Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Как проверить конденсатор мультиметром: инструкции, фото, видео

Конденсатор — часть разных микросхем. Если с ними возникли проблемы, нужно проверить именно этот элемент. В таком важном деле помогает с виду незатейливый, но очень полезный прибор — мультиметр. Чтобы вы смогли ощутить всю прелесть этого скромного измерителя, мы расскажем вам, как проверить конденсатор мультиметром.

Contents

  • 1 Обязательно к прочтению!
  • 2 Как проверить конденсатор мультиметром на работоспособность
    • 2.1 Как измерить емкость конденсатора мультиметром: режим сопротивления
    • 2.2 Измерение емкости мультиметром у конденсатора: используем специальную функцию
    • 2.3 Проверка обрыва через прозвонку
  • 3 Как проверить пусковой конденсатор мультиметром
  • 4 Как проверить керамический конденсатор мультиметром
    • 4.1 Вопрос — ответ

Обязательно к прочтению!

Перед началом измерительных процессов учтите несложные, но очень важные правила проверки конденсатора мультиметром на работоспособность:

  1. Проверять разрешается только разряженные конденсаторы. Они копят электрозаряд, поэтому необходимо их разряжать. Для этого можно использовать отвертку: дотроньтесь до выводов для образования искры. После этого можно заниматься прозвонкой. Кстати, некоторые используют для проверки конденсатора кабели и лампы, но применение мультиметра отличается точностью и надежностью.
  2. Если ёмкость конденсатора больше 20 мкФ, даже и думать не стоит о простом коротком замыкании. Включите сопротивление на 5-20 КОм, которое подразумевает один-два Вт, между контактами. Если не учесть этого, в ходе разрядки будет мощная искра, а это уже риск для здоровья. Помните, что взаимодействовать с высокоёмкими элементами нужно в защитных очках!
  3. До того, как начать мерить, изучите внешнее состояние конденсатора. Когда нарушена изоляция, имеются трещины и прочие дефекты, лучше сразу менять его на рабочую деталь. Если видимых проблем нет, стоит использовать тестер.
  4. Важно понять тип конденсатора. Когда он с полярностями, важно их соблюдать, если вы не планируете распрощаться с устройством. Если неполярный, то можно не определять “-” и “+” выходы.
  5. Для проверки ёмкости конденсатора придется его выпаять. Если вы думаете, как прозвонить конденсатор мультиметром на плате, придется вас разочаровать: никак. Если вы попытаетесь проводить измерения прямо на плате, процесс будет подвергаться влиянию других составных цепи, то есть показания будут неточным. Впрочем, продаются определенные измерители, у которых на щупах напряжение снижено, что позволяет осуществлять проверку даже на плате.

Есть ещё момент в отношении того, на плате как проверить конденсатор мультиметром, не выпаивая. Без выпаивания допускается проверить возможность функционирования элемента, если нет зашунтирования низкоомной цепью. Неисправность можно проверять, например, с помощью функции постоянного напряжения. То есть, если не выпаять элемент, можно даже на плате узнавать, рабочий конденсатор или нет.

Видео о проверке конденсатора мультиметром, не выпаивая:

Как проверить конденсатор мультиметром на работоспособность

Мы уже упоминали о полярности. Что нужно для определения полярного устройства? На корпусе будет контрастная полоса (на светлом фоне темная полоса и наоборот). Она является отметкой для вывода со знаком “-”.

Перед тем как измерить конденсатор мультиметром, посмотрите на наличие полоски. Если её нет, расположение щупов не важно.

Видео, как проверить мультиметром конденсатор электролитический, то есть полярный:

Как измерить емкость конденсатора мультиметром: режим сопротивления

Вот как должен измеряться конденсатор:

  1. Выбрать на мультиметре функцию сопротивления (омметра). Благодаря такому режиму можно определить наличие замыкания или обрыва.
  2. Выставить границу значений. Если элемент неполярный, ставим 2МОм. Иначе нам понадобится значение в 200 Ом.
  3. Не забываем, что механизм должен быть отпаянным от платы.
  4. Щупами соединиться с конденсаторными выводами в зависимости от полярности. Если полярности нет, на расположение можно не обращать внимания.
  5. Орлиным глазом смотрим на дисплей включенного мультиметра. Там появятся цифры, постепенно увеличивающиеся до 1. Объясняется это просто: измеритель заряжает деталь.

Если появилась цифра 1, можно смело делать вывод о том, что с функционированием механизма всё в порядке. Если при соединении контактов сразу появилось это значение, радовать не чему: в детали есть обрыв и она не пригодна к дальнейшему использованию. Да и цифра 0 не особо оптимистична, ведь указывает на короткое замыкание.

Если конденсатор без полярностей, работоспособная цифра — 2. Всё, что ниже, указывает на отсутствие функционирования конденсатора. Теперь вы знаете, как проверить емкость мультиметром у конденсатора. Но эта инструкция предназначена для цифровых измерителей. Кстати, советуем к прочтению материал о том, как пользоваться тестером.

Для аналоговых моделей процесс измерений ещё более простой. Главное — смотреть на движение стрелки.  Если она перемещается спокойно, всё в порядке. Если видите очень маленькое или большое значение, значит, конденсатор сломан.

Измерение конденсаторов мультиметром с функцией омметра осуществляется для элементов, ёмкость которых больше 0.25 мкФ. Если значение меньше, нужно использовать специальные измерители с высоким разрешением.

Измерение емкости мультиметром у конденсатора: используем специальную функцию

Сейчас поговорим о мультиметрах, у которых есть режим измерения ёмкости. Принцип действия практически такой же. Для начала выбираем нужную функцию мультиметра, затем:

  1. Выбираем значение измерений. Для этого смотрим, что написано на конденсаторе и выбираем ближайшее сверху значение. К примеру, мы видим, что на элементе стоит ёмкость в 1 мкФ. Тогда выставляем 2.
  2. Соединяем провода мультиметра с контактными выводами нашего конденсатора.
  3. Фиксируем на бумаге или просто у себя в голове показатели с дисплея.

Не замыкайте щупы на выводах собственноручно! Проводимость нашего организма по сравнению с конденсатором лучше, в результате чего ток тестера будет проходить по цепи из одной руки в другую. Поэтому на дисплее вы увидите цифры, которые относятся к вам, а не к конденсатору.

Есть тестеры с отверстиями для конденсаторов. Это удобно, так нужно только выбрать функцию и значения измерений, а затем вставить элемент в гнездо, после чего дисплей покажет значение проверки.

Теперь вы знаете самое необходимое о проверке емкости мультиметром.

Проверка обрыва через прозвонку

Здесь мы снова имеем дело с ёмкостью. А всё потому, что принцип анализа на обрыв основан на том, чтобы поймать хотя бы какие-то признаки того, что у конденсатора есть ёмкость. Один из способов это осуществить — сигнал на функции прозвонки.

Очень простая пошаговая инструкция, как проверить конденсатор мультиметром:

  1. Выбрать на измерителе функцию прозвонки.
  2. Дотронуться щупами до выводов конденсатора.
  3. Внимательно слушать.

Мультиметр должен выдать короткий писк. Он может звучать как щелчок, поэтому держите ухо востро.

Есть секрет, как сделать продолжительность сигнала больше. Для этого заранее зарядите конденсаторы напряжением со знаком “-”: приложите щупы в обратном порядке. За счет этого при следующей прозвонке измеритель сначала перезарядит элемент от “-” напряжение до 0, а потом от 0 до момента выключения писка. Так как этот процесс протекает дольше, писк тоже станет более продолжительным, и вам будет легче услышать его.

Посмотрите, как замерить конденсатор мультиметром:

Как проверить пусковой конденсатор мультиметром

Пусковой конденсатор нужен для стабильного функционирования электродвигателя. Проверить его работу мультиметром просто:

  1. Обесточить кондиционер.
  2. Разрядить конденсатор.
  3. Снять клемму.
  4. Выбрать на мультиметре функцию измерения ёмкости.
  5. Выбрать предел значений. Для этого, как обычно, смотрим на значения корпуса и выставляем на приборе параметр больше.
  6. Прислонить щупы к выводам.
  7. Устремляем взор на цифры, которые появились на экране.

Если значение отличается от того, что на корпусе, скорее всего, механизм нуждается в замене.

Как проверить керамический конденсатор мультиметром

Элементы из керамики обычно без полярностей. Как мы уже упоминали, их проверка практически такая же, отличается лишь норма полученных значений:

  1. На мультиметре выбираем функцию измерения сопротивления.
  2. Ставим максимальный предел замеров.
  3. Дотрагиваемся проводами мультиметра до контактов, но не прикасаемся к ним сами!

Если на дисплее вы увидели цифру от 2 Мом — всё в порядке. Если же значение меньше, конденсатор не пригоден для дальнейшего использования.

Теперь вы знаете самое главное о том, как проверить исправность конденсатора мультиметром и сможете сделать это самостоятельно.

Желаем вам безопасных и точных проверок!

Вопрос — ответ

Вопрос: Как можно проверить конденсатор обычным мультиметром на работоспособность?

Имя: Даниил

Ответ: Сначала нужно разрядить конденсатор, а также определить его тип: если полярный, нужно соблюдать полярность. Если неполярный, то определять “-” и “+” выходы не обязательно. Также нужно выпаять конденсатор.

 

Вопрос: Как прозвонить конденсатор с помощью мультиметра?

Имя: Даниил

Ответ: Нужно выбрать режим прозвонки, дотронуться щупами до выводов конденсатора и внимательно слушать. Мультиметр издаст короткий писк.

 

Вопрос: Как проверить конденсатор простым мультиметром, не выпаивая?

Имя: Дмитрий

Ответ: Если оставить компонент на плате, результаты будут неточным. Без выпаивания можно только проверить, работает конденсатор или нет, если не зашунтирован низкоомной цепью. Для этого нужен режим проверки постоянного напряжения или сопротивлений.

 

Вопрос: Как правильно проверить электролитический конденсатор мультиметром?

Имя: Рамиль

Ответ: Электролитический или полярный конденсатор проверяется в режиме омметра или на функции измерения ёмкости. В первом случае выбираем режим омметра, устанавливаем пределы измерений (200 Ом), щупами касаемся выводов конденсатора в зависимости от полярности.

 

Вопрос: Как лучше всего проверить пусковой конденсатор мультиметром?

Имя: Ильгиз

Ответ: Для этого нужно обесточить кондиционер, разрядить конденсатор и снять клемму. На мультиметре выбирается режим измерения ёмкости. Также выбирается предел значений в зависимости от того, что указано на корпусе. Клемма снимается, щупы присоединяются к конденсаторным выводам.

 

Как определить емкость конденсатора: 4 рабочих способа

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей.

(Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим “Сх” в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Рис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f частота тока, а Xc ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = U/ UC* ( 1 / 2*π*f*R ).

Рис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r/ Cx = r/ C0.

Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора.   Для этого используют формулу:

C = α * Cq / U , где α –  угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10-3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10-3 мФ = 10-6 Ф;
  • нанофарады (nF, нФ) = 10-3 мкФ =10-9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10-3 нФ = 10-12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Рис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад).
    Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 100 =1; 101 = 10; 102 = 100 и т. д. до 106.

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10-3; 8 = 10-2; 9 = 10-1.

Пример:

  • 256 обозначает: 25× 105 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10-3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 103 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Видео в помощь

Измерения емкости – испытания и измерения

Испытания и измерения

Измерения емкости обычно выполняются мостовым или мостовым способом. измеритель емкости реактивного типа. Помимо емкости, тестируемый конденсатор всегда имеет некоторые потери. Конденсаторы несут потери в результате таких факторов, как сопротивление в проводниках (пластинах) или выводах, утечки тока и диэлектрических поглощения, все из которых влияют на коэффициент мощности конденсатора. Теоретически коэффициент мощности идеального конденсатора должен быть равен нулю; Однако, перечисленные выше потери вызывают коэффициенты мощности практических конденсаторов в диапазоне от почти 0 до возможных 100%. Потери могут иметь характеристики либо шунта, либо последовательного сопротивления, либо это может быть сочетание того и другого. Эти сопротивления следует учитывать при измерении емкость.

Конденсаторы могут сохранять заряд долгое время после отключения напряжения. Электрический заряд, удерживаемый конденсаторами в обесточенных электронных цепей во многих случаях достаточно, чтобы вызвать смертельный шок. Будьте уверены, что вы и те, кто работает с вами, учитывают эту опасность, прежде чем выполнять какие-либо действия. техническое обслуживание любой электрической или электронной цепи и перед выполнением подключения к, казалось бы, мертвой цепи. Будьте предельно осторожны перед работой в обесточенных цепях, в которых используются большие конденсаторы.

Измерения мостового типа

Вы можете измерять емкость, индуктивность и сопротивление с высокой точностью с помощью мостов переменного тока. Эти мосты состоят из конденсаторов, катушек индуктивности, и резисторы в самых разных комбинациях. Мосты переменного тока работают по принципу моста Уитстона; то есть неизвестное сопротивление уравновешивается известными сопротивлениями и после моста уравновешено, неизвестное сопротивление рассчитывается через известное сопротивление.

Независимо от их истинной природы потери конденсатора можно представить как простое последовательное сопротивление. Следовательно, емкость можно измерить с точки зрения двухэлементной эквивалентной схемы, состоящей из последовательно включенного конденсатора с резистором, который показан на рисунке ниже как Р х .

Емкостный мост.

На рисунке выше представлена ​​схема емкостного моста. Как видите, а емкостной мост по конструкции очень похож на мост сопротивления за исключением штатного конденсатора ( С 3 ) и неизвестный конденсатор ( C x ).

Общее условие баланса моста переменного тока (см. здесь)

Мы можем написать импедансы для нашего случая

После подстановки этих импедансов в общее состояние ( Z 1 Z 4 = Z 2 Z 3 )

Равенство двух комплексных чисел требует, чтобы действительные части были равны на две стороны уравнения, а также члены j . Следовательно

Таким образом, как неизвестное сопротивление, так и емкость, R x и C x , можно оценить по известному сопротивлению R 1 , R 2 , R 3 , и известные емкость С 3 . Условия баланса требуют, чтобы две величины были переменными в этом мост как, например, R 1 (или R 2 ) и Р 3 .

Реактивные измерения

В оборудовании для измерения емкости реактивного типа используется следующему принципу: если переменное напряжение фиксированной частоты приложено к конденсатор и резистор, соединенные последовательно, падение напряжения на реактивное сопротивление конденсатора за счет результирующего протекания тока обратно пропорционально пропорциональна емкости. Падение напряжения используется для срабатывания счетчика. который откалиброван в значениях емкости. Точность реактивного типа меньше для конденсаторов с высоким коэффициентом мощности. В конденсаторы с высоким коэффициентом мощности, возникающие потери эффективно помещают определенное сопротивление последовательно с емкостным реактивным сопротивлением. Влияние этого сопротивления при измерении конденсатора должно вызывать большее падение напряжения на конденсаторе. Это падение не из-за реактивное сопротивление выше, но является результатом импеданса, который из курс состоит как из реактивного сопротивления, так и из сопротивления. Следовательно емкость, указанная анализатором, будет ниже фактического значения. Более продвинутые приборы также измеряют фазовый угол между напряжением и тока, что позволяет рассчитать и отобразить эквивалентную емкость и сопротивление конденсатора.

конденсатор – Как цифровые мультиметры измеряют емкость?

спросил

Изменено 3 года, 5 месяцев назад

Просмотрено 8к раз

\$\начало группы\$

Как цифровые мультиметры (DMM) измеряют емкость через их типичное входное/выходное сопротивление 10 МОм?

При логическом уровне 3,3 В попытка измерения 1F будет означать постоянную времени 10 млн секунд (R x C), поэтому повышение напряжения на конденсаторе будет неизмеримым (в минимальном уровне шума). Они также делают это в течение секунда или около того с точностью 3%. Как это достигается?

  • конденсатор
  • измерительный
  • мультиметр

\$\конечная группа\$

4

\$\начало группы\$

Существует множество способов измерения емкости. Если у вас есть генератор сигналов, вы можете использовать прямоугольный сигнал и измерить время нарастания. Или синусоида и измерить ток и напряжение. Если вы знаете ток и напряжение, вы знаете, какая у вас нагрузка. Если нагрузкой является конденсатор, вам также потребуется информация о фазе. Ссылки ниже более подробно рассказывают о том, как это делается. Вместо генератора сигналов цифровые мультиметры обычно имеют более простую схему (обычно генерирующую только одну или несколько частот). Вместо схемы осциллографа, измеряющей фазу и амплитуду, делать расчеты.

Самое интересное, что если у вас есть осциллограф и генератор сигналов, вы также можете измерить емкость, иногда лучше, чем цифровой мультиметр. Это также работает для индуктивности.


Источник: https://meettechniek.info/passive/capacitance.html


Источник: https://meettechniek.info/passive/capacitance.html

\$\конечная группа\$

4

\$\начало группы\$

Измерение значения 1 Фарад за 1 секунду с разрешением цифрового мультиметра 1% 0,1 мВ и измеренным значением 10 мВ требует тока батареи при использовании методов измерения импульсов.

Несмотря на то, что счетчики RLC используют более точную синусоиду постоянного тока на выбранных частотах для измерения амплитуды напряжения и фазового сдвига для вычисления всех значений, они все равно не доходят до 1 Фарад.

Ic=CdV/dt= 1F * 10 мВ/1 с = 10 мА, что больше тока, чем обычно потребляет цифровой мультиметр, и сокращает срок службы батареи. Таким образом, Fluke 115 измеряет только до 9999 мкФ.

Портативные измерители Keysight измеряют только до 199,99 мФ.

Однако, если вы будете следовать процедуре испытаний Maxwell с ультракаплями, вам не понадобится стоечный RLC-метр стоимостью более 1000 долларов, который предлагает показания 1F.

Но это занимает больше 1 секунды.

\$\конечная группа\$

\$\начало группы\$

Редактировать: высокий импеданс только для настройки измерения напряжения. Импеданс намного ниже при измерении емкости.

По данным Fluke:

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение и затем вычисляя емкость.

Они не ждут постоянной времени RC. Он подает известный ток в течение определенного времени и смотрит на ΔV. Они также могут делать то же самое, разряжая колпачок в цикле.

Более высокое значение ΔV означает более низкую емкость.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *