Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как подключить однофазный двигатель с пусковой обмоткой

Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.

Коллекторные vs асинхронные двигатели

Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным — поле создается приложенным напряжением.

Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

  1. Пылесос, стиральная машина.
  2. Болгарка, дрель, электрический ручной инструмент.

Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

  • Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
  • Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.

Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.

Однофазные и трехфазные д0вигатели асинхронного типа

Договорились — трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

  1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
  2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора — критично.
    Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
  3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.

Трехфазные асинхронные двигатели

Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

    Выводов четыре штуки — нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже — нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой — в начальный период времени вал стоит стоймя.
    Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой — поломает.

Устройство асинхронного двигателя

Различение типов однофазных двигателей на практике

Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.

Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.

Однофазный асинхронный двигатель

Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка. Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).

Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот — фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).

Как подобрать конденсатор для пуска однофазного двигателя

Уже рассказывали, как подобрать конденсатор для пуска трёхфазного двигателя, но методика в нашем случае не годится. Любители рекомендуют произвести попытку входа в так называемый резонанс. При этом потребление агрегата на 9 кВт составит порядка (!) 100 Вт. Это не значит, что вал потянет полную нагрузку, но в холостом режиме потреблением станет минимальным. Как подключить электродвигатель этим способом.

Любители рекомендуют ориентироваться на потребляемый ток. При оптимальном значении емкости мощность станет минимальной. Оценить потребляемый ток можно при помощи китайского мультиметра. А так, подключение однофазного двигателя с пусковой обмоткой выполняют, руководствуясь электрической схемой, указанной на корпусе. Там приведены, например, сведения:

  1. Цвет кембрика определённой обмотки.
  2. Электрическая схема коммутации для цепи переменного тока.
  3. Номинал используемой емкости.

Итак, если брать однофазный асинхронный двигатель, схема подключения чаще указана на корпусе.

Однофазный асинхронный электродвигатель с пусковой обмоткой

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой “беличьей клеткой”. Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр – в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС , которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 – активное сопротивление стержней ротора, Ом,
  • x2обр – реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой – однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются – конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами – двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами – короткозамкнутый в виде “беличьей” клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф” – по экранированной части полюса. Поток Ф” наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф”, создавая результирующий поток в экранированной части полюса Фэ=Ф”+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор – короткозамкнутый типа “беличья клетка”.

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Подключение однофазного электродвигателя к сети 220 вольт.

Подключение трёхфазного электродвигателя к сети 220 вольт.

Подключение однофазного электродвигателя к нажимному пускателю ПНВС.

Подключение однофазного электродвигателя с бифилярными катушками в пусковой обмотке к нажимному пускателю ПНВС.

Подключение трёхфазного электродвигателя к нажимному пускателю ПНВС.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пусковой обмотки.

Устройство однофазного асинхронного двигателя ~ Электропривод

Наибольшее применение однофазные асинхронные электродвигатели нашли в быту и малом бизнесе. Их применение необходимо в тех областях, где нет трехфазной электрической сети. Многие компании выпускаются однофазные электродвигатели мощностью до 2 кВт и выше. Применение однофазных двигателей большей мощности ограничено мощностью бытовой сети и проблемами запуска однофазного двигателя.

Приемлемое, на сегодняшний день, решение таких проблем возможно при использовании однофазного частотного преобразователя. Но применение преобразователя частоты будет оправдано в том случае, когда необходимо регулировать частоту вращения электродвигателя. Кроме того, однофазные частотные преобразователи обычно выпускаются до мощности 2,2кВт, что в свою очередь тоже является ограничением. В таком случае приходится использовать однофазный асинхронный двигатель. Внешний вид однофазных асинхронных двигателей различных фирм производителей показан на рисунках.

Устройство однофазного асинхронного двигателя показано на рисунке

Как видно из рисунка, основное отличие однофазного двигателя от трехфазного, является наличие в нем центробежного переключателя. Центробежный переключатель подключает пусковую обмотку двигателя перед пуском и отключает после окончания пуск, при достижении двигателя номинальных оборотов. Центробежный переключатель состоит из специальной стальной пружины и калиброванных грузиков, которыми настраивается момент отключения пусковой обмотки. Вся конструкция собрана в надежном корпусе. Быстрая работа переключателя уменьшает искрение и износ контактов и продлевает надежную работу устройства.

Центробежный переключатель

Другой элемент, которого нет в трехфазном асинхронном двигателе, но который есть в однофазном это рабочий и пусковой конденсатор.

Пусковой конденсатор

Конденсатор может быть установлен и вне двигателя, например, вместе с пускозащитной аппаратурой.

Корпус

Корпус электродвигателей изготовлен из высококачественного из алюминиевого сплава или чугуна марки. В корпусе сделаны боковые отверстия для циркуляции воздуха. Возможна работа однофазного двигатель и в горизонтальном и в вертикальном положении.

Статор двигателя

Статор однофазного двигателя изготавливается из ламината качественной электротехнической стали с термохимической обработкой, что снижает магнитные потери и рабочую температуру двигателя. Сердечник статора, набирается из штампованных листов электротехнической стали. В пазы сердечника укладывается статорная обмотка. Изоляция пазов статора, изоляция обмоточного провода, пропиточный состав и другие изоляционные детали статора образуют систему изоляции.

Обмотки

Статорная обмотка наматывается круглым эмалированным проводом и пропитана в нагревостойком электроизоляционном лаке. Обмоточный провод как стандарт покрыт лаком класса Н. После укладки вся обмотка повторно пропитывается специальным полиэстерным составом. Такая технология обеспечивает высокую электрическую и механическую надежность обмоток и долгий срок службы. Обмотка статора мотается как две обмотки главная(рабочая) (U1 и U2) и вспомогательная (пусковая) (Z1 и Z2). Главная обмотка подключается непосредственно к сети, вспомогательная обмотка также подключается к сети, но через рабочий конденсатор.

Ротор

Сердечник ротора однофазного двигателя изготовлен из ламината качественной стали с термической и химической обработкой. Его напрессовывают на вал. Обмотка ротора имеет название «Беличья клетка» или «Беличье колесо»- короткозамкнутая отливается из чистого алюминия . что обеспечивает низкий момент инерции и повышение К П Д.

Вал

Вал однофазного двигателя изготавливают из углеродистой стали. Такая сталь имеет высокую механическую прочность, и предотвращает прогиб вала под нагрузкой, что уменьшает его износ. По отдельному заказу вал однофазного двигателя можно изготовить из нержавеющей стали.

Подшипниковые щиты

Подшипниковые щиты отливаются из алюминиевого сплава или чугуна с армирующей стальной втулкой под посадку подшипника. Их площадь поверхности увеличина для лучшего охлаждения подшипников. Обычно в переднем подшипниковом щите устанавливается невинтовая пружина, предназначенная для осевого поджатия подшипника.

Подшипниковые узлы

Обычно в однофазных двигателях применяются шариковые подшипники, но в двигателях большими высотами оси вращения по отдельному заказу можно применять роликовые подшипники, которые допускают в 2 раза большие радиальные нагрузки. В однофазных двигателях с высотой оси вращения до 180 мм в подшипники закладывается смазка на весь гарантийный срок службы (не менее 20 тыс. часов). В подшипниковые узлы однофазных двигателей с осями вращения более 200 мм необходимо регулярно производить полную или частичную смену отработанной смазки. График смены смазки можно найти в инструкции по эксплуатации двигателя. Типы и размеры применяемых в двигателях подшипников указаны в каталогах. В них же можно найти величины предельно допустимых радиальных и осевых нагрузок рабочего конца вала

.

Подшипники

Импортные однофазные двигатели снабжаются подшипниками высокого качества, от лучших всемирных брендов. Это обеспечивает длительный срок службы в тяжёлых условиях работы. В качестве смазки используется высококачественная смазка Super-premium Polyrex ЕМ. Эта смазка обеспечивает надежную работу подшипников и низкий уровень шума. В двигателях отечественных производителей используются более дешевые подшипники 76-180205Ш2У (6205 2RS P63. QE6) с постоянно заложенной смазкой на весь срок службы.

Вентилятор

Вентилятор однофазного двигателя изготавливают из пластмассы. Его устанавливают на вал ротора а сверху защищая кожухом. Вентиляторы служат для обеспечения эффективного охлаждения двигателя. Новые компьютерные программы моделирования асинхронных двигателей позволяют разрабатывать вентилятор и его крышку для работы с минимальным уровнем шума. Обдув осуществляется внешним вентилятором, закрытым направляющим кожухом. Двигатели производятся с симметричной радиальной, либо с комбинированной системой вентиляции. В двигателях с симметричной радиальной вентиляцией в станине предусмотрены отверстия для выхода воздуха. Изнутри станины отлиты выступы с каналами для протока воздуха в аксиальном направлении. Вентилятор, отлитый вместе с короткозамыкающими кольцами ротора прогоняется воздух через двигатель. Для циркуляции воздуха внутри двигателя используются диффузоры, смонтированные в двух подшипниковых щитах.

Обдув однофазного двигателя с комбинированной вентиляцией производится центробежным вентилятором, установленным на валу двигателя со стороны, противоположной приводу. Вентилятор обдувает ребристую поверхность станины и вентиляционными лопатками ротора всасывающими воздух через нижнюю часть отверстий в подшипниковых щитах. Воздух омывает лобовые части обмотки и выбрасывается через верхнюю часть отверстий в щитах.

Клемная коробка

Клемная коробка однофазного двигателя изготовливают из алюминиевого сплава или чугуна. В коробке предусмотрено одно или два резьбовых отверстия для сальников, через которые проходят присоединительные кабеля. Конструкция клемной коробки позволяет монтировать коробку с шагом 90°. При заказе двигателя необходимо уточнять верхнее или боковое расположение клемной коробки.

Лапы

В зависимости от способа крепления двигатели подразделяются на фланцевые и со способом крепления на лапах. Существуют универсальные двигатели с лапами и фланцем. Существуют конструкции со съемными лапами позволяющие изменять способ монтажа.

Уплотнения

Для защиты однофазного двигателя от агрессивных условий окружающей среды в электродвигателях применяются V-образные манжеты и манжеты с пружиной. Система уплотнения состоит из трех компонентов (лабиринтное уплотнение с V-образной манжетой и О-образная манжета). Такая конструкция гарантируют защиту подшипников против агрессивных жидких и твердых веществ.

Как определить пусковую и рабочую обмотку двигателя стиральной машины?

Если мотор стиралки стал «барахлить», придется выполнить его диагностику. Чтобы проверить движок, и, тем более, его отремонтировать, необходимо знать, как он устроен. Начать лучше с основ, например, разобраться, где найти обмотки двигателя стиральной машины и как их не перепутать. На самом деле, все просто, с такой задачей справится даже «новичок».

Учимся отличать обмотки

Однофазными электромоторами оснащены стиральные машинки средней мощности. В таких двигателях присутствует пусковая и рабочая обмотка – именно они обеспечивают вращение ротора. Движки данного типа условно можно поделить на две подгруппы:

  • однофазные устройства с пусковой обмоткой;
  • электродвижки с рабочим конденсатором.

В первом случае пусковая обмотка мотора функционирует всего 3-5 секунд, только после активации движка. Как только ротор набирает оптимальную скорость оборотов, она отключается от питания. Электродвигатель продолжает работу только с одной сетевой обмоткой.

У однофазных моторов, имеющих в цепи конденсатор, пусковая обмотка активна постоянно. Показатель номинальной емкости конденсатора будет определяться мощностью и другими характеристиками электродвижка.

Таким образом, если вспомогательная обмотка движка пусковая, то она будет функционировать только несколько секунд, непосредственно при запуске мотора. Если конденсаторная – то она будет активной все время, пока двигатель не отключат от сети. Это основное отличие.

Знать устройство двух типов обмоток однофазного мотора стиральной машинки-автомат необходимо, если вы планируете самостоятельно ремонтировать движок. Пусковую и рабочую обмотки легко отличить друг от друга по сечению проводов и числу витков.

Рабочая обмотка движка характеризуется большим сечением провода, поэтому выдаваемое ею сопротивление меньше.

Взглянув на рисунок, несложно определить пусковую и рабочую обмотку (слева и справа соответственно). Легко заметить, что сечение проводов сильно отличается. Замеряется их сопротивление специальным тестером – мультиметром. Приобрести прибор можно в интернете или специализированных магазинах.

Практические примеры

На практике, разобрав стиральную машинку и демонтировав двигатель, можно столкнуться с рядом вопросов. Поэтому разберем несколько примеров, наглядно показывающих, как замерять сопротивление обмотки электромоторов.

Допустим, у извлеченного из стиралки движка 4 вывода. Отыщите концы обмоток и замерьте сопротивление тестером. По значениям на экране мультиметра просто определить, где какая обмотка: с меньшими Омами – рабочая, с большими показателями – пусковая.

Подключить все достаточно просто. На толстые проводки пускается напряжение 220 Вольт. Один «хвостик» пусковой обмотки подсоединяется к концу одного из «рабочих». К какому именно проводу из двух, неважно, направление вращения ротора от этого зависеть не будет. Ход движения поменяется только при смене «краешков» пусковой обмотки.

Другой пример – если мотор имеет три вывода. Измерив сопротивление каждого, обычно выясняются следующие значения: 10 Ом, 25 Ом и 15 Ом. Методом проб отыщите «хвостик» провода обмотки, который при подключении к другим будет выдавать на мультиметр показания 10 и 15 Ом.

Вот этот провод и будет одним из рабочих. Кончик, который в паре с ним выдает сопротивление 10 Ом также будет «принадлежать» к сетевой обмотке. Оставшийся третий проводок – пусковой, он включен в цепь через конденсатор.

Случается, что при замере сопротивления выводов движка мультиметр выдает значения 10, 10 и 20 Ом. Это пример еще одного из типов обмоток. Они встречаются на отдельных моделях автоматических машинок. В данной ситуации сечение рабочих и пусковых проводов будет одинаковым, визуально определить, где какой, невозможно.

Особой разницы, где какой провод, нет. Включение пусковой обмотки в таких движках выполняется через конденсатор соответствующей емкости.

Определить пусковую и рабочую обмотку однофазного электромотора на самом деле достаточно просто. В отдельных случаях получится сделать это «на глаз», в определенных ситуациях – вооружившись мультиметром.

   
  • Поделитесь своим мнением – оставьте комментарий

Как перемотать электродвигатель в домашних условиях. Обмотки однофазных асинхронных двигателей

Практически все электродвигатели, установленные в различных моделях бытовых приборов, являются асинхронными. Одно из преимуществ такого технического решения в том, что изменение нагрузки никак не отражается на частоте вращения. Во многом этим и обусловлена популярность таких моделей.

Промышленность выпускает различные модификации этих устройств, которые имеют конструктивные отличия в исполнении составных частей – разное количество полюсов, ротор или короткозамкнутый, или фазный (значительно реже), и ряд других. Но общий принцип ремонта электродвигателей остается неизменным, разница может быть только в отдельных нюансах.

В случае поломки эл/двигателя простейший способ восстановления его работоспособности – обратиться в мастерскую. Однако не в каждом населенном пункте «частники» смогут выполнить эту работу качественно, если, конечно, вообще за нее возьмутся. Поэтому нередко возникает дилемма – выкинуть его в мусорный ящик или попробовать перемотать самостоятельно.


Учитывая разнообразность конструкций и габаритов «движков», а также то, что все они имеют как статорную, так и роторную обмотки (для эл/двигателей постоянного тока – якорную), изложим только порядок действий по перемотке электродвигателей своими руками и общие рекомендации по этому вопросу. Остановимся на двигателе переменного тока, так как именно такие изделия чаще всего входят в состав различных бытовых приборов и агрегатов.

Внешний осмотр

Необходимо, частично разобрав двигатель, произвести очистку всех составных частей и определить, в чем собственно дело. Одновременное выгорание и роторной, и статорной обмоток происходит довольно редко. Поэтому и следует понять, какой из них придется заниматься.

Но здесь нужно учесть, что резкое повышение температуры внутри механизма в момент возникновения неисправности сопровождается нарушением изоляционного покрытия на всех составных частях. Поэтому ограничиваться одной лишь перемоткой нельзя. Следовательно, придется уточнить, что еще необходимо будет сделать и какие материалы приготовить.

Определение параметров провода

Можно попробовать найти соответствующую информацию в интернете (намоточные данные). Часто люди делятся личным опытом, как они ремонтировали эл/дрель, фен своей жене, насосную станцию на даче и так далее. Но нужно понимать, что это должна быть ТОЧНО ТАКАЯ ЖЕ модель, иначе не факт, что после ремонта ваша станет работать.

На практике же обычно приходится все вопросы выяснять непосредственно при осмотре. Даже если двигатель выгорел довольно сильно, то всегда можно найти участок, на котором обмотка более-менее сохранилась. В этом месте нужно все тщательно очистить для того, чтобы можно было пересчитать все проводки в «укладке». Все, что нам нужно – определить количество витков и .

Заботиться о целостности провода, естественно, смысла нет. Поэтому подойдет все, что поможет удалить нагар и частицы расплавленного лака – бензин, спиртосодержащие жидкости и тому подобное. Как вариант – произвести обжиг (горелка, костер и так далее). Главное – результат.

Обмотка выступает за габариты «железа». На той ее части, которая цела и пригодна к осмотру, срезается (срубается, спиливается) верхушка. Подходящий инструмент подбирается в зависимости от толщины провода, но нужно иметь в виду, что он довольно мягкий (медь). Наша задача – добиться того, чтобы одну часть намотки можно было «распушить». Тогда и число проводков посчитать несложно, и сечение их замерить.

Подготовка «железа»

Основой и ротора, и статора служит специальная сталь. При внешнем осмотре на них иногда можно обнаружить небольшие вмятины или заусеницы. Такие места необходимо аккуратно обработать или «мягким» надфилем, или мелкой «наждачкой», не повреждая металл.

Все пазы, в которые укладывается обмотка, нужно полностью вычистить, «до блеска». Иначе при укладке изоляции и обмоток возникнут сложности.

Подбор провода

В идеале он должен быть точно таким же. Но это не всегда получается. Следовательно, придется использовать материал с другим сечением, который занимает в соответствующей таблице соседнюю позицию. При этом нужно вспомнить закон Ома и учесть, что с уменьшением диаметра провода его сопротивление возрастает.

Значит, нужно будет изменить и число витков, например, вместо 350 наматывать 400 или 320. Возможно, такое решение – «на глазок» – приведет к некоторому снижению мощности. Тем, для кого это принципиально, придется произвести точные расчеты, тем более что все исходные данные есть – номинал напряжения питания (220 В), сечение имеющегося провода, габариты «железа», на которое он будет наматываться (значит, общая длина проводника).

Но при этом нельзя забывать, что неправильный результат вычислений может привести к повышенному нагреву двигателя (если не к критическому перегреву и поломке). Как результат – расплавление лака и в перспективе короткое (между обмотками) или межвитковое замыкание.

Изготовление обмотки

Это делается при помощи шаблона. Его несложно изготовить самостоятельно, из плотного картона или фанеры. Главное – правильно снять все размеры с «железа». Намотку провода лучше делать на специальном станке, который не является дефицитом и стоит копейки. Такое приспособление можно смастерить и самому, из подручного материала. Как выглядят станок и шаблон, ясно из рисунка.

Если делать намотку вручную, на это уйдет времени значительно больше, да и есть вероятность того, что можно ошибиться в количестве витков. Кроме того, работая с тонким проводом, его легко порвать, а с толстым – уложить неплотно, что вызовет трудности при постановке обмотки на место из-за увеличения ее габаритов.

Установка обмотки

Ничего сложного в этом нет, необходимо лишь соблюдать аккуратность. После укладки изоляции в пазы по месту «сажается» изготовленная «катушка» (такие «гильзы» изготавливаются из материалов категории «диэлектрик»). Как они ставятся, понятно из рисунка.

Следует избегать любого повреждения не только провода, но и его внешней изоляции (лаковое покрытие). В некоторых случаях целесообразно использовать специальное приспособление – «трамбовку». С ее помощью обмотка «уплотняется» в посадочных пазах. Все фазные катушки надежно изолируются друг от друга.

Необходимо проверить, не торчат ли из пазов частички изоляции. Излишки следует срезать. Иначе после сборки и включения двигателя они будут задевать за ротор. Чем это закончится, неизвестно.

Пропитка

Она делается с целью изоляции всех токоведущих частей. Рекомендовать какой-то конкретный состав смысла нет, так как в продаже имеется большой ассортимент соответствующей продукции. Но вот кое-что посоветовать стоит.

Все лаки делятся на 2 категории. Одни не требует температурного воздействия, так как просыхают естественным путем. Для других необходима термическая обработка. На производстве с этим проблем нет, так как используются специальные печи. А вот как просушить лак в домашних условиях, придется подумать.

Проверка эл/двигателя

После того, как просушка закончена, нужно убедиться в том, что он готов к включению. Что необходимо? «Прозвонить» все обмотки, по очереди, чтобы выяснить, нет ли где обрыва или «неконтакта» в местах соединений. Кроме того, нужно замерить сопротивление между катушками и на корпус (удостовериться в отсутствии КЗ).

И только после этого можно проверять изделие в работе.

Включение

Для проверки работоспособности двигатель не следует сразу же запитывать от источника 220 В. Сначала нужно проверить его работоспособность через понижающий трансформатор. Если ротор, хоть и «вяло», но крутится и эл/двигатель не греется, не дымит, значит, все сделано правильно.

После включения в промышленную сеть (220) целесообразно замерить потребляемый устройством ток. В паспорте на изделие такие данные есть. В случае чрезмерного отклонения измеренной величины от «номинала» необходимо разбираться с вероятной причиной.

  • В процессе намотки провода на шаблон нужно укладывать его равномерно, «виток к витку». Наложения проводков друг на друга, с «перехлестом», следует избегать. Иначе полученная катушка просто не поместится в месте установки из-за увеличенных габаритов.
  • Еще в процессе разборки эл/двигателя необходимо обратить внимание, как и чем выполнена изоляция внутренних частей (например, фазных катушек), по какой схеме они соединены («треугольник», «звезда») и так далее. Это поможет произвести правильную сборку, так как ее придется делать «один в один». Не стоит надеяться на память. Надежнее все это «зарисовать», с указанием всех особенностей инженерного решения.
  • Если пришлось сдать «движок» в ремонт, то следует поинтересоваться, какие в мастерской применяются пропиточные составы и есть ли соответствующее оборудование для просушки обмоток.

В принципе, ничего особо сложного в самостоятельной «перемотке» эл/двигателя нет. Следует только вспомнить азы электротехники и учесть вышеприведенные рекомендации. Тогда не придется платить за дорогостоящий ремонт (а в мастерской, как правило, «накручивают» смету) или приобретать другую бытовую технику вместо отправленной в утиль.

Рассмотрим все достоинства и недостатки электрического полотенцесушителя и сделаем выводы

Обратившись в компанию «ПроЭлектрика», вы можете заказать такую услугу, как перемотка электромоторов в Москве. Процедура предполагает полную замену проводника, целостность и физико-технических характеристики которого повреждены в результате эксплуатации агрегата.

Наши специалисты проводят перемотку эл моторов с применением самого современного оборудования как на объекте заказчика, так и с доставкой двигателя в наш ремонтный цех. При этом у нас вы можете заказать срочный ремонт электромотора мощностью до 55 кВт всего за один рабочий день.

Процесс перемотки мотора

Разборка и перемотка электромотора – услуги, проведение которых всегда проводятся в комплексе. И проводятся они в следующей последовательности:

  • Разбора мотора. На данном этапе с двигателя снимается кожух, крышка и ротор, благодаря чему обеспечивается полный доступ к обмотке.
  • Снятие обмотки. Старые витки проводника удаляются вместе с изоляцией последовательно вручную или с применением специализированного оборудования.
  • Гильзование. Данный процесс предполагает зачистку статора и укладку в его пазы нового изоляционного материала.
  • Намотки обмотки. Она осуществляется вручную или с применением специального устройства. Витки укладываются плотно и с точным сохранением их числа относительно первоначального состояния.
  • Пропитка. Витки проводника пропитываются специальным лаком. Статор(ротор) просушивается в специальной печи.
  • Сборка мотора. Сборка осуществляется в обратной последовательности и требует обязательной диагностики агрегата на предмет качества ремонта и настройки показателей двигателя.

Как рассчитывается стоимость работ?

Цены на перемотку электромоторов зависят от нескольких факторов, основными из которых являются:

  • количество фаз,
  • страна производства двигателя,
  • срочность ремонта,
  • тип обмотки,
  • класс электродвигателя.

Для каждого из этих параметров разработаны коэффициенты, так или иначе корректирующие базовую стоимость услуг, представленную в нашем прайсе. При этом организация ремонта включает в себя:

  • обязательную диагностику агрегата,
  • замену обмоток с подбором проводника нужного сечения и длины,
  • необходимое количество изоляции и пропитки,
  • замену подшипников при необходимости и восстановление их посадочных мест,
  • тестирование техники.

Дополнительно у нас вы можете заказать транспортировку электрооборудования на нашу ремонтную базу. И чтобы узнать, сколько стоит данное мероприятие, свяжитесь с нами любым удобным вам способом.

Цены указаны с учетом НДС (в рублях)

3000об/м

1500об/м

1000об\м

750об/м

Ремонт моторов мы проводим в сроки от 3 до 6 рабочих дней при мощности электродвигателя до 30 кВт и от 5 для более мощных агрегатов. При этом возможен и срочный ремонт моторов от 1 до 3 рабочих дней в зависимости от их рабочих характеристик.

Или другой подобный инструмент, то вы наверняка должны знать о том, как порой сложно бывает отыскать и устранить возникшую неисправность. И беда тут не только в том, что поломки сложно диагностировать, а в невозможности купить необходимую деталь. Именно поэтому многие домашние умельцы нередко идут на риск, самостоятельно их устраняя. В этой статье мы расскажем, как выполняется перемотка электродвигателя (своими руками).

Выводим переменные

Сперва нужно будет подсчитать количество ламелей и пазов. Выведем переменную К, указывающую отношение ламелей к пазам. Предположим, что первых ровно 48, тогда как вторых – 24. Делим 48 на 24, получаем значение: К=2. Затем следует узнать направление укладки, намоток, их сброс, шаг и первый ламель.

Направленность укладки

Направление укладки несложно определить, просто посмотрев на нее. К слову, не смотрите на предельную простоту этого совета: если вами впервые делается перемотка электродвигателя своими руками, то об этой мелочи вполне можно забыть. Представьте свои чувства в том случае, если в конце работы выяснится, что ее придется полностью переделывать!

Шаг обмотки


Шаг выявляют, взглянув на первую верхнюю катушку. Считаем, что одна из ее сторон лежит в первом пазу. Внимательно считаем, сколько пазов отделяет ее от противоположной стороны, включив в расчет и этот первый паз. Предположим, что вы насчитали шесть штук. Таким образом, при правосторонней укладке шаг будет равняться 1-6; при левосторонней укладке (при наличии 12 пазов) – 1-8.

Смещение первой ламели

Закончив с этим делом, выясним, насколько смещена первая ламель относительно первого паза. Положите двигатель прямо, проведя вдоль него мысленную линию. Обозначим ее буквой Z. Желательно не полагаться при этом на свою память, а внимательно все записывать и зарисовывать, чтобы в последующем не возникало любопытных ситуаций. Сразу предупредим, что перемотка электродвигателей в домашних условиях – дело непростое, будьте крайне внимательны!

Определяем первый паз

Чтобы определить первый паз, вам понадобится специальный прибор, а также переменный ток на 3В. Как его изготовить, мы расскажем чуть ниже.

При левосторонней укладке он будет располагаться чуть правее, в пазе, где лежит последняя катушка. Как-нибудь отметьте его. К помеченному вами месту прикладываем наше самодельное устройство, подавая напряжение на две соседних ламели. Маркером сразу же метим те, на которых хоть как-то отклоняется значение миллиамперметра.

Напомним, что для примера мы выявили значение: К=2. Таким образом, прибор должен показать отклонение на двух парах ламелей, а отметки должны быть на трех ламелях. В противном случае необходимо поменять паз. Если прибор отклоняется на большем числе пар, то это прямое свидетельство наличия замыканий между витками в катушках конкретной группы.

Направление сброса

И вновь нам пригодится наш самодельный прибор. Не меняя тех ламелей, на которые нами подавалось напряжение, аккуратно сместите шаг вправо или влево. Отклонение в каком-либо из этих направлений свидетельствует и о соответствующем сбросе.

Направление намоток

Исходя из направления намотки последней катушки, определяем общее его значение. К примеру, если самый верхний провод выходит из левого паза, то и намотка левонаправленная.

Количество витков

Количество витков легко найти по формуле: Wk=Wn/K/2. Здесь Wn равняется количеству витков в одном пазе.

Описание самодельного прибора


Как мы и обещали, приводим порядок сборки соответствующего прибора, который поможет вам перемотать электродвигатель. Если у вас есть хоть какие-то электротехнические навыки, изготовить его будет совсем несложно. Для начала подбираем любой подходящий сердечник, наматывая на него подходящий тонкий провод.

Ширина этого сердечника не должна быть больше 0,2 см, а толщина стенки – 4-5 мм. Можно взять для этого парочку простых обрезков шинки 5х40, длина которых не больше 5 см, а между ними ввернуть втулку 15 мм, сжав всю конструкцию на болт. В таком случае обмотку удобно расположить на каркасе вокруг вышеупомянутой втулки. Миллиамперметр же, самую важную часть прибора, вы можете взять от любого старого советского магнитофона. После проведения всех вышеозначенных мероприятий, перейдем к снятию обмотки с якоря. Итак, с чего начинается перемотка электродвигателя? Своими руками вам предстоит удалить старую обмотку.

Удаление старой обмотки

Чаще всего вам не удастся обойтись без отжига якоря для удаления с него старой обмотки. Разумеется, перед этим вам нужно будет удалить коллектор. Лобная часть самой намотки должна быть удалена только после обжига. Делается это при помощи качественного зубила. Тщательно удаляем все ее остатки. Удалив намотку, прокладываете освободившиеся пазы, пользуясь для этой цели электротехническим картоном.

В целях большей его сохранности можно подложить под картон электротехническую пленку. Особенно это касается тех случаев, когда выполняется перемотка на них приходится большая нагрузка, так что изоляция должна быть максимально хорошей.

Монтаж коллектора


Начиная перематывать якорь, коллектор лучше ставить сразу же. Не следует также медлить с припаиванием провода. После того как вы установите коллектор, обязательно измерьте сопротивление его изоляции между валом и самими ламелями. Используйте вышеупомянутый омметр на 500 В. Учтите, что показатели сопротивления не должны быть меньше 0,2 МОм.

Часть вала, которая расположена между коллектором и сердечником, обязательно нужно качественно изолировать. Для этой цели прекрасно подойдет небольшая пластмассовая трубка с подходящими размерами. Такие трубки следует поставить и с противоположной от вентилятора стороны. Итак, как же проводится перемотка электродвигателя своими руками?

Приступаем к перемотке якоря

Как следует помучившись со всеми вышеперечисленными процедурами, наконец-то приступаем к наиболее ответственной части нашей работы. Начинается перемотка якоря электродвигателя!

После снятия всех промеров и удаления остатков старой обмотки наматываем на катушки проволоку. Берем провод для перемотки электродвигателей диаметром 0.2 мм (это произвольная величина, все зависит от конкретной модели), припаиваем его к ламели №1. Пропускаем проволоку в первый же паз, пробросив его вокруг вала. С первого паза выводим провод в шестой (еще раз повторимся, что все делать нужно по вашим промерам), наматывая нужное нам количество витков. Припаиваем провод ко второй ламели, пробрасываем его в первый и шестой паз. Набрасываем нужное количество витков, припаиваем его к третьей ламели. Все, первая группа сделана.

Вторую группу мотать начинают с третьей ламели. Все делается аналогично вышеописанной процедуре. Если все сделано как следует, то конец первой катушки должен оказаться точно на первой ламели. Вот так делается перемотка обмотки электродвигателя.


Уложили провод? Аккуратно заверните картон, причем для полного исключения вырывания катушек не помешает вставить клинья. После этого можно заливать обмотки лаком, но лучше полностью погрузить их в лак. Просушивать следует при температуре строго 80-90 градусов по Цельсию (в духовке, на минимальном жаре). Через сутки у вас на руках окажется перемотанный вручную якорь, который при правильном исполнении вами всех вышеперечисленных инструкций будет работать не хуже «родного». Вот так выполняется перемотка

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Число проводников в пазу рабочей обмотки (укладывается в 2/3 пазов статора)

N р = (0.5 ÷ 0.7) x N x U с / U ,

где N – число проводников в пазу трехфазного электродвигателя;
U с – напряжение однофазной сети, В;
U – номинальное напряжение фазы трехфазного двигателя, В.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Диаметр (мм) провода по меди рабочей обмотки

Где d – диаметр провода по меди трехфазного двигателя, мм.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Пусковая обмотка с бифилярными катушками

1. Число проводников в пазу для основной секции N п ′ = (1,3 ÷ 1,6) N р.
2. Число проводников в пазу для бифилярнои секции N п ′′ = (0,45 ÷ 0,25) N п ′.
3. Общее число проводников в пазу N п = N п ′ + N п ′′
4. Сечение проводов s п ′ = s п ′′ ≈ 0.5s р, где s р – сечение рабочей обмотки.

Пусковая обмотка с внешним сопротивлением

1. Число проводников в пазу N п = (0.7 ÷ 1) N р.
2. Сечение проводов s п = (1,4 ÷ 1) s р.
3. Добавочное сопротивление (окончательно уточняется при испытаниях двигателя) (Ом)

R д = (1,6 ÷ 8) x 10 -3 x U с / s п,

Где U с – напряжение однофазной сети, В.

Для получения большого пускового момента предпочтение следует отдать второму варианту пусковой обмотки, так как в этом случае существует возможность получения наибольшего пускового момента путем изменения внешнего сопротивления.

Ток однофазного электродвигателя определяют по вычисленному сечению для рабочей обмотки и плотности тока в обмотке трехфазного двигателя I 1 = s р δ , где δ – допустимая плотность тока (6-10 А/мм²).

Мощность однофазного электродвигателя Р = U x I x cos φ x η

Таблица. Произведение cos φ на кпд

При мощности двигателя свыше 500 Вт значения η и cos φ можно брать как для трехфазных асинхронных двигателей, снизив мощность однофазного двигателя по приведенной выше формуле на 10-15%.

Пример пересчета трехфазного двигателя на однофазную обмотку

Пересчитать трехфазный двигатель на однофазную обмотку. Мощность электродвигателя 0,125 кВт, напряжение 220/380 В, синхронная частота вращения 3000 об/мин; число проводников в пазу 270, число пазов статора 18. Провод марки ПЭВ-2, диаметр по меди 0,355 мм, сечение 0,0989 мм2. Заданное напряжение однофазного двигателя 220 В.

1. Рабочая обмотка занимает 2/3 пазов, а пусковая 1/3 пазов (z р = 12, z п = 6).
2. Число проводников в пазу рабочей обмотки

N р = 0.6 x N x U с / U = 0.6 x 270 x 220 / 220 = 162
.
3. Диаметр провода рабочей обмотки по меди

мм,

Где d = 0.355 мм – диаметр провода по меди трехфазного двигателя.
Берем провод ПЭВ-2, d p = 0,45 мм, s р = 0,159 мм².
4. Пусковую обмотку принимаем с внешним сопротивлением.
5. Число проводников в пазу N п = 0.8 x N р = 0.8 x 162 ≈ 128.
6. Сечение проводов пусковой обмотки s п ′ = 1.1 x s р = 1.1 x 0.159 = 0,168 мм².
Берем провод ПЭВ-2 диаметром по меди d п = 0,475 мм, s п = 0,1771 мм².
7. Добавочное сопротивление

R д = 4 x 10 -3 x U с / s п = 4 x 10 -3 x 220 / 0,1771 ≈ 5 Ом

8. Ток однофазного электродвигателя при δ = 8 А/мм² I 1 = s р δ = 0,159 x 8 = 1,28 А.
9. Мощность однофазного электродвигателя Р = U x I x cos φ x η = 220 x 1,28 x 0,4 = 110 Вт.

3-10. ОБМОТКИ ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Однофазный асинхронный двигатель питается от однофазной сети (от двух проводов). Такой двигатель может быть выполнен с одной (рабочей) обмоткой на статоре, однако в этом случае он не имеет пускового момента и должен быть пущен в ход от руки. Такие двигатели применяются весьма редко. Для создания пускового момента двигатель получает, кроме рабочей, вспомогательную обмотку (которая превращает его, строго говоря, в двухфазный). Простейшая вспомогательная обмотка имеет вид короткозамкнутого витка, охватывающего край полюса. Такие двигатели -двигатели с расщепленным полюсом имеют небольшой пусковой момент (10% от момента трехфазного асинхронного двигателя такого же габарита) и применяются в мелких двигателях (вентиляторы, проигрыватели и т.35% пускового момента трехфазного двигателя. Двигатели с вспомогательной обмоткой, включенной

только на время пуска, хотя и имеют повышенный пусковой момент, имеют ухудшенные показатели при рабочем режиме (пониженную мощность, ухудшенный коэффициент мощности,и к. п. д.). Мощность их составляет в среднем 40-50% мощности трехфазного двигателя такого же габарита. Лучшие показатели имеют двигатели с постоянно включенной через конденсатор вспомогательной обмоткой. Мощность их достигает 70% и более от мощности соответствующего трехфазного двигателя. Б этом случае конденсатор подбирается из условия получения наилучших данных (получения кругового вращающегося поля) при рабочем режиме (наиболее высокий коэффициент мощности и к. п. д.). Пусковой момент при этом несколько снижается по сравнению с указанными выше для пусковой вспомогательной обмотки величинами.

Число витков вспомогательной обмотки берется близким (0,8-1,2) к числу витков рабочей. Наличие двух конденсаторов – одного, включаемого только на время пуска, и второго, включенного постоянно, позволяет получить однофазный асинхронный двигатель с высокими пусковыми и рабочими параметрами.

Рабочая обмотка обычно занимает 2 /з числа пазов статора, вспомогательная 7з Оси (середины) катушечных групп рабочей и вспомогательной обмоток должны быть сдвинуты относительно друг друга на 90 эл. град., т. е. на половину полюсного деления.

Для выполнения однофазной обмотки в статоре по рис. 3-7 нужно положить секции рабочей обмотки в пазы 1, 2, 3, 4 7, 8, 9, 10 и 13, 14, 15, 16 19, 20, 21, 22, а секции вспомогательной обмотки положить в пазы 5, 6 И, 12 и 17, 18 23, 24 В каждой рабочей и вспомогательной обмотке образуются две полюсные группы. В соответствии с изложенными выше правилами секции, входящие в одну полюсную группу, соединяются последовательно а сами rpiynnbi в зависимости от числа витков в секциях и рабочего напряжения соединяются последовательно или параллельно.

В большинстве случаев перемотка статора по приведенному выше примеру необязательна; рабочая и вспомогательная обмотки однофазного дв”игателя могут быть получены из трехфазной обмотки без перемотки.

Схемы включения при трехфазной обмотке приведены на рис. 3-20,5-е. Схема включения по рис. 3-20,(3 может быть осуществлена при наличии шести выводов. Она дает несколько больший пусковой момент. В том случае, когда напряжение сети соответствует фазовому напряжению трехфазной обмотки, применяется схема

рис. 3-20,3 (треугольник). Если напряжение сети соответствует линейному напряжению трехфазной обмогки, применяются схемы рис. 3-20,б?, ж, е (звезда).

Следует иметь в виду, что напряжение на конденсаторе в схемах по рис. 3-20,а, б равно 1,4 U, в схемах рис. 3-20,(5, ж, з равно напряжению сети, а в схемах с трансформатором оно может значительно превышать сетевое. Это следует учитывать при выборе рабочего напряжения конденсатора (если конденсатор рассчитан на работу в цепях постоянного тока, то его рабочее напряжение для работы в сети переменного тока 50 гц должно выбираться в 2-3 раза больше напряжения на его зажимах). Для двигателей с мощностью до 250- 300 вт и напряжением 127-220 в потребная емкость достигает десятков микрофарад, а пусковая даже сотен (100-150) микрофарад. Емкость конденсатора подбирается- экспериментально по минимальному потреблению тока обмотками в рабочем режиме или по максимальному моменту, развиваемому неподвижным двигателем (пусковая емкость).

При перемотке трехфазных двигателей на однофазное питание приходится иногда сталкиваться с таким явлением, когда перемотанный двигатель не разбегается, а застревает на низкой скорости.

Такое явление наблюдается чаще у двухполюсных двигателей (3 000 оЩмин) и в особенности при отсутствии скоса пазов ротора. Более благоприятным с этой точки зрения является ротор с небольшим числом стержней (например, 16-il8 стержней в роторе при 24 пазах статора). Улучшить условия пуска можно, увеличив сопротивление клетки ротора (обточкой торцовых замыкающих колец), а также увеличив на 10-20% воздушный зазор (шлифовкой ротора). Иногда помогает разрезка нескольких симметрично расположенных стержней ротора. В тех случаях, когда допустим повышеяный шум двигателя, благоприятные результаты могут быть получены при нечетном числе стержней ротора. Все мероприятия, связанные с увеличением сопротивления клетки, разумеется, несколько увеличивают номинальное скольжение двигателя.

При использовании двухслойных трехфазных обмоток благоприятное влияние оказывает укорочение шага на! /з полюсного деления. Данные по выпускаемым асинхронным однофазным двигателям приведены в книге: Ф. М. Юферов «Электрические двигатели автоматических устройств», Госэнаргоиздат, 1959.

регулятор скорости

Электролитические конденсаторы для этой схемы надо брать на рабочее напряжение не менее 450В. С более низким не подойдут.
И еще: при любом соединении обмоток электродвигателя, кроме пусковых электролитических конденсаторов, желательно добавить рабочие фазосдвигающие конденсаторы типа МБГЧ, МБГП на рабочее напряжение 400…600В, хотя бы и емкостью в 3…4 раза менее расчетной. Это значительно улучшит работу двигателя при переменных нагрузках (деревообрабатывающий станок, точило, корнерезка и т.п.). Напомним, что расчетная емкость выбирается из условия Сраб=(1,5…2)*66*Рном (читайте схему к рис.2).
Теперь немного практики.
Предположим, у вас двигатель мощностью 300Вт и его выводы соединены “треугольником” (рис.6). Такой двигатель без нагрузки успешно запустится и от одного правильно подобранного конденсатора в 40мкФ, включенного в цепь двигателя. А вот если его заменить диодно-конденсаторной сборкой (рис.4), то понадобится уже их уже четыре, т.е. если ориентироваться по рис.4, то каждый из двух нарисованных конденсаторов должен состоять состоять из последовательно соединенных двух электролитических конденсаторов по 40мкФ. Понятно, что рабочее напряжение их желательно чтобы превышало хоть немного сетевое. Поэтому, если он у вас запускается без проблем и од одного конденсатора, то в диодной сборке нет смысла. А вот, если его мощность превышает 1…1,5кВт, или он тяжело разгоняется, то нужно использовать диодно-конденсаторную сборку.
Также диодно-конденсаторную сборку целесообразно использовать при соединении обмоток двигателя по схеме “разорванная звезда” (рис.7). Эта схема дает наибольший крутящий момент при запуске двигателя даже с нагрузкой на валу. Электролитические конденсаторы в этой схеме лучше взять с напряжением не менее 450В и собрать согласно схемы рис.7. Рабочий фазосдвигающий конденсатор берется по формуле Ср=66*Рном, т.е. при 1кВт подойдет 60мкФ. Это могут быть бумажные типа МБГП на напряжение 600В. Пусковая электролитическая сборка рассчитывается как (2…3)*Ср, т.е. это в пределах 120…180мкФ.

* с использованием материала статьи Ю.А.Сытник “Использование сборки конденсаторов для запуска электродвигателя”

Схемы торможения 3-х фазных асинхронных двигателей

Данное устройство торможения имеет авторское свидетельство СССР №1295495 кл. Н 02 Р3/24, 1987.
Рассматриваемый электропривод содержит два асинхронных двигателя, контакты КМ1 линейного контактора. Одни выводы его подключены к 3-х фазной сети, другие подключены к соединенным пофазно статорным обмоткам обоих асинхронных двигателей. Вторые концы двигателя №1 подключены к катодам диодов VD1 – VD3, а вторые концы двигателя №2 – к анодам диодов VD4 – VD6. Между собою аноды первой тройки диодов и катоды второй тройки соединены через резистор R. Кроме этого, вторые концы каждого двигателя подключены к контактам других контакторов КМ2 – КМ5. При такой схеме торможения необходимо, конечно же, чтобы все шесть концов трех обмоток статора были выведены для подключения. При подаче питания через КМ1 должны одновременно замыкаться контакты остальных контакторов. Они зашунтируют диоды, образуя питание обоих двигателей по схеме соединения обмоток “звездой”. Режим торможения должен быть спроектирован так, чтобы при выключении электропривода контактор КМ1 оставался какое-то время включенным, а контакты КМ2 – КМ5 разомкнулись. Тогда через обмоки статоров обоих двигателей потечет выпрямленный однополупериодный ток. В результате двигатели тормозятся, а эффективность этого торможения зависит от величины тока через обмотки статоров, который регулируется сопротивлением R. С его помощью устанавливается максимально допустимый ток, что, разумеется, повышает долговечность работы устройства. Режим торможения прекращается при выключении и размыкании контактов КМ1. Время торможения и выключения КМ1 надо согласовать. При окончании торможения контактор КМ1 не должен быть включен.

На рис.9 и рис.10 представлена еще одна схема торможения асинхронного 3-х фазного двигателя. Эта схема обеспечивает торможение любого двигателя до 3кВт в течение 6 секунд. Эту схему мы лично составили и испытывали на производстве со всеми асинхронными 3-х фазными двигателями до 3кВт включительно. Сама схема включения в работу двигателя и его торможения проста и представлена на рис.10. В работу двигатель включается подачей питающего напряжения через контакты контактора К1. Режим торможения осуществляется подачей однополупериодного выпрямленного диодом VD1 напряжения на статор двигателя. Причем одна фаза подается на одну обмотку, а другая на оставшиеся две, которые в режиме торможения соединяются между собою контактами К2.2 и К2.3 контактора К2. Одна из фаз не используется. Сразу, оговоримся, что, если две оставшиеся обмотки не объединить между собою контактами К2.2 и К2.3, а подать вторую фазу только на одну обмотку – торможения не получится. Поэтому для 3-х фазных двигателей там, где общая точка соединения трех обмоток не доступна по конструктивным причинам их намотки, т.е. не выведена наружу, необходимо соединить в режиме торможения две обмотки. А вот на тех двигателях, где общая точка выведена наружу и доступна для монтажа, рекомендуется выпрямленное напряжение подать на две любые обмотки, а третью закоротить контактом контактора К2. Такое решение показано на рис.11.

А вот схема подключения кнопочного поста управления режимами двигателя немного посложнее. Здесь выполнена защита от возможности включения сразу двух режимов во избежании неприятных последствий. Рассмотрим поконкретнее. Схема управления пусковой катушкой К1 почти стандартная за исключением “врезанного” в цепь ее управления нормально замкнутого контакта К2.4 от катушки торможения К2. Он защищает двигатель от включения пускового режима, пока идет процесс торможения и катушка К2 включена. Пока она будет включена, контакт К2.4 будет разомкнут вместе со стоповой кнопкой SB1. Но начнем по порядку.
В исходном состоянии станок выключен и обе управляющие катушки без напряжения. В это время состояние всех нормально открытых, т.е. разомкнутых контактов (далее просто НО) и нормально замкнутых (далее просто НЗ) обеих катушек соответствует показанному на схеме рис.9.
При нажатии кнопки SB2 “ПУСК” начинает поступать напряжение через замкнутый контакт кнопки SB1 “СТОП”, далее через пока еще нажатую кнопку SB2 “ПУСК” и далее через НЗ контакт К2.4 обесточенной катушки торможения К2 на катушку контактора К1. Второй конец катушки запитан, разумеется, напрямую. Как только катушка К1 встанет под ток, ее контакт К1.4 “обойдет”, т.е. зашунтирует пусковую кнопку SB2 и ее отпускание уже никак не влияет на процесс – двигатель запущен и получает питание 3-х фазной сети через силовые контакты К1.1, К1.2 и К1.3 контактора К1. При этом цепь питания тормозного контактора К2 разорвана НО контактом SB1.2 кнопки “СТОП” и разомкнувшимся контактом К1.5 вставшей под ток пусковой катушки К1.
При необходимости выключить и затормозить двигатель нажимается кнопка SB1 “СТОП”. При этом своим НЗ контактом SB1.1 она обрывает цепь питания пускового контактора К1 и замыкает свой НО контакт SB1.2, подготавливая цепь питания контактора К2. В тот момент, когда контактор К1 по факту отключится, его контакт К1.5 до конца замкнет цепь питания К2. Таким образом, назначение контакта К1.5 – это блокировка подачи выпрямленного через диод VD1 напряжения при нажатой кнопке “СТОП” и возможной задержке отпадания силовых контактов К1.1, К1.2 и К1.3 контактора К1 (например, их залипании).
И в заключение необходимо отметить, что используемый в схеме диод применялся типа ВЛ-50.

Устройство для динамического торможения конденсаторного электродвигателя

Представленная схема устройства по авторскому свидетельству №1023598, КЛ. НО2р 3/24, 15.06.83 предназначена для динамического торможения асинхронного конденсаторного электродвигателя с короткозамкнутым ротором малой мощности, которое обеспечивает его автоматическое торможение при отключении от сети путем кратковременного протекания пульсирующего тока по его обмоткам.
Устройство содержит переключатель SA1, с помощью которого подключается к питающей сети главная обмотка Г и вспомогательная В через фазосдвигающий конденсатор С1. Контакты 1-5 переключателя SA1 в цепи главной обмотки электродвигателя шунтированы последовательной цепочкой из диода VD1 и электролитического конденсатора С2. Конденсатор шунтирован резистором R через контакты 3-4 переключателя SA1, которые соединены последовательно с резистором R. Точка соединения фазосдвигающего конденсатора С1 и вспомогательной обмотки В соединена с выводом 2 переключателя SA1.
В исходном (предпусковом положении) фазосдвигающий конденсатор С1 шунтирован контакты 1-2 переключателя SA1, а его контакты 3-4 в цепи резистора разомкнуты.
Устройство работает следующим образом. При включении электродвигателя с помощь контактов 1-5 переключателя SA1 обтекается током главная и вспомогательная обмотки через конденсатор С1. При этом контакты 3-4 переключателя SA1 шунтируют резистором конденсатор С2. Электродвигатель запускается. Цепочка из диода, резистора и конденсатора С2 шунтируется включенными контактами 1-5 переключателя SA1 и на работу не влияет.
При отключении конденсаторного электродвигателя от сети контактами 1-5 переключателя SA1 размыкаются его контакты 3-4 в цепи резистора, контактами 1-2 шунтируется фазосдвигающий конденсатор С1, а главная обмотка Г и вспомогательная В, соединенные параллельно, обтекаются выпрямленным однополупериодным током сети через элементы VD1 и С2, в результате чего происходит торможение электродвигателя. По окончании заряда конденсатора С2 диод VD1 запирается им, в результате чего ток по обмотка Г и В прекращается. Повторный запуск двигателя вызывает разряд конденсатора С2 на резистор R через замкнутые контакты 3-4 переключателя SA1, и схема готова к новомй циклу торможения.
В устройстве в качестве переключателя SA1 можно использовать любой, подходящий по току и напряжению. Тип диода VD1 и конденсатора С2 определяются мощностью электродвигателя. для двигателя мощностью до 0,6кВт в качестве диода VD1 можно использовать диод типа КД 227Ж на ток 5А и напряжение 800В или 2Д203Г, 2Д203Д на 10А и 700В, а также диоды В10-10…В10-14 на ток 10А и напряжение от 700В и выше. Подойдут и любые другие на указанные ток и напряжение. Возможно использование диодов старой серии на ток не ниже 5А, включив из по два последовательно, например, Д232..Д234 или Д246..Д248 с любым буквенным индексом. В этом случае диоды необходимо шунтировать резисторами типа МЛТ-1 сопротивлением 150..200кОм. Конденсаторо С2 – электролитический на напряжение не менее 400В. Емкость его определяют экспериментально для получения требуемого времени торможения. Разрядный резистор типа МЛТ-2 сопротивлением 150…200кОм.
“Электрик”, 2005г, №5

Схема однофазного двигателя – советы электрика

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

ОГЛАВЛЕНИЕ

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно.

Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой.

К сети подключатся две из них, остальные служат для коммутации.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Источник: http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/shema-podklyucheniya-odnofaznogo-elektrodvigatelya.html

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

Обратите внимание

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Важно

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Для подключения конденсаторного двигателя пусковая кнопка не нужна.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Источник: http://shenrok.blogspot.com/p/blog-page_18.html

Схема подключения однофазного двигателя с пусковой обмоткой

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Совет

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

также осуществляется через конденсатор.

Источник: http://studvesna73.ru/07/23/5772/

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Технологии 14 октября 2017

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Конструкция электродвигателей и подключение

Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

  1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей “треугольником” или “звездой”.
  2. Асинхронные электромоторы, работающие от сети с одной фазой.
  3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В.

Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме.

Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей “звездой” к такой сети произвести намного проще, нежели к однофазной.

Видео по теме

Что потребуется для подключения мотора

Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

  1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
  2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
  3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
  4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В.

На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры.

Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

Подключение коллекторного двигателя

Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах.

Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные.

А схема подключения электродвигателя очень простая.

Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора – к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

Особенности включения мотора

Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель.

Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора.

Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая.

В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой.

Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Практические схемы

Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом.

Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей.

Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления.

Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом.

У пусковой же оно практически в три раза выше — примерно 35 Ом.

Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В.

Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома.

Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Обратите внимание

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов.

Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ.

При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

Источник: fb.ru

Источник: https://monateka.com/article/252987/

Схема подключения электродвигателя

Схема подключения электродвигателя во многом определяется условиями его эксплуатации. Например, подключение “звездой” обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением “треугольником”.

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения “звездой”. Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя “треугольником”. При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения “звездой” эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

Подключение трехфазного двигателя в однофазную сеть

Такая необходимость возникает достаточно часто. Сразу замечу – мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100. Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Важно

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 – 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как “треугольник” так и “звезда”.

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки “пуск” срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими – включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки “стоп”, размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/shema_jelektrodvigatelja.html

Электродвигатель конденсаторный однофазный 220 вольт схема включения. Как определить рабочую и пусковую обмотки

Для освещения и общих бытовых целей в домах, офисах, магазинах, а также в небольших производствах, широко используется однофазная система электропитания наряду с трёхфазной системой. Однофазная система применяется там, где потребляемая мощность мала, где нет необходимости в использовании трёхфазных электрических цепей, где нет постоянного круглосуточного потребления большой мощности.

Однофазные двигатели просты в конструкции и эксплуатации, что в свою очередь даёт экономию в их эксплуатации, ремонте и обслуживании в сравнении с аналогичными трёхфазными двигателями. Обычно в бытовой технике, такой как пылесосы, вентиляторы, стиральные машины, фены, центробежные насосы, маленькие игрушки и т.д. используются именно однофазные электрические машины.

Однофазные асинхронные двигатели классифицируются следующим образом:

  • Однофазные асинхронные двигатели или асинхронные двигатели.
  • Однофазные синхронные двигатели.
  • Коллекторные двигатели.

Эта статья даёт основное представление об однофазном асинхронном двигателе, его описание и принцип его работы.

Конструкция однофазного асинхронного двигателя

Как и любой другой электрический двигатель, однофазный асинхронный двигатель состоит из двух основных частей, а именно из ротора и статора. Статор является неподвижной частью двигателя, а ротор подвижной частью. Питание однофазным напряжением подается на статор асинхронного двигателя, который содержит обмотки для создания магнитного поля. Ротор представляет собой вращающуюся часть, которая соединяется с механической нагрузкой. Ротор однофазного асинхронного двигателя является короткозамкнутым, то есть содержит короткозамкнутую обмотку, обычно по своему виду напоминающую беличью клетку (колесо).

Конструкция однофазного асинхронного двигателя практически аналогичная конструкции трёхфазного электродвигателя с короткозамкнутым ротором. Единственное отличие – это наличие двух обмоток для одной фазы питания, в то время как в трёхфазном двигателе на каждую фазу приходится по одной обмотке.

Статор однофазного асинхронного двигателя

Статор однофазного асинхронного двигателя изготовлен из ламинированных штампованных листов электротехнической стали. Каждый лист изолирован от предыдущего и последующего слоем лака или иного изолирующего немагнитного покрытия. Изготовление статора из многих тонких пластин обусловлено необходимостью избавится от влияния вихревых токов. Чем больше пластин и чем они тоньше, тем меньшие вихревые токи наводятся в статоре, что положительно влияет на эффективность преобразования электрической энергии в механическую энергию. В том случае, если статор изготовлен из цельного куска электротехнической стали или иного ферромагнитного материала, значительная часть электрической энергии будет расходоваться на нагрев статора, а это снизит КПД двигателя и может разрушить изоляцию обмоток статора.

Собранный пакет статора содержит слоты (пазы) для укладки в них обмотки, таким образом, получается, что статор является магнитопроводом наподобие сердечника трансформатора, а обмотка статора подобна первичной обмотке трансформатора. Где же расположена вторичная обмотка? Это нужно понять. Вторая обмотка короткозамкнута и она расположена на роторе, а магнитная связь между статором и ротором осуществляется через воздушный зазор.


При подаче питания на обмотку статора, создаётся магнитное поле, которое вращает ротор со скоростью чуть меньшей, чем синхронная скорость N S (об/мин = rpm). Эта скорость определяется по формуле:


Конструкция статора однофазного двигателя аналогична конструкции трёхфазного двигателя, за исключением обмоток статора:

  • Во-первых, однофазные асинхронные двигатели содержат в основном концентрические обмотки, так как число витков обмотки может быть легко отрегулировано, то магнитодвижущая сила (МДС)(MMF) распределяется практически синусоидально.
  • Полюса двигателя смещаются, за исключением того случая, когда асинхронный двигатель имеет две статорные обмотки, основную и вспомогательную. Эти две обмотки располагаются в пространстве статора под прямым углом относительно друг друга.

Ротор однофазного асинхронного двигателя

Конструкция ротора однофазного асинхронного двигателя аналогична короткозамкнутому ротору трёхфазного асинхронного двигателя. Ротор имеет цилиндрическую форму и прорези по всей периферии. Пазы сделаны не параллельно оси вращения ротора, а со скосом. Такое перекашивание предотвращает магнитное запирание ротора в поле статора, тем самым облегчая первоначальный пуск двигателя. Пуск и работа асинхронного двигателя становится более гладкой и спокойной, без чрезмерных перегрузок на старте и в работе.

Обмотка ротора в виде беличьей клетки состоит из алюминиевых, медных или латунных стержней, которые размещаются в пазах на периферии ротора. Эти стержни постоянно замкнуты медными или алюминиевыми кольцами с торцов ротора и иначе называются – конечными кольцами. Внешний вид такой обмотки напоминает беличье колесо, в котором белка бегает по кругу, перебирая лапками те самые стержни. Такое сходство и послужило названием для короткозамкнутого ротора – короткозамкнутый ротор типа «беличья клетка».

Так как обмотка ротора закорочена концевыми кольцами и состоит из многих стержней соединённых параллельно друг другу в одну цепь, то электрическое сопротивление ротора очень мало. Такая конструкция ротора не позволяет включать в обмотку ротора дополнительные сопротивления, потому как отсутствуют контактные кольца и щётки.

Простота конструкции и отсутствие контактных колец и щёток в конструкции однофазного асинхронного двигателя делает его дешёвым, надёжным и простым в эксплуатации.

Принцип работы однофазного асинхронного двигателя

Необходимо помнить, что для работы любого электродвигателя, постоянного (DC) или переменного тока (AC), требуется наличие двух магнитных потоков, взаимодействие которых создаёт крутящий момент. Существование крутящего момента является необходимым параметром для работы любого двигателя, чтобы производить вращение.

Когда через обмотки статора начинает протекать электрический ток, он в свою очередь создаёт переменный магнитный поток, который называется главным потоком. Этот главный поток оказывает воздействие на проводники ротора в соответствии с законом электромагнитной индукции Фарадея. В проводниках ротора наводится ЭДС, а так как обмотка ротора короткозамкнутая, то в ней начинает протекать электрический ток, который в свою очередь также создаёт встречный магнитный поток, действующий против главного потока. Поскольку второй поток создаётся по причине первого потока, а значит, они существуют не синхронно, то именно поэтому такой двигатель называется асинхронным.

Взаимодействие двух этих потоков, один от статора и второй от ротора, создают желаемый крутящий момент. Двигатель начинает вращаться.

Почему однофазный асинхронный двигатель не способен к самозапуску?

Согласно теории о двойном поле вращения, любая составляющая (переменная) поля может быть разложена на два компонента, где каждый компонент будет равен половине максимальной величины взятой составляющей. Оба этих компонента будут вращаться в противоположных друг к другу направлениях. Таким образом, поток Ф можно разложить на две составляющие:

Каждый из этих компонентов потока вращается (движется) в противоположном направлении, то есть, если Ф м /2 вращается в направлении по часовой стрелке , то другой поток Ф м /2 вращается в направлении против часовой стрелки .

Когда от источника переменного тока подается ток на обмотки статора однофазного асинхронного двигателя, он производит поток Ф м . В соответствии с теорией двойного поля вращения (double field revolving theory ) этот поток может быть разложен на два потока встречно направленных друг к другу величины Ф м /2 и движущихся синхронно со скоростью N. Назовем эти два компонента Ф f (front) и Ф b (back). Результирующий поток от этих двух потоков в любой момент времени даёт значение магнитного потока статора.

В момент запуска двигателя эти два компонента потока направлены точно друг против друга. Они равны по величине и уравновешивают друг друга и, следовательно, эффективность крутящего момента, который испытывает ротор, равна нулю. Именно поэтому не происходит самозапуска однофазного асинхронного двигателя.

Способы создания самозапускающихся однофазных асинхронных двигателей

Из выше написанного можно легко сделать вывод, что однофазные асинхронные двигатели не самозапускаются потому как производимый статором переменный поток состоит из двух компонентов, которые компенсируют друг друга и, следовательно, нет эффективного крутящего момента.

Решение этой проблемы состоит в том, чтобы создать именно вращающийся магнитный поток, а не пульсирующий. Тогда двигатель станет самозапускающимся. Для этого надо сделать так, чтобы одна из компонент имела перевес относительно другой компоненты потока в ту или другую сторону. Изначально две компоненты потока находятся в противофазе относительно друг друга, то есть, сдвинуты на 180 градусов. Это можно сделать, добавив дополнительную компоненту потока, которую после пуска можно убрать и двигатель продолжит работать самостоятельно.

В зависимости от способов осуществления самозапуска однофазного асинхронного двигателя существует четыре вида двигателя:

  1. С раздельными обмотками (Split phase induction motor).
  2. С пусковым конденсатором (Capacitor start inductor motor).
  3. С пусковым конденсатором и рабочей обмоткой (Capacitor start capacitor run induction motor).
  4. Со смещенным полюсом (Shaded pole induction motor).

Сравнение однофазного и трёхфазного электродвигателей

  1. Однофазные асинхронные электродвигатели просты в конструкции, надежны и экономичны в работе, обслуживании и эксплуатации в сравнении с трёхфазными асинхронными двигателями.
  2. Коэффициент мощности однофазных асинхронных двигателей ниже в сравнении с трёхфазными асинхронными двигателями такой же мощности.
  3. Однофазные асинхронные двигатели таких же габаритов, что и трёхфазные асинхронные двигатели выдают около 50% мощности.
  4. Низкое значение пускового момента для однофазных асинхронных двигателей.
  5. Эффективность (КПД) однофазных асинхронных двигателей меньше в сравнении с эффективностью трёхфазных асинхронных двигателей.

Все теги раздела Электротехника .

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.

Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая – вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.


Следует помнить, что использование однофазного электродвигателя – это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.


Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

Индукционный двигатель с реостатным пуском (RSIR) и

Двигатель с постоянным разделением емкости (PSC).

На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.


Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.


Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.


Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.


Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

Электродвигатели CSCR – самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.


Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как “электродвигатели с расщеплённой фазой”. Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление – выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.


Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.


Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.


Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов – обычно меньше 200% от номинального тока нагрузки, – что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.


Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.


Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.



О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.


Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:


Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения – например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ – например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД – конденсаторный двигатель
  • 25 – мощность 25 (Вт)
  • У4 – климатическое исполнение

Вот его внешний вид.



Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) – провода красного цвета
  • пусковая (В1-В2) – провода синего цвета


В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники. можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.


2 . Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.


Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.


Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).


Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).


Делаем вывод: первая обмотка – пусковая, вторая – рабочая.


Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).




По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.



Одеваю бирки на провода. Вот что получилось.



Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно. Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.


В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.




Вот, что у меня получилось:


Отсюда делаем следующий вывод:

  • (1-2) – пусковая обмотка
  • (2-3) – рабочая обмотка
  • (1-3) – пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Добрый вечер, Дмитрий! Я сам работаю электриком в ЭТЛ. У меня вопрос по поводу испытаний кабельной линии из сшитого полиетилена. Вы сталкивались с этим, какое подавали напряжение, какие были токи утечки, сколько по времени проходит испытание одной фазы? Заранее спасибо. если можно отправьте свой ответ мне на
почту.

Артем, здравствуйте. Об испытании кабелей из сшитого полиэтилена я писал в комментариях в этой статье.

здравствуйте Дмитрий. а не могли бы вы подробно написать статью о масляных выключателях, (соленоид, контактор включения, катушку отключения, его испытания, замеры характеристик) и также испытания силовых трансформатор и его замеры. очень нужно, есть нюансы в голове.

SLV, я планировал написать эти статьи, особенно про разные типы приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), про высоковольтные масляные и вакуумные выключатели, установленные, как в камерах КСО, так и на каретках, но боюсь, что многим посетителям сайта это будет не интересно. Вот постоянно и откладываю…

Здравствуйте, Дмитрий!
Вы все очень замечательно объясняете, огромное спасибо! Не могли бы Вы прояснить, что означает в автоматических выключателях, к примеру 6кА или 35кА, если они рассчитаны на один ток срабатывания? И почему у них такая разница в цене?

Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. означают электродинамическую стойкость аппарата защиты при коротком замыкании в сети, т.е. показывают насколько автомат устойчив к короткому замыканию. Для дома (квартиры) вполне хватит 4,5 (кА), т.к. линии от ТП до жилого дома и от ВРУ до квартир достаточно длинные, они обладают большим активным сопротивлением, что приводит к снижению токов короткого замыкания до значений 0,5-1,5 (кА), а чаще и того меньше.

я весь интернет перерыл, нифига не могу разобрать, книги на работе читал, не могу понять и все.кстати немогли бы вы сказать что все таки значит тангенс диэлектрических потерь масла, вот все про него говорят на работе а никто и толком точно незнает.)

И ещё одно.Раньше многие подключали 3-х фазные двигатели к однофазной цепи, но время ушло.Многие сейчас покупают готовые однофазные.У меня была таблица соотношения мощности двигателя к мощности конденсаторов.А тут один знакомый попросил подключить в гараже движок трехфазник.Таблицу я не нашел,пришлось подбирать.
Так вот, нет ли у вас такой таблицы.Они были в старых учебниках по электротехнике.Если есть, прошу опубликовать или отправить на мой E-mail.
C уважением, Николай.

Николай, читайте здесь. Там есть расчет емкости рабочего и пускового конденсаторов в зависимости от мощности двигателя.

Добрый день! Подскажите пожалуйста по проблемке. Однофазный двигатель с конденсаторным стартом. Время от времени двигатель не пускается-гудит. Батарея конденсаторов собрана из трёх МБГП-2 конденсаторов по 2мкФ 630В. Кондёры на тестере показывают полную ёмкость. Чем грозит увеличение ёмкости конденсаторов? и чем грозит уменьшение вольтажа их же с 630В до 450В?Спасибо! сопротивление обмоток 50 Ом пусковая 20 Ом рабочая марку двигателя сейчас не помню.

Вадим, если двигатель гудит, то значит отсутствует вращающий момент. Это может произойти по следующим причинам: либо вышли из строя конденсаторы (отсутствие или малая емкость), либо возникает межвитковое в одной из обмоток двигателя. Лучше начать с простого и заменить старые конденсаторы на новые. Емкость увеличивать не нужно, ну если только совсем немного в ту или иную сторону, а вот вместо 630 (В) можно смело использовать 450 (В).

Добрый день. Конденсаторы показывают номинальную ёмкость. найти другие у нас оказалось проблемой. либо большая либо меньшая ёмкость, либо габарит не подходящий. либо ценник не реальный и сроки поставки. как я понял если я увеличу с шести до почти семи мкФ то особых проблем не будет?двигатель по условию работает по секунд пятнадцать.проблема с пуском носит не систематический характер. как вычислить межвитковое? на трёх фазных асинхронных знаю, прибор есть.спасибо.

Здравствуйте,знатоки.Что,если непредсказуемо меняется направление вращения двигателя.Но,если я использую обмотку с меньшим сечением как рабочую,то тогда все отлично работает,и при перемене контактов,правильно меняет направление вращения,и работает около часа без перегрева.Движок обычный старый СССР.Одна обмотка 14 Ом, вторая 56 Ом.

Доброго времени суток,сегодня взялся запустить вытяжку бытовую над плитой, блок управления скоростью двигателя уже давно приказал долго жить….со светом нет проблем, а вот с эл.двигателя идут четыре провода, как же с ними быть. кого куда подключать? Пвсевдосенсорные кнопки выдернул, поставил фиксируемые, вытяжка KRONA GALA с тремя скоростями вращения вентилятора….Помогите с подключением.

А как вы определили что пусковая обмотка должна иметь большее сопротивление чем рабочая? исходя из чего? обьясните пожалуйста

Здравствуйте,у меня двигатель 2ДАК71-40-1.0-у2 имеется четыре провода(черный,красный,серый,белый)все они прозваниваются между собой,подскажите пожалуйста как подкючить?

http://zametkielectrika.ru

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.



Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) – провода красного цвета
  • пусковая (В1-В2) — провода синего цвета


В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя .

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.


Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.


Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).


Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).


Делаем вывод: первая обмотка — пусковая, вторая — рабочая.


Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).




По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.



Одеваю бирки на провода. Вот что получилось.



Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.


В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.




Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)


Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его

Пуск конденсатора однофазного двигателя

Мы рассмотрели испытания трехфазных двигателей, и я думаю, что нам также следует взглянуть на схему однофазных соединений. Есть несколько однофазных двигателей на различном оборудовании, и я постараюсь объяснить это как можно проще.

Начнем с принципиальной схемы подключения двигателя. Теперь вы увидите, что люди будут рисовать это разными способами, но я покажу вам очень простой способ сделать это.

Чтобы разобраться в схеме, нужно знать, как найти две обмотки двигателя. Это ваша пусковая обмотка и бегущая обмотка. Чтобы определить, что есть что, нужно измерить сопротивление обмотки. Используйте мультиметр и установите его на шкалу Ом. Теперь измерьте сопротивление каждой обмотки и запишите его. Наивысшее полученное вами значение – это пусковая обмотка, а нижнее – текущая обмотка.

Теперь посмотрим на подключение согласно схеме ниже:

Вы увидите, что один конец рабочей обмотки и один конец конденсатора подключены к активному или «живому»

Другая сторона конденсатора подключена к одному концу пусковой обмотки

Другой конец пусковой и пусковой обмоток теперь подключен к нейтрали

Все готово, теперь можно запустить мотор.

Итак, теперь двигатель вращается, но в неправильном направлении. Как это изменить?

Опять же, есть два способа сделать это. Вы можете изменить соединение пусковой ИЛИ бегущей обмотки. Никогда не делайте их обоих, иначе двигатель все равно будет вращаться в неправильном направлении!

На скетче ниже я показываю, как поменять пусковую обмотку. По привычке я всегда делаю пусковую намотку, но вы можете выбрать свой собственный способ.

Вы заметите, что наброски нарисованы довольно грубо, но результат – то, что нам нужно. Обычно это эскиз, который я делаю при подключении однофазного двигателя.

И снова, как всегда, я надеюсь, что вы найдете это полезным, и не забывайте всегда думать, прежде чем делать это! БЕЗОПАСНОСТЬ ничем не заменит!

Однофазные двигатели

– часть 1




ТЕРМИНОЛОГИЯ:

  • Центробежный переключатель
  • Компенсирующая обмотка
  • Компенсация проводимости
  • Электродвигатель с параллельными полюсами
  • Мотор Holtz
  • Индуктивная компенсация
  • Многоскоростные двигатели
  • Нейтральная плоскость
  • Тяговый двигатель
  • Ходовая обмотка
  • Асинхронный двигатель с расщепленными полюсами
  • Затеняющая катушка
  • Двухфазные двигатели
  • Пусковая обмотка
  • Шаговые двигатели
  • Двигатели синхронные
  • Двухфазный
  • Универсальный мотор
  • Мотор Уоррена

Основы:

Однофазные двигатели используются почти исключительно в жилых помещениях и работать с нагрузками, требующими маломощных двигателей в промышленных и коммерческих локации.Многие из этих двигателей вы узнаете из повседневной жизни и можете задавались вопросом, как они работают. В отличие от трехфазных двигателей существует множество различные типы однофазных двигателей, и не все они работают на тот же принцип.

Есть такие, которые работают по принципу вращающегося магнитного поля, а другие нет. Некоторые однофазные двигатели предназначены для работы при более одной скорости. Этот блок…

  • представляет несколько различных типов однофазных двигателей и объясняет как они действуют.
  • объясняет, как определить подходящий двигатель для использования в данной ситуации, оценив принципы работы каждого.

Цели обучения:

  • перечислены различные типы электродвигателей с расщепленной фазой.
  • обсуждают работу электродвигателей с расщепленной фазой.
  • меняет направление вращения двигателя с расщепленной фазой.
  • обсуждает работу многоскоростных электродвигателей с расщепленной фазой.
  • обсуждает работу двигателей с расщепленными полюсами.
  • обсуждают работу двигателей отталкивающего типа.
  • обсуждают работу шаговых двигателей.
  • обсуждают работу универсальных двигателей.

Введение:

Хотя большинство крупных двигателей, используемых в промышленности, являются трехфазными, на раз необходимо использовать однофазные двигатели. Однофазные двигатели используются практически исключительно для эксплуатации бытовой техники, такой как кондиционеры, холодильники, колодезные насосы и вентиляторы.Обычно они рассчитаны на работу от 120 вольт. или 240 вольт. Они различаются по размеру от долей лошадиных сил до нескольких мощность в зависимости от области применения.

Однофазные двигатели

Ранее мы заявляли, что существует три основных типа трехфазных двигатели, и все они работают по принципу вращающегося магнитного поля. Хотя это верно для трехфазных двигателей, это неверно для однофазных моторы. Есть не только много разных типов однофазных двигателей, но у них также разные принципы работы.

++++ Двухфазный генератор переменного тока вырабатывает напряжение 90 dgr из фазы друг с другом.

++++ A Обмотка статора асинхронного двигателя с резистивным пуском. В стартовая обмотка содержит намного меньший по размеру провод, чем ходовая обмотка. Начать обмотку; Беговая намотка

++++ B Обмотка статора конденсаторного двигателя с конденсаторным пуском. Провод размер одинаковый как для пусковой, так и для пусковой обмоток.

++++ Пусковая и пусковая обмотки подключаются параллельно каждой Другие.Приложенное напряжение; Пусковой ток; Бегущий ток; Начать намотку; Обмотка ходовая 40 °

Электродвигатели с разделенной фазой делятся на три основные категории:

1. Асинхронный двигатель с резистивным пуском

2. Асинхронный двигатель с конденсаторным пуском

3. Конденсаторно-пусковой конденсаторный двигатель

Хотя все эти двигатели имеют разные рабочие характеристики, они похожи по конструкции и используют одинаковый принцип работы.Сплит-фаза моторы получили свое название из-за того, как они работают. Как трехфазный двигатели, двухфазные двигатели работают по принципу вращающегося магнитного поле.

Однако вращающееся магнитное поле не может быть создано только с одной фазой.

Электродвигатели с расщепленной фазой поэтому разделяют ток через два отдельных обмотки для моделирования двухфазной энергосистемы. Вращающееся магнитное поле может изготавливаться с двухфазной системой.

Двухфазная система:

В некоторых частях мира вырабатывается двухфазное питание. Двухфазная система Tem производится с помощью генератора переменного тока с двумя наборами катушек, намотанных на 90 dgr. отдельно. Таким образом, напряжение в двухфазной системе составляет 90 дгр. из фазы друг с другом. Эти два противофазных напряжения можно использовать для создают вращающееся магнитное поле аналогично тому, как производят вращающееся магнитное поле с напряжениями трехфазной системы.Потому что должно быть два напряжения или тока, не совпадающие по фазе друг с другом для создания вращающегося магнитного поля в двигателях с расщепленной фазой используются два отдельных обмоток для создания разности фаз между токами в каждой из этих обмотки. Эти двигатели буквально разделяют одну фазу и производят вторую. фаза, отсюда и название двигателя с расщепленной фазой.

Обмотки статора:

Обратите внимание на разницу в размере и положении двух обмоток Статор показан.Пусковая обмотка сделана из проволоки небольшого размера и размещена рядом с верх сердечника статора. Это заставляет его иметь более высокое сопротивление. чем беговая обмотка. Пусковая обмотка расположена между полюсами обмотка хода. Обмотка хода выполнена из проволоки большего диаметра и размещена в нижней части ядра. Это дает более высокое индуктивное сопротивление и меньше сопротивление, чем стартовая обмотка. Эти две обмотки соединены в параллельно друг другу.

Статор электродвигателя с расщепленной фазой содержит две отдельные обмотки: намотка начала и намотка хода.Пусковая обмотка выполнена из малогабаритных проволока и размещается в верхней части сердечника статора. Обмотка хода изготовлен из относительно большой проволоки и размещен в нижней части статора основной. Вот фотографии двух статоров с расщепленной фазой. Статор используется для индукционный двигатель с резистивным пуском или индукционный двигатель с конденсаторным пуском мотор. Статор используется для двигателя с конденсаторным пуском. И то и другое статоры содержат четыре полюса, а пусковая обмотка размещена на 90 °.угол от обмотки хода.

При подаче питания на статор ток течет через обе обмотки. Поскольку пусковая обмотка более резистивная, ток через нее больше по фазе с приложенным напряжением, чем ток, протекающий через запустить обмотку. Ток через рабочую обмотку отстает от приложенного напряжение из-за индуктивного сопротивления. Эти два тока в противофазе используется для создания вращающегося магнитного поля в статоре.Скорость этого вращающееся магнитное поле называется синхронной скоростью и определяется теми же двумя факторами, которые определяли синхронную скорость для трех фазный двигатель:

1. Число полюсов статора на фазу

2. Частота подаваемого напряжения

++++ 4 Рабочий ток и пусковой ток от 35 градусов до 40 градусов. не совпадают по фазе друг с другом.

Приложенное напряжение; Пусковой ток; Рабочий ток 40 °

++++ 5 Центробежный выключатель используется для отключения пусковой обмотки от схема.Центробежный переключатель; Обмотка хода; Пусковая обмотка

Асинхронные двигатели с сопротивлением пуска

Асинхронный двигатель с резистивным пуском получил свое название от что несинфазность между пусковым и рабочим током обмотки возникает из-за того, что пусковая обмотка имеет большее сопротивление, чем ходовая обмотка. Величина пускового момента, создаваемого двигателем с расщепленной фазой, определяется по трем факторам:

1. Напряженность магнитного поля статора

2.Напряженность магнитного поля ротора

3. Разность фазового угла между током в пусковой обмотке и током. в обмотке хода (Максимальный крутящий момент создается, когда эти два тока не совпадают по фазе на 90 дграмм.)

Хотя эти два тока не совпадают по фазе, они не 90 не в фазе. Обмотка хода более индуктивна, чем обмотка запуска, но у него есть некоторое сопротивление, которое не позволяет току течь. 90 не совпадают по фазе с напряжением.Пусковая обмотка более резистивная, чем обмотка хода, но у нее есть индуктивное сопротивление, предотвращающее ток не находится в фазе с приложенным напряжением. Следовательно, разность фаз от 35 градусов до 40 град. производится между этими два тока, что приводит к довольно плохому пусковому крутящему моменту.

++++ Центробежный выключатель замкнут, когда ротор не вращается.

++++ Контакт размыкается, когда ротор достигает примерно 75% номинальной скорости.

Вес подпружиненный; Закрытые контакты; Волоконная шайба; Подпружиненный вес; Волоконная шайба; Открытые контакты

Отключение стартовой обмотки:

Вращающееся магнитное поле статора необходимо только для запуска ротора. превращение. Как только ротор разгонится примерно до 75% от номинальной скорости, пусковую обмотку можно отключить от цепи и двигателя продолжит работу только с включенной обмоткой хода. Двигатели, которые не герметичны (большинство холодильных и компрессоры герметичны) используйте центробежный выключатель для отключения пусковые обмотки из схемы.Контакты центробежного выключателя включены последовательно с пусковой обмоткой. Центробежный переключатель содержит набор подпружиненных грузов. Когда вал не вращается, пружины удерживают фибровую шайбу в контакте с подвижным контактом Переключатель. Волоконная шайба заставляет подвижный контакт замкнуть цепь. со стационарным контактом.

Когда ротор ускоряется примерно до 75% от номинальной скорости, центробежная сила заставляет веса преодолевать силу пружин.Волоконная шайба убирается и позволяет контактам размыкать и отключать пуск обмотка из схемы. Пусковая обмотка этого типа двигателя предназначена быть под напряжением только в течение периода времени, в течение которого двигатель фактически начиная. Если не отсоединить пусковую обмотку, она будет повреждена. чрезмерным током.

++++ Подключение реле горячего провода.

М – конденсатор пусковой; Пружина металлическая; Пуско-обмоточный контакт; Перегрузка контакт; Резистивный провод; Весна; L2 L1

++++ Пусковое реле токового типа.

++++ Текущий тип пускового реле.

++++ 11 Подключение реле тока. Термостат; Начать контакт; Текущее реле катушка

++++ Пусковое твердотельное реле.

++++ Подключение твердотельного пускового реле. S M Пусковое реле; Термостат

Пусковые реле:

Асинхронные двигатели с резистивным пуском и индукционные двигатели с конденсаторным пуском иногда герметично закрыты, например, в системах кондиционирования и охлаждения. компрессоры.Когда эти двигатели герметично закрыты, центробежный переключатель не может использоваться для отключения пусковой обмотки. Некоторое устройство, которое может быть установленный снаружи, должен использоваться для отключения пусковых обмоток от схема. Для выполнения этой функции используются пусковые реле. Есть три основные типы пусковых реле, используемых с пусковым сопротивлением и пуском конденсатора двигатели:

1. Реле электротепловое

2. Реле тока

3.Пусковое твердотельное реле

Реле горячего провода работает как пусковое реле, так и как реле защиты от перегрузки. реле.

В показанной схеме предполагается, что термостат управляет работой мотора. Когда термостат закрывается, ток течет через резистивный провод и два нормально замкнутых контакта, подключенных к пуску и запуску обмотки двигателя. Высокий пусковой ток двигателя быстро нагревается резистивный провод, вызывая его расширение.Расширение проволоки вызывает подпружиненный контакт пусковой обмотки для размыкания и отключения пусковой обмотка из цепи, уменьшающая ток двигателя. Если двигатель не перегружен, резистивный провод никогда не нагревается настолько, чтобы вызвать перегрузку контакта открываться, и двигатель продолжает работать. Если двигатель перегрузится, однако резистивный провод расширяется достаточно, чтобы размыкать контакт перегрузки и отключать мотор от линейки. Показано пусковое реле с горячим проводом.

Реле тока также работает, определяя величину протекающего тока. в цепи. Этот тип реле работает по принципу магнитного поле вместо расширяющегося металла. Реле тока содержит катушку с несколько витков большого провода и набор нормально разомкнутых контактов. Катушка реле подключено последовательно с обмоткой двигателя, а контакты включены последовательно с пусковой обмоткой. Когда термостат контакт замыкается, питание подается на рабочую обмотку двигателя.

Поскольку пусковая обмотка разомкнута, двигатель не запускается, что вызывает высокий ток, протекающий в цепи обмотки хода. Этот сильный ток приводит к сильное магнитное поле в катушке реле, вызывающее нормально разомкните контакты, чтобы замкнуть и подключить пусковую обмотку к цепи. Когда двигатель запускается, ток рабочей обмотки значительно снижается, что позволяет пусковые контакты снова разомкнуть и отсоединить пусковую обмотку от схема.

Полупроводниковое пусковое реле выполняет те же основные функции, что и реле тока и во многих случаях заменяет как текущее реле, так и центробежный переключатель. Пусковое твердотельное реле в целом более надежно и менее дороже, чем реле тока или центробежный выключатель. Твердотельный пусковое реле на самом деле представляет собой электронный компонент, известный как термистор. Термистор – это устройство, которое демонстрирует изменение сопротивления при изменении температуры.

Этот термистор имеет положительный температурный коэффициент, это означает, что при повышении температуры его сопротивление увеличивается. также. Принципиальная схема иллюстрирует подключение твердотельного пусковое реле.

Термистор включен последовательно с пусковой обмоткой двигателя. Когда двигатель не работает, термистор имеет низкую температуру и его сопротивление низкое, обычно 3 или 4 Ом.Когда контакт термостата замыкается, ток поступает как на рабочую, так и на пусковую обмотки двигателя. Электрический ток прохождение через термистор вызывает повышение температуры. Этот Повышенная температура вызывает внезапное резкое повышение сопротивления термистора. измените значение на несколько тысяч Ом. Изменение температуры настолько внезапно, что имеет эффект размыкания множества контактов. Несмотря на то что пусковая обмотка никогда полностью не отключается от сети, величина протекающего тока, хотя она очень мала, обычно 0.03 до 0,05 ампер, и не влияет на работу мотора. Эта небольшая сумма тока утечки поддерживает температуру термистора и предотвращает это от возврата к низкому значению сопротивления. После отключения двигателя от линии электропередачи должно быть разрешено время перезарядки от двух до трех минут чтобы позволить термистору вернуться к низкому сопротивлению до того, как двигатель перезапускается.

++++ 14 Ротор с короткозамкнутым ротором, используемый в электродвигателях с расщепленной фазой.

Взаимосвязь полей статора и ротора:

Двигатель с расщепленной фазой содержит ротор с короткозамкнутым ротором, очень похожий на те, что используется с трехфазными двигателями с короткозамкнутым ротором. Когда питание подключено к обмотки статора вращающееся магнитное поле индуцирует напряжение в стержни беличьего ротора. Индуцированное напряжение вызывает ток течет в роторе, и вокруг ротора создается магнитное поле. бары. Магнитное поле ротора притягивается к полю статора, и ротор начинает вращаться в направлении вращающегося магнитного поля.После центробежный переключатель размыкается, только рабочая обмотка индуцирует напряжение в ротор. Это индуцированное напряжение синфазно с током статора. В индуктивное сопротивление ротора велико, в результате чего ток ротора быть почти 90 дгр. не совпадает по фазе с наведенным напряжением. Это вызывает пульсирующее магнитное поле ротора, чтобы отставать от пульсирующего магнитного поля статора на 90 дгр .. Магнитные полюса, расположенные посередине между статором полюса, создаются в роторе.Эти два пульсирующих магнитных поля создают собственное вращающееся магнитное поле, и ротор продолжает вращаться.

++++ 15 Вращающееся магнитное поле создается статором и ротором поток.

++++ 16 Электролитический конденсатор переменного тока соединен последовательно с пусковым устройством. обмотка.

Ходовая обмотка Пусковая обмотка Центробежный выключатель Электролитический конденсатор переменного тока

++++ 17 Ток работы и пусковой ток 90 дгр.из фазы друг с другом. Приложенное напряжение; Рабочий ток Пусковой ток 90 °

Направление вращения:

Направление вращения двигателя определяется направлением вращения вращающегося магнитного поля, создаваемого бегом и пуском обмоток при первом запуске двигателя. Направление вращения мотора можно изменить, изменив подключение любой пусковой обмотки. или обмотка хода, но не то и другое одновременно.Если пусковая обмотка отключена, двигатель может работать в любом направлении, вручную вращая ротор вал в желаемом направлении вращения.

Наиболее используемые типы однофазных двигателей в мире

10+ однофазных двигателей на дом

Вы должны знать, что однофазные двигатели редко имеют мощность выше 5 кВт. Фракционные двигатели, большинство из которых однофазные, составляют 80–90% от общего числа изготовленных двигателей и 20–30% от общей коммерческой стоимости.Типичный современный дом может иметь 10 или более однофазных двигателей в домашнем электрическом оборудовании.

Освоение однофазных двигателей (фото предоставлено: repulsionmotor-repair.business.site)

Это делает однофазные двигатели наиболее часто используемыми типами двигателей в мире. Давайте рассмотрим эти типы по порядку.

Содержание:

  1. Двигатель серии
    1. Универсальный двигатель
    2. Компенсированный двигатель
  2. Отталкивающий двигатель
  3. Асинхронные двигатели
    1. Теория вращающегося поля
    2. Запуск
    3. Двигатель с расщепленными полюсами
    4. Разделение сопротивления -фазный двигатель
    5. Конденсаторный двухфазный двигатель
    6. Отталкивающий индукционный двигатель
      1. Отталкивающий двигатель
      2. Отталкивающий индукционный двигатель

1.Серийный двигатель

Поскольку направление вращения и крутящий момент в последовательном двигателе постоянного тока не зависят от полярности питания, такой двигатель может работать от переменного тока при условии, что все ферромагнитные части магнитной цепи имеют многослойное покрытие для минимизации потерь в сердечнике.


1.1 Универсальный двигатель

При использовании дробных киловаттных размеров серийный двигатель имеет то преимущество, что он не синхронизирован, в том, что он может работать на скоростях от до 10 000 об / мин . Он очень хорошо приспособлен для работы со всасывающими очистителями, сверлами, швейными машинами и аналогичными маломощными вращающимися устройствами.

Возможность работы от постоянного и переменного тока сейчас не важна, но является источником термина « универсальный ».

Машина имеет характеристику «скорость-крутящий момент» серии , скорость холостого хода ограничена механическими потерями. Коэффициент мощности составляет от 0,7 до 0,9 (в основном из-за индуктивности якоря), но это не имеет значения для небольших номиналов.

Типичные характеристики двигателя для питания постоянного тока и 50 Гц с одинаковым номинальным напряжением показаны на рисунке 1.

Рисунок 1 – Характеристики универсального двигателя мощностью 75 Вт

Во всех электродвигателях переменного тока с коммутатором условия коммутации более обременительные, чем на постоянном токе, поскольку коммутируемые катушки соединяют главный переменный поток и имеют наведенные ЭДС частоты питающей сети. ЭДС проходят через щетки с коротким замыканием и способствуют возникновению искры на коммутаторе.

Поскольку э.д.с. пропорциональны основному потоку, частоте и количеству витков на катушку якоря, они должны быть ограничены.Дополнительное ограничение тока в короткозамкнутой катушке обеспечивается угольными щетками с высоким сопротивлением.

Вернуться к таблице содержания ↑


1.2 Компенсированный двигатель

Коллекторные двигатели переменного тока серии

мощностью до 700 ± 800 кВт используются в нескольких европейских железнодорожных тяговых системах. Для удовлетворительной коммутации частота должна быть низкой, обычно 16 2/3 Гц, и напряжение также должно быть низким (400-500 В), это обеспечивается трансформатором, установленным на локомотиве.

Индуктивность обмотки якоря обязательно достаточно высока, поэтому должна быть установлена ​​компенсационная обмотка для нейтрализации реакции якоря , чтобы обеспечить приемлемый коэффициент мощности .

Двигатели этого типа были построены с ограниченной мощностью для работы в современных тяговых системах с частотой 50 Гц, но теперь их заменили двигатели постоянного тока с выпрямительным или тиристорным питанием. См. Рисунок 1а.

Рисунок 1a – Коллекторный двигатель переменного тока серии

Вернуться к таблице содержания ↑


2.Отталкивающий двигатель

Отталкивающий двигатель представляет собой разновидность последовательного двигателя с индуктивным возбуждением ротора, а не токопроводящим. . Обмотка ротора коммутатора рассчитана на низкое рабочее напряжение. Щетки соединяются коротким замыканием, и ось щетки смещается от оси однофазной обмотки статора (рисунки 2, 3 и 4).

Для нереверсивных двигателей (Рисунок 2) достаточно одной обмотки статора.

Рисунок 2 – Альтернативный вариант отталкивающего нереверсивного двигателя

Однако для реверсивных двигателей статор имеет дополнительную обмотку, соединенную в том или ином смысле последовательно с первой обмоткой, чтобы обеспечить требуемый угол между ротором и эффективными осями статора для два направления вращения, как на рисунке 3.

Рисунок 3 – Альтернативная форма отталкивающего двухстороннего двигателя

Обмотка статора N 1 витков, как в (a), может быть разделена на две составляющие обмотки, соответственно соосные и в квадратуре с осью обмотки ротора и имеющие витки N 1 sinα и N 1 cosα . Обмотки (b) образуют обмотки двух осей напрямую, хотя здесь витки могут быть спроектированы для достижения оптимального эффекта.

Коаксиальная обмотка наводит эл.МС и токи в роторе, и эти токи, лежащие в поле другой обмотки статора, развивают крутящий момент. Поскольку токи статора и ротора связаны, двигатель имеет «последовательную» характеристику . Когда двигатель работает, потоки прямой и квадратурной оси имеют фазовый сдвиг, приближающийся к 90 °, таким образом создавая поле бегущей волны эллиптической формы, которое становится почти однородным синхронно вращающимся полем на скоростях, близких к синхронной.

Частота вращения близка к синхронной, поэтому потери в сердечнике ротора малы и условия коммутации хорошие.

Небольшие двигатели могут быть легко включены для прямого пуска с 2,5–3-кратным током полной нагрузки и 3–4-кратным крутящим моментом при полной нагрузке . Нормальная рабочая скорость при полной нагрузке выбирается близкой к синхронной скорости или немного ниже нее, чтобы избежать чрезмерного искрения при малой нагрузке.

Рисунок 4 – Пусковые характеристики отталкивающего двигателя

Отталкивающие двигатели используются там, где требуется высокий пусковой момент и где трехфазное питание недоступно. Для небольших подъемников, подъемников и компрессоров их мощность редко превышает примерно 5 кВт .

Вернуться к таблице содержания ↑


3. Асинхронные двигатели

Однофазный асинхронный двигатель иногда строится на мощностью до 5 кВт , но обычно производится с номинальной мощностью от 0,1 до 0,5 кВт для бытовых холодильников. вентиляторы и небольшие станки, где требуется практически постоянная скорость. Поведение двигателя можно изучить с помощью теории вращающегося поля или теории поперечного поля.

Первый проще и дает более ясную физическую концепцию.

Вернуться к содержанию ↑


3.1 Теория вращающегося поля

Пульсирующая м.м.д. обмотки статора делится на две «вращающиеся» МДС постоянной и равной величины , вращающиеся в противоположных направлениях. Предполагается, что эти МПС создают соответствующие потоки в зазоре, которые при неподвижном роторе имеют одинаковую величину и каждый равняется половине пикового пульсирующего потока.

Когда машина работает, компонент прямого поля f, i.е. который движется в том же направлении, что и ротор, ведет себя так же, как поле многофазной машины, и дает кривую крутящего момента , обозначенную «вперед» на рисунке 5.

Обратная составляющая b дает другую составляющую крутящего момента , а чистый крутящий момент представляет собой алгебраическую сумму. При нулевой скорости составляющие крутящие моменты отменяются, так что двигатель не имеет собственного пускового крутящего момента, но если он запускается в любом направлении, возникает небольшой крутящий момент в том же направлении, и машина набирает скорость, близкую к синхронной, при условии, что крутящий момент нагрузки может быть преодоленным.

Рисунок 5 – Компоненты крутящего момента в одной однофазной индукции

Компоненты крутящего момента на рисунке 5 фактически изменяются током ротора. По сравнению с трехфазным асинхронным двигателем, однофазная версия имеет крутящий момент, падающий до нуля на скорости немного ниже синхронной, и скольжение имеет тенденцию к большему.

Имеются также потери в сердечнике ротора, вызванные обратным полем, что снижает эффективность. Кроме того, имеется двухчастотная пульсация крутящего момента, создаваемая обратным полем, которая может вызвать шум.

КПД составляет примерно 40% для двигателя мощностью 60 Вт и примерно 70% для двигателя мощностью 750 Вт, соответствующие коэффициенты мощности составляют приблизительно 0,45 и 0,65 .

Рисунок 6 – Простой однофазный асинхронный двигатель: эквивалентная схема

Эквивалентная схема рисунка 6 основана на теории вращающегося поля с параметрами, в целом аналогичными параметрам для трехфазной машины. ЭДС E f и E b генерируются, соответственно, прямой и обратной составляющими поля и пропорциональны им.

Соответствующие крутящие моменты компонентов пропорциональны I 2f 2 × r 2 / 2s и I 2f 2 × r 2 / [2 (2 – с)] , следующий крутящий момент является их разницей.

Вернуться к таблице содержания ↑


3.2 Запуск

Для запуска однофазного асинхронного двигателя предусмотрены средства для первоначального создания некоторой формы поля бегущей волны. Обычно принятые схемы приводят к появлению терминов « с расщепленными полюсами, » и «, с расщепленными фазами, ».

Вернуться к таблице содержания ↑


3.3 Электродвигатель с расщепленными полюсами

Статор имеет выступающие полюса, при этом примерно одна треть каждого полюсного башмака охвачена затеняющей катушкой. Этот поток, который проходит через затеняющую катушку, задерживается по сравнению с потоком в основной части полюса, так что получается грубый поток сдвига.

Пусковой крутящий момент ограничен, КПД низок (из-за потерь в затеняющей катушке), коэффициент мощности составляет 0,5-0,6 , а момент отрыва составляет всего 1-1.5-кратный крутящий момент при полной нагрузке .

Применения включают небольших вентиляторов мощностью не более 100 Вт .

Вернуться к таблице содержания ↑


3.4 Электродвигатель с разделенным фазным сопротивлением

Дополнительный поток создается вспомогательной пусковой обмоткой, расположенной под углом 90 ° (электрический) к основной (рабочей) обмотке . Если соответствующие токи обмотки равны I м и I s с относительным фазовым углом α , крутящий момент приблизительно пропорционален I м I s sin α .

При запуске ток основной обмотки отстает от приложенного напряжения на 70-80 ° . Пусковая обмотка, включенная параллельно основной обмотке, имеет высокое сопротивление или имеет последовательно включенный резистор, так что I s отстает на 30-40 ° .

Влияние этого сопротивления на пусковую характеристику показано на Рисунке 7 (а). При заданном количестве витков на обмотку и заданном сопротивлении основной обмотки для заданного напряжения и частоты питания существует конкретное значение сопротивления пусковой обмотки для максимального пускового момента.

Рисунок 7 – Однофазный асинхронный двигатель: запуск с разделением фаз с сопротивлением

Соотношение может быть получено из векторной диаграммы. Рисунок 7 (b), на котором В 1 – напряжение питания, а I м при фазовом угле Φ м – ток главной обмотки. Геометрическим местом фазы I s пускового тока с изменением сопротивления является полукруг диаметром OD (что соответствует нулевому сопротивлению). Крутящий момент пропорционален I м I s sin (Φ м – Φ s ) и является максимальным для наибольшей длины линии переменного тока.

Из геометрии диаграммы можно показать, что для этого условия Φ s = 1/2 Φ м .

Обычное прямое переключение. Чтобы уменьшить потери, вспомогательная обмотка размыкается, как только двигатель достигает рабочей скорости. Пусковой крутящий момент для небольших двигателей мощностью до 250 Вт составляет 1,5–2 раза при полной нагрузке, а для более крупных двигателей – несколько меньше, в каждом случае при токе полной нагрузки в 4–6 раз.

КПД 55-65% и коэффициент мощности 0.6−0,7 .

Вернуться к таблице содержания ↑


3.5 Конденсаторный двигатель с разделенной фазой

Большую разность фаз ( Φ м – Φ s ) можно получить, если конденсатор заменен последовательным резистором вспомогательной обмотки. Максимальный крутящий момент возникает при такой емкости, что вспомогательный ток опережает основной ток на (1 / 2πα) / 2.

Размер конденсатора составляет от 20-30 мФ для двигателя мощностью 100 Вт до 60-100 мФ для двигателя мощностью 750 Вт .По экономическим причинам емкость конденсатора настолько мала, что обеспечивает достаточный пусковой крутящий момент, и некоторые производители указывают альтернативные размеры для различных уровней пускового крутящего момента.

Если конденсатор остается в цепи постоянно (конденсатор работает), коэффициент мощности повышается, и двигатель работает с меньшим шумом. В идеале, однако, значение емкости для работы должно составлять около одной трети от емкости для лучшего запуска. Если для запуска и работы используется один конденсатор, пусковой момент равен 0.Значение полной нагрузки в 5-1 раз больше, а коэффициент мощности во время работы близок к единице.

Вернуться к таблице содержания ↑


3.6 Отталкивающий асинхронный двигатель

В машинах сочетаются высокий пусковой момент отталкивающего двигателя с характеристиками работы асинхронного двигателя с постоянной скоростью .

Вернуться к таблице содержания ↑


3.6.1 Электродвигатель с отталкивающим пуском

Этот электродвигатель имеет обмотку статора, подобную обмотке отталкивающего электродвигателя, и обмотку коллекторного переключателя с добавлением устройства для короткого замыкания секторов коммутатора вместе за счет центробежного действия, когда скорость достигает примерно 75% от нормальной.Устройство также может отпускать щетки сразу после этого.

Таким образом, обмотка ротора коммутатора становится, по сути, короткозамкнутой обмоткой «индукционного» типа для работы .

Малые двигатели с прямым переключением обеспечивают 3–4-кратный крутящий момент при полной нагрузке при примерно трехкратном токе при полной нагрузке. Меньший пусковой ток достигается последовательным подключением градуированного резистора к обмотке статора.

Вернуться к таблице содержания ↑


3.6.2 Отталкивающий асинхронный двигатель

Машина имеет обмотку статора отталкивающего типа , но переход от режима отталкивания к работе в индукционном режиме происходит постепенно по мере того, как машина набирает скорость. Ротор имеет две обмотки в пазах, напоминающих обмотки двухклеточного асинхронного двигателя. На внешних пазах установлена ​​обмотка коммутатора с щеточным устройством, во внутренних пазах находится клетка с низким сопротивлением с литыми алюминиевыми стержнями и концевыми кольцами, а его глубокая установка обеспечивает высокую индуктивность.

Во время ускорения реактивное сопротивление клетки падает, а ее крутящий момент увеличивается, стремясь уравновесить падающий крутящий момент обмотки коммутатора . На скоростях выше синхронной крутящий момент сепаратора меняет направление на противоположное, обеспечивая тормозное действие, которое удерживает скорость холостого хода на уровне, лишь немного превышающем синхронную скорость.

Коммутация лучше, чем у обычного отталкивающего двигателя, и двигатель характеризуется хорошим коэффициентом мощности при полной нагрузке (например, с запаздыванием 0,85–0,9).

При прямом переключении пусковой момент составляет 2,5–3 раза в , а текущий 3–3,5 раза при полной нагрузке .

Вернуться к таблице содержания ↑

Источник: Справочник инженера-электрика М.А. Лотона и DJ Warne

(PDF) Оптимизация пусковой обмотки в конструкции однофазного асинхронного двигателя

Φ

Φ

Φ

Аннотация – В данной статье представлены алгоритмы для оптимальной конструкции пусковой обмотки и / или пускового конденсатора

для двигателей

с разделенной фазой

и двигателей с конденсаторным пуском путем оптимизации пусковых характеристик

.С помощью круговой диаграммы задача двухмерной оптимизации

становится одномерной задачей

. Для конденсаторных двигателей, запускающих и работающих, представлены две стратегии:

для конструкции вспомогательной обмотки, рабочий конденсатор

и пусковой конденсатор. Стратегия A сначала проектирует вспомогательную обмотку

и рабочий конденсатор при номинальной работе

, а затем оптимизирует пусковой конденсатор до

для достижения наилучших пусковых характеристик.Стратегия B оптимизирует вспомогательную обмотку

и пусковой конденсатор для достижения наилучших пусковых характеристик

, а затем оптимизирует работающий конденсатор

для получения наилучших номинальных характеристик. В качестве иллюстрации, пример

, оптимальные конструкции 4-полюсного конденсатора 400 В, 40 кВт

пуск и запуск двигателя, основанные на этих двух стратегиях, представлены

и сравниваются. Вывод состоит в том, что стратегия B дает лучший дизайн

.

Ключевые слова – Круговая диаграмма, оптимизация конструкции, однофазный асинхронный двигатель

, пусковой ток, пусковой момент.

I. ВВЕДЕНИЕ Конструкция однофазного асинхронного двигателя

N, основная или

ходовая обмотка

обычно разрабатывается с учетом соображений

для получения наилучших номинальных характеристик и требуемого момента пробоя

, в то время как пусковая обмотка и / или Пусковой конденсатор

разработан для достижения наилучших пусковых характеристик

, включая пусковой момент и пусковой ток

[1] – [3].

Пусковой крутящий момент и ток можно проанализировать на основе

круговой диаграммы [4] – [5]. В [5] аналитическое решение для

сопротивления пусковой обмотки с максимальным крутящим моментом, или

максимального крутящего момента на ампер, получено при фиксированном пусковом реактивном сопротивлении обмотки

для двигателей с расщепленной фазой. Для желаемого пускового тока

как сопротивление пусковой обмотки, так и реактивное сопротивление

вычисляются в терминах максимального крутящего момента.Для конденсаторных пусковых двигателей

пусковой конденсатор с максимальным крутящим моментом

или максимальным крутящим моментом на ампер определяется при фиксированном пусковом импедансе

обмотки. Когда задан пусковой ток

, и пусковая обмотка, и пусковой конденсатор

рассчитаны на максимальный крутящий момент на ампер.

В этой статье представлены различные алгоритмы для оптимальной конструкции

пусковой обмотки и / или пускового конденсатора

для двигателей с разделенной фазой, конденсаторных пусковых двигателей и конденсаторных

пусковых и пусковых двигателей.Оптимизация основана на одной из следующих трех целей

:

i. максимальный крутящий момент при заданном пусковом токе;

ii. минимальный ток при заданном пусковом моменте;

iii. максимальный крутящий момент на ампер.

В этой статье также представлены две основные стратегии для конструкции

вспомогательной обмотки, рабочего конденсатора и

пускового конденсатора для конденсаторных пусковых и работающих двигателей.

Стратегия A проектирует вспомогательную обмотку и ходовую

Φ

Д. Лин, П. Чжоу и Н. Ламберт работают в Ansoft LLC, Питтсбург, Пенсильвания

15219 США (электронная почта: [email protected] , [email protected]). Конденсатор

, чтобы сначала получить наилучшие номинальные характеристики, а затем

определяет пусковой конденсатор для получения наилучших пусковых характеристик

. Стратегия B оптимизирует вспомогательную обмотку и

пусковой конденсатор для получения наилучших пусковых характеристик сначала

, а затем определяет рабочий конденсатор для получения наилучших номинальных характеристик

.Расчетные характеристики 4-полюсного конденсаторного пускового и пускового двигателя 400 В,

50 Гц, 40 кВт на основе

этих двух стратегий представлены и сравниваются.

II. S

УРАВНЕНИЕ ПУСКОВОГО МОМЕНТА ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ

Пусковой крутящий момент для однофазных асинхронных двигателей равен

, рассчитанному из [5]

) sin (

2

amamFst

amamFst

p

T

ϕϕ

π

−⋅ = (1)

где p – количество полюсов, f – частота источника, I

м

и

ϕ

м

– среднеквадратичный ток основной фазы и фазовый сдвиг,

соответственно, I

a

и

ϕ

a

– среднеквадратичный ток вспомогательной фазы

и фазовый сдвиг, соответственно, R

F

– эквивалентное сопротивление ротора

с учетом реактивного сопротивления параллельного намагничивания, так как

показано на рис.1 [6], а K – эффективное отношение витков вспомогательной обмотки

к основной обмотке, как указано ниже

dpmm

dpaa

кВт

кВт

K =

(2)

где W

a

, K

dpa

, W

m

, и K

dpm

– это номера серий

витков и коэффициенты намотки для вспомогательной обмотки и

основной обмотки, соответственно.

Если определить пусковой момент при уравновешенной двухфазной работе

как

2

2

мФм

IR

f

p

T

π

(30003)

и ток крутящего момента как

) sin (

amak

II

(4)

(1) становится

мкмст

IIKTT /

. (5)

Основная обмотка обычно разрабатывается соображения

номинальной производительности и требуемого момента пробоя

на основе однофазного режима для двигателей с разделенной фазой и двигателей

с конденсаторным пуском или на основе сбалансированного двухфазного режима

для двигателей с конденсаторным пуском и запуском.Возьмем однофазный асинхронный двигатель 400 В,

50 Гц, 4-полюсный, 40 кВт в качестве примера

, параметры предварительно спроектированной главной обмотки

перечислены в таблице I.

Пониженный вектор напряжения на клеммах V, вектор пускового тока обмотки

мм

мм

м

I

XR

ϕ

−∠ =

+

==

111 j

Z

V

I (6)

Оптимизация пусковой обмотки однофазного двигателя

Конструкция асинхронного двигателя

D.Лин, П. Чжоу и Н. Ламберт

XIX Международная конференция по электрическим машинам – ICEM 2010, Рим

978-1-4244-4175-4 / 10 / $ 25,00 © 2010 IEEE

Как проверить свои обмотки 101

Обмотки двигателя представляют собой токопроводящие провода, намотанные на магнитопровод; они обеспечивают путь прохождения тока для создания магнитного поля для вращения ротора. Как и любая другая часть мотора, обмотка может выйти из строя. Когда обмотки двигателя выходят из строя, сами проводники выходят из строя очень редко, скорее, это происходит из-за полимерного покрытия (изоляции), окружающего проводники.Полимерный материал является органическим по своему химическому составу и может изменяться из-за старения, карбонизации, нагрева или других неблагоприятных условий, которые вызывают изменение химического состава полимерного материала. Эти изменения невозможно обнаружить визуально или даже с помощью традиционных инструментов для электрических испытаний, таких как омметры или мегомметры.

Внезапный отказ какой-либо части двигателя приведет к потере производительности, увеличению затрат на техническое обслуживание, потере или повреждению капитала и, возможно, к травмам персонала.Поскольку большая часть нарушений изоляции происходит со временем, технология MCA обеспечивает измерения, необходимые для выявления этих небольших изменений, которые определяют состояние системы изоляции обмотки. Знание того, как проверить свои обмотки, позволит вашей команде действовать на опережение и предпринять соответствующие действия, чтобы предотвратить нежелательный отказ двигателя.

Как проверить изоляцию грунтовой стены

Замыкание на землю или короткое замыкание на землю происходит, когда значение сопротивления изоляции заземляющей стены уменьшается и позволяет току течь на землю или на открытую часть машины.Это создает проблему безопасности, поскольку обеспечивает путь питающего напряжения от обмотки до рамы или других открытых частей машины. Для проверки состояния изоляции грунтовых стен производятся измерения от выводов обмоток Т1, Т2, Т3 до земли.

Передовой опыт проверяет извилистый путь к земле. Этот тест обеспечивает подачу постоянного напряжения на обмотку двигателя и измеряет, сколько тока проходит через изоляцию на землю:

1) Проверьте обесточенный двигатель с помощью исправно работающего вольтметра.

2) Подключите оба измерительных провода прибора к заземлению и проверьте надежность соединения провода прибора с землей. Измерьте сопротивление изоляции относительно земли (IRG). Это значение должно быть 0 МОм. Если отображается какое-либо значение, отличное от 0, повторно подключите измерительные провода к земле и повторите тестирование, пока не будет получено нулевое показание.

3) Снимите один из тестовых проводов с земли и подключите к каждому из проводов двигателя. Затем измерьте значение сопротивления изоляции каждого вывода относительно земли и убедитесь, что значение превышает рекомендованное минимальное значение для напряжения питания двигателя.

NEMA, IEC, IEEE, NFPA предоставляют различные таблицы и инструкции по рекомендуемому испытательному напряжению и минимальным значениям изоляции относительно земли в зависимости от напряжения питания двигателя. Этот тест выявляет любые слабые места в системе изоляции грунтовых стен. Коэффициент рассеяния и проверка емкости относительно земли обеспечивают дополнительную индикацию общего состояния изоляции. Процедура испытаний для этих испытаний такая же, но вместо приложения напряжения постоянного тока применяется сигнал переменного тока, чтобы обеспечить лучшее отображение общего состояния изоляции заземляющей стены.

Как проверить свои обмотки на наличие проблем с подключением, обрыва или короткого замыкания

Проблемы с подключением: Проблемы с подключением создают дисбаланс тока между фазами в трехфазном двигателе, что вызывает чрезмерный нагрев и преждевременное нарушение изоляции.

Обрыв : Обрыв происходит, когда проводник или проводники разрываются или разъединяются. Это может помешать запуску двигателя или привести к его работе в «однофазном» состоянии, которое потребляет избыточный ток, перегрев двигателя и преждевременный выход из строя.

Короткое замыкание: Короткое замыкание возникает при разрыве изоляции, окружающей проводники обмотки между проводниками. Это позволяет току течь между проводниками (короткими), а не через проводники. Это вызывает нагрев в месте повреждения, что приводит к дальнейшему разрушению изоляции между проводниками и, в конечном итоге, к выходу из строя.

Испытание на наличие повреждений обмотки требует выполнения серии измерений переменного и постоянного тока между выводами двигателя и сравнение измеренных значений, если измерения выполнены в сбалансированном состоянии, обмотка в порядке, если указаны несбалансированные повреждения.

Рекомендуемые размеры:

1) Сопротивление

2) Индуктивность

3) Импеданс

4) Фазовый угол

5) Частотная характеристика тока

Проверьте состояние обмотки, проверив следующие соединения:

Показание должно быть от 0,3 до 2 Ом. Если 0, значит короткое замыкание. Если оно больше 2 Ом или бесконечно, есть обрыв. Вы также можете высушить разъем и повторно протестировать его, чтобы получить более точные результаты.Проверьте вставки на наличие следов прижогов, а кабели на износ.

Несимметрия сопротивления указывает на проблемы с подключением. Если эти значения не сбалансированы более чем на 5% от среднего, это указывает на слабое соединение с высоким сопротивлением, коррозию или другие отложения на клеммах двигателя. Очистите провода двигателя и повторите тест.

Обрыв обозначается бесконечным значением сопротивления или импеданса.

Если фазовый угол или частотные характеристики тока не сбалансированы более чем на 2 единицы от среднего, это может указывать на короткое замыкание обмотки.На эти значения может повлиять положение ротора с короткозамкнутым ротором во время испытаний. Если полное сопротивление и индуктивность не сбалансированы более чем на 3% от среднего, рекомендуется повернуть вал примерно на 30 градусов и провести повторное испытание. Если дисбаланс следует за положением ротора, дисбаланс может быть результатом положения ротора. Если дисбаланс остается прежним, указывается неисправность статора.

Традиционные приборы для испытания двигателей не могут эффективно тестировать или проверять обмотки двигателя

Традиционными инструментами, используемыми для проверки двигателей, были мегомметр, омметр или иногда мультиметр.Это связано с наличием этих инструментов на большинстве заводов. Мегомметр используется для проверки безопасности электрического оборудования или систем, а мультиметр используется для выполнения большинства других электрических измерений. Однако ни один из этих инструментов по отдельности или вместе не предоставляет информацию, необходимую для правильной оценки состояния системы изоляции двигателя. Мегомметр может определить слабые места в изоляции заземления двигателя, но не может определить общее состояние системы изоляции.Он также не дает информации о состоянии системы изоляции обмоток. Мультиметр выявляет проблемы с подключением и обрыв в обмотках двигателя, но не предоставляет информации об изоляции между обмотками.

Испытательные обмотки с анализом цепи двигателя (MCA ™)

Анализ цепи двигателя (MCA ™) – это метод обесточивания, который позволяет тщательно оценить состояние вашего двигателя путем проверки обмоток и других деталей. Он прост в использовании и быстро дает точные результаты. ALL-TEST PRO 7 ™, ALL-TEST PRO 34 ™ и другие продукты MCA ™ можно использовать на любом двигателе, чтобы выявить потенциальные проблемы и избежать дорогостоящего ремонта. MCA полностью проверяет систему изоляции обмотки двигателя и выявляет раннее повреждение системы изоляции обмотки, а также неисправности в двигателе, которые приводят к отказу. MCA также диагностирует неплотные и неисправные соединения, когда тесты выполняются с контроллера мотора.

Запросите ценовое предложение на оборудование для испытаний двигателей сегодня

Тестирование двигателей необходимо, поскольку двигатели выходят из строя, и тестирование может выявить проблемы, которые помогут предотвратить отказ.В ALL-TEST Pro у нас есть широкий выбор продуктов для тестирования двигателей, подходящих для многих отраслей промышленности. Мы работали с техниками из пищевой промышленности, небольших моторных мастерских, электротехники и многого другого. По сравнению с конкурентами наши машины являются самыми быстрыми и легкими, обеспечивая при этом ценные результаты без необходимости дополнительной интерпретации данных.

Запросите предложение на нашем веб-сайте сегодня, чтобы получить информацию о ценах на наши продукты для тестирования двигателей. Для получения дополнительной информации о том, как проверить свои обмотки, свяжитесь с нашей командой онлайн.

Однофазный двигатель

Однофазный асинхронный двигатель 0,09 кВт 0,12 л.с. Вибрационное сито по лучшей цене, машина для виброгрохота для продажи; Трехфазный асинхронный двигатель для транспортировки упаковки Ykk710-6 2240kw 10kv IP55; Электродвигатель мощностью 1,9 МВт, синхронный двигатель, 60 Гц

Трехфазные двигатели с однофазными двигателями. Если замена возможна, это может быть наименее затратной альтернативой. Однако это может быть невозможно из-за размеров крепления двигателя, специальных монтажных кронштейнов, особых размеров или конструкции вала, габаритного пространства или требуемой мощности в лошадиных силах.Если это так, то

Таблица, показывающая взаимосвязь между ценой товара и поставленным количеством.

однофазный двигатель Ipswich, двигатель Suffolk 230v 1 / 8HP 1380 об / мин, немного старый, но работает нормально, шкив с плоским ремнем. Площадь IP2 10 фунтов стерлингов. Объявление, размещенное 15 дней назад Сохранить это объявление 8 июня 2005 г. · Есть компании, которые все еще производят приводы для однофазных двигателей (многие однофазные двигатели вентиляторов требуют управления). Dwyer производит свой FC-1000, а Control Resources Inc производит свои накопители Stratus именно для этой цели.Со своей стороны, я перехожу на CRI Stratus, чтобы заменить FC-1000.

V

Шоколад Hershey обжигает мне горло

Там, где однофазный двигатель должен быть обманут, думая, что там есть дополнительное поле, чтобы заставить его вращаться. Индукционный запуск, запуск отталкивания, запуск конденсатора и запуск конденсатора, заштрихованный полюс – все методы запуска однофазного двигателя. Если трехфазный двигатель работает в неправильном направлении, поменяйте местами любые два вывода Т-выводов и измените направление.

Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они только отключаются. Некоторые из различных типов однофазных двигателей представляют собой двигатели с экранированными полюсами и расщепленную фазу…Сент 08, 2019 · Многофазное питание дает гораздо лучшие преимущества, чем однофазное. Недостатком однофазного двигателя является то, что он не может запускаться самостоятельно, в то время как трехфазный двигатель может запускаться самостоятельно. Трехфазный ИД может создавать вращающееся магнитное поле, которое делает возможным самозапуск. В этой статье мы обсудим, какие бывают типы, конструкция, рабочие …

Однофазный и трехфазный переменный ток – сила тока – преобразование между однофазным (120, 240 и 480 напряжения) и трехфазным (240 и 480 напряжениями) Трехфазные электрические двигатели – ток полной нагрузки, размеры проводов и кабелепроводов для трехфазных электродвигателей; Уравнения трехфазной мощности – электрические Трехфазные уравнения

Однофазное распределение используется, когда нагрузки в основном освещают и обогревают, с небольшим количеством больших электродвигателей.Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; Однофазные двигатели нуждаются в дополнительных цепях для запуска, и такие двигатели редко встречаются с номинальной мощностью более 10 или 20 кВт.

Можно ли заменить боковой распылитель дозатором мыла

Однофазный двигатель DELTA 1500 об / мин (4P) – форма конструкции B14. 6 штук . DELTA DELTA 1500T 1.1KW 230V CS B3B14A T90S

V

Cat d8n на продажу

Двигатели однофазные (1 PH) или трехфазные (3 PH).1 (43) 3 (12) Одиночный (3187) Три (2950) Конструкция двигателя Трехфазный (2958) Конденсаторный пуск (715) Конденсаторный пуск …

P1, P2, P3 = мощность фазы 1, фазы 2 и фаза 3 в ваттах (Вт) V = напряжение в вольтах (В) Пример: V1 = 230 В в трехфазной цепи 400 В I1, I2, I3 = ток фазы 1, фазы 2 и фазы 3 в амперах (A ) Cos φ1, Cos φ2, Cos φ3 = косинус phi каждой фазы (без единицы измерения) Подробнее в разделе (Однофазные асинхронные двигатели). Каждый раздел содержит максимум 70 вопросов. Чтобы получить больше вопросов, посетите другие разделы.Однофазные двигатели полного напряжения. Эта диаграмма предназначена для управления однофазным двигателем. Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. Цепи пуска и останова можно также контролировать с помощью ПЛК.

Трехфазный двигатель, Однофазные асинхронные двигатели переменного тока, Производитель тормозных двигателей, Двухскоростные двигатели, Инверторный двигатель, Вибрационные двигатели

25 марта 2014 г. · В одном -фазный двигатель BLDC, статор с четырьмя пазами содержит обмотки, а ротор представляет собой четырехполюсный постоянный магнит.На рисунке 3 показана типичная структура однофазного двигателя BLDC. Ротор производит вращательное движение. Чтобы ротор вращался, должно быть вращающееся электрическое поле. Одиночные двигатели

Gewehr 43 prop

Однофазные двигатели – это электрические устройства, преобразующие электрическую энергию в механическую. Для работы этих двигателей требуется однофазный источник питания. Они обычно используются в бытовых и промышленных приложениях с более низкими требованиями к мощности, таких как вентиляторы, стиральные машины и насосы.Низковольтные двигатели определенного назначения. Фермерский долг; Crusher Duty; Смывать; Двигатель преобразователя фазы; Премиум JM-JP; EPAct JM-JP; Масляный насос; Двигатель постоянного тока с постоянными магнитами общего назначения. Трехфазный алюминий; Трехфазный чугун; Трехфазный открытый корпус; Метрический МЭК; Аксессуары для двигателей Cobra. Комплект вентилятора постоянной скорости; VFD; Веб-инструменты. Инструменты для проектирования. Мобильные приложения … 3 мая 2016 г. · 4-полюсный однофазный двигатель с 4 полюсами и синхронной скоростью 1800 об / мин (при 60 Гц). Но чтобы создать начальный крутящий момент для запуска двигателя, однофазный двигатель должен иметь другой набор обмоток с более низкой индуктивностью, создающий полюса между обмотками статора, которые немного сдвинуты по фазе, чтобы создать вращающееся поле при…

V

Моя машина умирает, когда я включаю ее задним ходом

8 Однофазные асинхронные двигатели _ Двигатели переменного тока _ Учебник по электронике – Прочтите онлайн бесплатно. Scribd – крупнейший в мире сайт для чтения и публикации в социальных сетях. Искать Искать

Другие статьи, где обсуждается Однофазный синхронный двигатель: Электродвигатель: Однофазные синхронные двигатели: В синхронных двигателях можно создать вращающееся поле от однофазного источника, используя тот же метод, что и для однофазных асинхронные двигатели.Если основная обмотка статора подключена непосредственно к источнику питания, то вспомогательная обмотка может быть подключена через… Однако однофазные двигатели обычно дешевле и экономичны из-за меньшей потребляемой мощности. Однофазные асинхронные двигатели широко используются для небольших нагрузок, таких как бытовые приборы … На этой странице вы можете узнать о различных важных однофазных асинхронных двигателях, ответы на вопросы с несколькими вариантами ответов, однофазный асинхронный двигатель mcq, однофазный асинхронный двигатель, ответы на объективные вопросы , однофазный асинхронный двигатель mcq pdf и т. д.что улучшит ваше мастерство.

26 апреля 2020 г. · Схема подключения однофазного двигателя с конденсатором – электрическая схема представляет собой упрощенное графическое изображение электрической цепи. На ней показаны компоненты схемы в виде упрощенных форм, а также способностей и связанных сигналов в середине устройства.

Мы можем поставить однофазные двигатели для прямой замены ваших существующих агрегатов, будь то замена поврежденного двигателя или преобразование существующего трехфазного двигателя в однофазный.Имея доступ к большому запасу, мы можем отправить большинство двигателей на следующий день, чтобы обеспечить минимальный период простоя.

Аналитические отчеты о процентах20plantpercent20 и процентах20soilpercent20 исследованиях

Аналитические отчеты «Рынок однофазных асинхронных двигателей» за 2020 год предоставляют важный источник быстрой информации для бизнес-стратегов и базирующихся, например Пятница, 1 января 2021 г. 09:08:19 Меню 13 декабря 2018 г. · Схема подключения однофазного двигателя на 240 В – схема подключения однофазного двигателя 220 В, схема подключения однофазного двигателя 220 В, однофазного напряжения 240 В Схема подключения двигателя. Каждое электрическое устройство состоит из различных уникальных компонентов.Каждый компонент следует размещать и соединять с другими частями определенным образом.

Пароль по умолчанию для Nexus 9k

Chem 120 lab 7

ƒ Статор однофазного двигателя изготовлен из ламинированного железа. сердечник с двумя перпендикулярно расположенными обмотками. ƒ Один является основным и. ƒ Другая – вспомогательная обмотка или пусковая обмотка.

Этот вращающийся фазовый преобразователь мощностью 50 л.с. преобразует входную однофазную мощность в трехфазную, позволяя торговому оборудованию работать с максимальной эффективностью.Правильный размер фазового преобразователя определяется запуском двигателя с наибольшей нагрузкой. Пожалуйста, позвоните по бесплатному телефону 1-800-458-3687 для получения помощи в выборе размеров и / или наших рекомендаций для вашего конкретного приложения. На главную – Промышленное управление и OEM – Защита двигателя Да, вы можете использовать твердотельное реле перегрузки, такое как реле C440 или XTOE, в однофазной системе. Вы должны добавить перемычку от нижнего среднего полюса (T2) до верхнего правого полюса на контакторе (L3), чтобы все 3 фазы пускателя видели ток.Разница между однофазными и трехфазными водяными насосами. РАЗНИЦА МЕЖДУ ОДНОФАЗНЫМИ И ТРЕХФАЗНЫМИ ВОДЯНЫМИ НАСОСАМИ “TUMPKART com КРУПНЕЙШИЙ ИНДИЙСКИЙ МАГАЗИН НАСОСОВ Очень интересно знать, что трехфазный моторный насос проще, чем однофазный моторный насос, но легко справляется с большой нагрузкой.

Однофазный постоянный конденсатор переменного тока (0,18–2,2 кВт) Стандартные электродвигатели IEC подходят для промышленного оборудования и бытовых применений с однофазным питанием 220/240 В.Однофазные двигатели с постоянными конденсаторами (PSC) не должны использоваться в трудно запускаемых устройствах, таких как деревообрабатывающее оборудование, воздушные компрессоры, вода высокого давления …

1/3 л.с. 1725 об / мин 115/230 В переменного тока 48Y TEFC Шнек для кормления птицы Двигатель Leeson 117887.00 Номер позиции: 10-2758

Изображения в четках с цитатами

Пример: двигатель 1/2 л.с., 115 В, найти Я использую NEC 430-148 л / 2 л.с. = 9,8 А Трехфазный ток (I) = Киловольт Ампер = кВА Киловольт √3 кВ √3 Пример: Нагреватель агрегата 5 кВт, 230 В, 3 фазы, фаза I Нагреватель PF = 1 кВт = кВА I = кВт = 5 кВт = 12.55 A KV 3 .23KV √3 Пример: Двигатель 20 л.с., 208 В, 3 фазы, найти I * Быстрое и простое переключение между однофазным 120 В переменного тока, 120/240 В переменного тока или трехфазным 120/208 В переменного тока для этого трехфазного оборудования, которое у вас может быть . * ЖЕСТКИЙ дизайн выдерживает много злоупотреблений. Вы можете бросить его в грязь на стройплощадке, тащить за цепь, рельсы скольжения скошены снизу, и его можно поднять вилочным погрузчиком. 07 августа 2004 г. · (рабочие станции, серверы и т. Д.) Однофазные. Чтобы перейти от трехфазного питания к однофазному, достаточно ли просто создать три однофазных выхода из одного трехфазного (т.е.е., A + нейтраль, B + нейтраль и C + нейтраль), а затем мы можем просто подключить (независимое) оборудование к каждому из 3 однофазных выходов?

В

Клавиатура случайного нажатия

Я предполагаю, что это связано с тем, что однофазный двигатель использует смещение 90 градусов между основной фазой и фазой, генерируемой конденсатором, в то время как инвертор обеспечивает смещение фазы на 120 градусов.

Найти здесь Однофазные асинхронные двигатели, Производители, поставщики и экспортеры однофазных асинхронных двигателей в Индии.Получите контактную информацию и адреса компаний, производящих и поставляющих однофазные асинхронные двигатели, однофазные асинхронные двигатели переменного тока по всей Индии. Однофазный источник питания 240 В подается на автоматический трансформатор, который преобразует напряжение в однофазное напряжение 415 В. Повышенный однофазный выход 415 В от трансформатора затем подается на твердотельный (ME или MT) модуль. В твердотельном модуле используется однофазное напряжение 415 В с фазовым сдвигом 120 °. Направление ротора большинства однофазных двигателей может быть изменено на обратное. Некоторые не могут без значительных изменений. Но обычные, так называемые однофазные двигатели на самом деле являются разновидностью трехфазных двигателей, поэтому они действительно подходят…

5 сентября 2017 г. · 3-фазный двигатель Один двигатель 2On 2Off Switch Control, однофазный двигатель, размер: 800 x 600 пикселей, источник: i.ytimg.com Если фотография не очень четкая, щелкните изображение вы хотите увеличить, тогда вы обязательно попадете на другую страницу, чтобы представить более четкую, а также более крупную фотографию, вам, безусловно, дополнительно будет представлена ​​информация от gambvar.

Однофазные двигатели – это электрические устройства с выходной мощностью около 1 л.с. (лошадиные силы). В основном это однофазные асинхронные двигатели.Он играет жизненно важную роль в бытовом применении.

Cannacrude отзывы

Однофазные двигатели: 115 / 208-230 вольт Пуск конденсатора / индукционная работа (1/3 – 1 л.с.) Запуск конденсатора / работа конденсатора (1,5 – 2 л.с.) для пониженной силы тока и высокого крутящего момента; Трехфазные двигатели: 208–230/460 В, КПД премиум-класса (1-3 л.с.), номинальный инвертор, 4: 1 ТТ / 10: 1 ТН Подходит для 50 Гц с 1.0 SF

Teraterm для Linux

рассчитано

Стандартный частотно-регулируемый привод спроектирован для работы как от однофазного, так и от трехфазного источника питания, что делает его идеальным для однопроводных заземляющих обратных линий или однофазных систем питания.Стандартный частотно-регулируемый привод может работать от однофазного источника питания 480 В переменного тока (однопроводной заземляющий возврат) и обеспечивать управляемый трехфазный выход 415 В на двигатель.

6 мая 2020 г. · Я показываю свою установку, которую я использую, чтобы принимать однофазное домашнее электроснабжение 220 В переменного тока и создавать как трехфазное питание 230 В переменного тока, так и трехфазное питание 460 В переменного тока. Всем известно, что трехфазное питание – дорогое удовольствие, и в большинстве домов есть только однофазное (110 или 220) питание. Но трехфазные двигатели работают более плавно, потому что мощность постоянная, поэтому их было бы неплохо иметь.8 Однофазные асинхронные двигатели _ Двигатели переменного тока _ Учебник по электронике – Прочтите онлайн бесплатно. Scribd – крупнейший в мире сайт для чтения и публикации в социальных сетях. Поиск Поиск Рисунок 3 – Схема подключения однофазных двигателей мощностью 3 л.с. ПРИМЕЧАНИЕ. Двигатель с одним напряжением (230 В), не может быть подключен к 115 В. L1 L2 IL1680 ОДНОФАЗНАЯ ЛИНИЯ, 230 В, ЖЕЛТЫЙ ЧЕРНЫЙ КРАСНЫЙ, ГРАЙСЕРЫЙ ПРИМЕЧАНИЕ: Двигатель с двойным напряжением, замените красный и серый провод на требуемое напряжение. Рисунок 2 – Схема подключения однофазных двигателей мощностью 1/3 – 2 л.с. L1 A B L2 L1 A B…

Как рассчитать ток двигателя с помощью сопротивления обмотки

Обновлено 3 ноября 2020 г.

Крис Дезил

Согласно закону Ома, ток (I) через проводящий провод прямо пропорционален приложенному напряжению (В) и сопротивление провода (R). Это соотношение не изменится, если проволока намотана на сердечник и образует ротор электродвигателя. В математической форме закон Ома:

В = IR

или, если поместить ток и сопротивление по разные стороны от знака равенства:

I = \ frac {V} {R}

Сопротивление провода зависит от его диаметра. , длина, проводимость и температура окружающей среды.Медная проволока используется в большинстве двигателей, а медь имеет одну из самых высоких проводимости среди всех металлов.

TL; DR (слишком долго; не читал)

Закон Ома гласит, что ток через провод – даже длинный провод, намотанный на соленоид двигателя – равен напряжению, деленному на сопротивление. Вы можете определить сопротивление обмотки двигателя, если знаете калибр провода, радиус соленоида и количество обмоток.

Сопротивление провода

Закон Ома говорит вам, что вы можете рассчитать ток через обмотку двигателя, если вы знаете напряжение и сопротивление провода.Напряжение определить несложно. Вы можете прикрепить к клеммам источника питания вольтметр и измерить его. Определение другой переменной, сопротивления провода, не так просто, потому что оно зависит от четырех переменных.

Сопротивление провода обратно пропорционально диаметру и проводимости провода, что означает, что оно увеличивается по мере уменьшения этих параметров. С другой стороны, сопротивление прямо пропорционально длине провода и температуре – оно увеличивается с увеличением этих параметров.Что еще более усложняет, сама проводимость изменяется с температурой. Однако, если вы проводите измерения при определенной температуре, например при комнатной температуре, и температура, и проводимость становятся постоянными, и вам нужно только учитывать длину провода и его диаметр, чтобы рассчитать сопротивление провода. Сопротивление (R) становится равным константе (k), умноженной на отношение длины провода (l) к диаметру (d):

R = k \ frac {l} {d}

Длина провода и калибр провода

Для расчета сопротивления необходимо знать как длину провода, намотанного вокруг соленоида двигателя, так и диаметр провода.Однако, если вы знаете калибр проволоки, вы знаете и диаметр, потому что можете посмотреть его в таблице. Некоторые таблицы помогают еще больше, перечисляя сопротивление на стандартную длину для проводов всех размеров. Например, диаметр провода калибра 16 составляет 1,29 мм или 0,051 дюйма, а сопротивление на 1000 футов составляет 4,02 Ом.

В конце концов, все, что вам действительно нужно измерить, – это длина провода, если вы знаете его калибр. В соленоиде двигателя провод несколько раз наматывается вокруг сердечника, поэтому для расчета его длины вам нужны две части информации: радиус сердечника (r) и количество витков (n).Длина одной обмотки равна окружности сердечника – 2πr, поэтому общая длина провода составляет 2πrn. Используйте это выражение для расчета длины провода, и, узнав ее, вы сможете экстраполировать сопротивление из таблицы сопротивлений.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *