения к источнику энергии, когда двигатель будет установлен. Теперь с помощью термостойкого полиэфирного корда рабочие плотно связывают мотки для того, чтобы они не смещались во время работы двигателя. Этот узел связанных между собой мотков проволоки называется статором. Теперь рабочие погружают статор в емкость с лаком на основе полиэфира, что делает статор водонепроницаемым. Далее, статор помещают в печь при температуре 135-150 градусов Цельсия. Лак затвердевает и придает жесткость моткам проволоки в статоре. 

Следующий этап – балансировка ротора. Это очень важный этап, потому что, если ротор не сбалансирован, двигатель будет вибрировать, что недопустимо. Ротор балансируется так же, как колеса автомобиля. Только точность такой балансировки в несколько раз выше.

Ротор вставляется в статор. Эта операция выполняется с предельной осторожностью, чтобы не повредить статор. Ротор будет вращаться на стальных подшипниках, которые нагревают, чтобы произошло их расширение, тем самым установка облегчается.

Затем подшипники охлаждаются струей воздуха, и проверяется плотность их посадки на ротор. Такой же процесс происходит с задней стенкой двигателя.

Рабочие нагревают вентилятор и устанавливают его на вал ротора. Роль вентилятора состоит в том, чтобы охлаждать работающий двигатель и предохранять его от перегрева. Вентилятор закрывается защитным кожухом. Готовый двигатель проходит ряд испытаний для оценки качества изоляции и его работоспособность в целом. Такие промышленные двигатели предназначены для использования на заводах в таком оборудовании, как ленточные конвейеры, насосы, вентиляторы и компрессоры.

Асинхронный двигатель: устройство, виды, принцип работы

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно. 

Содержание статьи

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.

Недостатки:

  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

    Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Как работает электродвигатель

Электродвигатель работает благодаря тому, что взаимодействуют сила тока и сила магнита вызывают вращение. Электродвигатели состоят из: неподвижной магнитной части (статора) и подвижного (вращающегося) электромагнита – ротора. Чаще всего в роли статора выступает постоянный магнит, а в роли ротора – катушка с обмоткой возбуждения

Особенности работы электродвигателей

Когда полюс ротора притягивается к противоположно заряженному полюсу статора, он меняет автоматически свой заряд на противоположный. Тогда возникает естественное отталкивание между одинаково заряженными полюсами, и ротор не замирает на месте, а, в силу инерции, поворачивается. Автоматически переключают полюса заряда ротора при помощи коллектора. Это такие пластинки, к которым подключается обмотка катушки. Когда ротор поворачивается на 180 градусов, пластинки меняются местами, вследствие чего меняется и направление тока.

Типы  электродвигателей:

  • Двигатель, работающий от постоянного электричества.
  • Двигатель переменчивого тока.

Электричество подается на обмотку катушки через щетки, расположенные на разных концах якоря (ротора). В результате он превращается в электромагнит, создающий вокруг себя магнитное поле. Когда магнитное поле взаимодействует со статором, якорь начинает вертеться, пытаясь вырваться из поля. Мощность двигателя постоянного тока напрямую зависит от обмотки якоря.

Двигатели второго типа получают питание от переменного тока, частотой 60 Гц, бывают они синхронными и асинхронными. Обычно их запускают вручную. Когда якорь двигателя вращается одновременно с магнитным полем напряжения от сети питания, двигатель называют синхронным. Асинхронным является двигатель, у которого скорость вращения якоря не совпадает с частотой магнитного поля, приводящего его в движение.

Типовые режимы работы электрических двигателей

В зависимости от предназначения и типа устройства электродвигатели имеют разные режимы работы. Выделим несколько самых распространенных из них:

  • Продолжительный с постоянной нагрузкой  – S1;
  • Временный с постоянной нагрузкой (отличается от первого четко ограниченной по времени фазой работы) –  S2;
  • Периодический кратковременный (состоит из нескольких кратковременных циклов между фазами покоя) S3;
  • Периодический режим с электрическим пуском S4;
  • Периодический кратковременный режим с электрическим торможением S5;

Всего есть 9 типовых режимов работы электродвигателей. Каждый режим используют для определенного вида нагрузки.

Просмотров: 2068

Дата: Воскресенье, 15 Декабрь 2013

Что такое электродвигатель?

Что из себя представляет электродвигатель

 

Говоря техническим языком, электродвигатель является элементом, который преобразует электричество в механическую энергию, что приводит в движение весь механизм. Поэтому двигатель и называют главным составляющим. Давайте же разберемся подробнее, для чего нужен электродвигатель, из чего он состоит и как работает.Первые модели были произведены еще в 19 веке. Но перед этим была четко сформулирована цель – получить механическую энергию для передвижения и других действий с помощью электричества.

Разберемся, из чего состоит электродвигатель. Главными элементами считаются статор – неподвижная часть (корпус) и ротор – подвижная часть механизма. Помимо этого, в состав двигателя входят еще десятки мелких деталей, таких как подшипники, обмотка из медной проволоки и так далее.

 

 

Теперь давайте рассмотрим виды электрических двигателей. В основном они классифицируются по типу питания – это двигатели постоянного тока и переменного, и по принципу работы – синхронные и асинхронные. Двигатели постоянного тока так называются, так как работают от различных блоков питания, аккумуляторов и прочих батарей. Переменного, потому что соединяются напрямую с электрической сетью.

Синхронные механизмы имеют обмотки на роторе и подают на них напряжение для работы двигателя. Асинхронные – не имеют данных компонентов. Поэтому скорость вращения будет заметно медленнее, так отсутствует магнитное поле, созданного в статоре.

 

Как работает и что делает электродвигатель

 

Когда механизм соединяется с источником питания, на обмотке возникает магнитное поле, которое и вращает ротор в статоре. Это происходит по закону Ампера. Ведь создается отталкивающая сила, способная вращать вал и приводить в движение другие детали. Частота оборотов ротора напрямую зависит от частоты приходящего на витки электричества, а также от количества пар магнитных полюсов. Кстати, название данной разновидности пошло от того факта, что скорость вращения ротора различалась с частотой оборотов магнитного поля, то есть эти показатели были асинхронными.

Синхронные же двигатели немного отличаются строением ротора. В таком типе электродвигателей, ротор играет роль магнита, который и создает поле для вращения. Здесь магнитное поле статора и сам ротор вращаются с одинаковой частотой. Но есть один, очень значимый минус. Чтобы запустить синхронный электродвигатель, нужно воспользоваться помощью асинхронного. Ведь после простого подключения механизма к сети, ничего не произойдет.

К этому недостатку можно прибавить низкую скорость оборотов. К примеру, если взять асинхронный и синхронный двигатели и подключить их к источнику электричества одинакового напряжения, то первый тип будет вращаться заметно быстрее второго.

 

Где используют электродвигатели

 

Они имеют множество неоспоримых преимуществ и особенностей, что делают механизм уникальным и незаменимым. В современном мире данный тип двигателя широко используется практически во всех сферах жизнедеятельности человека.

Применение электрических двигателей начинается от небольших игрушек, и заканчивается большими предприятиями и народными хозяйствами. С помощью этого механизма стало возможно поднимать и передвигать огромные предметы.

Если коротко резюмировать данную статью, то хочется еще раз подчеркнуть значимость таких двигателей в жизни человека. Без них, многие сферы просто не смогли бы нормально функционировать и развиваться. Поэтому нужно тщательно подходить к выбору электродвигателя, ведь его поломка чревата остановкой производства или другого важного процесса, что повлечет за собой материальные и нематериальные убытки.

Электродвигатель – Энциклопедия Нового Мира

Вращающееся магнитное поле как сумма магнитных векторов трех фазных катушек

Электродвигатель преобразует электрическую энергию в кинетическую энергию. Обратная задача – преобразование кинетической энергии в электрическую – выполняется генератором или динамо-машиной. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а некоторые приложения используют одно устройство для выполнения обеих ролей. Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оснащен динамическими тормозами.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю.

Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели.В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть – статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь – это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорь может служить как ротор, так и статор.

Двигатели постоянного тока

Электродвигатели различных размеров. Ротор от небольшого двигателя постоянного тока 3 В. Этот двигатель имеет 3 катушки, и коммутатор можно увидеть на ближнем конце.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода.Этот мотор часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка – Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания. Томас Давенпорт построил небольшой электродвигатель постоянного тока в 1834 году, используя его для управления игрушечным поездом по круговой дороге.Он получил патент на него в 1837 году.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приведя его в действие как двигатель. Машина Грамма была первым промышленно полезным электродвигателем; более ранние изобретения использовались в качестве игрушек или лабораторных диковинок.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкаются и притягиваются к постоянным магнитам на внешней стороне двигателя.Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря. В этот момент переключения полярности импульс поддерживает классический двигатель в нужном направлении. (См. Схемы ниже.)

  • Вращение двигателя постоянного тока
  • Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отталкивается от левого магнита и тянется вправо, вызывая вращение.

  • Якорь продолжает вращаться.

  • Когда якорь становится выровненным по горизонтали, коммутатор меняет направление тока через катушку на противоположное, изменяя направление магнитного поля. Затем процесс повторяется.

Двигатель постоянного тока с возбужденным полем

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока можно заменить электромагнитами. Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя.Обычно обмотка возбуждения размещается последовательно (последовательная обмотка) с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (параллельная обмотка) с якорем для получения высокоскоростного двигателя с низким крутящим моментом, или имеют обмотку частично параллельно, а частично последовательно (составная обмотка) для баланса, обеспечивающего стабильную скорость в диапазоне нагрузок. Раздельное возбуждение также является обычным, с фиксированным напряжением поля, скорость регулируется изменением напряжения якоря.Дальнейшее уменьшение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Теория

Если вал двигателя постоянного тока вращается под действием внешней силы, двигатель будет действовать как генератор и создавать электродвижущую силу (ЭДС). Это напряжение также генерируется при нормальной работе двигателя. Вращение двигателя создает напряжение, известное как противо-ЭДС (CEMF) или противо-ЭДС, поскольку оно противодействует приложенному напряжению на двигателе.Следовательно, падение напряжения на двигателе состоит из падения напряжения из-за этой CEMF и паразитного падения напряжения, возникающего из-за внутреннего сопротивления обмоток якоря.

Поскольку CEMF пропорциональна скорости двигателя, при первом запуске или полном останове электродвигателя CEMF отсутствует. Следовательно, ток через якорь намного выше. Этот высокий ток создаст сильное магнитное поле, которое запустит вращение двигателя. По мере вращения двигателя CEMF увеличивается до тех пор, пока не сравняется с приложенным напряжением за вычетом паразитного падения напряжения.В этот момент через двигатель будет протекать меньший ток.

Управление скоростью

Обычно скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления. Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе. Обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или переключающее устройство с электронным управлением, состоящее из тиристоров, транзисторов или, ранее, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания. Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Процент времени включения, умноженный на напряжение питания, дает среднее напряжение, приложенное к двигателю.

Поскольку двигатель постоянного тока с последовательным возбуждением развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение – стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи). По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается. Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе), пока он не разрушит себя.Это также может быть проблемой для железнодорожных двигателей в случае потери сцепления, поскольку, если быстро не взять под контроль двигатели, они могут развивать скорость намного выше, чем при нормальных обстоятельствах. Это может вызвать проблемы не только для самих двигателей и шестерен, но и из-за разницы в скорости между рельсами и колесами, это также может вызвать серьезные повреждения рельсов и ступеней колес, поскольку они быстро нагреваются и охлаждаются. Ослабление поля используется в некоторых электронных элементах управления для увеличения максимальной скорости электромобиля.В простейшей форме используется контактор и резистор ослабления поля, электронное управление контролирует ток двигателя и подключает резистор ослабления поля в цепь, когда ток двигателя уменьшается ниже заданного значения (это будет, когда двигатель работает на полной расчетной скорости). Как только резистор включен в цепь, двигатель увеличит скорость выше своей нормальной скорости при номинальном напряжении. Когда ток двигателя увеличивается, система управления отключает резистор и становится доступным крутящий момент на низкой скорости.

Одним из интересных методов управления скоростью двигателя постоянного тока является управление Уорда-Леонарда.Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой), который был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока (переменного тока), хотя он не лишен своих преимуществ в схемах постоянного тока. Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока из якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции). Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора.Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этот метод управления был методом de facto от его разработки до момента его замены твердотельными тиристорными системами. Она нашла применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок большой шахты и даже промышленного технологического оборудования и электрических кранов. Его основным недостатком было то, что для реализации схемы требовалось три машины (пять в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором).Во многих случаях установка мотор-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости. Есть множество устаревших установок Ward-Leonard, которые все еще используются.

Универсальные двигатели

Вариант обмотки Двигатель постоянного тока – универсальный двигатель . Название происходит от того факта, что он может использовать переменный ток или постоянный ток, хотя на практике они почти всегда используются с источниками переменного тока.Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) одновременно, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении . На практике двигатель должен быть специально разработан для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель обычно менее эффективен, чем эквивалентный чистый двигатель DC .При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении, чтобы поддерживать высокий электрический КПД, они работали от источников переменного тока с очень низкой частотой с частотой 25 Гц и 16 2 / 3 Гц. Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект – проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами. Непрерывное управление скоростью универсального двигателя, работающего на переменном токе, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое регулирование скорости может быть выполнено с использованием нескольких отводов на катушке возбуждения.Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с 0,707 среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превышать один оборот за цикл сетевого тока. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об / мин.Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора – все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, в которых раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных установок. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.

Двигатели переменного тока

В 1882 году Никола Тесла определил принцип вращающегося магнитного поля и впервые применил вращающееся силовое поле для работы машин.Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию. В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Введение двигателя Теслы с 1888 г. и далее положило начало так называемой Второй промышленной революции, сделав возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Тесла (1888 г.).До изобретения вращающегося магнитного поля двигатели работали, непрерывно пропуская проводник через постоянное магнитное поле (как в униполярных двигателях).

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. [1] Tesla позже получит патент США 0416194 (PDF), Electric Motor (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы.Этим классическим электромагнитным двигателем переменного тока был асинхронный двигатель .

Энергия статора Энергия ротора Общая потребляемая энергия Развиваемая мощность
10 90 100 900
50 100

В асинхронном двигателе , поле и якорь в идеале имели одинаковую напряженность поля, а сердечники поля и якоря были одинакового размера.Полная энергия, потребляемая для работы устройства, равнялась сумме энергии, затраченной на якорь и катушку возбуждения. [2] Мощность, развиваемая при работе устройства, равна произведению энергии, затрачиваемой в катушках якоря и возбуждения. [3]

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеть-ротор» в 1890 году. Успешная коммерческая многофазная система генерации и передачи на большие расстояния была спроектирована Альмерианом Декером в Mill Creek No.1 [4] в Редлендс, Калифорния. [5]

Компоненты и типы

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний стационарный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, на который создается крутящий момент вращающимся полем.

В зависимости от типа используемого ротора существует два основных типа электродвигателей переменного тока:

  • Синхронный электродвигатель, который вращается точно с частотой питающей сети или кратной частотой питающей сети, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и головки считывающего устройства привода CD / DVD

Если имеется многофазное электропитание, Обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности. Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля.Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели являются рабочими лошадками промышленности, и двигатели мощностью до 500 кВт (670 лошадиных сил) производятся в строго стандартизированных размерах корпуса, что делает их практически полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке отличаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров, приводов в аэродинамической трубе и наземных преобразовательных систем.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока. Беличья клетка получила свое название от своей формы – кольца на обоих концах ротора, с перемычками, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца.Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В высокоэффективных двигателях часто используется литая медь, чтобы уменьшить сопротивление ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой – когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора.Двигатель с короткозамкнутым ротором без нагрузки при синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка – электрическая нагрузка по своей природе связана с механической нагрузкой. Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель вентилятора с короткозамкнутым ротором может приглушать свет в доме при запуске, но не приглушает свет, когда его вентиляторный ремень (и, следовательно, механическая нагрузка) снимается.Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости.В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя. В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств.Транзисторные инверторы с частотно-регулируемым приводом теперь можно использовать для управления скоростью, а двигатели с фазным ротором становятся все реже. (Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за высоких требований к мощности.)

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы (Direct-on-line, DOL).Если необходимо ограничить пусковой пусковой ток (если мощность двигателя больше, чем у источника питания при коротком замыкании), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнит), результат называется синхронным двигателем, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться как генератор переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными частотно-регулируемыми приводами.Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, ток в обмотке с короткозамкнутым ротором не индуцируется, поэтому он мало влияет на синхронную работу двигателя. , помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей.

Двухфазные серводвигатели переменного тока

Типичный двухфазный серводвигатель переменного тока имеет короткозамкнутый ротор и поле, состоящее из двух обмоток: 1) главной обмотки постоянного напряжения (переменного тока) и 2) управляющей обмотка напряжения (переменного тока) находится в квадратуре с основной обмоткой, чтобы создать вращающееся магнитное поле.Электрическое сопротивление ротора намеренно повышено, чтобы кривая скорость-крутящий момент была достаточно линейной. Двухфазные серводвигатели по своей сути являются высокоскоростными устройствами с низким крутящим моментом, которые в значительной степени приспособлены для управления нагрузкой.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным электродвигателем является электродвигатель с расщепленными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока – это асинхронный двигатель с расщепленной фазой , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В электродвигателях с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.

Фаза магнитного поля в этой пусковой обмотке сдвинута по сравнению с фазой сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель. Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный выключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. Тогда двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В конденсаторном пусковом двигателе , пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, которая способна к гораздо большему фазовому сдвигу (и, следовательно, гораздо большему пусковому крутящему моменту). Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант – двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и работы). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания.Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость.

Отталкивающие двигатели – это однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском и индукционным приводом (RS-IR).Двигатель RS-IR оснащен центробежным переключателем, который замыкает все сегменты коммутатора, так что двигатель работает как асинхронный двигатель после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год было продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых дисков и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопов. Синхронный двигатель с расщепленными полюсами – это одна из версий.

Моментные двигатели

Моментные двигатели – это особая разновидность асинхронных двигателей, которые могут работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений.В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название). Обычное применение моментного двигателя – это двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимом в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущий ленту мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, в его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» из одного положения в другое, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Двигатель с постоянными магнитами

Двигатель с постоянными магнитами аналогичен обычному двигателю постоянного тока, за исключением того факта, что обмотка возбуждения заменена постоянными магнитами. Таким образом, двигатель будет действовать как двигатель постоянного тока с постоянным возбуждением (двигатель постоянного тока с независимым возбуждением).

Эти двигатели обычно имеют небольшую мощность, до нескольких лошадиных сил. Они используются в небольших приборах, транспортных средствах с батарейным питанием, в медицинских целях, в другом медицинском оборудовании, таком как рентгеновские аппараты. Эти двигатели также используются в игрушках и в автомобилях в качестве вспомогательных двигателей для регулировки сиденья, электрических стеклоподъемников, люка в крыше, регулировки зеркал, электродвигателей вентилятора, вентиляторов охлаждения двигателя и т.п.

Последняя разработка – двигатели ПСМ для электромобилей.- Высокая эффективность – Минимальный фиксирующий момент и крутящий момент неровности поверхности – Небольшая занимаемая площадь, компактные размеры – Малый вес источник [3]

Бесщеточные двигатели постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры. Это ограничивает максимальную скорость машины.Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине – дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90 процентов, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80 процентов.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями находится область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы управляющих катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла.Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах и упоминаются моделистами как двигатели outrunner (поскольку магниты находятся снаружи).

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных товаров, таких как вентиляторы, лазерные принтеры и копировальные аппараты. . У них есть несколько преимуществ перед обычными двигателями:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, также могут обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов на искрение, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника.Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блинчика (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лентопротяжных устройств и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Линейные двигатели

Линейный двигатель – это, по сути, электродвигатель, который «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей.

Электродвигатель с двойным питанием

Электродвигатели с двойным питанием или Электромашины с двойным питанием включают в себя два набора многофазных обмоток с независимым питанием, которые активно участвуют в процессе преобразования энергии (т. Е. С двойным питанием), по крайней мере, с одним из комплекты обмоток с электронным управлением для синхронной работы от субсинхронных до сверхсинхронных скоростей.В результате электродвигатели с двойным питанием представляют собой синхронные машины с эффективным диапазоном скоростей с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения. Это вдвое больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с одиночным питанием, в которых используется одна активная обмотка. Теоретически этот атрибут имеет привлекательные последствия по стоимости, размеру и эффективности по сравнению с электрическими машинами с однополярным питанием, но двигатели с двойным питанием трудно реализовать на практике.

Электромашины с двойным питанием и бесщеточным ротором с двойным питанием, бесщеточные электрические машины с двойным питанием и так называемые бесщеточные электрические машины с двойным питанием являются единственными примерами синхронных электрических машин с двойным питанием.

Электродвигатель с одинарным питанием

Электродвигатели с одиночным питанием или Электромашины с одиночным питанием включают одну многофазную обмотку, которая активно участвует в процессе преобразования энергии (т. Е. С одинарным питанием). Электромашины с однополярным питанием работают либо по индукционным (т.е. асинхронным), либо по синхронным принципам. Комплект активной обмотки может иметь электронное управление для оптимальной производительности. Индукционные машины демонстрируют пусковой момент и могут работать как автономные машины, но синхронные машины должны иметь вспомогательные средства для запуска и практической работы, такие как электронный контроллер.

Асинхронные двигатели (т. Е. С короткозамкнутым ротором или с фазным ротором), синхронные двигатели (т. Е. С возбуждением от поля, двигатели с постоянными магнитами или бесщеточные двигатели постоянного тока, реактивные двигатели и т. примеры двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием – это преимущественно устанавливаемые двигатели.

Двигатель с двумя механическими портами

Электродвигатели с двумя механическими портами (или электродвигатель DMP) считается новой концепцией электродвигателей.Точнее, электродвигатели DMP – это на самом деле два электродвигателя (или генератора), занимающие один и тот же корпус. Каждый двигатель работает по традиционным принципам электродвигателя. Электрические порты, которые могут включать в себя электронную опору электродвигателей, связаны с одним электрическим портом, в то время как два механических порта (вала) доступны снаружи. Теоретически ожидается, что физическая интеграция двух двигателей в один увеличит удельную мощность за счет эффективного использования в противном случае ненужной площади магнитного сердечника.Механика интеграции, например, для двух механических валов, может быть довольно экзотической.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (размером порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа. Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

На этом рендере можно увидеть процесс и технологию.

Пускатели двигателей

Противо-ЭДС помогает сопротивлению якоря ограничивать ток через якорь. При первом подаче питания на двигатель якорь не вращается.В этот момент противоэдс равна нулю, и единственным фактором, ограничивающим ток якоря, является сопротивление якоря. Обычно сопротивление якоря двигателя меньше одного Ом; поэтому ток через якорь при подаче питания будет очень большим. Этот ток может вызвать чрезмерное падение напряжения, что повлияет на другое оборудование в цепи. Или просто отключите устройства защиты от перегрузки.

  • Следовательно, возникает необходимость в дополнительном сопротивлении, включенном последовательно с якорем, для ограничения тока до тех пор, пока вращение двигателя не создаст противоэдс.По мере увеличения вращения двигателя сопротивление постепенно снижается.

Трехточечный пускатель

Входящая мощность обозначается как L1 и L2. Компоненты, обозначенные пунктирными линиями, образуют трехточечный стартер. Как следует из названия, есть только три соединения с пускателем. Подключения к якорю обозначены как A1 и A2. Концы катушки возбуждения (возбуждения) обозначены как F1. и F2. Для управления скоростью полевой реостат соединен последовательно с шунтирующим полем.Одна сторона линии соединена с рычагом стартера (на схеме обозначена стрелкой). Рычаг подпружинен, поэтому он вернется в положение «Выкл.», Которое не удерживается ни в каком другом положении.

  • На первом этапе плеча полное линейное напряжение прикладывается к полю шунта. Поскольку полевой реостат обычно устанавливается на минимальное сопротивление, скорость двигателя не будет чрезмерной; кроме того, двигатель будет развивать большой пусковой крутящий момент.
  • Стартер также соединяет электромагнит последовательно с шунтирующим полем.Он будет удерживать рычаг в положении, когда рычаг соприкасается с магнитом.
  • Между тем это напряжение подается на шунтирующее поле, а пусковое сопротивление ограничивает прохождение тока к якорю.
  • По мере того, как двигатель набирает скорость, нарастает противо-ЭДС, рычаг медленно перемещается в положение короткого замыкания.

Четырехточечный стартер

Четырехточечный стартер устраняет недостаток трехточечного стартера. В дополнение к тем же трем точкам, которые использовались с трехточечным стартером, другая сторона линии, L1, является четвертой точкой, подведенной к стартеру.Когда рычаг перемещается из положения «Выкл.», Катушка удерживающего магнита подключается к линии. Удерживающий магнит и пусковые резисторы работают так же, как и в трехпозиционном пускателе.

  • Возможность случайного размыкания цепи возбуждения весьма мала. Четырехточечный пускатель обеспечивает защиту двигателя от обесточивания. В случае сбоя питания двигатель отключается от сети.

См. Также

Компоненты:

  • Центробежный переключатель
  • Коммутатор (электрический)
  • Контактное кольцо

Ученые и инженеры:

Применения:

  • Настольная пила
  • Электромобиль
  • Коррекция коэффициента мощности

Прочее:

  • Электротехника
  • Электрический элемент
  • Электрогенератор
  • Список тем по электронике
  • Список технологий
  • Теорема максимальной мощности
  • Мотор-генератор
  • Контроллер двигателя
  • Метод движения
  • Однофазный электроэнергия
  • Хронология развития двигателей и двигателестроения

Примечания

Ссылки

  • Bedford, B.Д., Р. Г. Хофт и др. 1964. Принципы инверторных схем. Нью-Йорк: John Wiley & Sons, Inc. ISBN 0471061344. (Для управления скоростью двигателя с регулируемой частотой используются схемы инвертора)
  • Чиассон, Джон Н. 2005. Моделирование и высокопроизводительное управление электрическими машинами , Нью-Йорк, Нью-Йорк: Wiley-IEEE Press. ISBN 047168449X.
  • Fink, Donald G .; Бити, Х. Уэйн (1978). Стандартное руководство для инженеров-электриков, одиннадцатое издание. Нью-Йорк, Нью-Йорк: Макгроу-Хилл.ISBN 007020974X.
  • Фицджеральд, А. Э., Чарльз Кингсли младший, Стивен Д. Уманс. 2002. Электрические машины. Колумбус, Огайо: McGraw-Hill Science / Engineering / Math. ISBN 0073660094.
  • Houston, Edwin J .; Артур Кеннелли, (1902) Последние типы динамо-электрических машин. , авторское право American Technical Book Company 1897, Нью-Йорк, Нью-Йорк: P.F. Кольер и сыновья. ASIN: B000874XH6
  • Купхальдт, Тони Р. Уроки в электрических цепях – Том II. 2000-2006.Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА. дата обращения 11 апреля 2006 г.
  • Пелли Б. Р. (1971). Тиристорные преобразователи с фазовым управлением и циклоконвертеры. Хобокен, Нью-Джерси: John Wiley & Sons. ISBN 0471677906
  • Шейнфилд Д. Дж. (2001). Промышленная электроника для инженеров, химиков и техников. Норвич, Нью-Йорк: Издательство Уильяма Эндрю. ISBN 0815514670.
  • Smith, A.O. Электродвигатели переменного и постоянного тока. [4]. accessdate 11 апреля 2006 г.

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа.Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна для исследователей здесь:

История этой статьи с момента ее импорта в Энциклопедия Нового Света :

Примечание. могут применяться ограничения на использование отдельных изображений, на которые распространяется отдельная лицензия.

Электродвигатель | Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель – это машина, используемая для преобразования электрической энергии в механическую.Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первая гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю.Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, состоящий из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор .Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит движущийся компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам). В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре.Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две большие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного (AC) тока.

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году. Поскольку единственными доступными электрическими источниками были электродвигатели постоянного тока, первые коммерчески доступные электродвигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах.Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока. Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря.Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении. Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюса противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь.Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположно протекающий ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами. Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает на якоре напряжение, известное как противо-ЭДС (электродвижущая сила), поскольку оно противодействует приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет встречной ЭДС, и якорь начинает вращаться. Счетчик ЭДС увеличивается с вращением.Действующее напряжение на обмотках якоря – это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотка возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы. Ток через обмотку возбуждения можно контролировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широком диапазоне условий нагрузки.Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому крутящему моменту, поскольку как ток якоря, так и напряженность поля максимальны. Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели

переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные.Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения.По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается. Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а

Ключевые термины

AC – Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.

DC— Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор— Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор – Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент – Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

– это, по сути, короткие замыкания. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель изначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью.Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть проводники с током находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться. Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован.Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей.В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока. Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами. Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.

КНИГИ

Красильщик. Катушки интенсивности: как они сделаны и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.

Эмади, Али. Энергоэффективные электродвигатели . Нью-Йорк: CRC, 2004.

Hughes, Austin. Электродвигатели и приводы . Оксфорд, Великобритания: Newnes, 2005.

Иэн А. Макинтайр

Детали двигателя | Sciencing

Конструкции электродвигателей могут сильно различаться, хотя в целом они состоят из трех основных частей: ротора, статора и коммутатора.Эти три части используют силы притяжения и отталкивания электромагнетизма, заставляя двигатель непрерывно вращаться, пока он получает постоянный поток электрического тока.

Основные принципы

Двигатели работают на принципах электромагнетизма. Если вы пропустите электричество по проводу, он создаст магнитное поле. Если вы намотаете проволоку на стержень и пропустите по ней электричество, вокруг стержня будет создано магнитное поле. Один конец стержня будет иметь северный магнитный полюс, а другой – южный.Противоположные полюса притягиваются друг к другу, как отталкиваются. Когда вы окружите этот стержень другими магнитами, стержень будет вращаться под действием сил притяжения и отталкивания.

Статор

Каждый электродвигатель состоит из двух основных частей: неподвижной и вращающейся. Стационарная часть – это статор. Хотя конфигурации различаются, статор чаще всего представляет собой постоянный магнит или ряд магнитов, выстилающих край корпуса двигателя, который обычно представляет собой круглый пластиковый барабан.

Ротор

В статор вставлен ротор, обычно состоящий из медной проволоки, намотанной на катушку вокруг оси.Когда через катушку протекает электрический ток, возникающее магнитное поле противодействует полю, создаваемому статором, и заставляет ось вращаться.

Коммутатор: основы

Электродвигатель имеет еще один важный компонент – коммутатор, который находится на одном конце катушки. Это металлическое кольцо, разделенное на две половины. Он меняет местами электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Коммутатор периодически меняет направление тока между ротором и внешней цепью или батареей.Это гарантирует, что концы катушек не будут двигаться в противоположных направлениях, и гарантирует, что ось вращается в одном направлении.

Подробнее Коммутатор: магнитные полюса

Коммутатор необходим, потому что вращающийся ротор получает свое движение от магнитного притяжения и отталкивания между ротором и статором. Чтобы понять это, представьте, что двигатель медленно вращается. Когда ротор вращается до точки, где южный полюс магнита ротора встречается с северным полюсом статора, притяжение между двумя полюсами останавливает вращение.Чтобы ротор продолжал вращаться, коммутатор меняет полярность магнита, поэтому южный полюс ротора становится северным. Затем северный полюс ротора и северный полюс статора отталкиваются друг от друга, заставляя ротор продолжать вращаться.

Щетки и клеммы

На одном конце двигателя находятся щетки и клеммы. Они находятся на противоположном конце от того места, где ротор выходит из корпуса двигателя. Щетки подают электрический ток на коммутатор и обычно сделаны из графита.Клеммы – это места, где аккумулятор прикрепляется к двигателю и посылает ток для вращения ротора.

Электродвигатели

Что внутри электродвигателя?

Катушка ротора

Катушка сделана из медной проволоки, потому что медь – отличный проводник. Он наматывается на арматуру. Катушка становится электромагнитом, когда через нее протекает ток.

Арматура

Якорь поддерживает катушку и может помочь сделать электромагнит сильнее.Это делает мотор более эффективным.

Постоянные магниты

Есть два постоянных магнита. Они создают постоянное магнитное поле, так что катушка будет вращаться, когда в ней протекает ток.

Некоторые двигатели имеют электромагниты вместо постоянных магнитов (Рисунок 9). Они сделаны из большего количества катушек медной проволоки.

Коммутатор

Каждый конец катушки подключен к одной из двух половин коммутатора. Коммутатор меняет местами контакты каждые пол-оборота.Ротор на Рисунке 8 имеет две катушки, поэтому для него необходимы четыре сегмента коммутатора.

Щетки

Щетки давят на коммутатор. Они поддерживают контакт с коммутатором, даже если он вращается. Ток течет в двигатель и выходит через щетки. В реальных двигателях щетки сделаны из угля.

S тележка

Каркас из магнитного материала связывает два постоянных магнита и, по сути, превращает их в один подковообразный магнит.

Рисунок 6: Детали модели двигателя постоянного тока. Двигатели постоянного тока с питанием от низковольтных батарей приводят в движение моторизованные игрушки. Их легко разобрать. Вы можете обнаружить, что они используют несколько катушек и имеют соответствующий многосегментный коммутатор.

Рисунок 7 – Простой двухполюсный двигатель постоянного тока (один N и один S).

Почему он поворачивается?

На странице, посвященной электромагнитам, показано, как катушка с проволокой становится магнитом, когда через нее протекает электрический ток.Катушка двигателя, намотанная на якорь, становится электромагнитом, но электромагнит находится внутри второго постоянного магнитного поля. Эти поля взаимодействуют как два стержневых магнита. Результатом является притяжение или отталкивание, в зависимости от текущего направления. Ток течет в одном направлении справа от катушки и в противоположном направлении слева.

Сила, действующая на провод, направлена ​​под прямым углом к ​​магнитному полю, а также под прямым углом к ​​току. Это называется моторным эффектом.Правило Флеминга использует ваши пальцы, расположенные под прямым углом друг к другу, чтобы предсказать силу, действующую на провод в магнитном поле. Для моторов вы используете левую руку.

См. Рис. 7. Когда ток включен, он течет в направлении зеленой стрелки и вызывает восходящую силу. Попытайтесь совместить схему левой рукой. Поскольку он течет обратно вниз с другой стороны в противоположном направлении, он вызывает силу, направленную вниз. Двигайте рукой, чтобы соответствовать этому направлению. Силы объединяются, чтобы вращать катушку.

Это может работать только на пол-оборота. Разъем с разрезным кольцом, называемый коммутатором, меняет местами соединения, чтобы можно было начать следующую половину оборота. Это происходит на каждые пол-оборота, поэтому двигатель вращается. Электрический ток через щетки подается в катушку.

Так работает электродвигатель постоянного тока. Электродвигатели переменного тока более сложны, но по-прежнему действует правило Флеминга.

Двигатели переменного тока

| Конструкция машины


Синхронные двигатели и синхронные двигатели – это две основные категории двигателей переменного тока.Асинхронный двигатель является распространенной формой асинхронного двигателя и в основном представляет собой трансформатор переменного тока с вращающейся вторичной обмоткой. Первичная обмотка (статор) подключена к источнику питания, а закороченная вторичная (ротор) несет наведенный вторичный ток. Крутящий момент создается действием токов ротора (вторичных) на поток воздушного зазора. Синхронный двигатель существенно отличается по конструкции и эксплуатационным характеристикам и считается отдельным классом двигателей.

Асинхронные двигатели: Асинхронные двигатели – это самый простой и надежный электродвигатель, состоящий из двух основных электрических узлов: статора с обмоткой и узла ротора.Асинхронный двигатель получил свое название от токов, протекающих во вторичном элементе (роторе), которые индуцируются переменными токами, протекающими в первичном элементе (статоре). Комбинированное электромагнитное воздействие токов статора и ротора создает силу, вызывающую вращение.

Роторы обычно состоят из многослойного цилиндрического железного сердечника с прорезями для размещения проводников. Самый распространенный тип ротора имеет литые алюминиевые жилы и замыкающие концевые кольца. Эта «беличья клетка» вращается, когда движущееся магнитное поле индуцирует ток в закороченных проводниках.Скорость вращения магнитного поля является синхронной скоростью двигателя и определяется количеством полюсов статора и частотой источника питания: n s = 120 f / p , где n s = синхронная скорость, f = частота и p = количество полюсов.

Синхронная скорость – это абсолютный верхний предел скорости двигателя. Если ротор вращается с той же скоростью, что и вращающееся магнитное поле, то проводники ротора не перерезают силовые линии и крутящий момент равен нулю.Во время работы ротор всегда вращается медленнее, чем магнитное поле. Скорость ротора достаточно мала, чтобы обеспечить протекание надлежащего количества тока ротора, так что результирующий крутящий момент будет достаточным для преодоления потерь на ветер и трение и управления нагрузкой. Разница скоростей между ротором и магнитным полем, называемая скольжением, обычно выражается в процентах от синхронной скорости: с = 100 ( n s n a ) / n s , где с = скольжение, n с = синхронная скорость и n a = фактическая скорость.

Многофазные двигатели: Многофазные двигатели с короткозамкнутым ротором – это в основном машины с постоянной скоростью, но некоторая степень гибкости в рабочих характеристиках является результатом изменения конструкции паза ротора. Эти изменения вызывают изменения крутящего момента, тока и скорости при полной нагрузке. Эволюция и стандартизация привели к появлению четырех основных типов двигателей.

Конструкции A и B: Двигатели общего назначения с нормальным пусковым моментом и током и малым скольжением.Многофазные двигатели с дробной мощностью обычно имеют конструкцию B. Из-за падающих характеристик конструкции B многофазный двигатель, который производит такой же пробойный (максимальный) крутящий момент, что и однофазный двигатель, не может достичь той же точки скорости-момента для скорости при полной нагрузке. как однофазный двигатель. Следовательно, момент пробоя должен быть выше (минимум 140% момента пробоя однофазного двигателя общего назначения), чтобы скорости при полной нагрузке были сопоставимы.

Конструкция C: Высокий пусковой момент при нормальном пусковом токе и малом скольжении.Эта конструкция обычно используется там, где отрывные нагрузки высоки при пуске, но обычно работают при номинальной полной нагрузке и не подвергаются высоким требованиям к перегрузке после достижения рабочей скорости.

Конструкция D: Высокое скольжение, очень высокий пусковой момент, низкий пусковой ток и низкая скорость при полной нагрузке. Из-за высокого проскальзывания скорость может упасть при столкновении с колеблющимися нагрузками. Эта конструкция подразделяется на несколько групп, которые различаются в зависимости от скольжения или формы кривой скорость-крутящий момент.

Конструкция F: Низкий пусковой момент, низкий пусковой ток и малое скольжение. Эта конструкция предназначена для получения низкого тока заторможенного ротора. Как заторможенный ротор, так и момент пробоя низкие. Обычно используется при низком пусковом моменте и при отсутствии высоких перегрузок после достижения рабочей скорости.

Двигатели с фазным ротором: Двигатели с короткозамкнутым ротором относительно негибки в отношении характеристик скорости и крутящего момента, но специальная версия с фазным ротором имеет регулируемые скорость и крутящий момент.Применение двигателей с фазным ротором заметно отличается от двигателей с короткозамкнутым ротором из-за доступности цепи ротора. Рабочие характеристики получены путем введения различных значений сопротивления в цепь ротора.

Двигатели с фазным ротором обычно запускаются с вторичным сопротивлением в цепи ротора. Сопротивление последовательно уменьшается, чтобы двигатель разгонялся. Таким образом, двигатель может развивать значительный крутящий момент при ограничении тока заторможенного ротора.Это вторичное сопротивление может быть рассчитано на непрерывную работу для рассеивания тепла, выделяемого при непрерывной работе на пониженной скорости, частом ускорении или ускорении с большой инерционной нагрузкой. Внешнее сопротивление придает двигателю такую ​​характеристику, которая приводит к значительному падению оборотов при довольно небольшом изменении нагрузки. Обеспечивается пониженная скорость примерно до 50% от номинальной скорости, но эффективность низкая.

Многоскоростные двигатели: Двигатели с последовательными полюсами рассчитаны на одну скорость.Путем физического повторного соединения проводов можно получить передаточное число 2: 1. Типичные синхронные скорости для двигателя 60 Гц: 3600/1800 об / мин (2/4 полюса), 1800/900 об / мин (4/8 полюса) и 1200/600 об / мин (6/12 полюсов).

Двухобмоточные двигатели имеют две отдельные обмотки, которые можно намотать на любое количество полюсов, чтобы можно было получить другие соотношения скоростей. Однако соотношение больше 4: 1 нецелесообразно из-за размера и веса двигателя. Однофазные многоскоростные двигатели обычно имеют конструкцию с регулируемым крутящим моментом, но доступны двигатели с постоянным крутящим моментом и постоянной мощностью.

Выходная мощность многоскоростных двигателей может быть пропорциональна каждой скорости. Эти двигатели разработаны с выходной мощностью в лошадиных силах в соответствии с одной из следующих нагрузочных характеристик.

Переменный крутящий момент: Двигатели имеют характеристику крутящего момента скорости, которая изменяется пропорционально квадрату скорости. Например, двигатель со скоростью 1800/900 об / мин, который развивает 10 л.с. при 1800 об / мин, выдает 2,5 л.с. при 900 об / мин. Поскольку для некоторых нагрузок, таких как центробежные насосы, вентиляторы и воздуходувки, требуется крутящий момент, который изменяется пропорционально квадрату или кубу скорости, эта характеристика двигателя обычно является адекватной.

Постоянный крутящий момент: Эти двигатели могут развивать одинаковый крутящий момент на каждой скорости, поэтому выходная мощность напрямую зависит от скорости. Например, двигатель мощностью 10 л.с. при 1800 об / мин выдает 5 л.с. при 900 об / мин. Эти двигатели используются в приложениях с требованиями к постоянному крутящему моменту, таких как смесители, конвейеры и компрессоры.

Постоянная мощность: Эти двигатели развивают одинаковую мощность на каждой скорости, а крутящий момент обратно пропорционален скорости.Типичные области применения включают станки, такие как дрели, токарные и фрезерные станки.

Однофазные двигатели: Однофазные асинхронные двигатели обычно имеют дробную мощность, хотя однофазные интегральные двигатели доступны в более низком диапазоне мощности. Наиболее распространенными однофазными двигателями с дробной мощностью являются электродвигатели с разделенной фазой, с конденсаторным пуском, с постоянным разделенным конденсатором и с экранированным полюсом.

Электродвигатели бывают многоскоростные, но существует практический предел количества получаемых скоростей.Доступны двух-, трех- и четырехскоростные двигатели, и выбор скорости может осуществляться последовательно-полюсными или двухобмоточными методами.

Однофазные двигатели вращаются в том направлении, в котором они были запущены; и они запускаются в заданном направлении в соответствии с электрическими соединениями или механической настройкой пусковых средств. Двигатели общего назначения могут работать в любом направлении, но стандартное вращение – против часовой стрелки, если смотреть на конец, противоположный приводному валу.Двигатели можно повторно подключить, чтобы изменить направление вращения.

Универсальные двигатели: Универсальные двигатели работают с почти эквивалентной производительностью на постоянном или переменном токе с частотой до 60 Гц. Он отличается от двигателя постоянного тока из-за передаточных чисел намотки и более тонких металлических пластин. Двигатель серии постоянного тока работает от переменного тока, но с низким КПД. Универсальный двигатель может работать на постоянном токе с практически эквивалентными характеристиками переменного тока, но с меньшей коммутацией и меньшим сроком службы щеток, чем у эквивалентного двигателя постоянного тока.

Важной характеристикой универсального двигателя является то, что он имеет самое высокое соотношение мощности на фунт среди всех двигателей переменного тока, поскольку он может работать на скоростях, во много раз превышающих скорость любого другого двигателя 60 Гц.

При работе без нагрузки универсальный двигатель имеет тенденцию к разбегу, а скорость ограничивается только парусностью, трением и коммутацией. Поэтому большие универсальные двигатели почти всегда подключаются напрямую к нагрузке для ограничения скорости. На портативных инструментах, таких как электрические пилы, нагрузка на шестерни, подшипники и охлаждающий вентилятор достаточна для поддержания скорости холостого хода на безопасном уровне.

С универсальным двигателем регулирование скорости является простым, поскольку скорость двигателя чувствительна как к изменениям напряжения, так и к изменениям магнитного потока. С помощью реостата или регулируемого автотрансформатора скорость двигателя можно легко изменять от максимальной до нуля.

Синхронные двигатели: Синхронные двигатели по своей сути являются двигателями с постоянной скоростью и работают в абсолютном синхронизме с частотой сети. Как и в случае асинхронных двигателей с короткозамкнутым ротором, скорость определяется количеством пар полюсов и всегда является отношением к частоте сети.

Типоразмеры синхронных двигателей варьируются от субфракционных двигателей с самовозбуждением до двигателей большой мощности с возбуждением от постоянного тока для промышленных приводов. В диапазоне дробных лошадиных сил синхронные двигатели используются в основном там, где требуется точная постоянная скорость.

Синхронные двигатели большой мощности, применяемые в промышленных нагрузках, выполняют две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в механическую.Во-вторых, он может работать с опережающим или единичным коэффициентом мощности, тем самым обеспечивая коррекцию коэффициента мощности.

Существует два основных типа синхронных двигателей: без возбуждения и с возбуждением от постоянного тока.

Двигатели без возбуждения изготавливаются в реактивном и гистерезисном исполнении. Эти двигатели используют схему самозапуска и не требуют внешнего источника возбуждения.

Двигатели с возбуждением от постоянного тока имеют мощность более 1 л.с. и требуют постоянного тока, подаваемого через контактные кольца для возбуждения.Постоянный ток может подаваться от отдельного источника или от генератора постоянного тока, непосредственно подключенного к валу двигателя.

Однофазные или многофазные синхронные двигатели не могут запускаться без привода или без подключения ротора по схеме самозапуска. Поскольку поле вращается с синхронной скоростью, двигатель должен быть ускорен, прежде чем он сможет синхронизироваться. Ускорение с нулевой скорости требует проскальзывания до достижения синхронизма. Следовательно, необходимо использовать отдельные средства запуска.

В конструкциях с автоматическим запуском для размеров мощности используются методы пуска, общие для асинхронных двигателей (расщепленная фаза, конденсаторный пуск, отталкивающий пуск и затененные полюса). Электрические характеристики этих двигателей заставляют их автоматически переключаться на синхронный режим.

Хотя двигатель с возбуждением от постоянного тока имеет короткозамкнутый ротор для запуска, называемый амортизатором или демпферной обмоткой, присущий ему низкий пусковой момент и потребность в источнике питания постоянного тока требует системы запуска, которая обеспечивает полную защиту двигателя при запуске, применяется постоянный ток. возбуждение поля в нужное время, устраняет возбуждение поля при оттягивании ротора (максимальный крутящий момент) и защищает обмотку с короткозамкнутым ротором от теплового повреждения в условиях сбоя.

Момент тяги – это минимальный крутящий момент, развиваемый от состояния покоя до точки втягивания. Этот крутящий момент должен превышать крутящий момент нагрузки с достаточным запасом, чтобы удовлетворительная скорость ускорения поддерживалась при нормальных условиях напряжения.

Момент сопротивления возникает из-за выступа (предпочтительного направления намагничивания) полюсных наконечников ротора и пульсирует на скоростях ниже синхронной. Это также влияет на крутящие моменты втягивания и извлечения двигателя, поскольку невозбужденный ротор с явным полюсом стремится выровняться с магнитным полем статора для поддержания минимального магнитного сопротивления.Этого реактивного крутящего момента может быть достаточно, чтобы синхронизировать слегка нагруженную малоинерционную систему и развить примерно 30% крутящего момента отрыва.

Синхронный крутящий момент – это крутящий момент, развиваемый после приложения возбуждения, и представляет собой общий установившийся крутящий момент, доступный для привода нагрузки. Он достигает максимума при отставании ротора от магнитного поля вращающегося статора примерно на 70 °. Это максимальное значение фактически является крутящим моментом отрыва.

Момент отрыва – это максимальный устойчивый крутящий момент, который двигатель развивает при синхронной скорости в течение одной минуты с номинальной частотой и нормальным возбуждением.Нормальный момент отрыва обычно составляет 150% от момента полной нагрузки для двигателей с единичным коэффициентом мощности и от 175 до 200% для двигателей с опережающим коэффициентом мощности 0,8.

Втягивающий момент синхронного двигателя – это крутящий момент, который он развивает, когда подключенная инерционная нагрузка синхронизируется при приложении возбуждения. Вращающий момент создается при переходе от скорости скольжения к синхронной скорости, когда двигатель переключается с асинхронного режима на синхронный. Обычно это самый критический период при запуске синхронного двигателя.Крутящие моменты, развиваемые амортизатором и обмотками возбуждения, становятся нулевыми при синхронной скорости. Таким образом, в точке втягивания эффективны только реактивный момент и синхронизирующий момент, обеспечиваемый возбуждением обмоток возбуждения.

Двигатели с синхронизацией: Двигатели с синхронизацией рассчитаны на менее 1/10 л.с. и используются в качестве первичных двигателей для устройств синхронизации. Поскольку двигатель используется в качестве таймера, он должен работать с постоянной скоростью.

Двигатели переменного и постоянного тока могут использоваться в качестве синхронизирующих двигателей.Двигатели с синхронизацией постоянного тока используются для портативных приложений или там, где требуются высокое ускорение и низкие изменения скорости. Преимущества включают в себя пусковой момент, превышающий десятикратный рабочий крутящий момент, эффективность от 50 до 70% и относительно простое управление скоростью. Но требуется регулятор скорости, механический или электронный.

Двигатели переменного тока используют доступную мощность, дешевле, имеют более длительный срок службы и не создают радиопомех. Однако двигатели переменного тока не могут быть легко адаптированы для портативных приложений, имеют относительно низкие пусковые моменты и намного менее эффективны, чем двигатели постоянного тока.

Серводвигатели переменного тока: Серводвигатели переменного тока используются в сервомеханизмах переменного тока и компьютерах, которые требуют быстрых и точных характеристик отклика. Для достижения этих характеристик серводвигатели имеют роторы малого диаметра с высоким сопротивлением. Малый диаметр обеспечивает низкую инерцию для быстрого пуска, останова и реверсирования, в то время как высокое сопротивление обеспечивает почти линейное соотношение скорости и момента для точного управления.

Серводвигатели имеют двухфазную намотку, физически расположенную под прямым углом или в пространственной квадратуре.Фиксированная или опорная обмотка возбуждается от источника постоянного напряжения, а управляющая обмотка возбуждается регулируемым или переменным управляющим напряжением, обычно от сервоусилителя. Обмотки обычно проектируются с одинаковым соотношением напряжения и витков, так что потребляемая мощность при максимальном возбуждении с фиксированной фазой и при максимальном сигнале фазы управления находятся в равновесии.

В идеальном серводвигателе крутящий момент при любой скорости прямо пропорционален напряжению обмотки управления. Однако на практике эта взаимосвязь существует только при нулевой скорости из-за присущей асинхронному двигателю неспособности реагировать на изменения входного напряжения в условиях небольшой нагрузки.

Собственное демпфирование серводвигателей уменьшается с увеличением номинальных значений, и двигатели имеют разумный КПД за счет линейности скорости-момента. Большинство более крупных двигателей имеют встроенные вспомогательные вентиляторы для поддержания температуры в безопасных рабочих диапазонах. Серводвигатели доступны с номинальной мощностью от менее 1 до 750 Вт и размерами от 0,5 до 7 дюймов. OD. Большинство конструкций доступны с модульными или встроенными редукторами.

Двигатели постоянного тока – принципы работы


В любом электродвигателе принцип действия основан на простом электромагнетизм.Токопроводящий проводник создает магнитное поле; когда это затем помещенный во внешнее магнитное поле, он будет испытать силу, пропорциональную току в проводнике и прочности внешнее магнитное поле. Как вам хорошо известно от игры с магнитами в детстве, напротив (Север и юг) полярности притягиваются, в то время как полярности (север и север, юг и юг) отталкивать.Внутренняя конфигурация DC двигатель предназначен для использования магнитного взаимодействие между токонесущими проводник и внешнее магнитное поле к генерировать вращательное движение.

Начнем с простого 2-полюсного ОКРУГ КОЛУМБИЯ электродвигатель (красный цвет обозначает магнит или обмотка с «северной» поляризацией, зеленая представляет собой магнит или обмотку с «югом» поляризация).

Каждый DC Двигатель состоит из шести основных частей – оси, ротора (он же, якорь), статор, коммутатор, полевой магнит (ы) и кисти. В наиболее распространенных двигателях постоянного тока (и все такое Лучи увидим), внешнее магнитное поле создается на высокопрочных постоянных магнитах 1 .В статор – это неподвижная часть двигателя – это включает корпус двигателя, а также два и более полюсные наконечники с постоянными магнитами. Ротор (вместе с осью и присоединенным коммутатором) вращаются с относительно статора. Ротор состоит из обмоток (обычно на сердечнике), причем обмотки электрически подключен к коммутатору.Над На схеме показана общая компоновка двигателя – с ротор внутри статорных (полевых) магнитов.

Геометрия щеток коллектора контакты, а обмотки ротора таковы, что при подаче питания полярность обмотка под напряжением и статор магнит (ы) смещены, а ротор будет вращаться, пока не будет почти выровнен с полевыми магнитами статора.Как ротор достигает выравнивания, щетки двигаются к следующим контактам коммутатора, и запитать следующую обмотку. Учитывая наши пример двухполюсного двигателя, вращение меняет направление тока через обмотку ротора, приводя к «переворот» магнитного поля ротора, ведя его, чтобы продолжить вращение.

Но в реальной жизни DC двигателей всегда будет больше двух полюса (три – очень распространенное число). В в частности, это позволяет избежать “мертвых зон” в коммутатор. Вы можете себе представить, как с в нашем примере двухполюсный двигатель, если ротор находится точно в середине своего вращения (идеально совмещен с полем магниты), он там «застрянет».Между тем, с двухполюсным двигателем есть момент, когда коммутатор закорачивает источник питания (т.е. обе щетки соприкасаются оба контакта коммутатора одновременно). Это плохо скажется на блоке питания, тратить энергию и повредить компоненты двигателя также. Еще один недостаток такого простой двигатель в том, что он будет показывать высокий крутящий момент “рябь” (величина крутящего момента он может производить циклично с положение ротора).

Итак, поскольку самый маленький DC двигатели трехполюсные, давайте поработаем с работой одного через интерактивный анимация (требуется JavaScript):

Вы заметите несколько вещей из этого, а именно: один полюс полностью запитан за раз (но два другие «частично» находятся под напряжением).Как каждая кисть переходы от одного контакта коммутатора к затем поле одной катушки быстро схлопнется, так как поле следующей катушки будет быстро заряжаться (это происходит в течение нескольких микросекунд). Мы увидим больше о последствиях этого позже, но в Между тем вы видите, что это прямой результат последовательной разводки обмоток катушки:

Наверное, нет лучшего способа увидеть как средний DC двигатель собран, чем просто открытие одного.К сожалению, это утомительная работа, а также требующая разрушение совершенно хорошего мотора.

К счастью для вас, я пошел вперед и сделал это вместо вас. Кишки мотор Mabuchi FF-030-PN в разобранном виде ( одно и тоже модель, которую Solarbotics продает) доступны для просмотра здесь (на миллиметровой бумаге 10 линий / см).Это основной 3-полюсный DC мотор, с 2-мя щетками и 3-мя коллекторами контакты.

Использование якоря с железным сердечником (как в Мабучи, см. Выше) довольно часто встречается и имеет номер преимуществ 2 . Во-первых, железный сердечник обеспечивает прочную жесткую опору обмоток – особенно важное соображение для тяговитый моторы.Ядро также отводит тепло от обмотки ротора, позволяющие приводить в действие двигатель сложнее, чем могло бы быть в противном случае. Железное ядро строительство также относительно недорогое по сравнению с другими типами строительства.

Но конструкция с железным сердечником также имеет несколько недостатки. Железная арматура имеет относительно высокая инерция, ограничивающая ускорение двигателя.Этот конструкция также приводит к высокой индуктивности обмоток которые ограничивают срок службы щеток и коммутатора.

В небольших двигателях часто используется альтернативная конструкция. с обмоткой якоря без сердечника. Эта конструкция зависит от самого провода катушки для целостность конструкции. В результате якорь полый, и постоянный магнит может быть установлен внутри обмотки ротора.Без сердечника DC двигатели имеют гораздо меньшую индуктивность якоря чем двигатели с железным сердечником сопоставимого размера, увеличивая щеточная и коммутаторная жизнь.


Диаграмма любезно предоставлена MicroMo

Конструкция без сердечника также позволяет производителям строить двигатели меньшего размера; Между тем, из-за отсутствия железо в роторах, двигатели без сердечника в некоторой степени склонны к перегреву.В результате этот дизайн обычно используется только в небольших двигателях малой мощности. Лучи чаще всего будет видеть DC без ядра моторы в виде моторов пейджера.

Опять разборка бесстержневого двигателя может быть поучительным – в данном случае мой несчастной жертвой оказался дешевый пейджер-вибратор мотор.Внутренности этого мотора в разобранном виде доступны для просмотра здесь (на миллиметровой бумаге 10 линий / см). Это (точнее, было ) 3-полюсный двигатель постоянного тока без сердечника.

Я выпотрошу их, чтобы у тебя не было до …

Чтобы получить лучшее от DC моторы в BEAMbots, нам нужно поближе взглянуть на DC двигательное поведение – как очевидное, так и нет.



Примечания:

1. Другое (как правило, очень большой или довольно старый) DC двигатели используют обмотки для производства внешнее поле. Используя постоянные магниты, современный DC двигатели более эффективны, имеют уменьшение внутреннего нагрева и меньшее использование мощность.

2. Следующие 3 абзаца довольно свободно заимствовать материал по ряду страниц MicroMo Веб-сайт. Это отличный сайт, и дает более подробные сведения о нюансах и выходы из конструкции двигателя без сердечника и представление. Особое внимание следует уделить на свои страницы на Motor Строительство и на разработка электродвижущей силы .

Электродвигатели Исследования и разработки

Управление автомобильных технологий (VTO) поддерживает исследования и разработки (НИОКР) по совершенствованию двигателей в гибридных и подключаемых к электросети электромобилях, уделяя особое внимание сокращению использования редкоземельных материалов, используемых в настоящее время для двигателей на основе постоянных магнитов.

В системе электропривода электродвигатель преобразует накопленную в батарее электрическую энергию в механическую энергию.Электродвигатели состоят из ротора (подвижная часть двигателя) и статора (неподвижная часть двигателя). Двигатель с постоянными магнитами включает в себя ротор, содержащий ряд магнитов и токопроводящий статор (обычно имеющий форму железного кольца), разделенных воздушным зазором. Существует три типа электродвигателей, которые могут использоваться в гибридных или подключаемых системах тягового привода электромобилей.

  • Двигатели с внутренним постоянным магнитом (IPM) имеют высокую удельную мощность и поддерживают высокий КПД в большом проценте рабочего диапазона.Почти все гибридные и подключаемые к электросети электромобили используют в тяговых двигателях редкоземельные постоянные магниты. Из-за высокой стоимости изготовления магнитов и ротора эти двигатели относительно дороги. Другие проблемы при использовании двигателей IPM включают ограниченную доступность и высокую стоимость редкоземельных магнитных материалов. Несмотря на проблемы, автомобильная промышленность ожидает продолжения использования двигателей IPM в большинстве электромобилей в течение следующего десятилетия.
  • Асинхронные двигатели имеют высокий пусковой момент и высокую надежность.Однако их удельная мощность и общий КПД ниже, чем у двигателей IPM. Сегодня они широко доступны и распространены в различных отраслях промышленности, в том числе в некоторых серийных автомобилях. Поскольку эта технология двигателей является зрелой, маловероятно, что исследования могут привести к дополнительным улучшениям в эффективности, стоимости, весе и объеме для конкурентоспособных электромобилей будущего.
  • Реактивные реактивные двигатели предлагают более дешевый вариант, который может быть прост в изготовлении. Они также имеют прочную конструкцию, которая может выдерживать высокие температуры и скорости.Однако они производят больше шума и вибрации, чем двигатели сопоставимых конструкций, что является серьезной проблемой для использования в транспортных средствах. Кроме того, вентильные реактивные электродвигатели менее эффективны, чем электродвигатели других типов, и требуют дополнительных датчиков и сложных контроллеров электродвигателей, что увеличивает общую стоимость системы электропривода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *