Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Маркировка конденсаторов – таблица расшифровки конденсаторов

Конденсаторы предназначены для накопления электрического заряда. Емкость измеряется в фарадах (Ф, или F). Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10-9 и 10-12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

БУКВЕННО-ЦИФРОВАЯ И ЦИФРОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВ

В таком случае первые цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей.
При обозначении емкостей менее 10 пФ последней цифрой может быть «9», например, 109 = 1 пФ.
При обозначении емкостей 1 пФ и менее первой цифрой будет «0», например, 010 = 1 пФ.
В качестве раздельной запятой используется буква R, например, 0R5 = 0,5 пФ.

При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка, например, 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ.
В маркировке может использоваться буква R, число что стоит после нее значит десятые доли микрофарада (мкФ), например, R1 — 0,1 мкФ, R22 — 0,22 мкФ, 3R3 — 3,3 мкФ.
После обозначения емкости может быть нанесен буквенный символ, который обозначает допустимое отклонение емкости конденсатора.

Как определить единицы измерения? На корпусе конденсаторов может быть проставлена буква, обозначающая единицу измерения, например, p — пикофарад, n — нанофарад, u — микрофарад. Но если после цифр стоит одна буква, скорее всего, это маркировка значения допуска, а не маркировка единицы измерения (как правило, буквы «p» и «n» в маркировке значения допуска не участвуют, но бывают исключения).

Емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10-12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10-6 Ф.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквой В и V, например, 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Больше примеров расшифровки маркировки конденсаторов смотрите ниже:

ЦВЕТОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВ

Также популярна цветная маркировка конденсаторов. Выполнена она цветовыми метками — полосами либо точками. Количество меток может быть от трех до шести. Если у конденсатора выводы расположены слева и справа корпуса (как у резистора), то первой меткой считается та, которая ближе к выводу. Если выводы конденсатора расположены с одной стороны, то первой считается метка, которая ближе к верхушке конденсатора (стороне корпуса, противоположной расположению выводов).

Цветом определяется код номинальной емкости, ее множителя и допустимого напряжения. Код номинальной емкости соответствует цвету краски корпуса конденсатора у выводов (вывода), кодом множителя может бута цвет пятна посередине корпуса, а код допустимого напряжения — краска второй части корпуса конденсатора.

Ниже додаем таблицы маркировки конденсаторов, по которым легко определить номинальную емкость и другие параметры конденсаторов в зависимости от цвета полоски или точки.

Таблица цветовой маркировки конденсаторов общего применения:

Таблица цветовой маркировки напряжения конденсаторов:

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек: первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Цветовая маркировка танталовых конденсаторов:

КОНДЕНСАТОРЫ НА ЭЛЕКТРИЧЕСКИХ СХЕМАХ

Обозначение конденсатора на схемах: постоянный, полярный, неполярный, оксидный проходной, опорный, переменный, полупеременный конденсатор и другие. Рядом с этим указывают позиционное обозначение, состоящее из буквы С и номера по порядку на схеме. Здесь также указывается номинал емкости, значение емкости лежит в пределах 1 … 9999 пФ и является целым. Если значение емкости является десятичной дробью, то обозначение емкости имеет размерность, например, С2 38,2 пФ.

маркировка и обозначение конденсаторов, керамических танталовых и прочих

Содержание:

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Конденсатор.

Единицы измерения

Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

C= e*S/d

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10-6
  • 1 нанофарада – одна миллиардная часть фарады. 10-9
  • 1 пикофарада -10-12 фарады.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0. 047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0. 033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

Маркировка конденсатора.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2. 2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Материал в тему: Что такое кондесатор

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

[stextbox id=’info’]Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. [/stextbox]

Пример:

N1 /по таблице определяем мантиссу: N=3. 3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Таблица маркировки конденсаторов по рабочему напряжению.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

1R5 =1,5 мкФ.

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Материал по теме: Как подключить конденсатор

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.elektrikaetoprosto.ru

www.radiostorage.net

www.gamesdraw.ru

Предыдущая

КонденсаторыЧем отличаются параллельное и последовательное соединение конденсаторов

Следующая

КонденсаторыЧем отличается пусковой конденсатор от рабочего?

Что такое конденсатор (емкость)? | Определение из TechTarget

К

  • Участник TechTarget

Конденсатор — это пассивный электронный компонент, сохраняющий энергию в виде электростатического поля. В своей простейшей форме конденсатор состоит из двух проводящих пластин, разделенных изолирующим материалом, называемым диэлектриком. Емкость прямо пропорциональна площади поверхности пластин и обратно пропорциональна расстоянию между пластинами. Емкость также зависит от диэлектрической проницаемости вещества, разделяющего пластины.

Стандартной единицей измерения емкости является сокращенно фарад. Это большая единица; более распространенными единицами измерения являются микрофарад, сокращенно мкФ (1 мкФ = 10 -6 Ф), и пикофарад, сокращенно пФ (1 пФ = 10 -12 Ф).

Конденсаторы могут быть изготовлены на микросхемах интегральных схем (ИС). Они обычно используются вместе с транзисторами в динамической памяти с произвольным доступом (DRAM). Конденсаторы помогают сохранить содержимое памяти. Из-за своего крошечного физического размера эти компоненты имеют низкую емкость. Их необходимо перезаряжать тысячи раз в секунду, иначе DRAM потеряет свои данные.

Конденсаторы большой емкости применяются в источниках питания электронного оборудования всех типов, включая компьютеры и их периферийные устройства. В этих системах конденсаторы сглаживают выпрямленный переменный ток сети, обеспечивая чистый постоянный ток, аналогичный батареям.

Последнее обновление: февраль 2015 г.

Продолжить чтение О конденсаторе (емкости)
  • Емкостные сенсорные датчики отпечатков пальцев
  • Как распознать и заменить неисправные конденсаторы
  • Учебное пособие Рэнди Майерса по электричеству: Модель воды включает объяснение емкости.
устойчивый искусственный интеллект

Устойчивый ИИ — это использование систем искусственного интеллекта, которые работают в соответствии с устойчивой деловой практикой.

Сеть

  • транспортный уровень

    Транспортный уровень — это уровень 4 модели взаимодействия открытых систем (OSI). Он отвечает за обеспечение …

  • сеансовый уровень

    Сеансовый уровень — это уровень 5 модели связи OSI.

    Это долгоживущая логическая связь, которая сохраняется между …

  • полоса (полоса частот)

    В телекоммуникациях полоса частот, иногда называемая полосой частот, относится к определенному диапазону частот в …

Безопасность

  • постквантовая криптография

    Постквантовая криптография, также известная как квантовое шифрование, представляет собой разработку криптографических систем для классических компьютеров…

  • деинициализация

    Деинициализация — это часть жизненного цикла сотрудника, в ходе которой лишаются прав доступа к программному обеспечению и сетевым службам.

  • Требования PCI DSS 12

    Требования PCI DSS 12 представляют собой набор мер безопасности, которые предприятия должны внедрить для защиты данных кредитных карт и соблюдения …

ИТ-директор

  • Agile-манифест

    The Agile Manifesto — это документ, определяющий четыре ключевые ценности и 12 принципов, в которые его авторы верят разработчикам программного обеспечения. ..

  • Общее управление качеством (TQM)

    Total Quality Management (TQM) — это система управления, основанная на вере в то, что организация может добиться долгосрочного успеха, …

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

HRSoftware

  • вовлечения сотрудников

    Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.

  • кадровый резерв

    Кадровый резерв — это база данных кандидатов на работу, которые могут удовлетворить немедленные и долгосрочные потребности организации.

  • разнообразие, равенство и инклюзивность (DEI)

    Разнообразие, справедливость и инклюзивность — термин, используемый для описания политики и программ, которые способствуют представительству и . ..

Служба поддержки клиентов

  • требующий оценки

    Оценка потребностей — это систематический процесс, в ходе которого изучается, какие критерии должны быть соблюдены для достижения желаемого результата.

  • точка взаимодействия с клиентом

    Точка соприкосновения с покупателем — это любой прямой или косвенный контакт покупателя с брендом.

  • устав обслуживания клиентов

    Устав обслуживания клиентов — это документ, в котором описывается, как организация обещает работать со своими клиентами, а также …

Что такое конденсатор — типы, формула, символ, принцип работы, единица измерения

Узнайте, что такое конденсатор — типы, формула, символ, принцип работы, единица измерения.

Здесь мы узнаем Что такое конденсатор – типы, формула, символ, принцип работы, единица измерения, электролитический конденсатор, применение и функция подробно описаны.

Различные типы конденсаторов

Содержание

Что такое конденсатор?

Конденсатор представляет собой электронный компонент, характеризующийся способностью накапливать электрический заряд. Конденсатор — это пассивный электрический компонент, способный накапливать энергию в электрическом поле между парой проводников ( под названием «тарелки» ).

Простыми словами можно сказать, что конденсатор — это устройство, используемое для накопления и высвобождения электричества, обычно в результате химического воздействия. Также называется ячейкой хранения, вторичной ячейкой, конденсатором или аккумулятором. Лейденская банка была ранним примером конденсатора.

Конденсаторы — еще один элемент, используемый для управления потоком заряда в цепи. Название происходит от их способности накапливать заряд, как у небольшой батареи.

Конденсаторы состоят из двух проводящих поверхностей, разделенных изолятором; к каждой поверхности подведен провод.

Что такое конденсатор и как он работает

Символ и единица измерения конденсатора

В электронике обычно используются два символа конденсатора. Один символ для поляризованных конденсаторов, а другой для неполяризованных конденсаторов.

Конденсатор Обозначение поляризованных и неполяризованных конденсаторов

На приведенной выше диаграмме символ с одной изогнутой пластиной представляет собой поляризованный конденсатор. Изогнутая пластина представляет собой катод ( минус ) конденсатора, а другая пластина — анод ( плюс ). Иногда к положительной стороне добавляется еще и плюсик.

Единица SI емкости равна фарад ( символ : F ). Единица названа в честь Майкла Фарадея, великого английского физика.

Конденсатор емкостью 1 фарад, когда он заряжен электрическим зарядом в 1 кулон, имеет разность потенциалов между обкладками 1 вольт.

Типы конденсаторов

Существует несколько типов конденсаторов для различных применений и функций. Ниже приведены основные и наиболее распространенные типы:

1. Керамические конденсаторы

Сквозные и поверхностные керамические конденсаторы

Это неполяризованные конденсаторы, изготовленные из двух или более чередующихся слоев керамики и металла. Керамика действует как диэлектрик, а металл действует как электроды. Керамические конденсаторы

также называются «дисковыми конденсаторами ».

Трехзначный код обычно печатается на корпусе конденсаторов этого типа, чтобы указать их емкость в пикофарадах. Первые две цифры представляют емкость конденсатора, а третья цифра представляет количество нулей, которые необходимо добавить.

2. Электролитический конденсатор

Электролитический конденсатор сквозного и поверхностного монтажа

Конденсаторы этого типа обычно используются там, где требуется большая емкость. Анод электролитических конденсаторов выполнен из металла и покрыт оксидным слоем, используемым в качестве диэлектрика. Другой электрод может быть либо влажным нетвердым, либо твердым электролитом.

Электролитические конденсаторы поляризованы. Это означает, что при подаче на него постоянного напряжения необходимо соблюдать правильную полярность. Проще говоря, положительный вывод конденсатора должен быть подключен к положительному выводу, а отрицательный – к отрицательному. Невыполнение этого требования приведет к повреждению конденсатора.

Эти конденсаторы сгруппированы в следующие 3 типа в зависимости от их диэлектрика:

  1. Алюминиевые электролитические конденсаторы.
  2. Танталовые электролитические конденсаторы.
  3. Конденсаторы электролитические ниобиевые.

3. Пленочный конденсатор

Пленочный конденсатор сквозного и поверхностного монтажа

Это наиболее распространенный тип конденсатора, используемый в электронике.

Пленочные конденсаторы или конденсаторы из пластиковой пленки неполяризованы. Здесь в качестве диэлектрика выступает изолирующая пластиковая пленка. Электроды этих типов конденсаторов могут быть металлическими алюминием или реактивным металлом цинка. Их наносят на одну или обе стороны полиэтиленовой пленки, образуя металлизированный пленочный конденсатор. Иногда поверх пленки накладывается отдельная металлическая фольга, образуя пленочный или фольговый конденсатор.

Пленочные конденсаторы доступны в различных формах и размерах и имеют ряд преимуществ перед конденсаторами бумажного типа. Они очень надежны, имеют долгий срок службы и имеют меньшие допуски. Они также хорошо работают в условиях высокой температуры окружающей среды.

4. Конденсатор переменной емкости

Конденсатор переменной емкости сквозного и SMD-типа

Это неполяризованные конденсаторы переменной емкости. Они имеют подвижные и неподвижные пластины для определения емкости. Обычно они используются в передатчиках и приемниках, транзисторных радиоприемниках и т. д.

Эти конденсаторы сгруппированы как:

  1. Подстроечные конденсаторы; и
  2. Подстроечные конденсаторы

Как работает конденсатор?

Конденсатор можно представить в виде двух больших металлических пластин, разделенных воздухом, хотя в действительности они обычно состоят из тонкой металлической фольги или пленки, разделенных полиэтиленовой пленкой или другим твердым изолятором и свернутых в компактный пакет. Рассмотрим подключение конденсатора к батарее.

Простой конденсатор, подключенный к батарее через резистор

Как только соединение выполнено, заряд стекает с клемм аккумулятора, по проводу и на пластины, положительный заряд на одной пластине, отрицательный заряд на другой.

Почему? Однознаковые заряды на каждом терминале хотят уйти друг от друга. В дополнение к этому отталкиванию есть притяжение к заряду противоположного знака на другой соседней пластине. Первоначально ток большой, потому что в некотором смысле заряды не могут сразу сказать, что провод никуда не уходит, что нет полного замыкания провода.

Начальный ток ограничен сопротивлением проводов или, возможно, реальным резистором. Но по мере того, как на пластинах накапливается заряд, отталкивание заряда препятствует потоку большего заряда, и ток уменьшается. В конце концов сила отталкивания от заряда на пластине становится достаточно сильной, чтобы уравновесить силу от заряда на клемме аккумулятора, и весь ток прекращается.

Зависимость тока в цепи от времени

Наличие разделенных зарядов на пластинах означает, что между пластинами должно быть напряжение, и это напряжение равно напряжению батареи, когда весь ток прекращается. Ведь так как точки соединены проводниками, на них должно быть одинаковое напряжение; даже если в цепи есть резистор, на резисторе нет напряжения, если ток равен нулю, согласно закону Ома.

Количество заряда, которое накапливается на пластинах для создания напряжения, является мерой емкости конденсатора, его емкости, измеряемой в фарадах (f). Соотношение C = Q/V, где Q — заряд в кулонах.

Большие конденсаторы имеют пластины с большой площадью для хранения большого количества заряда, разделенные небольшим расстоянием, что подразумевает небольшое напряжение. Конденсатор в один фарад чрезвычайно велик, и обычно мы имеем дело с микрофарадами (мкф), одной миллионной фарады, или пикофарадами (пф), одной триллионной (10-12) фарада.

Снова рассмотрим приведенную выше схему. Предположим, мы перерезали провода после того, как весь ток прекратился. Заряд на пластинах теперь захвачен, поэтому между клеммными проводами все еще есть напряжение. Заряженный конденсатор теперь выглядит как батарея.

Если бы мы подключили к нему резистор, ток протекал бы, когда положительные и отрицательные заряды стремились нейтрализовать друг друга. В отличие от батареи, здесь нет механизма замены заряда на пластинах, удаленных током, поэтому напряжение падает, ток падает, и, наконец, в цепи не остается ни чистого заряда, ни перепадов напряжения.

Динамика тока, заряда пластин и напряжения во времени выглядит точно так же, как на графике выше. Эта кривая представляет собой экспоненциальную функцию: exp(-t/RC) . Напряжение, ток и заряд падают примерно до 37% от их начальных значений за время R × C секунд, которое называется характеристическим временем или постоянной времени цепи.

Постоянная времени RC является мерой того, насколько быстро схема может реагировать на изменения условий, например, подключение батареи к незаряженным конденсаторам или подключение резистора к заряженному конденсатору. Напряжение на конденсаторе не может измениться мгновенно; для протекания заряда требуется время, особенно если этому потоку противостоит большой резистор. Таким образом, конденсаторы используются в цепи для гашения быстрых изменений напряжения.

Комбинации конденсаторов

Как и резисторы, конденсаторы можно соединять двумя основными способами: параллельно и последовательно .

Как рассчитать емкость конденсатора?

Из физической конструкции конденсаторов должно быть очевидно, что параллельное соединение двух конденсаторов дает большее значение емкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *