Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

Способ №3 – Картошка в помощь!

Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

  • Если на срезе образовалось небольшое потемнение – это фазный проводник;
  • Никакой реакции не произошло – Вы «нащупали» ноль.

Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки.

Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

Наглядный видео урок по определению полярности без приборов своими руками

По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет.

Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель.

Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

  • Способы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Как определить ноль и фазу? Самые быстрые способы

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Правила работы с индикаторной отверткой

При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

  • Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
  • Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
  • Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
  • Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.

При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

  • Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
  • Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
  • В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как определить фазу и ноль

Индикаторная отвертка

Что такое фаза, как определить фазу и ноль в электричестве

Цвет проводов фаза, ноль, земля

Схема подключения люстры с 3 лампами

Как определить сечение провода

Народный способ

Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

Для определения понадобятся следующие элементы:

  • 2 многожильных провода, длиною около полуметра;
  • резистор номиналом на 1 МОм;
  • крупная картофелина.

Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Другие варианты проверки

Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный. Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией

При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно

Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

Замер сопротивления «кольца фаза-нуль»

Для планового контроля и своевременного обнаружения и устранения нарушений безопасности в электросети обеспечения её нормальной работы, проводятся систематические замеры сопротивления кольца фаза-нуль, так как причинами поломок приборов освещения являются сетевые перегрузки и короткое замыкание.

Самый быстрый и эффективный способ выявления и предотвращения таких случаев – это замер сопротивления.

Не всем известно, что значит понятие «кольцо фаза-нуль». Оно означает контур, созданный соединением нулевого проводника, расположенного в заземленной нейтрали. Замыкание этой электрической сети образует кольцо фаза-нуль.

Сопротивление в контуре измеряется:

  1. Падением напряжения в выключенной цепи.
  2. Падением напряжения вследствие сопротивления растущей нагрузки.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Как понять где фаза. Как найти фазу и ноль индикаторной отверткой: безопасные способы

Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет определение фазы, нуля и заземляющего проводника системы.

Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск нуля и фазы является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.

Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.

Что такое фаза и ноль в электричестве для новичка

Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.

Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.

Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.

Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.

Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.

Обозначение фазы и нуля буквы . Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.

Как определить фазу и ноль индикаторной отверткой

Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.

Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.

Как узнать где фаза а где ноль в розетке индикаторным пробником видео

Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.

Определение фазы и нуля мультиметром

Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит определить токонесущие провода в сети. Обязательным условием для его использования является предварительная зачистка проводов.

На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».

Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.

Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.

Главным правилом при использовании мультиметра является запрет на одновременное касание фазного провода и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.

Как найти фазу и ноль без приборов

Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.

Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.

Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров. Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам. Тот провод, при прикосновении к которому загорается лампочка, является фазным.

Определение фазы без индикатора и прибора видео

Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.

Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.

В заключении следует отметить, что ответ на вопрос «как определить фазу и ноль» имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.

В данной статье рассмотрим вопрос о том, как найти фазу и ноль при помощи пробника и мультиметра.

При необходимости обслуживания квартирной электрики, в частности замены розеток, выключателей освещения или проведении мелких ремонтных работ, возникает необходимость определения фазы и ноля. Если у человека есть некоторые познания в области основ электротехники, то ему не составит труда найти фазу и ноль. А что делать, если вы не имеете данных навыков? Поиск фазы и ноля не такой сложный процесс, как это может показаться. Рассмотрим несколько способов определения фазы и ноля.

Во-первых, определимся, что такое фаза и ноль. Вся наша энергосистема является трехфазной, в том числе и низковольтные линии, которые питают жилые дома и квартиры. Как правило, напряжение между двумя любыми фазами составляет 380 вольт – это линейное напряжение. Всем известно, что напряжение бытовой сети – 220 вольт. Как получить это напряжение?

Для этого в электроустановках рабочим напряжением 380 вольт предусмотрен нулевой провод. Если взять одну из фаз и нулевой провод, то между ними будет разность потенциалов в 220 вольт, то есть это фазное напряжение.

Для человека, не имеющего познаний в области электротехники, вышесказанное не очень понятно. Для нас важно знать, что в каждую квартиру или дом приходит одна фаза и один ноль. Подробно, что такое фаза и ноль рассмотрено .

Итак, у вас есть два провода и вам необходимо определить, какой из них фаза, а какой ноль. Во-первых, необходимо их обесточить путем отключения автоматического выключателя, который питает данную линию электрической проводки.

Затем необходимо зачистить оба провода, то есть снять с него 1-2 см изоляции. Зачищенные проводники необходимо немного развести, для того, чтобы при подаче напряжения не произошло короткого замыкания в результате их соприкосновения.

Следующий шаг – определение фазного провода. Включаем автомат, посредством которого подается напряжение на проводники. Берем индикаторную отвертку за рукоятку и одним пальцем прикасаемся до металлической части у основания рукоятки.

Помните, что категорически запрещено брать пробник ниже рукоятки, то есть за рабочую часть. Подносим пробник к одному из проводов и прикасаемся к нему рабочей частью. При этом палец остается на металлической части рукоятки.

Если лампочка индикаторной отвертки загорелась, то значит этот провод фазный, то есть фаза. Другой провод соответственно – ноль.

Если при прикосновении к проводу не загорается лампа пробника, то это нулевой провод. Соответственно другой провод – это фаза, проверить это можно прикосновением индикаторной отвертки.

А что делать, если проводка в квартире выполнена тремя проводами? В этом случае у вас есть не только фаза и ноль, но и . При помощи пробника можно без труда определить, где из трех проводов находится фаза.

Но как определить где ноль, а где защитный проводник, то есть заземляющий? В данном случае одной индикаторной отверткой не обойтись. Рассмотрим способ определения ноля в трехпроводной бытовой сети.

Определить где ноль, а где защитный (заземляющий проводник), можно при помощи мультиметра. Итак, мы уже определили фазный провод при помощи пробника. Берем мультиметр и включаем его на диапазон измерения переменного напряжения величиной 220 вольт и выше.

Берем два щупа измерительного прибора и прикасаемся одним из них к фазе, а другим к одному из двух оставшихся проводников. Фиксируем значение напряжения, которое показывает мультиметр.

Затем один из щупов оставляем на фазе, а другим прикасаемся к другому проводу и снова фиксируем значение напряжения. При прикосновении одновременно к фазе и к нулю будет показываться значение напряжение бытовой электросети, то есть примерно 220 вольт. Если прикоснуться к фазе и защитному проводнику, то значение напряжения будет несколько меньше предыдущего.

Если у вас нет пробника, то фазу можно найти и мультиметром. Для этого выбираем диапазон измерения переменного напряжения значением выше 220 вольт. К мультиметру подключены два щупа в гнезда «COM» и «V» соответственно.

Берем в руки тот щуп, который включен в гнездо с маркировкой «V» и прикасаемся им к проводникам. Если вы прикоснулись к фазе, то прибор покажет небольшое значение – 8-15 вольт. При прикосновении к нулевому проводу показания прибора останутся на нуле.

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке .

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.


На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.



В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года , который жестко регламентирует цветовую маркировку электрических проводов.

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый

Защитный ноль (земля или заземление) – желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый , красный и т.д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет . Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.


Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).


КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:


ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ


Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.


Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.


ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ


Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы . Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.


Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.


Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.


После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

– Если лампа не загорится (при наличии или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

– Если после смены положения лампа ненадолго вспыхнет , при этом сразу сработает или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

– Если линия не защищена или дифференциальным автоматом, и свет будет гореть в двух положениях . В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.


Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях . Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Для их подключения разработаны .

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой – двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем – высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр,

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр – оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр – эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра – специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы – остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

В одном положении вольтметр покажет что-то близкое к нолю, а в другом – 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод – рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было – привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Рассказать друзьям

13.06.2019

При возникновении необходимости определить нулевую и фазовую жилу не всегда рядом могут оказаться подходящие приборы. Идентифицировать проводники можно при помощи подручных средств, но при этом необходимо неукоснительно следовать правилам безопасности при обращении с электрическим током.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Проверка на контрольной лампочке

Сразу стоит оговориться, что этот способ проверки очень опасен. Все манипуляции рекомендуется проводить с учетом правил безопасности и только в резиновых перчатках.

Контрольную лампочку делают самостоятельно. Для этого нужны такие материалы:

  • обычная лампа накаливания с патроном в рабочем состоянии;
  • 2 многожильных проводка, длиною около полуметра.

Жилы крепят в разные разъемы патрона. Один провод подсоединяют к металлическому предмету, а другой – к жиле, которую необходимо идентифицировать.

Определить результат такой проверки очень просто.

Если лампочка загорелась – значит жила фазовая, если реакции не произошло – нулевая.

Кстати, если под рукой нет обычной лампочки, можно с таким же успехом осуществлять проверку при помощи неоновой лампы.

Народный способ

Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

Для определения понадобятся следующие элементы:

  • 2 многожильных провода, длиною около полуметра;
  • резистор номиналом на 1 МОм;
  • крупная картофелина.

Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

Очень важно, чтобы провода в картофелине были как можно дальше друг от друга.

Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

Раздел:

Простые способы определить фазу и ноль без приборов : 14 комментариев

  1. Юрий

    Текст из статьи Жилы крепят в разные разъемы патрона. Один провод подсоединяют к металлическому предмету, а другой – к жиле, которую необходимо идентифицировать.мои действия, один провод присоединяю к металлическому предмету(например гвоздь или поварешка,или столовая вилка она же из железа)
    Автор изучи ПУЭ иПТЭЭ использование контролек запрещено

  2. Александр

    Определить фазу и ноль? Элементарно, Ватсон; не понадобится никакого прибора и картошки! Проверка проводится – под напряжением(!!!). Делюсь собственным опытом: берешь просто обыкновенную отвертку подлинней, контачишь ею с интересуемым проводом, держа одной рукой за рукоятку отвертки, другой рукой – тыльной стороной сухой(!) руки (пальцами) – проводишь по металлической ее части. Если это – фаза, то рука ощущает “трение” об отвертку; если “трение” не ощущается, – провод нулевой. Эффект “трения” – от переменного тока 50гц. (!!!)Разумеется, при этом ты должен находиться в какой-либо сухой обуви, чтобы не контачить с полом (землей). И – да благославит вас святой Ом!

  3. Генри

    Специально для автора этой публикации персональная рекомендация-проверка фазы на язык. Для большей точности контроля встаньте босиком в лужу солёной воды. Внимание!!! это черный юмор, рекомендация смертельно опасна!!! Цветовая маркировка проводов это как зебра на пешеходном переходе, водитель обязан снизить скорость, только все ли ее снижают??? Так называемая лампа контролька не всегда может показать наличие фазы. Так же как и индикаторная отвертка. А для всех остальных: не надо экспериментировать с опасными вещами, в которых не понимаете. Для контроля напряжения есть обычные приборы:вольтметры-тестеры-мультиметры. Ну а если у Вас дома нет прибора(то скорее всего опыта тоже нет), то лучше пригласите электрика из ЖЭКа. Ну или другого профессионального мастера. Люди годами наратывают опыт, а тут автор пришел и все на пальцАх развел. Причем у всех людей есть зубы, но чёт я не вижу статей в сети, как запломбировать зуб в домашних условиях, или как удалить аппендикс ребенку до приезда скорой

  4. Николай

    Если у вас нет ничего из электроинструмента, позволяющего отличить фазу от ноля, то вы скорее всего не электрик, и следовательно не стоит вам вообще пытаться что-то выяснить… Вызовите профессионала и он решит ваши проблемы и возможно продлит вашу жизнь…
    А все эти советы-полнейшая и безответственная чушь.

  5. Михаил

    Никогда не делайте так как советуют в статье.В лучшем случае Вас ёпнет током.В худшем пожар и смерть!Приобретите отвертку-индикатор.Стоит копейки,но сэкономит очень много.А самое лучшее,вызвать специалиста.

  6. иван

    Автора надо отправить в 8 класс. А если он попадет своей лампочкой на 2 фазы, например, при прозвонке трехфазного мотора, он останется без глаз. В пробник надо ставить 2 лампочки 220 в., соединенные последовательно. И желательно поместить этот пробник в пластиковую прозрачную коробку, или пластмассовую, но с отверстиями. Да, они будут светить менее ярко, зато безопасно. А уж про бред с картошкой я и не читал. МРАК.

  7. Анатолий

    Замечательные способы! Надо бы посмотреть, как вы управитесь с контролькой в деревянном доме без водопровода и с печным отоплением

  8. zurukuk

    стоило городить?копеешный индикатор должен быть у каждого и не один!у спеца по любому есть,а не спецу нефуа экспериментировать!

  9. Павел

    Лайки любыми путями. Чушь полнейшая с диодом. Если у вас под рукой нет авометра, то резистора в 1 МОм точно не будет. Лампочка ильича и провод самый проверенный и надежный способ. В принципе любой электроприбор подойдет для проверки. Но не картофелина с резистором точно. минус 100 лайков за пост.

  10. Дмитрий

    Очень важно подчеркнуть!
    Если любой перечисленный тест не показал напряжения на жиле, это не дает уверенности на 100%, что эта жила нулевая!
    Причин отсутствия показаний может быть много (например, обрыв в одном из двух полуметровых кусков провода, или плохой контакт, и т.д. Вывод:
    Только тест на НАЛИЧИЕ напряжения дает гарантию 100%, что эта жила ФАЗОВАЯ. Тест же на НУЛЕВОЙ провод такой гарантии не дает!

  11. NNK_RTR

    Я электрик (45 лет стажа и дожил до пенсии).
    Случается, что нет под рукой никакого прибора для проверки наличия фазы (и вообще напряжения)
    1 способ: берешь отвертку правой рукой за нетокопроводящую рукоятку, внутренней стороной указательного пальца касаешься жала отвертки, так, чтобы при сжимании кулака палец соскользнул с жала отвертки. затем, поочередно касаешься проводов. Опасность метода зависит от помещения, полов в помещении и обуви. Если сухие деревянные полы, то метод не сработает. Если полы бетонные и сырые, то сработает, только Вам будет уже не интересен результат.
    2 способ: снимается изоляция с концов многожильного провода (длина провода 1 – 2 метра). Ближе к одному из концов снимается изоляция с поверхности провода и удаляются все жилы, коме одной (получается предохранитель). В стенку забивается гвоздь, к которому прикручивается конец, который ближе к предохранителю. Другим концом провода поочередно прикасаемся к проводам. Наличие фазы определяем по искре. Если нет возможности забить гвоздь, то ищем поблизости что нибудь связанное с землей (трубу водопровода, канализации. Решетку на окнах, батарею отопления, арматуру в стене…). Повторяем описанные в первом способе действия. Если контакт с землей хороший, то сгорит предохранитель (или выбьет штатная защита. (Не забываем, что искра может оказаться мощной. При первом касании к проводу закрываем глаза, Если “баха” не было, то смотрим на искру (есть она, или нет)

  12. Валентин

    Самый простой способ – послюнявить палец и поочередно потрогать все провода. Там, где фаза – должно немного щепать. (Данный способ не работает, если Вы стоите с мокрыми ногами в луже)

Как определить фазу, ноль и заземление самому, подручными средствами?

RozetkaOnline.ru – Электрика дома: статьи, обзоры, инструкции!

Как определить фазу, ноль и заземление самому, подручными средствами?

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом – как определить фазу, ноль и заземление у проводов, в месте монтажа?

В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у фас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?



Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке .


Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.


На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.


Маркировка проводов по цвету


Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.


Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.



В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года. который жестко регламентирует цветовую маркировку электрических проводов.


Согласно этому стандарту для квартирной электросети:


Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый


Защитный ноль (земля или заземление) – желто-зеленый провод


Фаза – Все остальные цвета среди которых – черный, белый, коричневый. красный и т.д.


Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д. в силу принципиально иной схемы работы этого электрооборудования.


Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).


КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ


Итак, начнем по порядку:


ОПРЕДЕЛЕНИЕ ФАЗЫ


Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ



Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.


Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.


Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.


Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.


ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ



Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.


Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.


Определить фазу и ноль из двух проводов


В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.


Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.


Найти фазу, ноль и заземление из трех проводов:


В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.


Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.



После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:


– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.


– Если после смены положения лампа ненадолго вспыхнет. при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.



Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.


А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

http://rozetkaonline.ru

Фаза ноль земля как определить мультиметром

Необходимость в определении фазы, ноля и заземления возникает при монтаже розеток, к которым подходят проводники без маркировки. Поэтому, перед установкой розетки, стоит выяснить, за что отвечает каждый конкретный провод.

Прочитав данную статью, вы сможете узнать как с помощью отвертки, мультиметра или подручных средств определить ноль, фазу и землю в сети.

Применение индикаторной отвертки

Двухпроводная сеть

С такой проводкой придется столкнуться жильцам старых домов. Обозначается этот вариант как TN-C и его суть в том, что нулевой провод, который заземлен на подстанции, также является и заземляющим. То есть, в двухпроводной сети вы просто не найдете заземляющего проводника, так как его функции выполняет ноль. Фаза с нолем определяется элементарно: приложите индикатор к каждой из жил, если произошло соприкосновение с фазой – загорится лампа индикатора.

Стоит заметить, что такой вариант проводки является устаревшим, так как на всех вилках новых электрических приборов предусмотрены три клеммы.

Способы определения ноля, фазы и заземления могут отличаться в зависимости от системы проводников, которые проходят в помещении.

Трехпроводная сеть

Такой тип сети предусматривает ввод в квартиру или дом трех проводников. Трехпроводная сеть делится на несколько видов. Если разбирать систему TN-S, то там защитное заземление и ноль выводятся от питающей подстанции отдельно.

Назначение проводов в таком типе электросети можно узнать таким путем:

  • в распредкоробке или щитке с помощью индикатора определить фазу;
  • оставшиеся – это ноль и защитное заземление. Стоит отсоединить один из проводов от щитка;
  • если вы отключили рабочий ноль, то все электрические приборы в помещении выключатся. Методом исключения получаем определение третьего проводника, который исполняет функции защитного заземления.

Теперь стоит узнать фазу, ноль и землю в розетке (в том случае, если они не указаны различными цветами обмотки). Возьмите патрон, в который вкручена лампа и выведены провода, и прикоснитесь одним из них к фазе, которую вы уже нашли индикатором. Вторым проводом, выходящим из патрона, по очереди прикоснитесь к двум оставшимся жилам. Если на щитке не включен ноль – лампа загорится только при соприкосновении с землей.

При обращении с разводкой типа TN-C-S, защитное заземление и ноль расходятся не от подстанции, а при вводе проводников в помещение. В таком случае стоит руководствоваться планом, который был описан для определения назначения проводов системы TN-S. Также, осмотрев место разделения PEN, по сечению жилы можно отличить рабочий ноль от заземления.

При выполнении заземления системой TT, дом оснащен собственным заземляющим устройством, от которого ведется разводка защиты. В данном случае ноль, фаза и земля определяются с помощью нахождения заземляющего провода по прокладочной трассе.

Использование тестера или мультиметра

С помощью мультиметра можно попытаться определить напряжение, проходящее между проводником и трубами водоснабжения или отопления. Однако здесь не будет стопроцентно верного результата. Зачастую напряжение между фазой и системой водоснабжения или отопления приравнивается к 220 В (в любом случае, напряжение должно быть выше чем его показатель между отопительной трубой и нулем). Но нарушить ваши измерения может, к примеру, сосед, который «отматывает» электричество, выбрав для этого отопительную трубу в качестве заземления.

Безусловно, лучшим прибором для определения фазы является отвертка, которая совмещена с индикатором. Хотелось бы верить, что у любого хозяина, обладающего мультиметром, наверняка есть и индикатор.

Если вы используете мультиметр для определения назначения проводников в трехпроводной фазе, то он может показать напряжение между фазой и одним из двух оставшихся проводов. Узнав, таким образом, фазу, вы сможете воспользоваться вышеприведенной методикой и определить защитный ноль и рабочий. Речь идет об отсоединении одного из нулей и определении их назначения с помощью лампы в патроне.

Что еще нужно принять к сведению

Изучив маркировку токоведущих жил, вы сможете облегчить себе задачу выяснения их назначения:

  • маркировкой земли являются латинские буквы PE. При объединении функций рабочего и защитного нуля, следует маркировка PEN. Используется изоляция желтого цвета, с одной или двумя полосами зеленого цвета;
  • ноль обозначается как N, его изоляция выполнена в синем или голубом цвете. Также иногда встречается с белой полосой на синем фоне;
  • маркировкой фазы является латинская буква L. В случае трехфазной сети, обозначением будут служить буквы A, B или С. Изоляция выполняется в любом цвете, кроме вышеперечисленных. Практический во всех случаях, это черный, красный или коричневый цвет.

Зачастую определение фазы, ноля и земли с помощью отвертки или тестера является крайней мерой, так как большинство проводов маркируются с помощью различных цветов или буквенных обозначений.

Если вы знакомы с правилами монтажа электропроводки, то для вас не будет проблемой определение фазы, ноля и земли. Фаза приходит в щиток на плавкий предохранитель или электрический выключатель. Ноль крепится на шине, которая оснащена несколькими клеммами. Также в старых щитках и клеммных ящиках земля и ноль монтировались болтом под гайку, который был приварен к корпусу ящика.

Полезное видео

Дополнительную информацию по данному вопросу вы сможете получить из видео ниже:

Заключение

После прочтения статьи вы наверняка не испытаете проблем с определением назначения проводников в помещении и сможете сделать это самостоятельно с применением одного из вышеописанных средств.

Нулевой фазовый отклик цифрового фильтра

Синтаксис

[Hr, w] = нулевая фаза (b, a)
[Hr, w] = нулевая фаза (sos)
[Hr, w] = нулевая фаза (d)
[ Hr, w] = нулевая фаза (..., nfft)
[Hr, w] = нулевая фаза (..., nfft, 'целое')
[Hr, w] = нулевая фаза (..., w)
[Hr , f] = нулевая фаза (..., f, fs)
[Hr, w, phi] = нулевая фаза (...)
нулевая фаза (...)

Описание

[Hr, w] = zerophase (b, a) возвращает нулевой фазовый отклик Hr , а частотный вектор w (в радиан / образец), при котором Hr вычисляется , учитывая фильтр определяется числителем b и знаменателем a .Для КИХ-фильтров, где a = 1 , вы можете опустить значение a из команда. Отклик при нулевой фазе оценивается равным 512 . точки на верхней половине единичной окружности.

Нулевой фазовый отклик, H r ( ω ), относится к частотной характеристике, H ( e ), на

, где φ ( ω ) непрерывная фаза.

Примечание

Отклик при нулевой фазе всегда реален, но не эквивалентен отклика величины.Первое может быть отрицательным, а второе не может быть отрицательным.

[Hr, w] = zerophase (sos) возвращает нулевую фазу ответ для матрицы разделов второго порядка, sos . sos есть а К -по-6 матрица, где количество секций, К , должно быть больше или равно 2. Если количество разделов меньше чем 2, нулевая фаза считает вход вектор числителя, b . Каждой строке sos соответствует к коэффициентам фильтра второго порядка (биквадратного). и -й Строка матрицы sos соответствует [bi (1) bi (2) bi (3) ai (1) ai (2) ai (3)] .

[Hr, w] = zerophase (d) возвращает нулевую фазу ответ для цифрового фильтра, d . Используйте designfilt для создания d на основе по характеристикам частотной характеристики.

[Hr, w] = zerophase (..., nfft) возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка), используя nfft частотных точек на верхней половине единичный круг.Для достижения наилучших результатов установите nfft на значение больше, чем порядок фильтрации.

[Hr, w] = zerophase (..., nfft, 'целое') возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка), используя nfft частотных точек вокруг всего блока круг.

[Hr, w] = zerophase (..., w) возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка) на частотах в векторе w .Вектор w должен иметь как минимум два элемента.

[Hr, f] = zerophase (..., f, fs) возвращает нулевой фазовый отклик Hr и частотный вектор f (Гц), используя частоту дискретизации фс (в Гц), чтобы определить вектор частоты f (в Гц), при котором Hr составляет вычислено. Вектор f должен иметь как минимум два элемента.

[Hr, w, phi] = zerophase (...) возвращает нулевой фазовый отклик Hr , частотный вектор Вт (рад / выборка), и компонент непрерывной фазы, phi .(Примечание что эта величина не эквивалентна фазовой характеристике фильтр, когда нулевой фазовый отклик отрицательный.)

нулевая фаза (...) строит график нулевого фазового отклика в зависимости от частота. Если вы введете коэффициенты фильтра или матрицу секций второго порядка, используется окно текущего рисунка. Если вы вводите digitalFilter , переходная характеристика отображается в FVTool .

Примечание

Если вход в нулевую фазу имеет одинарную точность, характеристика с нулевой фазой рассчитывается с использованием арифметики с одинарной точностью.Результат – Hr – одинарной точности.

Найдите фазовый сдвиг функции синуса или косинуса

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса – изображению, ссылке, тексту и т. д. – относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

фаза | механика | Britannica

phase , в механике вибраций, доля периода (т.е.времени, необходимого для завершения полного цикла), который точка завершает после последнего прохождения через опорное или нулевое положение.Например, исходное положение стрелок часов находится на цифре 12, а минутная стрелка имеет период в один час. В четверть часа минутная стрелка имеет фазу в одну четверть периода, пройдя фазовый угол 90 °, или π /2 радиан. В этом примере движение минутной стрелки представляет собой равномерное круговое движение, но понятие фазы также применимо к простому гармоническому движению, например, которое испытывают волны и колеблющиеся тела.

Если положение точки или частицы y изменяется в соответствии с простым гармоническим законом, то оно изменится во времени t в соответствии с произведением амплитуды или максимального смещения, r, частицы и функция синуса или косинуса, состоящая из его угловой скорости, обозначаемой греческой буквой омега ( ω ), времени t, и так называемого угла, обозначаемого греческой буквой эпсилон ( ε ): y = r sin ( ωt + ε ).Угол ( ωt + ε ) называется фазовым углом в момент времени t, , который в нулевой момент времени равен ε . Сама фаза является дробной величиной – отношение прошедшего времени t к периоду T, или t / T – и равна отношению фазового угла к углу полного цикла, 360 °, или 2 π радиан. Таким образом, фаза для равномерного кругового или гармонического движения имеет значение ( ωt + ε ) / 2 π .Применяя это выражение к приведенному выше примеру движущейся минутной стрелки, ε равно нулю (нулевой фазовый угол в нулевой момент времени), угловая скорость составляет 2 π радиан в час, а время t равно 1 /. 4 час, что дает фазу 1 / 4 .

Подробнее по этой теме

Электрогенератор

: фазы

Напряжения, наведенные в отдельных катушках распределенной обмотки на Рисунке 3, несколько смещены во времени друг от друга.В результате …

При сравнении фаз двух или более периодических движений, таких как волны, считается, что движения находятся в фазе, когда соответствующие точки одновременно достигают максимального или минимального смещения. Если гребни двух волн проходят одну и ту же точку или линию в одно и то же время, то они находятся в фазе для этого положения; однако, если гребень одного и впадина другого проходят одновременно, фазовые углы различаются на 180 °, или π радиан, и волны считаются не в фазе (в данном случае на 180 °). ).

Измерение разности фаз имеет центральное значение в технике переменного тока. На схеме две кривые представляют напряжение ( E ) и ток ( I ) в цепи переменного тока (AC) с чистой индуктивностью. Разница фазового угла между напряжением и током составляет 90 °, и считается, что ток отстает на четверть цикла по фазе. Это отставание видно на диаграмме. При передаче электроэнергии переменного тока термины многофазный и многофазный применяются к токам, которые не совпадают по фазе друг с другом.В двухфазной системе есть два тока с разностью фаз 90 °; в трехфазной системе токи различаются по фазовому углу на 120 °.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Руководство для ученых и инженеров по цифровой обработке сигналов Стивен В. Смит, доктор философии.

Фильтр может иметь три типа фазовой характеристики : нулевая фаза, линейная фаза и нелинейная фаза. Пример каждого из них показан на рисунке. 19-7.Как показано на (а), фильтр с нулевой фазой характеризуется импульсным ответ, симметричный относительно нулевой выборки. Фактическая форма не Дело только в том, что образцы с отрицательными номерами являются зеркальным отражением положительные пронумерованные образцы. При преобразовании Фурье этого симметричная форма сигнала, фаза будет полностью равна нулю, как показано на (b).

Недостаток фильтра нулевой фазы в том, что он требует использования отрицательного индексы, с которыми может быть неудобно работать.Линейный фазовый фильтр представляет собой способ обойти это. Импульсная характеристика на (d) идентична показанной на (a), за исключением того, что он был изменен на использование только образцов с положительными номерами. Импульс ответ остается симметричным между левым и правым; однако расположение симметрии сдвинута с нуля. Этот сдвиг приводит к фазе (e), являясь прямой линией , с учетом названия: линейная фаза . Наклон этого прямая линия прямо пропорциональна величине сдвига.Поскольку сдвиг в импульсной характеристике ничего не делает, но производит идентичный сдвиг на выходе сигнала, линейный фазовый фильтр эквивалентен нулевому фазовому фильтру для большинства целей.

На рисунке (g) показан импульсный отклик , а не симметрично между левыми и правильно. Соответственно, фаза (h) – это , а не – прямая линия. Другими словами, он имеет нелинейную фазу . Не путайте термины: нелинейная фаза и линейная фаза с концепцией линейности системы , обсуждаемой в главе 5.Хотя оба используют слово линейное , они не связаны.

Почему кого-то волнует, линейна фаза или нет? Рисунки (c), (f) и (i) покажи ответ. Это импульсные характеристики каждого из трех фильтров. В импульсный отклик – это не что иное, как положительный переходный отклик, за которым следует отрицательный переходный отклик. Здесь используется импульсный отклик, потому что он отображает, что происходит с нарастающим и спадающим фронтами сигнала.Вот это важная часть: нулевой и линейный фазовые фильтры имеют левый и правый края, которые посмотрите, как тот же , в то время как нелинейные фазовые фильтры имеют левый и правый края, которые выглядят разных . Многие приложения не могут допустить, чтобы левый и правый края смотрели другой. Одним из примеров является дисплей осциллографа, где эта разница может быть неверно истолкован как особенность измеряемого сигнала. Другой пример находится в обработке видео. Можете ли вы представить, как включаете телевизор, чтобы найти левое ухо вашего любимого актера отличается от его правого уха?

КИХ-фильтр (с конечной импульсной характеристикой) легко сделать с линейной фазой.Это связано с тем, что импульсная характеристика (ядро фильтра) прямо задается в процесс проектирования. Чтобы ядро ​​фильтра имело лево-правую симметрию, это все, что нужно требуется. Это не относится к БИХ (рекурсивным) фильтрам, поскольку рекурсия коэффициенты – это то, что указано, а не импульсная характеристика. Импульс ответ рекурсивного фильтра – , а не симметрично между левым и правым, и поэтому имеет нелинейную фазу .

Аналоговые электронные схемы имеют ту же проблему с фазовой характеристикой. Представьте себе схему, состоящую из резисторов и конденсаторов, стоящую на вашем столе. Если вход всегда был нулевым, выход также всегда был нулевым. Когда на вход подается импульс, конденсаторы быстро заряжаются до некоторой значение, а затем начинают экспоненциально затухать через резисторы. Импульс отклик (т.е. выходной сигнал) представляет собой комбинацию этих различных затухающих экспоненты.Импульсная характеристика не может быть симметричной , потому что выходной сигнал был равен нулю перед импульсом, и экспоненциальный спад никогда не достигает значение снова ноль. Разработчики аналоговых фильтров решают эту проблему с помощью фильтра Бесселя. фильтр, представленный в главе 3. Фильтр Бесселя разработан так, чтобы иметь как линейный фаза по возможности; однако он намного ниже характеристик цифровых фильтров. В Возможность обеспечить точную линейную фазу является явным преимуществом цифровых фильтров.

К счастью, есть простой способ изменить рекурсивные фильтры, чтобы получить ноль. фаза . На рис. 19-8 показан пример того, как это работает. Входной сигнал на быть отфильтрованным показано в (а). На рисунке (b) показан сигнал после фильтрации. однополюсным фильтром нижних частот. Поскольку это нелинейный фазовый фильтр, левый и правые края не выглядят одинаково; они являются перевернутыми версиями друг друга. Как описано ранее, этот рекурсивный фильтр реализуется, начиная с выборка 0 и работа в направлении выборки 150, вычисляя каждую выборку по способ.

Теперь предположим, что вместо перехода от образца 0 к образцу 150 мы начните с выборки 150 и двигайтесь к выборке 0. Другими словами, каждая выборка в выходной сигнал вычисляется из входных и выходных отсчетов на правый образец в стадии разработки. Это означает, что рекурсивное уравнение Eq. 19-1, это изменено на:

На рисунке (c) показан результат этой обратной фильтрации. Это аналогично передача аналогового сигнала через электронную RC-цепь во время работы назад .! esrevinu eht pu-wercs nac lasrever emit -noituaC

Фильтрация в обратном направлении сама по себе не приносит никакой пользы; в Отфильтрованный сигнал по-прежнему имеет различный левый и правый края. Магия происходит, когда прямая и обратная фильтрация объединены . Рисунок (d) результаты от фильтрации сигнала в прямом направлении, а затем снова фильтрации в обратное направление. Вуаля! Это создает рекурсивный фильтр с нулевой фазой .По факту, любой рекурсивный фильтр может быть преобразован в нулевую фазу с помощью этого двунаправленного техника фильтрации. Единственный штраф за эту улучшенную производительность – фактор двух по времени выполнения и сложности программы.

Как найти импульсные и частотные характеристики всего фильтра? В величина АЧХ одинакова для каждого направления, а фазы противоположны по знаку. Когда два направления объединяются, величина становится в квадрате , а фаза сокращается до нуля .В то время области, это соответствует свертке исходной импульсной характеристики с слева направо перевернутая версия самого себя. Например, импульсная характеристика однополюсный фильтр нижних частот представляет собой одностороннюю экспоненту. Импульсный отклик соответствующий двунаправленный фильтр представляет собой одностороннюю экспоненту, которая затухает до правая, свернутая с односторонней экспонентой, которая убывает влево. Собирается с помощью математики это оказывается двусторонней экспонентой, которая распадается как влево, так и вправо, с той же постоянной распада, что и исходный фильтр.

Некоторые приложения передают в компьютер только часть сигнала. конкретное время, например, системы, которые поочередно вводят и выводят данные на на постоянной основе. В этих случаях может использоваться двунаправленная фильтрация. комбинируя его с методом перекрытия-добавления, описанным в предыдущей главе. Когда вы приходите к вопросу о том, как долго длится импульсный отклик, не говорите “бесконечный”. Если вы это сделаете, вам нужно будет заполнить каждый сегмент сигнала бесконечным количество нулей.Помните, что импульсную характеристику можно обрезать, если она затухает ниже уровня шума округления, то есть примерно от 15 до 20 постоянных времени. Каждый сегмент необходимо дополнить нулями слева и справа, чтобы учитывайте расширение во время двунаправленной фильтрации.

Дифференциальные уравнения – фазовая плоскость

Показать уведомление для мобильных устройств Показать все заметки Скрыть все заметки

Похоже, вы используете устройство с “узкой” шириной экрана ( i.е. вы, вероятно, разговариваете по мобильному телефону). Из-за особенностей математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в альбомном режиме, многие уравнения будут отображаться сбоку от вашего устройства (вы сможете прокручивать их, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

Раздел 5-6: Фазовая плоскость

Прежде чем приступить к фактическому решению систем дифференциальных уравнений, есть одна тема, на которую нам нужно обратить внимание.Это тема, которую не всегда преподают на занятиях по дифференциальным уравнениям, но если вы изучаете курс, в котором она преподается, мы должны охватить ее, чтобы вы были к ней подготовлены.

Начнем с общей однородной системы,

\ [\ begin {уравнение} \ vec x ‘= A \ vec x \ label {eq: eq1} \ end {уравнение} \]

Обратите внимание, что

\ [\ vec x = \ vec 0 \]

– решение системы дифференциальных уравнений. Мы хотели бы спросить, приближаются ли другие решения системы к этому решению по мере увеличения \ (t \) или они отходят от этого решения? Мы сделали нечто подобное, когда классифицировали равновесные решения в предыдущем разделе.Фактически, то, что мы здесь делаем, является просто расширением этой идеи на системы дифференциальных уравнений.

Решение \ (\ vec x = \ vec 0 \) называется равновесным решением для системы. Как и в случае с одним дифференциальным уравнением, равновесными решениями являются те решения, для которых

\ [A \ vec x = \ vec 0 \]

Мы собираемся предположить, что \ (A \) – невырожденная матрица и, следовательно, будет иметь только одно решение,

\ [\ vec x = \ vec 0 \]

и поэтому у нас будет только одно равновесное решение.

Возвращаясь к случаю одного дифференциального уравнения, вспомните, что мы начали с выбора значений \ (y \) и включения их в функцию \ (f (y) \) для определения значений \ (y ‘\). Затем мы использовали эти значения, чтобы нарисовать касательные к решению при этом конкретном значении \ (y \). Исходя из этого, мы могли бы набросать некоторые решения и использовать эту информацию для классификации равновесных решений.

Мы собираемся сделать что-то похожее здесь, но оно также будет немного другим.Во-первых, мы собираемся ограничиться случаем \ (2 \ times 2 \). Итак, мы рассмотрим системы вида

\ [\ begin {array} {* {20} {c}} \ begin {align *} {{x ‘} _ 1} & = a {x_1} + b {x_2} \\ {{x’} _ 2} & = c {x_1} + d {x_2} \ end {align *} & {\ hspace {0,25 дюйма} \ Rightarrow \ hspace {0,25 дюйма} \ hspace {0,25 дюйма} \ vec x ‘= \ left ({\ begin { array} {* {20} {c}} a & b \\ c & d \ end {array}} \ right) \ vec x} \ end {array} \]

Решения этой системы будут иметь вид

\ [\ vec x = \ left ({\ begin {array} {* {20} {c}} {{x_1} \ left (t \ right)} \\ {{x_2} \ left (t \ right)} \ end {array}} \ right) \]

и наше единственное равновесное решение будет

\ [\ vec x = \ left ({\ begin {array} {* {20} {c}} 0 \\ 0 \ end {array}} \ right) \]

В случае одного дифференциального уравнения мы смогли набросать решение \ (y (t) \) в плоскости y-t и увидеть фактические решения.Однако в данном случае это было бы несколько сложно, поскольку наши решения на самом деле являются векторами. Мы собираемся представить решения системы как точки на плоскости \ ({x_1} \, {x_2} \) и построить эти точки. Наше равновесное решение будет соответствовать началу координат \ ({x_1} \, {x_2} \). плоскость, а плоскость \ ({x_1} \, {x_2} \) называется фазовой плоскостью .

Чтобы набросать решение на фазовой плоскости, мы можем выбрать значения \ (t \) и вставить их в решение.Это дает нам точку на \ ({x_1} \, {x_2} \) или фазовой плоскости, которую мы можем построить. Выполнение этого для многих значений \ (t \) даст нам набросок того, что решение будет делать на фазовой плоскости. Набросок конкретного решения на фазовой плоскости называется траекторией решения. После того, как мы набросали траекторию решения, мы можем спросить, приближается ли решение к равновесному при увеличении \ (t \).

Мы хотели бы иметь возможность рисовать траектории, не имея реальных решений.Есть несколько способов сделать это. Мы рассмотрим один из них здесь, а другой – в следующих нескольких разделах.

Один из способов получить набросок траекторий – это сделать что-то похожее на то, что мы сделали в первый раз, когда рассматривали равновесные решения. Мы можем выбрать значения \ (\ vec x \) (обратите внимание, что это будут точки на фазовой плоскости) и вычислить \ (A \ vec x \). Это даст вектор, который представляет \ (\ vec x ‘\) в этом конкретном решении. Как и в случае с одним дифференциальным уравнением, этот вектор будет касаться траектории в этой точке.Мы можем нарисовать связку касательных векторов, а затем нарисовать траектории.

Это довольно трудоемкий способ сделать это, и это не способ делать их в целом. Однако это способ получить траектории без каких-либо решений. Все, что нам нужно, это система дифференциальных уравнений. Давайте быстро рассмотрим пример.

Пример 1 Нарисуйте некоторые траектории системы, \ [\ begin {array} {* {20} {c}} \ begin {align *} {{x ‘} _ 1} & = {x_1} + 2 {x_2} \\ {{x’} _ 2} & = 3 {x_1} + 2 {x_2} \ end {align *} & {\ hspace {0.25 дюймов} \ Rightarrow \ hspace {0,25 дюйма} \ vec x ‘= \ left ({\ begin {array} {* {20} {c}} 1 & 2 \\ 3 & 2 \ end {array}} \ right) \ vec x} \ конец {массив} \] Показать решение

Итак, что нам нужно сделать, это выбрать несколько точек на фазовой плоскости, подключить их к правой стороне системы. Сделаем это для пары точек.

\ [\ begin {align *} \ vec x & = \ left ({\ begin {array} {* {20} {c}} {- 1} \\ 1 \ end {array}} \ right) & \ Rightarrow \ hspace {0,25 дюйма} \ vec x ‘& = \ left ({\ begin {array} {* {20} {c}} 1 & 2 \\ 3 & 2 \ end {array}} \ right) \ left ({\ begin { массив} {* {20} {c}} {- 1} \\ 1 \ end {array}} \ right) = \ left ({\ begin {array} {* {20} {c}} 1 \\ { – 1} \ end {array}} \ right) \\ \ vec x & = \ left ({\ begin {array} {* {20} {c}} 2 \\ 0 \ end {array}} \ right) & \ Rightarrow \ hspace {0.25 дюймов} \ vec x ‘& = \ left ({\ begin {array} {* {20} {c}} 1 & 2 \\ 3 & 2 \ end {array}} \ right) \ left ({\ begin {array} {* {20} {c}} 2 \\ 0 \ end {array}} \ right) = \ left ({\ begin {array} {* {20} {c}} 2 \\ 6 \ end {array}} \ справа) \ hspace {0,25 дюйма} \\ \ vec x & = \ left ({\ begin {array} {* {20} {c}} {- 3} \\ {- 2} \ end {array}} \ right) & \ Rightarrow \ hspace {0,25 дюйма } \ vec x ‘& = \ left ({\ begin {array} {* {20} {c}} 1 & 2 \\ 3 & 2 \ end {array}} \ right) \ left ({\ begin {array} {* { 20} {c}} {- 3} \\ {- 2} \ end {array}} \ right) = \ left ({\ begin {array} {* {20} {c}} {- 7} \\ {- 13} \ end {array}} \ right) \ hspace {0.25 дюймов} \ end {align *} \]

Итак, что это нам говорит? В точке \ (\ left ({- 1,1} \ right) \) на фазовой плоскости будет вектор, указывающий в направлении \ (\ left \ langle {1, – 1} \ right \ rangle \ ). В точке \ (\ left ({2,0} \ right) \) будет вектор, указывающий в направлении \ (\ left \ langle {2,6} \ right \ rangle \). В точке \ (\ left ({- 3, – 2} \ right) \) будет вектор, указывающий в направлении \ (\ left \ langle {- 7, – 13} \ right \ rangle \).

Выполнение этого для большого количества точек на фазовой плоскости даст следующий набросок векторов.

Теперь все, что нам нужно сделать, это набросать несколько траекторий. Для этого все, что нам нужно сделать, это помнить, что векторы на скетче выше касаются траекторий. Кроме того, направление векторов задает направление траектории при увеличении \ (t \), поэтому мы можем показать зависимость решения от времени, добавив стрелки к траекториям.

Это дает следующий набросок.

Этот эскиз называется фазовым портретом . Обычно фазовые портреты включают только траектории решений, а не векторы. Все наши фазовые портреты от этой точки будут включать только траектории.

В этом случае похоже, что большинство решений начинаются с равновесного решения, а затем, когда \ (t \) начинает увеличиваться, они продвигаются к равновесному раствору, а затем в конечном итоге снова начинают отходить от равновесного решения.

Кажется, есть четыре решения, которые немного различаются по поведению. Похоже, что два решения начнутся с (или, по крайней мере, около) равновесного раствора, а затем будут двигаться прямо от него, в то время как два других решения начнутся от равновесного решения, а затем будут двигаться прямо к равновесному раствору.

В таких случаях мы называем точку равновесия седловой точкой , а точку равновесия в этом случае нестабильной , поскольку все решения, кроме двух, удаляются от нее по мере увеличения \ (t \).

Как мы отметили ранее, мы обычно не будем рисовать траектории таким способом. Все, что нам действительно нужно для получения траекторий, – это собственные значения и собственные векторы матрицы \ (A \). Мы увидим, как это сделать, в следующих двух разделах по мере решения систем.

Вот еще несколько фазовых портретов, чтобы вы могли увидеть еще несколько возможных примеров. На самом деле мы создадим несколько из них в течение следующих нескольких разделов.

Здесь показаны не все возможные фазовые портреты. Они здесь, чтобы показать вам некоторые возможности. Обязательно обратите внимание на то, что несколько видов могут быть асимптотически устойчивыми или нестабильными в зависимости от направления стрелок.

Обратите внимание на разницу между стабильным и асимптотически стабильным . В асимптотически устойчивом узле или спирали все траектории будут двигаться к точке равновесия по мере увеличения t , тогда как центральная (которая всегда устойчива) траектория будет просто перемещаться вокруг точки равновесия, но на самом деле никогда не будет приближаться к ней.

Типы и фазы клинических исследований

Клинические испытания – это исследования новых лекарств, уже одобренных лекарств, устройств или других форм лечения. Во многих клинических испытаниях рассматриваются новые способы обнаружения, диагностики или измерения степени заболевания. Некоторые даже ищут способы предотвратить появление болезней. Исследователи до сих пор используют добровольцев для тестирования этих методов, и применяются те же правила.

Врачи используют клинические испытания, чтобы узнать, работает ли новое лекарство, лечение или комбинация и безопасно ли их использовать для людей.Клинические испытания важны для разработки новых методов лечения серьезных заболеваний, таких как рак. Все новые методы лечения должны пройти клинические испытания, прежде чем они будут одобрены Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA). Для завершения клинических испытаний рака могут потребоваться годы. Могут потребоваться месяцы, если не годы, чтобы увидеть, дает ли лечение рака то, для чего оно предназначено.

Зачем нужны клинические испытания?

Клинические испытания показывают нам, что работает (а что нет) в медицине и здравоохранении.Это лучший способ узнать, что работает при лечении таких заболеваний, как рак. Клинические испытания призваны ответить на некоторые важные вопросы:

  • Работает ли новое лечение у людей? Если это так, врачи также будут проверять, насколько хорошо это работает. Это лучше, чем применяемое сейчас лечение? Если не лучше, так ли он хорош и вызывает меньше побочных эффектов? Или это работает у некоторых людей, которым текущие методы лечения не помогают?
  • Безопасно ли новое лечение? Ни одно лечение или процедура, даже если они уже широко используются, не обходятся без риска.Но перевешивают ли преимущества нового лечения риски?
  • Лучше ли это лечение, чем стандартное лечение этого заболевания? Клинические испытания помогают показать, работает ли новый препарат, лечение или новая комбинация лечения лучше, чем то, что используется сейчас.

Чтобы ответить на эти вопросы, давая как можно меньше людей неизвестное лечение, часто требуется несколько клинических испытаний на разных «фазах». Каждый этап предназначен для ответа на определенные вопросы, обеспечивая при этом максимальную безопасность участников.Результаты этих фаз показывают, является ли новое лекарство или лечение достаточно безопасным и эффективным.

Доклинические (или лабораторные) исследования

Клинические испытания проводятся только после того, как доклинические данные свидетельствуют о том, что новый препарат или лечение, вероятно, будут безопасными и будут работать на людях.

Доклинические исследования, также называемые лабораторными исследованиями, включают:

  • Клеточные исследования: часто это первые тесты нового лечения. Чтобы увидеть, может ли это сработать, исследователи ищут влияние нового лечения на раковые клетки, выращенные в лабораторной посуде или пробирке.Эти исследования могут проводиться на раковых клетках человека или раковых клетках животных.
  • Исследования на животных: методы лечения, которые выглядят многообещающими в клеточных исследованиях, проверяются на раковых заболеваниях у живых животных. Это дает исследователям представление о том, насколько безопасно новое лечение для живого существа.

Доклинические исследования дают много полезной информации, но не все, что необходимо. Люди и мыши могут сильно отличаться по способам усвоения, обработки и избавления от лекарств или лечения. Лечение, которое работает против рака у мышей, может работать или не работать у людей.Также могут быть побочные эффекты и другие проблемы, которые не проявлялись при лечении мышей, но могли проявляться у людей.

Если доклинические исследования завершены, а лечение все еще кажется многообещающим, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) должно дать разрешение, прежде чем лечение можно будет протестировать на людях.

Заявка на новый исследуемый препарат (IND)

Прежде чем можно будет начать клиническое испытание, оно должно быть одобрено. Если исследователи хотят изучить лекарство на людях, необходимо подать заявку или запрос на новый исследуемый препарат или IND.Приложение IND должно содержать определенную информацию, например:

  • Результаты исследований, чтобы FDA могло решить, безопасно ли лечение для тестирования на людях.
  • Как производится лекарство, кто его производит, что в нем содержится, насколько оно стабильно и т. Д.
  • Подробные схемы запланированных клинических исследований, называемых протоколами исследований, рассматриваются, чтобы увидеть, могут ли люди подвергаться ненужным рискам.
  • Подробная информация о группе клинических испытаний, чтобы узнать, обладают ли они знаниями и навыками для проведения клинических испытаний.

Спонсор исследования должен взять на себя обязательство получить информированное согласие всех участников клинического исследования. Они также должны взять на себя обязательство о том, чтобы исследование было рассмотрено институциональным наблюдательным советом (IRB), и следовало всем правилам, необходимым для изучения исследуемых новых лекарств

Этапы клинических исследований

Клинические испытания обычно проводятся по этапам, которые дополняют друг друга. Каждый этап предназначен для ответа на определенные вопросы. Знание фазы клинического исследования важно, потому что это может дать вам некоторое представление о том, сколько известно об изучаемом лечении.Участие в каждой фазе клинического исследования сопряжено с преимуществами и рисками.

Несмотря на то, что проводятся клинические испытания устройств, а также других заболеваний и методов лечения, лекарства для больных раком используются в примерах фаз клинических испытаний, описанных здесь.

Клинические испытания фазы 0: изучение того, может ли и как новый препарат работать

Несмотря на то, что исследования фазы 0 проводятся на людях, этот тип исследований не похож на другие фазы клинических испытаний. Цель этого этапа – ускорить и упростить процесс утверждения лекарств.Исследования фазы 0 могут помочь исследователям выяснить, действуют ли лекарства так, как от них ожидают. Это может помочь сэкономить время и деньги, которые были бы потрачены на более поздние испытания.

Исследования фазы 0

используют только несколько небольших доз нового препарата у нескольких человек. Они могут проверить, достигает ли лекарство опухоли, как лекарство действует в организме человека и как раковые клетки в организме человека реагируют на лекарство. Людям, участвующим в этих исследованиях, могут потребоваться дополнительные тесты, такие как биопсия, сканирование и образцы крови, как часть процесса.

В отличие от других фаз клинических испытаний, у людей, участвующих в исследованиях фазы 0, почти нет шансов на пользу. Польза будет для других людей в будущем. А поскольку дозы лекарств низкие, риск для участников исследования меньше.

Исследования фазы 0

не получили широкого распространения, и есть некоторые препараты, для которых они бесполезны. Исследования фазы 0 очень малы, часто с участием менее 15 человек, и препарат назначается только на короткое время. Они не являются обязательной частью тестирования нового лекарства.

Фаза I клинических испытаний: безопасно ли лечение?

Фаза I исследования нового лекарства обычно являются первыми, в которых участвуют люди. Исследования фазы I проводятся для определения максимальной дозы нового лечения, которую можно безопасно применять, не вызывая серьезных побочных эффектов. Хотя препарат был протестирован в лабораторных условиях и на животных, побочные эффекты у людей неизвестны. Эти исследования также помогают решить, как лучше всего назначить новое лечение.

Ключевые моменты клинических исследований фазы I

  • Первые несколько человек в исследовании получают очень низкую дозу лечения и за ними очень внимательно наблюдают.Если есть только незначительные побочные эффекты, следующие несколько участников получают более высокую дозу. Этот процесс продолжается до тех пор, пока врачи не найдут дозу, которая с наибольшей вероятностью подействует при приемлемом уровне побочных эффектов.
  • Испытания фазы I
  • также изучают, что препарат делает с организмом и что организм делает с ним.
  • Безопасность – главная забота. Исследовательская группа внимательно следит за людьми и следит за любыми серьезными побочными эффектами. Из-за небольшого числа людей в исследованиях фазы I редкие побочные эффекты могут не проявляться до более поздних фаз испытаний, когда лечение будет получать больше людей.
  • В то время как некоторые люди могут получить пользу от приема одного, ответ на заболевание не является основной целью исследования фазы I,
  • Плацебо (неактивные препараты) не используются в исследованиях фазы I.
  • Испытания
  • фазы I обычно включают небольшое количество людей (до нескольких десятков).
  • В исследованиях фазы I
  • чаще всего участвуют люди с разными типами рака.
  • Эти исследования обычно проводятся в крупных онкологических центрах.

Испытания фазы I несут наибольший потенциальный риск.Но исследования фазы I действительно помогают некоторым пациентам. Для людей с опасными для жизни заболеваниями важно тщательно взвесить потенциальные риски и преимущества. Иногда люди решают присоединиться к испытаниям фазы I, когда все другие варианты лечения уже испробованы.

Фаза II клинических испытаний: работает ли лечение?

Если в ходе клинических испытаний фазы I выясняется, что новое лечение является безопасным, проводится клиническое испытание фазы II, чтобы проверить, работает ли оно при определенных типах рака. Польза, которую ищут врачи, зависит от цели лечения.Это может означать, что рак уменьшится или исчезнет. Или это может означать, что есть долгий период времени, когда рак не становится больше, или есть больше времени, прежде чем рак вернется. Согласно некоторым исследованиям, преимуществом может быть улучшение качества жизни. Многие клинические испытания направлены на то, чтобы выяснить, живут ли люди, получающие новое лечение, дольше, чем большинство людей без лечения.

Ключевые моменты клинических исследований фазы II

  • Группа от 25 до 100 пациентов с одним и тем же типом рака получает новое лечение в ходе исследования фазы II.Их лечат с использованием той дозы и метода, которые были признаны наиболее безопасными и эффективными в исследованиях фазы I.
  • Обычно в клинических испытаниях фазы II все получают одинаковую дозу. Но некоторые исследования фазы II случайным образом распределяют людей в разные группы лечения. Эти группы могут получать разные дозы или получать лечение по-разному, чтобы увидеть, какой из них обеспечивает наилучший баланс безопасности и ответа.
  • Плацебо (неактивные препараты) не использовались в исследованиях фазы II.
  • Исследования фазы II могут проводиться в крупных онкологических центрах, общественных больницах или даже в кабинетах врачей.

Большее количество пациентов получают лечение в исследованиях фазы II, поэтому могут наблюдаться менее частые побочные эффекты. Если лечение принесло пользу достаточному количеству пациентов, а побочные эффекты не так уж и плохи, начинается III фаза клинических испытаний.

Фаза III клинических испытаний: лучше ли это того, что уже есть?

Лекарства, которые показали свою эффективность в клинических испытаниях фазы II, должны пройти еще одну фазу, прежде чем они будут одобрены для общего использования. Клинические испытания фазы III сравнивают безопасность и эффективность нового лечения с существующим стандартным лечением.

Поскольку врачи еще не знают, какое лечение лучше, участников исследования часто выбирают случайным образом (так называемый рандомизированный ) для получения либо стандартного лечения, либо нового лечения. По возможности ни врач, ни пациент не знают, какое лечение получает пациент. Этот тип исследования называется двойным слепым исследованием . Более подробно рандомизация и ослепление обсуждаются позже.

Ключевые моменты клинических исследований III фазы

  • Большинство клинических исследований III фазы включают большое количество пациентов, по крайней мере, несколько сотен.
  • Эти исследования часто проводятся во многих местах по всей стране (или даже по всему миру) одновременно.
  • Клинические испытания фазы III, скорее всего, будут предлагаться в местных общественных больницах и кабинетах врачей.
  • Эти исследования, как правило, длятся дольше, чем исследования фаз I и II.
  • Плацебо
  • можно использовать в некоторых исследованиях фазы III, но они никогда не используются отдельно, если есть доступное лечение, которое работает. Иногда пациенту, которому случайным образом назначается плацебо для части исследования, в какой-то момент также будет предложено стандартное лечение.

Как и в других исследованиях, в клинических исследованиях фазы III за пациентами внимательно наблюдают на предмет побочных эффектов, и лечение прекращают, если с ними слишком трудно справиться.

Подача заявки на одобрение FDA: Заявка на новое лекарство (NDA)

В Соединенных Штатах, когда клинические испытания фазы III (или иногда испытания фазы II) показывают, что новое лекарство более эффективно или безопаснее, чем текущее лечение, в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) подается заявка на новое лекарство (NDA). для утверждения.FDA рассматривает результаты клинических испытаний и другую важную информацию.

На основании обзора FDA решает, одобрять ли лечение для использования у пациентов с заболеванием, на котором тестировалось лекарство. В случае одобрения новое лечение часто становится стандартом лечения, и новые препараты могут быть протестированы против него, прежде чем они будут одобрены.

Если FDA считает, что необходимы дополнительные доказательства, чтобы показать, что преимущества нового лечения перевешивают его риски, оно может запросить дополнительную информацию или даже потребовать проведения дополнительных исследований.

Фаза IV клинических испытаний: что еще нам нужно знать?

Лекарства, одобренные FDA, часто наблюдаются в течение длительного периода времени в исследованиях фазы IV. Даже после тестирования нового лекарства на тысячах людей все эффекты лечения могут быть неизвестны. На некоторые вопросы, возможно, еще нужно ответить. Например, лекарство может получить одобрение FDA, поскольку было показано, что оно снижает риск рецидива рака после лечения. Но означает ли это, что те, кто его получит, с большей вероятностью проживут дольше? Есть ли редкие побочные эффекты, которые еще не наблюдались, или побочные эффекты, которые проявляются только после того, как человек принимал препарат в течение длительного времени? На ответы на эти вопросы может потребоваться гораздо больше времени, и они часто рассматриваются в клинических испытаниях фазы IV.

Ключевые моменты клинических исследований фазы IV

  • В исследованиях фазы IV изучаются препараты, уже одобренные FDA. Врачи могут выписывать лекарства пациентам, но для ответа на важные вопросы все же могут потребоваться исследования фазы IV.
  • В этих исследованиях могут участвовать тысячи людей.
  • Это часто самый безопасный тип клинических испытаний, потому что лечение уже много изучено и, вероятно, было назначено многим людям.Исследования фазы IV рассматривают безопасность с течением времени.
  • Эти исследования могут также рассматривать другие аспекты лечения, такие как качество жизни или экономическая эффективность.

Вы можете получить препараты, используемые в испытании фазы IV, не участвуя в нем. И лечение, которое вы получите в рамках исследования фазы IV, очень похоже на лечение, на которое вы могли бы рассчитывать, если бы вы получали лечение вне исследования. Но в исследованиях фазы IV вы помогаете исследователям больше узнать о лечении и оказании услуг будущим пациентам.

Фаза и синусоида – испытание на шум и вибрацию

Вернуться к: Тестирование синусоиды

В предыдущем уроке мы узнали о частоте, периоде и амплитуде в зависимости от волны. Фаза – это еще одно измерение волны, относящееся к точке, в которой волна находится в цикле. Он измеряется в градусах (0 ° -360 °) или радианах (0-2π) и обозначается греческим символом Phi (ϕ).

Рисунок 1.3. Различные точки в фазе синусоиды.

Сравнение синусоидальных волн

В вибрационных испытаниях интерес представляет не столько фаза отдельной волны, сколько разность фаз между синусоидальной волной и опорной волной. Две синусоидальные волны находятся в противофазе, когда они не находятся в одних и тех же точках своих циклов в одно и то же время.

Рисунок 1.4. Разность фаз между двумя синусоидальными волнами. Слева – разность фаз 90 °; справа – разница в 180 °.

«Смещение фазы на 90 градусов» означает, что когда одна волна находится на нуле, другая будет на пике (см. Рисунок 1.4.) Другими словами, когда зеленая волна находится в фазе 0 °, синяя волна находится в фазе 90 °.

«Смещение по фазе на 180 градусов» означает, что нулевые точки остаются неизменными, но когда один сигнал находится на пике (максимуме), другой – на минимуме. Другими словами, когда зеленая волна находится в фазе 0 °, синяя волна находится в фазе 180 °.

Испытание на синусоидальную вибрацию

Теперь мы можем применять частоту, период, амплитуду и фазу к испытаниям на вибрацию. Когда на шейкере проводится синусоидальный тест с фиксированной частотой и амплитудой, шейкерная головка колеблется с постоянной частотой и амплитудой.

Добавить комментарий

Ваш адрес email не будет опубликован.