Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Напряженность электрического поля — как найти? Правила и примеры

Покажем, как применять знание физики в жизни

Начать учиться

Если потереть ручку о синтетический свитер — к ней начнут притягиваться кусочки бумаги, причем без прямого контакта. Все дело в электрическом поле, которое позволяет заряженным телам взаимодействовать на расстоянии. Этот материал о том, что такое напряженность электрического поля и каковы взгляды на нее в современной физике.

Что такое электрическое поле

Долгое время ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает вокруг заряженных тел и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Тела, имеющие одноименные заряды, будут отталкиваться, а разноименные — притягиваться.

Полезные подарки для родителей

В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q

1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые заряженные объекты.

Важно!

Иногда можно услышать оборот «напряжение электрического поля», но это ошибка — правильно говорить «напряженность».

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые взаимодействуют.

Вокруг каждого существует свое электрическое поле. Тогда существует некая точка или область, в которой одновременно существует электрическое поле нескольких зарядов. Чему равна общая напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав векторно напряженности, создаваемые каждым зарядом в отдельности в той же точке. Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

  • расстояние между зарядами очень мало — порядка 10-15м;

  • речь идет о сверхсильных полях с напряженностью более 1020в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует

коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Важно!

Сила взаимодействия двух точечных зарядов остается прежней при появлении сколь угодно большого количества других зарядов в данном поле.

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно).

В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Яна Кононенко

К предыдущей статье

Мощность

К следующей статье

Манометр

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Электростатика | Формулы по физике

Электрический заряд

Найти

  Известно, что:

     qne =   

Вычислить ‘q’

Закон Кулона

Найти

  Известно, что:

     Fkq1q2r =   

Вычислить ‘F’

Постоянная Кулона

Найти

  Известно, что:

     kπε_0 =   

Вычислить ‘k’

Относительная диэлектрическая проницаемость

Найти

  Известно, что:

     εF_вакF_окр =   

Вычислить ‘ε’

Электрическое поле

Найти

  Известно, что:

     EFq =   

Вычислить ‘E’

Электрическое поле точечного заряда в вакууме

Найти

  Известно, что:

     Ekq_0r =   

Вычислить ‘E’

Электрическое поле точечного заряда в окружающей среде

Найти

  Известно, что:

     E_окрkq_0εr =   

Вычислить ‘E_окр’

Электрическое поле вне заряженной сферы

Найти

  Известно, что:

     Ekσ4πRr =   

Вычислить ‘E’

Электрическое поле вне заряженной сферы

Найти

  Известно, что:

     Ekqr =   

Вычислить ‘E’

Электрическое поле бесконечной заряженной плоскости

Найти

  Известно, что:

     Ek2πσ =   

Вычислить ‘E’

Электрическое поле бесконечной заряженной плоскости

Найти

  Известно, что:

     Eσε_0 =   

Вычислить ‘E’

Электрическое поле конденсатора

Найти

  Известно, что:

     Ekπσ =   

Вычислить ‘E’

Работа в электрическом поле

Найти

  Известно, что:

     AFΔ_d =   

Вычислить ‘A’

Потенциальная энергия системы двух точечных зарядов

Найти

  Известно, что:

     Wkq0qεr =   

Вычислить ‘W’

Работа в электрическом поле – разность потенциальных энергий

Найти

  Известно, что:

     AW1W2 =   

Вычислить ‘A’

Потенциал электростатического поля

Найти

  Известно, что:

     φWq =   

Вычислить ‘φ’

Напряжение – разность потенциалов

Найти

  Известно, что:

     Uφ1φ2 =   

Вычислить ‘U’

Работа переноса заряда

Найти

  Известно, что:

     AqU =   

Вычислить ‘A’

Потенциал электростатического поля вокруг точечного заряда

Найти

  Известно, что:

     φkq0εr =   

Вычислить ‘φ’

Напряжённость электростатического поля

Найти

  Известно, что:

     EUΔ_d =   

Вычислить ‘E’

Результирующее электрическое поле

Найти

  Известно, что:

     EE0E1 =   

Вычислить ‘E’

Электрический момент

Найти

  Известно, что:

     pql =   

Вычислить ‘p’

Электрическая ёмкость

Найти

  Известно, что:

     Cqφ =   

Вычислить ‘C’

Электрическая ёмкость шара

Найти

  Известно, что:

     CεRk =   

Вычислить ‘C’

Электрическая ёмкость двух проводников

Найти

  Известно, что:

     CqU =   

Вычислить ‘C’

Электрическая ёмкость плоского конденсатора

Найти

  Известно, что:

     Cεε0Sd =   

Вычислить ‘C’

Электрическая ёмкость сферического конденсатора

Найти

  Известно, что:

     Cπεε0R1R2 =   

Вычислить ‘C’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     WqE1d =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     WqEd =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     WqU =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     WCU =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     WqC =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     Wεε0EV =   

Вычислить ‘W’

Потенциальная энергия заряженного плоского конденсатора

Найти

  Известно, что:

     Wεε0ESd =   

Вычислить ‘W’

Плотность энергии электрического поля

Найти

  Известно, что:

     ω_pWV =   

Вычислить ‘ω_p’

Плотность энергии электрического поля

Найти

  Известно, что:

     ω_pε0εE =   

Вычислить ‘ω_p’

Веб-сайт кабинета физики

Назначение SE10: электрическое поле

Цели:
  • Студент должен уметь определять электрическое поле и распознавать переменные, влияющие (и не влияющие) на напряженность электрического поля в данном месте.
  • Студент должен уметь использовать уравнения электрического поля и относительно простые числа для определения величины и направления напряженности электрического поля в заданном месте.

Чтение:

Класс физики – Статическое электричество, урок 4, часть a

Заряд Q создает электрическое поле. Пробным зарядом q измеряют напряженность электрического поля на расстоянии d от Q. На пробный заряд q действует сила F. Напряженность электрического поля в этом месте определяется выражением ___. Перечислите все, что применимо… .

Определение Напряженность электрического поля :

Любой источник заряда Q будет создавать электрическое поле в окружающем его пространстве. Напряженность электрического поля ( E ) в любом заданном месте в этом пространстве можно определить, поместив пробный заряд q в пространство и измерив силу ( F ), воздействующее на него. Напряженность электрического поля определяется как количество силы на единицу заряда испытательного заряда.
Э = Ф/кв

Напряженность электрического поля ( E ) определяется как количество силы, действующей на пробный заряд на единицу заряда пробного заряда ( q ). То есть E = F/q . Электрическая сила ( F ) зависит от ряда переменных, как описано законом Кулона.

F избранный = k • Q 1 • Q 2 / d 2

В приведенном выше уравнении Q 1 может быть исходным зарядом Q , а Q 2 может быть пробным зарядом q . Если выражение для силы, данное уравнением закона Кулона, подставить вместо F в уравнении напряженности электрического поля, то уравнение для электрического поля принимает вид

E = k • Q/d 2

Какие переменные влияют на напряженность электрического поля заряда?

Как можно использовать силу пробного заряда для определения напряженности электрического поля другого заряда?

Заряд Q создает электрическое поле. Пробный заряд q используется для измерения напряженности электрического поля на расстоянии d от Q. Напряженность электрического поля определяется как ____.

Определение Напряженность электрического поля :

Любой источник заряда Q будет создавать электрическое поле в окружающем его пространстве. Напряженность электрического поля ( E ) в любом заданном месте в этом пространстве можно определить, поместив пробный заряд q в пространство и измерив силу ( F ), действующую на него. Напряженность электрического поля определяется как количество силы на единицу заряда испытательного заряда.
Э = Ф/кв

Легко запутаться в математике напряженности электрического поля. Важно помнить, что в любом электрическом взаимодействии всегда участвуют два заряда. В этом случае начисления составляют Q и q . Большой Q представляет собой исходный заряд, создающий электрическое поле. Маленький q представляет собой тестовый заряд, который используется для измерения напряженности электрического поля в заданном месте, окружающем заряд источника. Уделите особое внимание количеству заряда — q или q — используемому в каждом уравнении.

Как можно использовать силу пробного заряда для определения напряженности электрического поля другого заряда?

Стандартной метрической единицей напряженности электрического поля является ____.

Напряженность электрического поля ( E ) в любом месте, окружающем заряд источника, может быть определена путем измерения силы ( F ) при воздействии на испытательный заряд ( q ), помещенный в этом месте.

Э = Ф/кв

Стандартные метрические единицы количества можно понять, подумав о его формуле. Напряженность электрического поля — это отношение силы к заряду (см. раздел Formula Fix выше). Таким образом, единицы напряженности электрического поля — это единицы силы, деленные на единицы заряда. Стандартной метрической единицей силы является ньютон; стандартной метрической единицей заряда является кулон. Таким образом, стандартной метрической единицей напряженности электрического поля является Ньютон/Кулон, сокращенно N/C. 9-9 Кулоновский пробный заряд. Напряженность электрического поля, создаваемая зарядом в 4 мкК, составляет ____ Н/Кл.

Определение Напряженность электрического поля :

Любой источник заряда Q будет создавать электрическое поле в окружающем его пространстве. Напряженность электрического поля ( E ) в любом заданном месте в этом пространстве можно определить, поместив пробный заряд q в пространство и измерив силу ( F ), действующую на него. Напряженность электрического поля определяется как количество силы на единицу заряда испытательного заряда.
Э = Ф/кв

Напряженность электрического поля ( E ) определяется как величина силы, действующей на испытательный заряд на единицу заряда испытательного заряда ( q ). То есть E = F/q . Электрическая сила ( F ) зависит от ряда переменных, как описано законом Кулона.

F избранный = k • Q 1 • Q 2 / d 2

В приведенном выше уравнении Q 1 может быть зарядом источника 9.0043 Q и Q 2 может быть пробным зарядом q . Если выражение для силы, данное уравнением закона Кулона, заменить F в уравнении напряженности электрического поля, то уравнение для электрического поля примет вид

E = k • Q/d 2

Легко запутаться в математике напряженности электрического поля. Важно помнить, что в любом электрическом взаимодействии всегда участвуют два заряда. В этом случае начисления составляют Q и q . Большой Q представляет собой исходный заряд, создающий электрическое поле. Little q представляет собой тестовый заряд, который используется для измерения напряженности электрического поля в заданном месте, окружающем исходный заряд. Уделите большое внимание количеству заряда – Q или q – используется в каждом уравнении.

Какие переменные влияют на напряженность электрического поля заряда?

Как можно использовать силу пробного заряда для определения напряженности электрического поля другого заряда?

ИСТИНА или ЛОЖЬ :

Величина электрического поля является векторной величиной.

(Примечание: ваше фактическое утверждение «Верно-ложно» выбирается случайным образом из набора вариантов и может отличаться от приведенного здесь.)

Электрическое поле как вектор:

Электрическое поле в заданном месте вокруг заряда источника ( Q ) является векторной величиной. То есть имеет направление. Сила, действующая на пробный заряд ( q ), может быть силой притяжения (по направлению к исходному заряду) или силой отталкивания (от исходного заряда) в зависимости от того, являются ли Q и q имеют одинаковый или противоположный заряд. При определении направления электрического поля используется условное обозначение, что направление всегда одно и то же, независимо от типа заряда q . Согласно соглашению, направление электрического поля соответствует направлению, в котором положительный пробный заряд будет толкаться или тянуться, если его поместить в пространство, окружающее Q .

Является ли электрическое поле скалярной или векторной величиной?

По соглашению направление электрического поля ____.

Электрическое поле как вектор:

Электрическое поле ( E ) в заданном месте относительно заряда источника ( Q ) является векторной величиной. То есть имеет направление. Сила, действующая на пробный заряд ( q ), может быть силой притяжения (по направлению к исходному заряду) или силой отталкивания (от исходного заряда) в зависимости от того, заряжены ли Q и q одинаково или противоположно. заряжен. При определении направления электрического поля используется условное обозначение, согласно которому направление зависит от типа заряда исходного заряда 9.0043 В . Согласно соглашению, направление электрического поля соответствует направлению, в котором положительный пробный заряд будет толкаться или тянуться, если его поместить в пространство, окружающее Q .

Как определить направление электрического поля?

Положительный заряд создает электрическое поле. Направление электрического поля будет ____.

Электрическое поле как вектор:

Электрическое поле ( E ) в данном месте относительно заряда источника ( Q ) — векторная величина. То есть имеет направление. Сила, действующая на пробный заряд ( q ), может быть силой притяжения (по направлению к исходному заряду) или силой отталкивания (от исходного заряда) в зависимости от того, заряжены ли Q и q одинаково или противоположно. заряжен. При определении направления электрического поля используется соглашение, согласно которому направление зависит от типа заряда исходного заряда Q . Согласно соглашению, направление электрического поля совпадает с направлением положительный тестовый заряд будет толкаться или тянуться, если его поместить в пространство, окружающее Q .

По соглашению, направление вектора электрического поля в любом данном месте – это направление, в котором положительный пробный заряд будет выталкиваться или тянуться, если его поместить в это место. Сочетая это соглашение с правилом отталкивания одинаково заряженных объектов, можно определить направление электрического поля в пространстве, окружающем источник положительного заряда. Положительный заряд источника и положительный пробный заряд будут отталкивать друг друга. То есть положительный пробный заряд будет отталкиваться от положительного исходного заряда во всех точках пространства, окружающего исходный заряд.

Как определить направление электрического поля?

Отрицательный заряд создает электрическое поле. Направление электрического поля будет ____.

Электрическое поле как вектор:

Электрическое поле ( E ) в заданном месте относительно заряда источника ( Q ) является векторной величиной. То есть имеет направление. Сила, действующая на пробный заряд ( q ), может быть силой притяжения (по направлению к исходному заряду) или силой отталкивания (от исходного заряда) в зависимости от того,0043 Q и q заряжены одинаково или противоположно. При определении направления электрического поля используется соглашение, согласно которому направление зависит от типа заряда исходного заряда Q . Согласно соглашению, направление электрического поля соответствует направлению, в котором положительный пробный заряд будет толкаться или тянуться, если его поместить в пространство, окружающее Q .

По соглашению, направление вектора электрического поля в любом данном месте – это направление, в котором положительный пробный заряд будет выталкиваться или тянуться, если его поместить в это место. Сочетая это соглашение с правилом притяжения противоположно заряженных объектов, можно определить направление электрического поля в пространстве, окружающем источник отрицательного заряда. Отрицательный заряд источника и положительный пробный заряд будут притягиваться друг к другу. То есть положительный пробный заряд будет притягиваться к отрицательному исходному заряду во всех точках пространства, окружающего исходный заряд.

Как определить направление электрического поля?

Следуйте за нами

18.3 Электрическое поле — физика

Раздел Цели обучения

К концу этого раздела вы сможете делать следующее:

  • Вычислять напряженность электрического поля
  • Создание и интерпретация рисунков электрических полей

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим учащимся освоить следующие стандарты:

  • (5) Учащийся знает природу сил в физическом мире. Ожидается, что студент:
    • (С) описать и рассчитать, как величина электрической силы между двумя объектами зависит от их зарядов и расстояния между ними.

Основные термины раздела

электрическое поле испытательный заряд

Поддержка учителей

Поддержка учителей

Спросите учащихся, видели ли они фильмы, в которых используется концепция полей как силовых полей . Попросите их описать, как работают такие поля. Опишите, как можно рассматривать гравитацию как поле, которое окружает массу и с которым взаимодействуют другие массы. Объясните, что электрические поля очень похожи на гравитационные поля.

Возможно, вы слышали о силовом поле в научно-фантастических фильмах, где такие поля применяют силы в определенных точках в космосе, чтобы удерживать злодея в ловушке или защищать космический корабль от вражеского огня. Концепция поля очень полезна в физике, хотя она несколько отличается от того, что вы видите в кино.

Поле — это способ концептуализации и отображения силы, которая окружает любой объект и действует на другой объект на расстоянии без видимой физической связи. Например, гравитационное поле, окружающее Землю и все другие массы, представляет гравитационную силу, которая возникла бы, если бы в данной точке поля была помещена другая масса. Майкл Фарадей, английский физик девятнадцатого века, предложил концепцию электрического поля. Если вы знаете электрическое поле, то можете легко рассчитать силу (величину и направление), действующую на любой электрический заряд, который вы поместите в поле.

Электрическое поле создается электрическим зарядом и сообщает нам силу на единицу заряда во всех местах в пространстве вокруг распределения заряда. Распределение заряда может быть одноточечным; распределение заряда, скажем, по плоской пластине; или более сложное распределение заряда. Электрическое поле распространяется в пространстве вокруг распределения заряда. Теперь рассмотрите возможность размещения пробного заряда в поле. Пробный заряд — это положительный электрический заряд, заряд которого настолько мал, что не возмущает существенно заряды, создающие электрическое поле. Электрическое поле действует на пробный заряд в заданном направлении. Приложенная сила пропорциональна заряду пробного заряда. Например, если мы удвоим заряд пробного заряда, сила, действующая на него, удвоится. Математически говоря, что электрическое поле представляет собой силу на единицу заряда, записывается как

E→=F→qtestE→=F→qtest

18.15

где мы рассматриваем только электрические силы. Обратите внимание, что электрическое поле представляет собой векторное поле, направленное в том же направлении, что и сила, действующая на положительный пробный заряд. Единицы электрического поля N/C.

Если электрическое поле создается точечным зарядом или сферой с однородным зарядом, то величина силы между этим точечным зарядом Q и пробным зарядом определяется законом Кулона

F=k|Qqtest|r2F =k|Qqtest|r2

, где используется абсолютное значение, потому что мы учитываем только величину силы. Тогда величина электрического поля равна

E=Fqtest=k|Q|r2.E=Fqtest=k|Q|r2.

18,16

Это уравнение дает величину электрического поля, создаваемого точечным зарядом Q . Расстояние r в знаменателе — это расстояние от точечного заряда Q или от центра сферического заряда до интересующей точки.

Если тестовый заряд удалить из электрического поля, электрическое поле все еще существует. Чтобы создать трехмерную карту электрического поля, представьте себе размещение пробного заряда в разных местах поля. В каждом месте измерьте силу, действующую на заряд, и используйте векторное уравнение E→=F→/qtestE→=F→/qtest для расчета электрического поля. Нарисуйте стрелку в каждой точке, где вы поместите пробный заряд, чтобы представить силу и направление электрического поля. Длина стрелок должна быть пропорциональна напряженности электрического поля. Если вы соедините эти стрелки вместе, вы получите линии. На рис. 18.17 показано изображение трехмерного электрического поля, создаваемого положительным зарядом.

Рисунок 18.17 Трехмерное представление электрического поля, создаваемого положительным зарядом.

Поддержка учителей

Поддержка учителей

[BL][OL]Укажите, что все силовые линии электрического поля берут начало от заряда.

[AL]Обратите внимание, что количество линий, пересекающих воображаемую сферу, окружающую заряд, одинаково независимо от того, какой размер сферы вы выберете. Спросите, могут ли учащиеся использовать это, чтобы показать, что количество силовых линий, пересекающих поверхность на единицу площади, показывает, что напряженность электрического поля уменьшается пропорционально обратному квадрату расстояния.

Простое рисование линий электрического поля в плоскости, пересекающей заряд, дает двумерные карты электрического поля, показанные на рис. 18.18. Слева — электрическое поле, создаваемое положительным зарядом, а справа — электрическое поле, создаваемое отрицательным зарядом.

Обратите внимание, что силовые линии электрического поля направлены от положительного заряда к отрицательному. Таким образом, положительный пробный заряд, помещенный в электрическое поле положительного заряда, будет отталкиваться. Это согласуется с законом Кулона, согласно которому одноименные заряды отталкиваются друг от друга. Если мы поместим положительный заряд в электрическое поле отрицательного заряда, положительный заряд притянется к отрицательному заряду. Противоположное верно для отрицательных тестовых зарядов. Таким образом, направление линий электрического поля согласуется с тем, что мы находим, используя закон Кулона.

Уравнение E=k|Q|/r2E=k|Q|/r2 говорит о том, что электрическое поле становится сильнее по мере приближения к заряду, который его генерирует. Например, на расстоянии 2 см от заряда Q ( r = 2 см) электрическое поле в четыре раза сильнее, чем на расстоянии 4 см от заряда ( r = 4 см). Снова взглянув на рис. 18.17 и рис. 18.18, мы видим, что линии электрического поля становятся более плотными по мере приближения к заряду, который их генерирует. На самом деле плотность линий электрического поля пропорциональна напряженности электрического поля!

Рисунок 18.18 Линии электрического поля от двух точечных зарядов. Красная точка слева несет заряд +1 нКл, а синяя точка справа несет заряд -1 нКл. Стрелки указывают направление, в котором будет двигаться положительный пробный заряд. Линии поля сгущаются по мере приближения к точечному заряду.

Карты электрического поля могут быть составлены для нескольких зарядов или для более сложных распределений зарядов. Электрическое поле от нескольких зарядов можно найти, сложив электрические поля от каждого отдельного заряда. Поскольку эта сумма может быть только одним числом, мы знаем, что только одна линия электрического поля может проходить через любую заданную точку. Другими словами, линии электрического поля не могут пересекаться.

На рис. 18.19(а) показана двумерная карта электрического поля, создаваемого зарядом + q и соседним зарядом – q . Трехмерная версия этой карты получается путем вращения этой карты вокруг оси, проходящей через оба заряда. Положительный пробный заряд, помещенный в это поле, будет испытывать силу в направлении силовых линий в его местоположении. Таким образом, он будет отталкиваться от положительного заряда и притягиваться к отрицательному заряду. Рисунок 18.19(b) показывает электрическое поле, создаваемое двумя зарядами − q . Обратите внимание, как силовые линии отталкиваются друг от друга и не перекрываются. Положительный пробный заряд, помещенный в это поле, будет притягиваться к обоим зарядам. Если вы находитесь далеко от этих двух зарядов, где далеко означает намного дальше, чем расстояние между зарядами, электрическое поле выглядит как электрическое поле от одного заряда -2 q .

Рисунок 18.19 (а) Электрическое поле, создаваемое точечным положительным зарядом (слева) и точечным отрицательным зарядом той же величины (справа). (б) Электрическое поле, создаваемое двумя равными отрицательными зарядами.

Поддержка учителей

Поддержка учителей

Попросите учащихся интерпретировать карты электрического поля. Где поле сильнее? Где поле слабее? В каком направлении поле увеличивается или уменьшается? Где поле наиболее однородно? Могут ли они проверить, что величина заряда одинакова в данной панели? Чем отличается поле двух отрицательных зарядов от поля положительного и отрицательного зарядов?

Виртуальная физика

Исследование электрического поля

Эта симуляция показывает вам электрическое поле из-за зарядов, которые вы размещаете на экране. Начните с установки верхнего флажка на панели параметров с правой стороны, чтобы отобразить электрическое поле. Перетащите заряды из ведер на экран, перемещайте их и наблюдайте за электрическим полем, которое они образуют. Чтобы более точно увидеть величину и направление электрического поля, перетащите датчик электрического поля или датчик электрического поля из нижнего ведра и перемещайте его по экрану.

Исследования PhET: заряды и поля. Перемещайте точечные заряды по игровому полю, а затем просматривайте электрическое поле, напряжения, эквипотенциальные линии и многое другое.

Нажмите, чтобы просмотреть содержимое

Два положительных заряда размещены на экране. Какое утверждение описывает электрическое поле, создаваемое зарядами?

  1. Постоянно везде.

  2. Рядом с каждым зарядом ноль.

  3. Между зарядками ноль.

  4. Наибольшая сила на полпути между зарядами.

Смотреть физику

Электростатика (часть 2): интерпретация электрического поля

В этом видеоролике объясняется, как рассчитать электрическое поле точечного заряда и как интерпретировать карты электрического поля в целом. Обратите внимание, что лектор использует d для расстояния между частицами вместо r . Обратите внимание, что точечные заряды бесконечно малы, поэтому все их заряды сосредоточены в одной точке. Когда рассматриваются более крупные заряженные объекты, расстояние между объектами должно измеряться между центрами объектов.

Проверка захвата

Верно или неверно — если точечный заряд имеет силовые линии электрического поля, которые указывают на него, заряд должен быть положительным.

  1. правда
  2. ложь

Рабочий пример

Какова плата?

Посмотрите на рисунок электрического поля на рис. 18.20. Какова относительная сила и знак трех зарядов?

Рисунок 18.20 Карта электрического поля трех заряженных частиц.

Стратегия

Мы знаем, что электрическое поле простирается от положительного заряда и заканчивается отрицательным зарядом. Мы также знаем, что количество силовых линий электрического поля, которые касаются заряда, пропорционально заряду. Заряд 1 имеет 12 полей, выходящих из него. В заряд 2 входит шесть силовых линий. В заряд 3 входит 12 силовых линий.

Решение

Линии электрического поля выходят из заряда 1, так что это положительный заряд. Линии электрического поля проходят через заряды 2 и 3, поэтому они являются отрицательными зарядами. Отношение зарядов равно q1:q2:q3=+12:-6:-12q1:q2:q3=+12:-6:-12. Таким образом, величина зарядов 1 и 3 вдвое превышает величину заряда 2.

Обсуждение

Хотя мы не можем определить точный заряд каждой частицы, мы можем получить много информации из электрического поля относительно величины и знака зарядов. и где сила пробного заряда будет наибольшей (или наименьшей).

Рабочий пример

Электрическое поле от дверной ручки

Дверная ручка, которую можно принять за сферический металлический проводник, приобретает заряд статического электричества q=-1,5 нКл. q=-1,5 нКл. Чему равно электрическое поле на расстоянии 1,0 см от дверной ручки? Диаметр дверной ручки 5,0 см.

Стратегия

Поскольку дверная ручка является проводником, весь заряд распределяется по внешней поверхности металла. Кроме того, поскольку дверная ручка считается идеально сферической, заряд на поверхности распределяется равномерно, поэтому мы можем рассматривать дверную ручку так, как если бы весь заряд был сосредоточен в центре дверной ручки. Справедливость этого упрощения будет доказана в следующем курсе физики. Теперь нарисуйте дверную ручку и определите вашу систему координат. Используйте +x+x, чтобы указать внешнее направление, перпендикулярное двери, с x=0x=0 в центре дверной ручки (как показано на рисунке ниже).

Если диаметр дверной ручки 5,0 см, ее радиус 2,5 см. Мы хотим знать электрическое поле на расстоянии 1,0 см от поверхности дверной ручки, что составляет расстояние r = 2,5 см + 1,0 см = 3,5 см, r = 2,5 см + 1,0 см = 3,5 см от центра дверной ручки. Мы можем использовать уравнение E=k|Q|r2E=k|Q|r2, чтобы найти величину электрического поля. Направление электрического поля определяется знаком заряда, который в данном случае отрицателен.

Раствор

Введение заряда Q=-1,5 нКл=-1,5×10-9.

Обсуждение

Похоже на огромное электрическое поле. К счастью, требуется электрическое поле примерно в 100 раз сильнее (3×106 Н/Кл3×106 Н/Кл), чтобы заставить воздух разлагаться и проводить электричество. Кроме того, вес взрослого человека составляет около 70 кг × 9,8 м/с2 ≈ 700 Н70 кг × 9,8 м/с2 ≈ 700 Н, так почему вы не чувствуете силы, действующей на протоны в вашей руке, когда вы тянетесь к дверной ручке? Причина в том, что ваша рука содержит равное количество отрицательного заряда, который отталкивает отрицательный заряд дверной ручки. Из-за поляризации в вашей руке может развиться очень небольшая сила, но вы никогда этого не заметите.

Практические задачи

15.

Какова величина электрического поля на расстоянии 20 см от точечного заряда q = 33 нКл?

  1. 7,4 × 10 3 Н/З
  2. 1,48 × 10 3 Н/З
  3. 7,4 × 10 12 Н/З
  4. 0

16.

Заряд -10 нКл находится в начале. В каком направлении электрическое поле от заряда указывает на x + 10 см?

  1. Электрическое поле направлено в сторону от отрицательных зарядов.
  2. Электрическое поле указывает на отрицательные заряды.
  3. Электрическое поле направлено в сторону положительных зарядов.
  4. Электрическое поле направлено в сторону от положительных зарядов.

Проверьте свое понимание

17.

Когда линии электрического поля сближаются, что это говорит вам об электрическом поле?

  1. Электрическое поле обратно пропорционально плотности линий электрического поля.
  2. Электрическое поле прямо пропорционально плотности линий электрического поля.
  3. Электрическое поле не связано с плотностью линий электрического поля.
  4. Электрическое поле обратно пропорционально квадратному корню из плотности силовых линий электрического поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *