Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Каким образом течет электричество?

Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.

Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.

Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.

В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.

Вычисление падения напряжения

Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.

Электрический ток и поток электронов

Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка).

Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.

Электрический ток в параллельной цепи

В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.

Вид цепи и напряжение

Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.

В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.

Направление тока в цепи, куда течет?

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).
Измерение тока
Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.
Для измерения силы тока существует измерительный прибор — амперметр.
Рис. 1
Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.
Направление электрического тока
Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»
Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.
Рис. 2
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.
Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.
Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».
Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).
Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.
После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и др.).
Статьи по теме: 1. Что такое электрический ток?
2. Взаимодействие электрических зарядов. Закон Кулона
3. Постоянный и переменный ток
4. Проводники и изоляторы. Полупроводники
5. О скорости распространения электрического тока
6.
Электрический ток в жидкостях
7. Проводимость в газах
8. Электрический ток в вакууме
9. О проводимости полупроводников
Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.

Некоторые реки текут вспять, они могут вытекать из моря

Вода всегда течет вниз согласно закону всемирного тяготения. Это известно многим. Точно так же происходит и с природными водотоками Земли – реками, ручьями, потоками. Но бывают и исключения. Иногда некоторые реки текут вспять, они могут вытекать из моря или другого крупного водоема. Об этих примерах — в этой статье.

Река и ее русло

У любого водотока имеется исток (точка его начала) и устье (место, где он впадает в водоем или какой-либо другой водоток). Все реки текут по своему руслу – природному углублению в земле, ими же и созданному.

При этом они плавно огибают те препятствия, которые встречаются им на пути: скальные выступы, кристаллические массивы, пласты твердых горных пород. Как результат, русло реки почти всегда имеет множество изгибов (по-научному они называются меандрами).

На своем длинном или коротком пути река принимает в себя ряд других притоков. Они могут быть большими или крошечными, полноводными или пересыхающими. Река со всеми своими притоками образует речную (гидрографическую) систему, а территория, с которой она собирает свои воды, называется речным (водосборным) бассейном.

Как правило, реки текут в пониженных формах рельефа – так называемых долинах. В русле глубоководные участки (плеса) чередуются с мелководными (перекатами). Последние нередко усложнены каскадами и водопадами, особенно в горной местности. Реки могут изменять свои русла вследствие сезонных изменений климата, миграций песчаных массивов, активной человеческой деятельности и прочих факторов.

Но речь пойдет о том, как и в каком направлении текут реки. И о самых любопытных гидрографических объектах, существующих на нашей планете. На много проще понять на конкретном примере, в этой https://gkd.ru/408205a-reka-don-kuda-vpadaet-otkuda-beret-nachalo-istoki-protyajennost-glubina-pritoki-i-sudohodstvo статье хорошо описана река Дон, советуем прочесть.

Какие реки текут вспять?

Есть водотоки, которые, подобно женщинам, отличаются непостоянностью. Сегодня они текут в одну сторону, а завтра – уже в обратную.

Так, однажды жители Новгорода решили выгнать из города своего епископа Иоанна. Они посадили его на деревянный плот и пустили вниз по реке Волхов. Но каким же было их удивление, когда плавсредство с епископом вернулось обратно в город. Новгородцы восприняли это как «божий знак». Но они не знали, что Господь не имел никакого отношения к этому удивительному событию.

Река Волхов вытекает из озера Ильмень и впадает в Ладожское озеро. Земная поверхность по направлению русла наклонена незначительно. И время от времени случается так, что уровень воды в нижнем течении реки становится выше, чем в ее верховьях (например, весной в результате скопления в низовьях обломков льда). В эти периоды Волхов меняет свое направление на противоположное.

Это далеко не единственный пример «непостоянства» у рек. Та же Амазонка иногда течет вспять в своем нижнем течении. Это происходит тогда, когда мощная приливная волна из океана входит в речное русло. И тогда амазонские воды поворачивают назад, затапливая прибрежные участки суши.

3. Положительные направления тока и напряжения.

Электрический ток в общем случае представляет собой движения электрических зарядов отрицательного и положительного знаков в разные стороны.

Численно ток определяется как придел отношения количества электричества, переносимого заряженными частицами сквозь рассматриваемое поперечное сечение проводника за некоторый промежуток времени, к этому времени, при условии, что данный промежуток времени стремится к нулю:

где q — количество электричества, прошедшее через рассматриваемое сечение проводника за время t.

Количество электричества (заряд) измеряется в Кулонах , промежуток времени в секундах , а единицей измерения тока служит Ампер .

Электрическому току приписывают направление.

За положительное направление тока принимают направление перемещения положительных зарядов от точки высшего потенциала к точке меньшего потенциала.

Направление тока характеризуется знаком тока. Понятия положительный или отрицательный ток имеют смысл, если сравнивать направление тока в проводнике с некоторым заранее выбранным направлением – так называемым положительным направлением тока.

Положительное направление тока выбирается произвольно и указывается стрелкой.

Рассмотрим пассивный участок электрической цепи с выбранным положительным направлением тока:

При протекании тока от точки 1 к точке 2 подразумевается, что потенциал точки 1 выше потенциала точки 2.

Под напряжением на данном участке подразумевается разность электрических потенциалов точек 1 и 2.

Единица измерения напряжения Вольт .

При условии, что 1 больше 2 U12 = 1 — 2 будет положительным.

Порядок индексов при напряжении означают его выбранное положительное направление.

Чаще всего положительное направление напряжения выбирают совпадающим с положительным направлением тока и указывают стрелкой.

4. Источник напряжения и источник тока.

В теории электрических цепей используют понятия идеальные источники электрической энергии: источник напряжения и источник тока.

Им приписывают следующие свойства:

Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Рис.2. Идеальный источник напряжения и

его вольтамперная характеристика(BAX).

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике напряжения от меньшего потенциала к большему возможно за счет работы сторонних сил, которые присущи источнику.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э. д.с.) источника и обозначается e(t).

На рис.2(а) указано направление напряжения на зажимах идеального источника, которое всегда равно э.д.с. источника по величине и противоположно ей по направлению.

Идеальный источник напряжения называют еще источником бесконечной мощности. Это — теоретическое понятие. Величина тока в пассивной цепи зависит от параметров этой цепи и e(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток цепи должен быть теоретически равен бесконечности. В действительности при замыкании зажимов источника ток имеет конечное значение, так как реальный источник обладает внутренним сопротивлением.

Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи и в некоторых случаях (по условию задачи) могут вообще не учитываться. Внутреннее сопротивление источника напряжения на схемах замещения изображается последовательно соединенным с самим источником.

Рис.3. Источник напряжения конечной мощности.

Источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах.

Рис.4. Идеальный источник тока и его вольтамперная характеристика.

Предполагается, что внутренне сопротивление идеального источника тока равно бесконечности, и поэтому параметры внешней цепи, от которых зависит напряжение на зажимах источника тока, не влияют на ток источника.

При увеличении напряжения внешней цепи, присоединенной к источнику тока, напряжение на его зажимах, и следовательно, мощность возрастают. Поэтому идеальный источник тока теоретически так же рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображен на рис.5. g0 – внутренняя проводимость источника. Она характеризует внутренние параметры источника и ограничивает мощность, отдаваемую в цепь.

Рис.5. Источник тока конечной мощности.

Часто при решении задач методом эквивалентных преобразований возникает необходимость заменить реальный источник напряжения эквивалентным источником тока или наоборот. Преобразование осуществляется по схеме и формулам рис.6.

Направление тока в проводнике, как, откуда и куда течет электрический ток.

 

 

 

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

 

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

 

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

 

 

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

 

 

 

 

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

 

 

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

 

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

 

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

 

Как течет ток в электрической цепи

Вы, наверное, видели, как трогается с места железнодорожный состав: паровоз делает рывок, медленно начинает двигаться и почти одновременно с ним начинают двигаться все вагоны. Это несколько напоминает то, что происходит в электрической цепи: сами вагоны, подобно электронам, двигаются медленно, но почти одновременно начинается движение всего состава, так же как почти одновременно начинается электрический ток во всех участках цепи.

Рассказывая о поезде, мы опять не случайно применили слово «почти», и вы можете сами убедиться в том, что без этого слова обойтись нельзя. Движение паровоза не сразу передается всему составу: сначала сдвигается с места первый вагон, за ним – второй, тот увлекает за собой третий, затем сдвигается четвертый, и так, передаваясь от вагона к вагону, рывок, который сделал паровоз, доходит до конца состава. Лишь через некоторое время последний вагон как бы получит сигнал о том, что паровоз сдвинулся с места. Для железнодорожного состава время это, конечно, невелико, и поэтому мы говорим, что все вагоны начинают двигаться одновременно, но для точности прибавляем слово «почти».

В отдаленных участках электрической цепи электроны начинают двигаться с некоторым опозданием, так же как и отдаленные от паровоза вагоны. Однако, сравнивая электрический ток с движением железнодорожного состава, необходимо отметить два существенных момента.

Во-первых, движение от электрона к электрону передается не благодаря непосредственным толчкам, а в результате взаимодействия электрических сил, а точнее, в результате движения вдоль проводника электрического поля, о котором мы еще поговорим,

И во-вторых, скорость распространения рывка паровоза по железнодорожному составу (обычно несколько десятков километров в час) даже в сравнение не может идти со скоростью распространения по проводу электрического «толчка» – электрический сигнал движется со скоростью 300 000 километров в секунду! Это так называемая скорость света, которая присуща всем без исключения электрическим и магнитным процессам, в том числе и свету, имеющему, как известно, электромагнитную природу (рис. 22).

Скорость света является самой высокой скоростью, встречаемой в природе. Она настолько велика, что электрический сигнал, двигающийся со скоростью света из Москвы, через 0,03 секунды придет во Владивосток и менее чем за полторы секунды десять раз обогнет земной шар или доберется до Луны. Да что говорить! Если построить космический корабль, который будет двигаться с такой же скоростью, как и электрический сигнал, то на этом корабле можно будет за каких-нибудь пять минут добраться до Марса!

Наряду с исключительно высокой скоростью у электрического сигнала есть еще одно замечательное достоинство – он очень легко поддается самым различным преобразованиям. Именно это и определило появление таких средств связи, как буквопечатающий телеграф, телефон, фототелеграф. Очень интересные преобразования электрического сигнала лежат в основе радиопередачи и радиоприема. С некоторыми из этих преобразований мы сейчас и познакомимся.

от плюса к минусу или наоборот

Электрический ток может быть представлен как направленное перемещение заряженных частиц, за которые традиционно принимаются носители отрицательного заряда или электроны. Это утверждение справедливо для твёрдых проводников, где постоянное присутствие свободных заряженных частиц считается нормой. Для жидких и газообразных сред такими носителями являются положительно заряженные ионы, посредством которых осуществляется перенос вещества.

Свободные носители

Физическая сущность

Для чёткого понимания того, как течёт ток, сначала потребуется ознакомиться с основными физическими явлениями, приводящими к образованию упорядоченного потока. Согласно молекулярно-атомистической теории, все природные тела (независимо от их агрегатного состояния) состоят из молекул и атомов, в состав которых входят отрицательно заряженные электроны.

Для выяснения принципов образования потока заряженных частиц удобнее всего представить состав физических тел следующим образом:

  • Входящие в состав молекул атомы условно представляются в виде находящегося в центре ядра и вращающихся вокруг него со скоростью света электронов;
  • За счёт различной полярности этих двух составляющих их комбинация в нормальных условиях имеет нулевой заряд;

Дополнительная информация. В атомах любого химического элемента количество вращающихся на орбитах электронов равно суммарному заряду ядра, что обеспечивает их электрическую нейтральность.

  • В атомах некоторых веществ на наружных оболочках имеется большое количество электронов, которые к тому же удалены от ядра на значительные по атомным меркам расстояния;
  • В отдельные моменты времени некоторые из них срываются со своих орбит и начинают свободно «блуждать» между атомами, притягиваясь к соседним ядрам или отталкиваясь от их электронов.

Вследствие этих процессов в металлических предметах появляются свободные заряды, которые при приложении противоположных по знаку электрических потенциалов (напряжения) начинают упорядоченно перемещаться.

Направленное движение свободных носителей заряда в твёрдых телах (проводниках) и называется электрическим током.

В веществах с малым содержанием свободных электронов указанное перемещение или совсем невозможно (диэлектрики), или ограничивается небольшой величиной. Такие недостаточно насыщенные носителями электричества материалы называются полупроводниками.

Виды токов

Потоки электронов, имеющиеся в проводящих материалах, могут двигаться всё время в одну сторону либо постоянно менять своё направление. В первом случае они формируют переменный, а во втором – постоянный токи.

Переменные потоки образуются под воздействием меняющихся по своей величине и знаку напряжений, прикладываемых к концам проводника, а для получения постоянного токового сигнала используется разность потенциалов одной полярности.

Обратите внимание! Меняющиеся токи протекают по электропроводке любой квартиры, а примером второй разновидности может служить однонаправленное движение электронов в аккумуляторах или батарейках.

Исторически сложилось так, что в цепи постоянного потока за его направление принято считать движение от «плюса» источника питания к его «минусу». Хотя в действительности носители отрицательного заряда перемещаются в прямо противоположном направлении (от «минуса» к «плюсу»). Но принятое ранее условное направление настолько закрепилось в сознании людей, что его оставили неизменным, полагая абсолютно условным значение этого параметра.

Постоянный ток

Для того чтобы разобраться с тем, куда текут переменные токи, следует отталкиваться непосредственно от их определения. В этой ситуации под воздействием переменного потенциала (напряжения) они меняют своё направление с определённой периодичностью.

Важно! В российских бытовых сетях переменное напряжение имеет частоту 50 Герц. С соответствующей периодичностью меняет своё направление и текущий по электропроводке ток.

В зарубежных электрических сетях (в США и Японии, в частности) данная частота составляет 60 Герц, что несколько повышает эффективность с одновременным возрастанием потерь в питающих линиях.

Переменный ток (график)

Двунаправленное перемещение зарядов

В большинстве металлов одновременно с потоком электронов наблюдается обратное движение противоположных по знаку частиц, образованных положительно заряженными атомами. Их перемещение совпадает с исторически сложившимся определением (от «плюса» к «минусу»), так что при желании за истинное направление можно принимать движение этих составляющих вещества.

Добавим к сказанному, что в жидкостях и газах имеющие различные заряды атомные частицы (уже упоминавшиеся ионы и электроны) также движутся в противоположных направлениях. Такой способ формирования потока частиц в цепи называется электролизом, который широко применяется в различных отраслях промышленного производства.

В заключение отметим, что в отличие от теоретического взгляда, на практике условно выбранное направление перемещения электронов в конкретной электрической схеме имеет принципиальное значение. Любая цепочка из включённых в неё радиоэлементов исходно рассчитывается на определённую полярность подаваемого напряжения, а, следовательно, и на заданное направление формируемого токового сигнала.

Видео

Оцените статью:

Как идет электрический ток – Инженер ПТО

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

  • Заряд электронов отрицателен.
  • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10 -31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1. Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10 -9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Видео по теме: что такое электрический ток

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Видео

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.
  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

DK Science & Technology: Circuits

Электрический ток течет по петле, питая лампочки или другие электрические КОМПОНЕНТЫ. Петля представляет собой электрическую цепь. Схема состоит из различных компонентов, связанных между собой проводами. Ток передается по цепи от источника питания, такого как АККУМУЛЯТОР.

Таблица 26. ОПРЕДЕЛЕНИЯ ЦЕПИ

Напряжение – это энергия, отданная каждой единице заряда, протекающей в цепи. точка в цепи каждую секунду
Мощность – это количество электроэнергии, которое схема использует каждую секунду

ЧТО ТАКОЕ ЭЛЕКТРИЧЕСКИЙ ТОК?

Электрический ток – это поток электрического заряда (обычно в форме электронов) через вещество.Вещество или проводник, по которому протекает электрический ток, часто представляет собой металлическую проволоку, хотя ток также может протекать через некоторые газы, жидкости и другие материалы.

КОГДА ПРОХОДИТ ТОК В КОНТУРЕ?

Ток протекает только тогда, когда цепь замкнута – когда в ней нет промежутков. В замкнутой цепи электроны текут от отрицательной клеммы (соединения) на источнике питания через соединительные провода и компоненты, такие как лампочки, и обратно к положительной клемме.

ЧТО ДЕЛАЕТ ТЕКУЩИЙ ПОТОК В КОНТУРЕ?

Когда провод подсоединяется к клеммам аккумулятора, электроны перетекают с отрицательного полюса на положительный. В отличие от (противоположных) зарядов притягиваются, подобные (одинаковые) заряды отталкиваются. Электроны имеют отрицательный заряд – они отталкиваются от отрицательного и притягиваются к положительному.

Аккумулятор – это компактный, легко транспортируемый источник электроэнергии. Когда батарея подключена к цепи, она обеспечивает энергию, которая движет электроны в токе.Батареи содержат химические вещества, которые вместе реагируют, разделяя положительный и отрицательный заряды.

ЧТО ВНУТРИ АККУМУЛЯТОРА?

Батарея состоит из одной или нескольких секций или ячеек. Внутри каждой ячейки два химически активных материала, называемых электродами, разделены жидкостью или пастой, называемой электролитом. Маленькие батарейки могут иметь только одну ячейку. Большие мощные батареи могут иметь шесть ячеек.

КАК РАБОТАЕТ АККУМУЛЯТОРНАЯ ЯЧЕЙКА?

Внутри ячейки электролит реагирует с электродами, заставляя электроны перемещаться через электролит от одного электрода к другому.Один электрод получает отрицательный заряд, а другой – положительный. Два электрода – это положительный и отрицательный выводы.

Различные объекты, составляющие схему, называются компонентами. Схема должна иметь источник питания, например аккумулятор, а ток течет по проводнику, например по проводу. Лампы, зуммеры и двигатели – это компоненты, которые преобразуют электричество в свет, звук и движение.

Батарея и другие компоненты искусственного кардиостимулятора посылают электрические импульсы по проводам в сердце пациента, чтобы оно продолжало устойчиво биться.Кардиостимулятор вводится, когда сердце само по себе не бьется устойчиво.

Материал, хорошо проводящий ток, называется проводником. Металлы являются хорошими проводниками, потому что атомы металлов легко выпускают электроны, переносящие ток. Серебро и медь – лучшие проводники, и большинство электрических проводов сделано из меди. Во избежание поражения электрическим током провода покрывают изолятором.

Некоторые материалы плохо переносят ток. Говорят, что они сопротивляются (противодействуют) току.Материалы, которые делают это, называются изоляторами. Пластик, стекло, резина и керамика – хорошие изоляторы. Изоляторы используются для покрытия проводов и компонентов для предотвращения поражения электрическим током и предотвращения протекания токов.

Выключатели похожи на ворота, которые контролируют поток электричества в цепи. Когда переключатель разомкнут, он создает разрыв в цепи, и ток не течет. Когда он замкнут, он замыкает цепь, и через нее течет ток. Переключатели используются в параллельных цепях для включения и выключения различных частей цепи.

КАК ПОСТАВЛЯЕТСЯ ЭЛЕКТРОЭНЕРГИЯ?

Большая часть электроэнергии, которую мы используем в своих домах и на работе, вырабатывается машинами на электростанциях, называемыми генераторами. Генераторы посылают электрический ток через огромную сеть цепей и проводов в дома, офисы и другие здания.

Учебник по физике: электрический ток

Если два требования электрической цепи выполнены, заряд будет проходить через внешнюю цепь. Говорят, что есть ток – поток заряда.Использование слова текущий в этом контексте означает просто использовать его, чтобы сказать, что что-то происходит в проводах – заряд движется. Однако ток – это физическая величина, которую можно измерить и выразить численно. Как физическая величина, ток – это скорость, с которой заряд проходит через точку в цепи. Как показано на диаграмме ниже, ток в цепи можно определить, если можно измерить количество заряда Q , проходящего через поперечное сечение провода за время t .Ток – это просто соотношение количества заряда и времени.

Текущее – это величина ставки. В физике есть несколько скоростных величин. Например, скорость – это величина скорости – скорость, с которой объект меняет свое положение. Математически скорость – это отношение изменения положения к времени. Ускорение – это величина скорости – скорость, с которой объект меняет свою скорость. Математически ускорение – это отношение изменения скорости к времени. А мощность – это величина скорости – скорость, с которой работа выполняется на объекте.Математически мощность – это отношение работы к времени. В каждом случае величины скорости математическое уравнение включает некоторую величину во времени. Таким образом, ток как величина скорости будет математически выражен как

.

Обратите внимание, что в приведенном выше уравнении используется символ I для обозначения величины тока.

Как обычно, когда количество вводится в Физическом классе, также вводится стандартная метрическая единица, используемая для выражения этой величины.Стандартная метрическая единица измерения тока – ампер . Ампер часто сокращается до А и обозначается символом единицы A . Ток в 1 ампер означает, что 1 кулон заряда проходит через поперечное сечение провода каждую 1 секунду.

1 ампер = 1 кулон / 1 секунда

Чтобы проверить свое понимание, определите ток для следующих двух ситуаций. Обратите внимание, что в каждой ситуации дается некоторая посторонняя информация.Нажмите кнопку Проверить ответ , чтобы убедиться, что вы правы.

Провод изолируют поперечным сечением 2 мм и определяют, что заряд 20 C пройдет через него за 40 с.

Сечение провода длиной 1 мм изолируется, и определяется, что заряд 2 Кл проходит через него за 0,5 с.

I = _____ Ампер

I = _____ Ампер

Обычное направление тока

Частицы, которые переносят заряд по проводам в цепи, являются подвижными электронами. Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю. Но в то время как электроны являются носителями заряда в металлических проводах, носителями заряда в других цепях могут быть положительные заряды, отрицательные заряды или и то, и другое. Фактически, носители заряда в полупроводниках, уличных фонарях и люминесцентных лампах одновременно являются как положительными, так и отрицательными зарядами, движущимися в противоположных направлениях.

Бен Франклин, проводивший обширные научные исследования статического и токового электричества, считал положительные заряды носителями заряда. Таким образом, раннее соглашение о направлении электрического тока было установлено в том направлении, в котором будут двигаться положительные заряды. Это соглашение прижилось и используется до сих пор. Направление электрического тока условно является направлением, в котором будет двигаться положительный заряд. Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме батареи.Электроны действительно будут двигаться по проводам в противоположном направлении. Зная, что настоящими носителями заряда в проводах являются отрицательно заряженные электроны, это соглашение может показаться немного странным и устаревшим. Тем не менее, это соглашение, которое используется во всем мире, и к которому студент-физик может легко привыкнуть.

Зависимость тока от скорости дрейфа

Ток связан с количеством кулонов заряда, которые проходят точку в цепи за единицу времени.Из-за своего определения его часто путают со скоростью дрейфа количества. Скорость дрейфа означает среднее расстояние, пройденное носителем заряда за единицу времени. Как и скорость любого объекта, скорость дрейфа электрона, движущегося по проводу, – это отношение расстояния ко времени. Путь типичного электрона через проволоку можно описать как довольно хаотический зигзагообразный путь, характеризующийся столкновениями с неподвижными атомами. Каждое столкновение приводит к изменению направления электрона.Однако из-за столкновений с атомами в твердой сети металлического проводника на каждые три шага вперед приходится два шага назад. С электрическим потенциалом, установленным на двух концах цепи, электрон продолжает движение до , перемещаясь вперед на . Прогресс всегда идет к положительной клемме. Однако общий эффект бесчисленных столкновений и высоких скоростей между столкновениями заключается в том, что общая скорость дрейфа электрона в цепи ненормально мала. Типичная скорость дрейфа может составлять 1 метр в час.Это медленно!

Тогда можно спросить: как может быть ток порядка 1 или 2 ампер в цепи, если скорость дрейфа составляет всего около 1 метра в час? Ответ таков: существует много-много носителей заряда, движущихся одновременно по всей длине цепи. Ток – это скорость, с которой заряд пересекает точку в цепи. Сильный ток является результатом нескольких кулонов заряда, пересекающих поперечное сечение провода в цепи. Если носители заряда плотно упакованы в провод, тогда не обязательно должна быть высокая скорость, чтобы иметь большой ток.То есть носителям заряда не нужно преодолевать большое расстояние за секунду, их просто должно быть много, проходящих через поперечное сечение. Ток не имеет отношения к тому, насколько далеко за секунду перемещаются заряды, а скорее к тому, сколько зарядов проходит через поперечное сечение провода в цепи.

Чтобы проиллюстрировать, насколько плотно упакованы носители заряда, мы рассмотрим типичный провод, который используется в цепях домашнего освещения – медный провод 14-го калибра. В срезе этой проволоки длиной 0,01 см (очень тонком) их будет целых 3.51 x 10 20 атомов меди. Каждый атом меди имеет 29 электронов; маловероятно, что даже 11 валентных электронов одновременно будут двигаться как носители заряда. Если мы предположим, что каждый атом меди вносит только один электрон, то на тонком 0,01-сантиметровом проводе будет целых 56 кулонов заряда. При таком большом количестве подвижного заряда в таком маленьком пространстве малая скорость дрейфа может привести к очень большому току.

Чтобы проиллюстрировать это различие между скоростью заноса и течением, рассмотрим аналогию с гонками.Предположим, что была очень большая гонка черепах с миллионами и миллионами черепах на очень широкой гоночной трассе. Черепахи передвигаются не очень быстро – у них очень низкая скорость дрейф . Предположим, что гонка была довольно короткой – скажем, длиной 1 метр – и что значительный процент черепах достиг финишной черты в одно и то же время – через 30 минут после начала гонки. В таком случае течение будет очень большим – миллионы черепах пересекают точку за короткий промежуток времени.В этой аналогии скорость связана с тем, насколько далеко черепахи перемещаются за определенный промежуток времени; а ток зависит от того, сколько черепах пересекли финишную черту за определенный промежуток времени.

Природа потока заряда

Как только было установлено, что средняя скорость дрейфа электрона очень и очень мала, вскоре возникает вопрос: почему свет в комнате или в фонарике загорается сразу после включения переключателя? Разве не будет заметной задержки перед тем, как носитель заряда перейдет от переключателя к нити накала лампочки? Ответ – нет! и объяснение того, почему раскрывает значительную информацию о природе потока заряда в цепи.

Как было сказано выше, носителями заряда в проводах электрических цепей являются электроны. Эти электроны просто поставляются атомами меди (или любого другого материала, из которого сделана проволока) внутри металлической проволоки. Как только переключатель переводится в положение на , цепь замыкается, и на двух концах внешней цепи устанавливается разность электрических потенциалов. Сигнал электрического поля распространяется почти со скоростью света ко всем подвижным электронам в цепи, приказывая им начать марш и .По получении сигнала электроны начинают двигаться по зигзагообразной траектории в обычном направлении. Таким образом, щелчок переключателя вызывает немедленную реакцию во всех частях схемы, заставляя носители заряда повсюду двигаться в одном и том же направлении. В то время как фактическое движение носителей заряда происходит с низкой скоростью, сигнал, который информирует о начале движения, движется со скоростью, составляющей долю от скорости света.

Электроны, которые зажигают лампочку в фонарике, не должны сначала пройти от переключателя через 10 см провода к нити накала.Скорее электроны, которые зажигают лампочку сразу после того, как переключатель повернут в положение на , являются электронами, которые присутствуют в самой нити накала. Когда переключатель повернут, все подвижные электроны повсюду начинают движение; и именно подвижные электроны, присутствующие в нити накала, непосредственно ответственны за зажигание ее колбы. Когда эти электроны покидают нить накала, в нее входят новые электроны, которые ответственны за зажигание лампы. Электроны движутся вместе, как вода в трубах дома.Когда кран поворачивается с на , вода в кране выходит из крана. Не нужно долго ждать, пока вода из точки входа в ваш дом пройдет по трубам к крану. Трубы уже заполнены водой, и вода во всем водном контуре одновременно приводится в движение.

Развиваемая здесь картина потока заряда представляет собой картину, на которой носители заряда подобны солдатам, идущим вместе, повсюду с одинаковой скоростью. Их движение начинается немедленно в ответ на установление электрического потенциала на двух концах цепи. В электрической цепи нет места, где носители заряда расходуются или расходуются. Хотя энергия, которой обладает заряд, может быть израсходована (или лучше сказать, что электрическая энергия преобразуется в другие формы энергии), сами носители заряда не распадаются, не исчезают или иным образом не удаляются из схема. И нет места в цепи, где бы носители заряда начали скапливаться или накапливаться.Скорость, с которой заряд входит во внешнюю цепь на одном конце, такая же, как скорость, с которой заряд выходит из внешней цепи на другом конце. Ток – скорость потока заряда – везде одинакова. Поток заряда подобен движению солдат, идущих вместе, повсюду с одинаковой скоростью.

Проверьте свое понимание

1.Говорят, что ток существует всякий раз, когда _____.

а. провод заряжен

г. аккумулятор присутствует

г. электрические заряды несбалансированные

г. электрические заряды движутся по петле

2. У тока есть направление. По соглашению ток идет в направлении ___.

а. + заряды перемещаются

г.- электроны движутся

г. + движение электронов

3. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.

а. очень быстро; меньше, но очень близко к скорости света

г. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света

г. медленный; медленнее Майкла Джексона пробегает 220-метровую

г.очень медленно; медленнее улитки

4. Если бы электрическую цепь можно было сравнить с водяной цепью в аквапарке, то ток был бы аналогичен ____.

Выбор:

A. давление воды

млрд. Галлонов воды, стекающей по горке в минуту

С.вода

D. нижняя часть слайда

E. водяной насос

F. верх горки

5. На схеме справа изображен токопроводящий провод. Две площади поперечного сечения расположены на расстоянии 50 см друг от друга. Каждые 2,0 секунды через каждую из этих областей проходит заряд 10 ° C.Сила тока в этом проводе ____ А.

а. 0,10

г. 0,25

г. 0,50

г. 1.0

e. 5,0

ф. 20

г. 10

ч.40

и. ни один из этих

6. Используйте диаграмму справа, чтобы заполнить следующие утверждения:

а. Ток в один ампер – это поток заряда со скоростью _______ кулонов в секунду.

г. Когда заряд 8 C проходит через любую точку цепи за 2 секунды, ток составляет ________ A.

г. Если за 10 секунд поток заряда проходит через точку A (диаграмма справа) на 5 ° C, то ток равен _________ A.

г. Если ток в точке D равен 2,0 А, то _______ C заряда проходит через точку D за 10 секунд.

e. Если 12 ° C заряда пройдет мимо точки A за 3 секунды, то 8 C заряда пройдут мимо точки E за ________ секунд.

ф. Верно или неверно:

Ток в точке E значительно меньше тока в точке A, поскольку в лампочках расходуется заряд.

КАК ДЕЙСТВИТЕЛЬНО течет ток?

Сегодняшние устройства Интернета вещей очень разнообразны. Это могут быть довольно простые устройства, такие как датчики, передающие простые данные, или датчики, передающие большие объемы данных (например, видео). Они могут быть одноцелевыми (измерение температуры) или многоцелевыми (мобильные телефоны) со значительными подсистемами, такими как GPS, WLAN, Bluetooth и сотовая связь.

Все эти устройства объединяет то, что их можно охарактеризовать как небольшие, портативные, с питанием от батареи и беспроводным подключением. И в этом заключается проблема: среда IoT требует максимально длительного времени автономной работы, и системные инженеры часто вынуждены идти на компромисс, чтобы снизить текущие потребности.

К сожалению, эта стратегия оказывается в прямом конфликте с достижением максимальной целостности проекта. Показатели целостности высокоскоростных сигналов на устройствах IoT очень зависят от характеристик напряжения и тока батареи.

Эта проблема усугубляется тем, что скорость передачи данных увеличится с сотен кГц до Гбит / с. Более высокие скорости приводят к более высокому энергопотреблению, и здесь инженеры снова обратятся к топологиям, которые минимизируют энергопотребление. Когда мощность рассматривается как основная цель, другие стандартные рекомендации по проектированию не принимаются во внимание.

Например, передатчики в HDMI (и во многих стандартах) имеют резистор обратного согласования, чтобы минимизировать степень несоответствия (которое вызывает отражения). Проблема в том, что для подачи напряжения на приемник может потребоваться от 30 до 100% больше размаха напряжения, чтобы пройти через резистор обратного согласования.Результат? Потерянная сила.

Высокоскоростные сигналы MIPI для дисплеев и камер обычно встречаются в этих типах устройств. Это, вероятно, самые энергоемкие компоненты из всех и особенно проблематичные для инженеров.

Плохая целостность сигнала напрямую влияет на скорость передачи данных. В некоторых случаях, таких как USB 3, ошибки приемника могут вызывать повторную передачу пакетов. Это снижает эффективную скорость передачи данных, хотя во многих случаях этого не происходит, потому что система предназначена для восстановления. Не только для новых устройств IoT, но и другие проблемы с целостностью сигнала – это часто пропущенные вызовы и ошибки пикселей на экране телевизора. На самом деле телевизоры – это особый случай, поскольку кабельные системы часто разделены на несколько частей, а соотношение сигнал / шум очень и очень незначительно.

Любой шум и нестабильность могут вызвать ухудшение высокоскоростных сигналов. Вот почему целостность питания также становится все более важной для проверки IoT. Кроме того, высокоскоростные сигналы распределяются более плотно в устройствах IoT, что приводит к таким проблемам, как перекрестные помехи и связь.

Когда несколько подсистем сосуществуют таким образом, взаимные помехи реальны, и оптимизация одного устройства приведет к компромиссам в других частях конструкции. Механизмы радиочастотных помех и цифровых перекрестных помех являются общими проблемами.

Хотя радиочастотные помехи часто можно устранить с помощью дополнительного экранирования, это может быть дорогостоящим подходом. В качестве альтернативы инженерам потребуется больше времени на проверку интерфейсов, чтобы гарантировать правильную работу высокоскоростных сигналов при различных уровнях окружающей среды, температуры и напряжения.

Но подождите, есть еще кое-что: учитывая сжатые жизненные циклы продуктов в области Интернета вещей, инженеры часто пропускают этап прототипирования, чтобы быстрее вывести свои проекты на рынок. По крайней мере, это требует моделирования среды, измерения и оценки бюджетов каналов для цифровых систем, перекрестных помех и так далее.

Итак, как инженеры могут добиться успеха в проектировании для Интернета вещей с помощью подхода «только одна попытка»? Понимание эффектов помех, бюджетов каналов и т. Д. Имеет решающее значение.И определение правильных инструментов – программные решения для тестирования, зондирования и анализа для быстрого выявления, количественной оценки и устранения перекрестных помех для быстрого анализа и проверки проектов будут иметь ключевое значение.

Общие сведения об электричестве – Узнайте об электричестве, токе, напряжении и сопротивлении


Дом > Поддержка> Общие сведения об электричестве
Электроэнергетика

Что такое электричество?

Любая бытовая техника, которую мы используем в нашей повседневной жизни, например, бытовая техника, оргтехника и промышленное оборудование, почти все это требует электричества. Следовательно, мы должны понимать электричество.

Первый вопрос, который мы узнает ответ: “ где электричество родом из?

Все дела состоят из атомы. Затем задайте следующий вопрос: « Что такое атомы? ».
Атомы – это самая маленькая часть элемента.Они состоят ядра и электронов, электроны окружают ядро. Элементы идентифицируются по количеству электронов на орбите вокруг ядра атомов и числом протонов в ядре.


Ядро состоит из протонов и нейтронов, а количество протоны и нейтроны уравновешены. У нейтронов нет электрического заряда, протоны имеют положительный заряд (+), а электроны – отрицательный заряды (-). Положительный заряд протона равен отрицательному заряду электрона.

Электроны связаны по своей орбите за счет притяжения протонов, но электроны во внешней зоне могут покинуть свою орбиту за счет некоторые внешние силы. Их называют свободными электронами, которые перемещаются от одного атома к другому, образуются потоки электронов. Это основа электричества. Материалы, позволяющие свободно перемещающиеся электроны называются проводниками а материалы, которые позволяют двигаться нескольким свободным электронам, называются изоляторы .

Все вещества состоят из атомов, имеющих электрические заряды. Следовательно, у них есть электрические заряды. Что касается сбалансированного количество протонов и электронов, сила положительного заряда и сила отрицательного заряда уравновешена. Это называется нейтральным состоянием. атома. (Число протонов и электронов остается равным.)

« Статическое электричество » представляет собой ситуацию, когда все вещи состоят из электрических обвинения.Например, трение материала о другой может вызвать статическое электричество. Свободные электроны одного материала двигаться с силой, пока они не освободятся от своих орбит вокруг ядра и перейти к другому. Электроны одного материала уменьшаются, он представляет собой положительный заряд. В то же время электроны другого увеличиваются, он имеет отрицательные заряды.

В общем, зарядить производство материи означает, что материя имеет электрические заряды.Он имеет положительный и отрицательный заряды, что выражается в кулон.


Ток, Напряжение и сопротивление


Что сейчас?

Электрическое явление вызвано потоком свободные электроны от одного атома к другому.Характеристики текущее электричество противоположны тем статического электричества.

Провода состоят из проводников, например медных. или алюминий. Атомы металла состоят из свободных электронов, которые свободно переходить от одного атома к другому. Если добавлен электрон в проводе свободный электрон притягивается к протону, чтобы оставаться нейтральным. Вытеснение электронов с их орбит может вызвать недостаток электронов. Электроны, которые непрерывно движутся по проволоке, называются Electric. Текущий .



Для одножильных проводов
электрический ток относится к направленным отрицательно-положительные электроны от одного атома к другому. Жидкость проводники и газопроводы, электрический ток относится к электронам а протоны текут в обратном направлении.

Ток – это поток электронов, но ток и электроны текут в противоположное направление. Ток течет от положительного к отрицательному и электроны перетекают с отрицательного на положительный.


Ток определяется количеством электронов, проходящих через поперечное сечение проводника за одну секунду. Ток измеряется в ампер , что сокращенно « ампер ».Обозначение усилителя – это буква « A ».

А ток в один ампер означает что ток проходит через поперечное сечение двух проводников, которые расположены параллельно на расстоянии 1 метра друг от друга с 2×10 -7 Ньютон сила на метр возникает в каждом проводнике. Это также может означать сборы одного кулона (или 6,24х10 18 электронов), проходящего через поперечное сечение проводника за одну секунду.


Что такое напряжение?

Электрический ток – это поток электронов в проводнике. Сила необходим для протекания тока через проводник, называется напряжение и потенциал – это другой срок напряжения. Например, у первого элемента больше положительные заряды, поэтому он имеет более высокий потенциал. С другой стороны, второй элемент имеет более отрицательные заряды, поэтому он имеет более низкий потенциал.Разница между двумя точками называется разность потенциалов .

Электродвижущая сила означает силу, которая заставляет ток непрерывно течь через дирижер. Эта сила может создаваться генератором энергии, аккумулятор, аккумулятор фонарика и топливный элемент и т. д.

Вольт, сокращенно « В », это единица измерения измерения, используемые взаимозаменяемо для напряжения, потенциала, и электродвижущая сила.Один вольт означает силу, которая заставляет ток в один ампер проходит через сопротивление в один Ом.

Что такое сопротивление?
Электроны движутся через проводник при протекании электрического тока. Все материалы мешают протекание электрического тока до некоторой степени. Эта характеристика называется сопротивлением .Сопротивление увеличивается с увеличением длины или уменьшением поперечного сечения материал.

Единица измерения сопротивления Ом и его символ – греческая буква омега ( Ω ). Сопротивление в один Ом означает, что проводник пропускает ток. одного ампера на поток с напряжением один вольт.

Все материалы имеют различие в пропускании электронов.Материалы проводники, которые позволяют свободно перемещаться большому количеству электронов, называются проводниками такие как медь, серебро, алюминий, раствор хлористоводородной, серной кислота и соленая вода. Напротив, материалы, пропускающие мало электронов для протекания называются изоляторы типа пластиковые, резина, стекло и сухая бумага. Другой тип материалов, полупроводники имеют характеристики как проводников, так и изоляторов.Они позволяют электронам двигаться, в то же время имея возможность контролировать поток электронами и примерами являются углерод, кремний, германий и т. д.

Сопротивление проводника зависит от следующих двух основных факторов:

1. Виды материала
2. Температура материала

Как измерить ток

Прибор для измерения силы тока называется Амперметр или Амперметр .
шагов для измерения тока Подключите небольшую лампочку к сухой батарее.Измерьте ток который проходит через лампочку при подключении положительной клеммы (+) амперметра к отрицательной клемме (-) сухого элемента (см. рисунок)
Указания по технике безопасности при измерении силы тока;
1. Оценить ток, требующий измерения затем выберите подходящий амперметр, так как каждый амперметр имеет разные предел измерения тока.
2. Убедитесь, что соединение с плюсовой клеммой (+) и отрицательная клемма (-) амперметра правильные.
3. Не подключайте клеммы амперметра напрямую сушить клеммы ячеек. Так как это может повредить счетчик.

Как измерить напряжение
Прибор для измерения напряжения, разницы Потенциальная или электродвижущая сила называется вольтметром .

Шаги для измерения напряжения
Подключите небольшую лампочку к сухому элементу. Вольтметр есть подключен параллельно лампочке для измерения напряжения поперек лампочки. Подключите положительную клемму (+) вольтметр к плюсовой клемме (+) сухого элемента и подключите отрицательная клемма (-) вольтметра к отрицательной клемме (-) сухой ячейки (см. рисунок).
Указания по технике безопасности при измерении Напряжение;
1. Оценить напряжение, необходимое для измерения затем выберите подходящий вольтметр
, поскольку каждый вольтметр рассчитан на
предел измерения напряжения.
2. Убедитесь, что подключение положительной клеммы (+) и отрицательная клемма (-) вольтметра правильные.

Как измерить сопротивление
Инструмент, используемый для измерения Сопротивление называется тестером или мультиметром .Мультиметр или тестовый метр используется для изготовления различных электрических измерения, такие как ток, напряжение и сопротивление. Он сочетает в себе функции амперметра, вольтметра и омметра.

Шаги для измерения сопротивления
Поверните лицевую шкалу в положение для требуемого измерения, сопротивления, затем коснитесь обоих выводов мультиметра (см. рисунок 1) и отрегулируйте диапазон измерителя на 0 Ом.Трогать оба вывода измерителя к сопротивлению и возьмите чтение (см. рисунок 2).


Как работает электричество?

Электрический ток – это способность делать работу.Электрический ток можно преобразовать в тепло, мощность и магнетизм, чтобы назвать несколько.

Электрический ток классифицирован по своим функциям и трем основным типам:

1.

Теплоэнергетика

2.

Электрохимия

3.

Магнетизм


1. Тепло и энергия используется для производства тепла и электроэнергии.
Например, нихромовая токоведущая проволока. проволока имеет высокое сопротивление и выделяет тепло.Это применяется быть составной частью электрических духовок, тостеров, электрических утюгов и лампочки и др.

Эксперимент проводится путем измерения нагреть количество воды калориметром. Увеличьте напряжение на провод вариаком и подключите амперметр и вольтметр для измерения ток и напряжение.
Установите шкалу переменного тока, чтобы отрегулировать значение напряжения и тока нихромовая проволока и ток периодически пропускается и измерить количество тепла от нихромовой проволоки.Есть какие-то указания напряжения и тока. Если напряжение, ток и время увеличиваются, количество тепла также увеличится. Они выражаются отношение, как показано ниже.

Это называется Джоуля. Закон . Количество тепла зависит от напряжения время тока и интервал времени.По закону Ома V (напряжение) = I (ток) x R (сопротивление), следовательно,

Количество тепла зависит от текущий квадрат, умноженный на сопротивление и интервал времени.

При пропускании тока через нихромовую проволоку в воде ток превращается в тепло, и температура повышается. Работу выполняет тепло, выделяемое в электрической цепи, которая называется Electric. мощность .

Измеряется электрическая мощность в ватт-часах (Втч), а количество тепла измеряется в калориях. (Cal).

Работа выполняется за счет выделяемого тепла в электрической цепи написано мощность, что означает что номинальная работа выполняется в цепи, когда ток 1 А с Применяется 1 вольт, а его единица измерения – ватт.

2. Электрохимия

Например, когда ток проходит через хлорид натрия (NaCl), химическая реакция, называемая электролизом. происходит. Применяется для производства электролиза, цинкования. и аккумулятор и т. д.


Эксперимент проводится путем пропитывания двух платиновых (Pt) пластин. в расплаве соли. Подключите батареи к двум платиновым пластинам, ток проходит через расплав соли и производит хлор пузыри вокруг положительной пластины (+) и пузырьки водорода вокруг отрицательной пластины (-), поскольку хлорид натрия составляет натрия (Na) и хлорида (Cl).Когда хлорид натрия тает в воде, элементы разделяются. Натрий имеет положительные заряды (+), в то время как хлор имеет отрицательные заряды (-) и эти заряды называются ионами . Расплав соли имеет оба положительных заряда, которые называются анодами и . а отрицательные заряды называются катодами . Состояние разделенных элементов называется ионизация .Если соль растапливается водой, в растворе имеются ионы, называется раствор электролита . И если текущий проходит через раствор электролита, химическая реакция происходит электролиз.

3. Магнетизм

Примером данной электромонтажной работы является токоведущий проволока, возникают магнитные линии потока.Это применяется для производства электродвигатели, электрические трансформаторы и магнитофоны, пр.

Понимание смысла магнетизма:
Что такое магнетизм?

Составная формула магнита: Fe 3 O 4 . Все магниты обладают двумя характеристиками. Во-первых, они привлекают и держи железо.Вторичный, если свободно двигаться, как компас игла, они займут положение север-юг. Любые материалы Имеют такие характеристики, они называются магнитом .

Характеристики магнита
Каждый магнит имеет два полюса, один северный полюс и один южный полюс.
Противоположные полюса притягиваются друг к другу, в то время как полюса отталкивают друг друга.

Электричество и магнитное поле

Когда магнитная стрелка находится рядом с электрическим проводом, который ток проходит, магнитная стрелка включает направление протекания тока (см. рисунок 1 и 2).Следовательно, электрический ток также создает связанный магнитный силу или говорят, что электричество способно производить магнитное поле.

Когда магнитная игла помещена в катушку с проволокой с одной петлей (см. рисунок), и ток проходит через катушку с проволокой, магнитный игла поворачивается в направлении, показанном на рисунке выше.А направления магнитных линий потока показаны стрелки.

Когда магнитная игла помещена в проволочную катушку с множеством петель как показано на правом рисунке, ток проходит через катушка. Направление магнитных линий магнитных параллелей катушка проволоки. Характеристики магнитных линий потока как характеристики магнита, но без магнитного полюса.

Когда катушка с токоведущим проводом помещается рядом с железным стержнем, железный стержень немного сдвинется (см. рисунок 1). Если сердечник размещен в катушке из проволоки железный стержень сильно притягивается (см. фигура 2). Поскольку сердечник – это мягкое железо, которое проводит магнитные силовые линии, когда ток проходит через проволочную катушку вокруг сердечника сердечник намагничивается с высокой мощностью что называется электромагнитов .Эта функция широко применяется в промышленности.

Что такое электричество? – learn.sparkfun.com

Добавлено в избранное Любимый 66

Электричество в действии!

Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь.Сделаем схему!

Сначала рассмотрим ингредиенты, необходимые для производства электричества:

  • Электричество определяется как поток заряда . Обычно наши заряды переносятся свободно текущими электронами.
  • Отрицательно заряженные электронов слабо прикреплены к атомам проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
  • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
  • Заряды приводятся в движение электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.

Короткое замыкание

Батареи – распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной цепи. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются.Это разность электрических потенциалов, которая только и ждет, чтобы подействовать!

Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди. Одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы называем электричеством.

После секунды протекания тока электроны на самом деле переместились на очень , на доли сантиметра.Однако энергия, производимая текущим потоком, составляет огромных , особенно потому, что в этой цепи нет ничего, что могло бы замедлить поток или потреблять энергию. Подключение чистого проводника напрямую к источнику энергии – плохая идея . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.

Освещение лампочки

Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении батареи и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь передает электрическую энергию в другую форму – свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.

Схема: батарея (слева) подключается к лампочке (справа), цепь замыкается, когда замыкается переключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.

В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с максимальным потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в ​​световую (или тепловую).


← Предыдущая страница
Электрический потенциал (энергия)

Электрический ток: поток заряда

Электрическая цепь

Электричество и магнетизм

Электрический ток: поток заряда

Повествование о физике для 5-11 11–14

Электрический ток – это поток заряда

Когда аккумулятор соединяется с лампочкой для замыкания цепи, в цепи присутствует электрический ток.Что-то стабильно течет. Это заряд, и может быть много разных объектов, которые несут заряд.

Ток одинаковый в каждой точке одноконтурного контура – утечек нет! И никакая зарядка не накапливается в разных точках.

Заряд происходит в самой цепи. Это уже есть. Вот что значит быть проводником – иметь заряженные частицы, которые могут двигаться, когда проводник включен в замкнутую цепь.

Эти заряженные частицы могут иметь и другие движения, а также неуклонно дрейфовать, но мы сконцентрируемся на устойчивом дрейфе, поскольку это движение и есть электрический ток.Заряженные частицы устойчиво дрейфуют в одном направлении, как и любые другие движения. Остальные движения были там до того, как круговая петля была завершена, и остаются после нее. Скорость дрейфа добавляется к остальным скоростям.

В металлических проводах мы теперь знаем, что дрейфующие заряженные частицы отрицательны (но это совсем не просто показать до исследования после 16-го). Вот что показано здесь на верхней паре диаграмм. Но во многих других случаях дрейфующие заряженные частицы положительны (например,грамм. проводимость в нервных клетках, электролиз). Мы думаем, что лучше не думать о заряженных частицах, но не о токе в петле: что-то течет, и поток одинаков во всех точках петли. Но мы бы предложили представить направление обычного потока заряда, как на нижней диаграмме (где носители заряда положительны), если вы все же решите показать потоки заряда.

Заряженные частицы возникают в самой цепи – когда они текут, возникает ток

В металлических проводах электроны являются движущимися заряженными частицами и возникают в проводах цепи.Они просто часть атомов, из которых состоят аккумулятор, провода и лампочка. Когда эти компоненты не соединены в цепь, вы можете представить себе море свободных электронов, гудящее вокруг фиксированного массива положительных ионов (скорее, как частицы в газе).

В нервах и электролизе ток не переносится электронами. Мы будем называть электрические токи потоком заряда, поскольку он охватывает все случаи.

Что такое электрический ток »Электроника

Электрический ток возникает при движении электрических зарядов – это могут быть отрицательно заряженные электроны или положительные носители заряда – положительные ионы.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Текущая единица – Ампер ПЕРЕМЕННЫЙ ТОК


Электрический ток – одно из основных понятий, существующих в науке об электричестве и электронике. Электрический ток лежит в основе науки об электричестве.

Будь то электрический нагреватель, большая электросеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным в его работе.

Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно увидеть, услышать и почувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.

Удар молнии – впечатляющее зрелище электрического тока
Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия

Определение электрического тока

Определение электрического тока:

Электрический ток – это поток электрического заряда в цепи.Более конкретно, электрический ток – это скорость прохождения заряда через заданную точку в электрической цепи. Зарядом могут быть отрицательно заряженные электроны или положительные носители заряда, включая протоны, положительные ионы или дырки.

Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».

Ампер или усилитель широко используются в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.

Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.

Что такое электрический ток: основы

Основная концепция тока состоит в том, что это движение электронов внутри вещества. Электроны – это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.

Одно очень важное замечание относительно электронов – это то, что они заряженные частицы – они несут отрицательный заряд. Если они перемещаются, то перемещается некоторое количество заряда, и это называется током.

Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность конкретного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.

Движение свободных электронов обычно очень случайное – оно случайное – столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.

Случайное движение электронов в проводнике со свободными электронами

Если на электроны действует сила, заставляющая их двигаться в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.

Сила, действующая на электроны, называется электродвижущей силой или ЭДС, а ее величина – это напряжение, измеряемое в вольтах.

Электронный поток под действием приложенной электродвижущей силы

Чтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.

Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Количество воды пропорционально давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.

Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.

Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.

Обычный ток и поток электронов

Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.

Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.

Электронный и обычный ток

Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь называем носителями положительного заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.

Итого:

  • Обычный ток: Обычный ток идет от положительного вывода к отрицательному и указывает направление, в котором будут протекать положительные заряды.
  • Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу, так как притягиваются разные заряды.

Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.

Скорость движения электрона или заряда

Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон подпрыгивает в проводнике и, возможно, движется по проводнику только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

Возьмем другой пример. В почти вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.

Влияние тока

Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.

  • Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако, если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь – яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
  • Магнитный эффект: Еще один эффект, который можно заметить, – это создание магнитного поля вокруг проводника. Если в проводнике течет ток, это можно обнаружить.Поместив компас близко к проводу, по которому проходит достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле слишком быстро меняется, и игла не может реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.

    Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.

Как измерить ток

Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных схемах, очень важно знать, какой ток течет.

Есть много разных способов измерения тока. Один из самых простых – использовать мультиметр.

Как измерить ток с помощью цифрового мультиметра:

Используя цифровой мультиметр, цифровой мультиметр, легко измерить ток, поместив цифровой мультиметр в цепь, по которой проходит ток. Цифровой мультиметр даст точные показания тока, протекающего в цепи

.

Узнайте, , как измерить ток с помощью цифрового мультиметра.

Хотя существуют и другие методы измерения тока, это наиболее распространенный.

Ток – один из самых важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.

Дополнительные основные понятия:
Напряжение Текущий Сопротивление Емкость Мощность Трансформеры Радиочастотный шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *