Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как определить обмотки неизвестного трансформатора, первичную, вторичную

Прежде чем подключать трансформатор к сети,нужно определить первичную обмотку трансформатора, прозвонить его первичные и вторичные обмотки омметром.

У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

несколько первичных обмоток

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двух каркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

защищен предохранителем

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном определение первичного напряжения трансформатора, предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Видео: Простой способ диагностики силового трансформатор

Когда неизвестен тип силового трансформатора, тем более мы не знаем его паспортных данных, на помощь приходит обыкновенный стрелочный тестер и не хитрое приспособление в лице лампы накаливания.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I = P / U

I – ток, на который рассчитан предохранитель (Ампер),
P – габаритная мощность трансформатора (Ватт),
U – напряжение сети (~220 Вольт).

Пример:

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт)Ток ХХ (мА)
5 — 1010 — 200
10 -5020 — 100
50 — 15050 — 300
150 — 300100 — 500
300 — 1000200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН,
ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать
трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор
от старого телевизора, к примеру, трансформатор ТС-200 и ему подобные.

Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток —

амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся,
диаметр провода любой, для удобства можем намотать и просто монтажным
проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы:

P=U2*I2 (мощность трансформатора)

Sсерд(см2)= √ P(ва)    N=50/S

I1(a)=P/220 (ток первичной обмотки)

W1=220*N   (количество витков первичной обмотки)

W2=U*N (количество витков вторичной обмотки)

D1=0,02*√i1(ma)    D2=0,02*√i2(ma)
K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2  (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо
витков намотать на 10 вольт, если это не очень трудно, не разбирая

трансформатора наматываем контрольную обмотку через свободное
пространство (щель).

Подключаем лабораторный автотрансформатор к
первичной обмотке и подаёте на неё напряжение, последовательно включаем
контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала
появления тока холостого хода.

Если вы планируете намотать трансформатор с достаточно
«жёсткой» характеристикой, к примеру, это может быть усилитель мощности
передатчика в режиме SSB, телеграфном, где происходят довольно резкие
броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например,
тогда ток холостого хода трансформатора устанавливаем порядка 10% от
максимального тока, при максимальной нагрузке трансформатора. Замерив
полученное напряжение, намотанной вторичной контрольной обмотки, делаем
расчет количества витков на вольт.

Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать
вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв
подачи напряжения к первичной обмотке, потом рассчитать ток из
полученных измерений.

Поделиться ссылкой:

Кликните на звездочку чтобы выставить рейтинг страницы

[Total: 1 Average: 4]

Как определить первичную и вторичную обмотку

При самодеятельном конструировании нередко используются трансформаторы с неизвестными параметрами. В этом случае возникает необходимость определить обмотки трансформатора и их характеристики, в частности, число витков.

В практике самодеятельного конструирования обычно приходится иметь дело с повышающими и понижающими трансформаторами. На сердечнике таких трансформаторов, изготавливаемом из электротехнической стали, наматывается необходимое число обмоток. Количество обмоток и число витков в них подбираются так, чтобы получить на выходе нужные напряжения.

Независимо от типа трансформатора, первичной считается обмотка, на которую подается напряжение. Вторичной – та, к которой подключается нагрузка. Первичная обмотка наматывается первой, затем изолируются. Поверх нее наматывается вторичная обмотка.

На многих трансформаторах выводы обозначены надписями, что облегчает определение обмоток. Если надписей нет, мультиметром (тестером) найдите парные концы обмоток и запишите их сопротивление. Обратите внимание на вывод, находящийся сверху – он почти наверняка будет принадлежать вторичной обмотке. Если трансформатор понижающий, то сопротивление вторичной обмотки всегда меньше, чем у первичной. Сравните сопротивления найденных обмоток – если у внешней сопротивление меньше, чем у внутренней, то это понижающий трансформатор и вы успешно определили обмотки.

Если у трансформатора не четыре, а больше выводов и при проверке тестером вы находите 3-4 и больше связанных между собой выводов, то вы имеете дело именно со вторичной обмоткой, имеющей промежуточные выводы для получения различных напряжений. Сетевой (первичной) в этом случае будет обмотка с двумя выводами и самым большим сопротивлением.

Помочь определить обмотки может диаметр используемого провода – у вторичной он толще, чем у первичной. Это связано с тем, что при трансформации понижение напряжения сопровождается увеличением силы тока.

Если необходимо узнать число витков в обмотках, намотайте поверх последней обмотки еще одну из 30-50 витков. После этого подайте на первичную обмотку небольшое напряжение – например, 12 В. Измерьте напряжение во вторичной и дополнительной обмотках. Для расчета числа витков используйте формулу: n = Un × Wдоб / Uдоб, где n – число витков обмотки трансформатора, Un – действующее на этой обмотке напряжение, Wдоб – число витков в добавочной обмотке, Uдоб – напряжение на ней.

Определение первичной и вторичной обмотки трансформатора. Руководство как проверить мультиметром разное электрооборудование

Основное назначение трансформатора – это преобразование тока и напряжения. И хотя это устройство выполняет достаточно сложные преобразования, само по себе оно имеет простую конструкцию. Это сердечник, вокруг которого намотано несколько катушек проволоки. Одна из них является вводной (носит название первичная обмотка), другие выходными (вторичные). Электрический ток подается на первичную катушку, где напряжение индуцирует магнитное поле. Последнее во вторичных обмотках образует переменный ток точно такого же напряжения и частоты, как и в обмотке входной. Если количество витков в двух катушках будет разным, то и ток на входе и выходе будет разным. Все достаточно просто. Правда, это устройство нередко выходит из строя, и его дефекты не всегда видны, поэтому у многих потребителей возникает вопрос, как проверить трансформатор мультиметром или другим прибором?

Необходимо отметить, что мультиметр пригодиться и в том случае, если перед вами лежит трансформатор с неизвестными параметрами. Так вот их с помощью этого прибора также можно определить. Поэтому, начиная работать с ним, надо в первую очередь разобраться с обмотками. Для этого придется все концы катушек вытянуть по отдельности и прозвонить их, выискивая тем самым парные соединения. При этом рекомендуется концы пронумеровать, определив, к какой обмотке они относятся.

Самый простой вариант – это четыре конца, по две на каждую катушку. Чаще встречаются устройства, у которых более четырех концов. Может оказаться и так, что некоторые из них «не прозваниваются», но это не значит, что в них произошел обрыв. Это могут оказаться так называемые экранирующие обмотки, которые располагаются между первичными и вторичными, они обычно соединяются с «землей».

Вот почему так важно при прозвонке обращать внимание на сопротивление. У сетевой первичной обмотки оно определяется десятками или сотнями Ом. Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток. Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю.

Проверка трансформатора

Итак, с помощью мультиметра определены обмотки.

Теперь можно переходить непосредственно к вопросу, как проверить трансформатор, используя все тот же прибор. Разговор идет о дефектах. Их обычно два:

  • обрыв;
  • износ изоляции, что приводит к замыканию на другую обмотку или на корпус устройства.

Обрыв определить проще простого, то есть, проверяется каждая катушка на сопротивление. Мультиметр выставляется в режим омметра, щупами подключаются к прибору два конца. И если на дисплее показывается отсутствие сопротивления (показаний), то это гарантированно обрыв. Проверка цифровым мультиметром может быть недостоверной в том случае, если тестируется обмотка с большим количеством витков. Все дело в том, что чем больше витков, тем выше индуктивность.


Замыкание проверяется так:

  1. Один щуп мультиметра замыкается на выводной конец обмотки.
  2. Второй щуп попеременно подсоединяется к другим концам.
  3. В случае с замыканием на корпус второй щуп соединяется с корпусом трансформатора.

Есть еще один часто встречаемый дефект – это так называемое межвитковое замыкание. Оно происходит в том случае, если изоляция двух соседних витков изнашивается. Сопротивление в этом случае у проволоки остается, поэтому в месте отсутствия изоляционного лака происходит перегрев. Обычно при этом выделяется запах гари, появляются почернения обмотки, бумаги, вздувается заливка. Мультиметром этот дефект также можно обнаружить. При этом придется узнать из справочника, какое сопротивление должно быть у обмоток данного трансформатора (будем считать, что его марка известна). Сравнивая фактический показатель со справочным, можно точно сказать, есть ли изъян или нет. Если фактический параметр отличается от справочного вполовину или больше, то это прямое подтверждение межвиткового замыкания.

Внимание! Проверяя обмотки трансформатора на сопротивление, не имеет значение, какой щуп к какому концу подсоединять. В данном случае полярность не играет никакой роли.

Измерение тока холостого хода

Если трансформатор после тестирования мультиметром оказался исправным, то специалисты рекомендуют проверить его и на такой параметр, как ток холостого хода. Обычно у исправного устройства он равен 10-15% от номинала. В данном случае под номиналом имеется в виду ток под нагрузкой.

Для примера, трансформатор марки ТПП-281. Входное его напряжение – 220 вольт, и ток холостого хода равен 0,07-0,1 А, то есть не должен превышать сто миллиампер. Перед тем как проверить трансформатор на параметр тока холостого хода, необходимо измерительный прибор перевести в режим амперметра. Обратите внимание, что при подаче электроэнергии на обмотки сила пускового тока может превосходить номинальный в несколько сот раз, поэтому измерительный прибор подключают к тестируемому устройству замкнутым накоротко.


После чего необходимо разомкнуть выводы измерительного прибора, при этом на его дисплее отразятся числа. Это и есть ток без нагрузки, то есть, холостого хода. Далее, замеряется напряжение без нагрузки на вторичных обмотках, затем под нагрузкой. Снижение напряжения на 10-15% должно привести к показателям тока, которые не превышают один ампер.

Чтобы изменить напряжение, к трансформатору необходимо подключить реостат, если такового нет, можно подключить несколько лампочек или спираль из вольфрамовой проволоки. Чтобы увеличить нагрузку, надо или увеличивать количество лампочек, или укорачивать спираль.

Заключение по теме

Перед тем как проверить трансформатор (понижающий или повышающий) мультиметром, необходимо понимать, как устроено это устройство, как оно работает, и какие нюансы необходимо учитывать, проводя проверку. В принципе, ничего сложного в данном процессе нет. Главное знать, как переключить сам измерительный прибор в режим омметра.

Похожие записи:

Имей трансформатор две обмотки, четыре вывода, прозвонить ничего не стоит. Проблема обусловлена значительным отличием реальных конструкций. Трансформатор снабжен множеством выводов вторичной обмотки для получения нужных номиналов напряжений. Входная сторона непроста. На один магнитопровод может быть намотано два отдельных трансформатора. Как произвести оценку пригодности использования? Давайте посмотрим, как проверить трансформатор.

Проверка трансформатора китайским тестером

Не каждый трансформатор изготовлен питаться сетью 220 вольт частотой 50 Гц. В промышленности, измерительной отрасли, высшем образовании применяются другие устройства. Наблюдая неподходящие характеристики, использовать приборы в промышленных цепях будет негодной идеей. Поэтому первое, уделяем внимание маркировке. Ведется сообразно ГОСТ. Проблема появляется: каждому типу трансформаторов выпущен индивидуальный документ.

Условные обозначения силовых (ГОСТ 52719-2007) трансформаторов

  1. Логотип предприятия-производителя. Имеется такой значок, на официальном сайте завода наверняка можно почерпнуть немало полезных сведений. Проблема ограничена прекращением предприятием существования. Понимаете живость вопроса для разваливающейся страны. Вторая очередь касается поиска краткой цифровой маркировки, озадачим поисковик: Яндекс, Гугл. Велик шанс немедленного отыскания характеристик, равно как электрическая схема устройства. Дальше ничего проще, нежели прозвонить трансформатор, определить, наличие пробоя, целостности обмоток. Напоминаем, сопротивление изоляции (на магнитопровод, например) составляет не менее 20 МОм согласно существующим стандартам. Касается любых соседствующих, электрически развязанных обмоток. Прикупив китайский тестер, любители могут проделать измерения своими руками.
  2. Наименование изделия считаем ключевым фактором. Нужно понимать: различные классы предназначаются своим целям. Можно, конечно, использовать трансформатор входным, формируя гальваническую развязку, одновременно понимая получающийся результат. В устройствах напряжение обычно не нормируется отдельно, операция лишена смысла. Вторичная обмотка трансформатора тока подключается на соответствующую катушку прибора контроля, измерения. Напряжение при необходимости оценивается отдельно. Маркировка может содержать слова «трансформатор», «автотрансформатор». Сразу разбираем смысл. Поможет Яндекс. Например, автотрансформатор отличается отсутствием гальванической развязки меж первичной, вторичной обмоткой. На деле при движении электропоездов удобно через промежутки расставить автотрансформаторы, снимать напряжение типичным методом. Траектория движения тока позволит значительно снижать потери. Расстояние меж источником и заземлением (через рельсы) снижается. Имеется немало других разновидностей трансформаторов. Определен тип, найдем ГОСТ соответствующего класса прибора, дальше двигаемся, снабженные надежной информационной поддержкой. Касательно данного класса приборов находим: маркировка ведется согласно ГОСТ 11677-75. Различен ГОСТу, согласно которому начали рассмотрение, объясняется разной областью действия. ГОСТ 11677 является международным. Следовательно, нужно знать: даже на один класс изделий бирку привешивают неодинаковую.
  3. Заводской номер поможет получить техническую поддержку. Совершенно точно знаем, на Тайвани, в Китае живут специалисты, знающие английский, настоятельно рекомендуем при возникновении проблем попробовать связаться. Для советских изделий информация скорее окажется бесполезной.
  4. Условное обозначение типа поможет разобрать конструктивные особенности. Например, встретим ТЗРЛ. Согласно ГОСТ 7746-2001 существуют таблицы (2 и 3), ведущие расшифровку. Что касается первой буквы, характеризует слово «трансформатор». Незадача – табличка лишена расшифровки буквы З. Сдаваться? Посещаем Яндекс, вскорости находим: З означает – «защитный». Дальше просто: буква О согласно таблице – «опорный», Л характеризует литой тип изоляции. Находим климатическое исполнение У2. Расшифровка ведется согласно ГОСТ 15150, категория размещения типа 2 ГОСТ 15150. Имея на руках сведения, можно найти отличительные особенности трансформатора. Касается будущего размещения, взялись проверить трансформатор неспроста. Наверняка приготовлено теплое местечко, соответствующее указанным стандартам.
  5. Полезными считаем сведения, касающиеся нормативной документации. Стандарт, согласно которому изготовлен трансформатор, приведен шильдиком. Остается открыть документ, расшифровать надпись. В каждом конкретном случае могут присутствовать небольшие отклонения обозначений, разобраться поможет поисковик (Яндекс, Гугл).


  6. Дата изготовления указана мягким алюминием таблички. Информация пригодится имеющим желание обратиться в службу технической поддержки производителя.
  7. Шильдике предоставляет нарисованную электрическую схему соединений обмоток, номера выводов (цвета, другие условные обозначения). Согласно информации ничего проще, нежели отыскать неисправности трансформаторов. Даже если шильдик полустертый, наверняка можно найти табличку аналогичного прибора. Дальше можно перерисовать, распечатать нужную информацию. На специализированных форумах любители охотно делятся подобными сведениями. Повремените унывать. Наконец, многое почерпнем из справочников. Найдете, используя Яндекс. Ищите электронные версии книг, сетевые ресурсы страдают небольшой точностью. Строка поиска содержит расширения файлов: djvu, pdf, torrent. Об авторских правах не беспокойтесь, книга качается для ознакомления. Посмотрели, удалили. Нельзя передавать полученную информацию, понятное дело. Попалась брошюра, разработанная АБС Электро, приводящая необходимые сведения по продукции. Внутри некоторых приборов стоят тепловые реле, некоторые другие элементы. Поэтому прозвонить трансформатор вдесятеро сложнее рядового. В бытовой электронике чаще стоит предохранитель на 135 градусов Цельсия, упрятанный витками первичной, вторичной обмотки, по-настоящему сложное изделие преподнесет сюрприз бывалым исследователям. Кстати, термопредохранители иногда украшают магнитопровод, тестер показал разрыв обмотки, отыщите защитные элементы.


  8. Номинальная частота Гц может отсутствовать, если сеть соответствует стандартной (промышленной). Трансформатор высокочастотный не стоит использовать взамен обычного. Будет совершенно разное сопротивление обмоток, характеристики поменяются. Трансформатор будет работать неправильно, станет греться сильнее.
  9. Характеристики рабочего режима указываются, если характер работы трансформатора выбивается за рамки термина «продолжительный». Согласно принятым нормам, прибор может работать сколь угодно долго. В противном случае приводится операционный цикл. После определенного периода активности трансформатору понадобится отдых. Иначе сгорит, сработает защита (реле, предохранители), либо выйдет из строя обмотка вследствие перегрева.
  10. Номинальная полная мощность кВА указывается для значимых обмоток. Полезно знать: под НН понимается низкое, под ВН высокое напряжение. Легко понять, изучив трансформатор сварочного аппарата. Ток электродов большой, напряжение низкое. Витки сформированы толстым проводом, сопротивление маленькое. Номинальная полная мощность позволит согласовать источник с потребителем. Допустим, стоит низковольтное оборудование, требуется быстро подобрать трансформатор. Избегая ломать голову, следует сравнить мощности: потребления, допустимую вторичной обмотки трансформатора. Аспекты прояснятся. Максимальная мощность потребления оборудования ниже рабочей (номинальной) вторичной обмотки трансформатора.

    Шильдик трансформатора тока

  11. Номинал напряжения главной вторичной обмотки выступает характеристикой, по которой можно понять, исправен ли трансформатор. Достаточно заручиться отсутствием короткого замыкания, включить первичную обмотку в сеть. Тестером (рассчитанным на указанный диапазон) проведем замер. Намного надежнее измерения сопротивления, попыток вычислить коэффициент передачи.
  12. В стабилизаторах напряжения чаще применяются трансформаторы с переменным количеством витков. Специальный бегунок обходит вторичную обмотку, снимая нужный вольтаж. Маркировка некоторых трансформаторов содержит пределы изменения напряжения. Разумеется, учитывается проверяющим. Кстати, чаще в этом месте кроется неисправность трансформаторов. Либо замыкает соседние витки, либо плохой контакт бегунка. Найденную поломку исправим.
  13. Номинальные токи обмоток иногда позволят не глядя подобрать составные части сети. Например, автомат защиты. Многие устройства предоставляют параметры максимальной нагрузки по току. Полезно амперметром значение измерить, потребуется подключить потребителя. Понятно, короткое замыкание вторичной обмотки делать не следует.
  14. Напряжение короткого замыкания вторичной обмотки указывается процентами номинала. Понятно, что в отличие от идеального источника энергии, изучавшегося преподавателями уроков физики, реальные приборы бессильны выдать показатели. Поэтому при резком возрастании тока напряжение стремительно падает. Проценты даются относительно номинального значения. Конкретное значение посчитаете сами, заручившись помощью калькулятора ОС Виндовс. Стоит ли пытаться организовать короткое замыкание своими руками, сказать затрудняемся. Рискованно: пробки выбьет, трансформатор подвержен опасности.

Надеемся, довольно рассказали про способы устранения неисправностей трансформаторов. Главное – обнаружить причину, затем каждый вертится вокруг собственной оси. Простейшим (часто единственным) вариантом решения проблемы будет перемотка неисправной катушки. Делается проводом, купленным на рынке, посчитать количество витков – отдельное искусство. Проще сделать запрос форуму. Ответом наверняка дадут:

  • ссылку на специализированную компьютерную программу;
  • поделятся опытом;
  • посоветуют.

Обратите внимание, условные обозначения, список параметров, определены типом трансформатора. Необязательно будут идентичны приведенным обзором портала ВашТехник.

Как проверить трансформатор?

Трансформатор, который переводится как «Преобразователь», вошел в нашу жизнь и используется повсеместно в быту и промышленности. Именно поэтому необходимо уметь проверять трансформатор на работоспособность и исправность, чтобы предотвратить поломку при сбое. Ведь трансформатор стоит не так дешево. Однако не каждый человек знает, как проверить трансформатор тока самостоятельно и часто предпочитает отнести его мастеру, хотя дело совершенно не сложное.

Рассмотрим вместе подробнее, как можно проверить трансформатор самому.

Как проверить трансформатор мультиметром

Трансформатор работает по простому принципу. В одной его цепи создается благодаря переменному току магнитное поле, а во второй цепи создается электрический ток благодаря магнитному полю. Это позволяет изолировать два тока внутри трансформатора. Чтобы испытать трансформатор, необходимо:

  1. Выяснить, поврежден ли внешне трансформатор. Внимательно осмотрите оболочку трансформатора на наличие вмятин, трещин, дыр и иных повреждений. Часто трансформатор портится от перегрева. Возможно, вы увидите следы расплавления или вздутия на корпусе, тогда дальше смотреть трансформатор не имеет смысла и лучше сдать его в ремонт.
  2. Осмотрите обмотки трансформатора. Должны иметься явно напечатанные метки. Не помешает и иметь с собой схему трансформатора, где можно посмотреть, как он подключен и другие подробности. Схема всегда должна присутствовать в документах или, в крайнем случае, на странице разработчика в интернете.
  3. Найдите также вход и выход трансформатора. Напряжение обмотки, которая создает магнитное поле, должно быть помечено на ней и в документах на схеме. Также должно быть отмечено и на второй обмотке, где генерируется ток, напряжение.
  4. Найдите фильтрацию на выходе, где происходит трансформация мощности из переменной в постоянную. К вторичной обмотке должны быть подсоединены диоды и конденсаторы, которые и выполняют фильтрацию. Они указаны на схеме, но не на трансформаторе.
  5. Подготовьте мультиметр для измерения измерения напряжения в сети. Если крышка панели мешает добраться до сети, то удалите ее на время проверки. Мультиметр можно всегда купить в магазине.
  6. Подключите входную цепь к источнику. Используйте мультиметр в режиме переменного тока и измерьте напряжение первичной обмотки. Если напряжение падает ниже, чем на 80% от ожидаемой величины, то вероятна неисправность первичной обмотки. Тогда просто отсоедините первичную обмотку и проверьте напряжение. Если оно поднялось, то обмотка неисправна. Если же не поднялось, то неисправность в первичном входном контуре.
  7. Также измерьте напряжение на выходе. Если есть фильтрация, то измерение проводится в режиме постоянного тока. Если ее нет, то в режиме переменного тока. Если напряжение неправильно, то необходимо по очереди проверить весь блок. Если все детали в порядке, то неисправен сам трансформатор.

Часто можно услышать жужжащий или шипящий звук от трансформатора. Это означает, что трансформатор вот-вот сгорит и его надо срочно отключить и отдать в ремонт.

Помимо этого, часто обмотки имеют разный потенциал заземления, что влияет на расчет напряжения.

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.


Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.


Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.


Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.


Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.


Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Что собой представляет оборудование?

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Виды

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком высокое напряжение, способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

ТДКС

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток – это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Как отличить первичную обмотку от вторичной. Как по сопротивлению определить первичную обмотку трансформатора

Первичная обмотка трансформатора – это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения – строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита – X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные – к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие – являют собой отводы, главная функция которых – изменение коэффициента трансформации напряжения;
  • вспомогательные – используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

  • напряжение, подающееся на первичную обмотку катушки, в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, – толщина провода, припаянного к его выводам . Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, – измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение – II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Заключение по теме

Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.

Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.

Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.

Прежде чем подключать трансформатор к сети,нужно определить первичную обмотку трансформатора, прозвонить его первичные и вторичные обмотки омметром.

У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

несколько первичных обмоток

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двух каркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

защищен предохранителем

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном , предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Видео: Простой способ диагностики силового трансформатор

Когда неизвестен тип силового трансформатора, тем более мы не знаем его паспортных данных, на помощь приходит обыкновенный стрелочный тестер и не хитрое приспособление в лице лампы накаливания.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I – ток, на который рассчитан предохранитель (Ампер),
P – габаритная мощность трансформатора (Ватт),
U – напряжение сети (~220 Вольт).

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт)Ток ХХ (мА)
5 — 1010 — 200
10 -5020 — 100
50 — 15050 — 300
150 — 300100 — 500
300 — 1000200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН,
ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать
трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор
от старого телевизора, к примеру, трансформатор и ему подобные.

Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока , но это зависит от размеров сердечника — сможете ли разместить обмотку.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток —
амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся,
диаметр провода любой, для удобства можем намотать и просто монтажным
проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы:

P=U2*I2 (мощность трансформатора)

Sсерд(см2)= √ P(ва) N=50/S

I1(a)=P/220 (ток первичной обмотки)

W1=220*N (количество витков первичной обмотки)

W2=U*N (количество витков вторичной обмотки)

D1=0,02*√i1(ma) D2=0,02*√i2(ma)
K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо
витков намотать на 10 вольт, если это не очень трудно, не разбирая
трансформатора наматываем контрольную обмотку через свободное
пространство (щель).

Подключаем лабораторный автотрансформатор к
первичной обмотке и подаёте на неё напряжение, последовательно включаем
контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала
появления тока холостого хода.

Если вы планируете намотать трансформатор с достаточно
«жёсткой» характеристикой, к примеру, это может быть усилитель мощности
передатчика в режиме SSB, телеграфном, где происходят довольно резкие
броски тока нагрузки при высоком напряжении (2500 -3000 в), например,
тогда ток холостого хода трансформатора устанавливаем порядка 10% от
максимального тока, при максимальной нагрузке трансформатора. Замерив
полученное напряжение, намотанной вторичной контрольной обмотки, делаем
расчет количества витков на вольт.

Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать
вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв
подачи напряжения к первичной обмотке, потом рассчитать ток из
полученных измерений.

Трансформаторы применяются практически во всех электроприборах, как промышленных, так и бытовых.

Оставим за рамками статьи трансформаторы, используемые энергетическими компаниями, и рассмотрим устройства преобразования напряжения, применяемые в блоках питания домашних электроприборов.

Как работает трансформатор, и для чего он нужен?

Трансформатор относится к элементарным электротехническим устройствам. Принцип его работы основан на возбуждении магнитного поля и двустороннем его преобразовании.

Важно! Индуцировать магнитное поле на сердечнике можно только с помощью переменного тока. Поэтому трансформаторов, работающих на постоянном токе, не существует. При необходимости преобразовать постоянное напряжение, его сначала делают переменным или импульсным. Например, с помощью задающих генераторов.

На единый магнитный сердечник наматывается первичная обмотка, на которую подается переменное напряжение с первичными характеристиками. На остальных обмотках, намотанных на тот же сердечник, индуцируется переменное напряжение. Разница в количестве витков в отношении к первичке, определяет коэффициент передачи.

Как рассчитать обмотку трансформатора?

Например, первичка состоит из 2200 витков и на нее подается 220 вольт переменного напряжения. На каждые 10 витков такого трансформатора приходится 1 вольт. Соответственно, для получения требуемого значения напряжения на вторичных обмотках, необходимо умножить его на 10, и мы получим количество витков вторички.

Чтобы получить 24 вольта, нам необходимо 240 витков вторичной обмотки. Если требуется с одного трансформатора снимать несколько значений, можно намотать несколько обмоток.
Как проверить трансформатор и определить его обмотки?

Конец одной обмотки часто соединяют с началом следующей. Например, мы имеем две вторички на 240 и на 200 витков, соединенных последовательно. Тогда на I обмотке будет 24 вольта, на II – 20 вольт. А если снять напряжение с крайних выводов – получится 44 вольта.


Следующее значение – максимальная мощность нагрузки. Это неизменная величина. Если первичка рассчитана на мощность 220Вт, значит, через нее можно пропустить ток 1А. Соответственно, при напряжении 20 вольт на вторичной обмотке, рабочий ток может достигать 11А.

Исходя из требуемой мощности, рассчитывается сечение магнитопровода (сердечника) и сечение проводника, из которого наматываются обмотки.

Чтобы понять принцип расчета магнитопровода, взгляните на приложенную таблицу:


Это типовой расчет для Ш образного сердечника, применяемого в большинстве бытовых трансформаторов. Магнитопровод набирается из пластин, выполненных из электротехнической стали или сплавов на основе железа с добавлением никеля. Такой материал отлично справляется с удержанием стабильного магнитного поля.

Если такой вопрос предстоит решить бывалому электрику, это не составит для него никакого труда, так как выяснить где начало и конец – это самое легкое, что может для него быть. На самом деле и для опытного человека это, также, не составляет особого труда, необходимо знать основные параметры и конструктивные правила, а также соблюдать технику безопасности, при работе с электрическими приборами и установками, а также с высоковольтным напряжением, чтобы не произошло никаких непредвиденных ситуаций со здоровьем.


Определение первичной и вторичной обмотки трансформаторной установки

Бывает так, что трансформаторная установка на своем корпусе не имеет абсолютно никакие опознавательные знаки, но имеет медные шнуры, которые выступают из четырех выводах. Одна выводка имеет большой шнур из меди, а другая, тонкий. Человек, который уже сталкивался с таким вопросом, моментально будет уверен в том, что нужно делать. Так как супертонкий шнур – и есть электрообмотка первичного типа, соответственно второй шнур – вторичного типа.

Одним из обязательных указаний есть то, что первичная обмотка подключается только к сети с напряжением 220 вольт и она обматывается тоненьким шнуром из медной основы. Значит, делая вывод, можно сказать, первоначальная обмотка будет исполнена тонким проводом, а также сопротивление у нее 62 Ома. Так как вторичная электрообмотка исполнена толстым шнуром, сопротивление меньше. Вторичная электрообмотка может включать несколько витков, чего не скажешь про первичную, она всегда только одна.

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов

Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:
  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
Для выполнения работы понадобятся простейшие инструменты и расходные материалы:
  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.


Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток

Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки

Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Простые способы вычисления мощности силового трансформатора

С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.

Заключение

Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

Как определить параметры неизвестного трансформатора

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги.

В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр.

Также для некоторых опытов нам понадобится лампа накаливания с патроном.

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники.

А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали.

На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле.

Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС.

При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.

Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

E ~ w.

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

  • Так как
  • E1 > E2,
  • то
  • w1 > w2.
  • Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
  • S1 = S2.
  • А так как мощность – это произведение тока i на напряжение u
  • S = u∙i,
  • то
  • S1 = u1∙i1; S2 = u2∙i2.
  • Откуда получаем простое уравнение:
  • u1∙i1 = u2∙i2.

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток.

Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция.

Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

  1. Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
  2. kт = w1 / w2 = E1 / E2.
  3. Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков.

Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины.

Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

  • Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
  • Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В.

Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно.

Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

  1. Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток.

При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей.

Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.

Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.

Как узнать мощность трансформатора

Меня неоднократно спрашивали о том, как определить мощность 50Гц трансформатора не имеющего маркировки, попробую рассказать и показать на паре примеров.Вообще способов определения мощности 50Гц трансформатора есть довольно много, я перечислю лишь некоторые из них.

1. Маркировка.

Иногда на трансформаторе можно найти явное указание мощности, но при этом данное указание может быть незаметно с первого взгляда.Вариант конечно ну очень банальный, но следует сначала поискать.

2. Габаритная мощность сердечника.

Есть таблицы, по которым можно найти габаритную мощность определенных сердечников, но так как сердечники выпускались весьма разнообразных конфигураций размеров, а кроме того отличались по качеству изготовления, то таблица не всегда может быть корректна.Да и найти их не всегда можно быстро. Впрочем косвенно можно использовать таблицы из описаний унифицированных трансформаторов.

3. Унифицированные трансформаторы.

Еще при союзе, да и впрочем после него, было произведено огромное количество унифицированных трансформаторов, их вы можете распознать по маркировке начинающейся на ТПП, ТН, ТА.Если ТА распространены меньше, то ТПП и ТН встречаются весьма часто.

Например берем трансформатор ТПП270.

Находим описание маркировки данной серии и в описании находим наш трансформатор, там будет и напряжения, и токи и мощность.

В раздел документация я выложил это описание в виде PDF файла.

Кстати там же можно посмотреть размеры сердечников трансформаторов и определить мощность по его габаритам, сравнив со своим.

Если ваш трансформатор имеет немного больший размер, то вполне можно пересчитать, так как мощность трансформатора прямо пропорциональна его размеру.

На трансформаторе ТН61 маркировка почти не видна, но она есть 🙂

Для него есть отдельное описание, я его также выложил у себя в блоге.

Иногда трансформатор имеет маркировку, но найти по ней что либо вразумительное невозможно, увы, таблицы для таких трансформаторов большая редкость.

4. Расчет мощности по диаметру провода.

Если никаких данных нет, то можно определить мощность исходя из диаметра проводов обмоток.Можно измерить первичную обмотку, но иногда она бывает недоступна.

В таком случае измеряем диаметр провода вторичной обмотки.В примере диаметр составляет 1.5мм.Дальше все просто, сначала узнаем сечение провода. 1.5 делим на 2, получаем 0.75, это радиус.0.75 умножаем на 0.75, а получившийся результат умножаем на 3.14 (число пи), получаем сечение провода = 1.76мм.

квЗначение плотности тока принято принимать равным 2.5 Ампера на 1мм.кв. В нашем случае 1.76 умножаем на 2.5 и получаем 4.4 Ампера.

Так как трансформатор рассчитан на выходное напряжение 12 Вольт, это мы знаем, а если не знаем, то можем измерить тестером, то 4.4 умножаем на 12, получаем 52.

8 Ватта.

На бумажке указана мощность 60 Ватт, но сейчас часто мотают трансформаторы с заниженным сечением обмоток, потому по ольшому счету все сходится.

Иногда на трансформаторе бывает написано не только количество витков обмоток, а и диаметр провода. но к этому стоит относиться скептически, так как наклейки могут ошибаться.В этом примере я сначала нашел доступный для измерения участок провода, немного поднял его так, чтобы можно было подлезть штангенциркулем.А когда измерил, то выяснил что диаметр провода не 0.355, а 0.25мм.Попробуем применить вариант расчета, который я приводил выше.0.25/2=0.1250.125х0.125х3.14=0.05мм.кв0.05=2.5=0.122 Ампера

0.122х220 (напряжение обмотки) = 26.84 Ватта.

Кроме того вышеописанный способ отлично подходит в случаях, когда вторичных обмоток несколько и измерять каждую просто неудобно.

5. Метод обратного расчета.

В некоторых ситуациях можно использовать программу для расчета трансформаторов. В этих программах есть довольно большая база сердечников, а кроме того они могут считать произвольные конфигурации размеров исходя из того, что мы можем измерить.Я использую программу Trans50Hz.

    Сначала выбираем тип сердечника.

    в основном это варианты кольцевой, Ш-образный ленточный и Ш-образный из пластин.Слева направо — Кольцевой, ШЛ, Ш.В моем примере я буду измерять вариант ШЛ, но таким же способом можно выяснить мощность и других типов трансформаторов.Шаг 1, измеряем ширину боковой части магнитопровода.Заносим измеренное значение в программу.

    Шаг 2, ширина магнитопровода.Также заносим в программу.Шаг 3, ширина окна.Здесь есть два варианта. Если есть доступ к окну, то просто измеряем его.Если доступа нет, то измеряем общий размер, затем вычитаем четырехкратное значение, полученное в шаге 1, а остаток делим на 2.Пример — общая ширина 80мм, в шаге 1 было 10мм, значит из 80 вычитаем 40.

    Осталось еще 40, делим на 2 и получаем 20, это и есть ширина окна.Вводим значение.Шаг 4, длина окна.По сути это длина каркаса под провод, часто его можно измерить без проблем.Также вводим это значение.После этого нажимаем на кнопку — Расчет.И получаем сообщение об ошибке.

    Дело в том, что в программе изначально были заданы значения для расчета мощного трансформатора.Находим выделенный пункт и меняем его значение на такое, чтобы мощность (напряжение умноженное на ток) не превысило нашу ориентировочную габаритную мощность.Можно туда вбить хоть 1 Вольт и 1 Ампер, это неважно, я выставил 5 Вольт.

    Заново нажимаем на кнопку Расчет и получаем искомое, в данном случае программа посчитала, что мощность нашего магнитопровода составляет 27.88 Ватта..

    Полученные данные примерно сходятся с расчетом по диаметру провода, тогда я получил 26.84 Ватта, значит метод вполне работает.

    5. Измерение максимальной температуры.

    Обычные (железные) трансформаторы в работе не должны нагреваться выше 60 градусов, это можно использовать и в расчете мощности.Но здесь есть исключения, например трансформатор блока бесперебойного питания может иметь большую мощность при скромных габаритах, это обусловлено тем, что работает он кратковременно и он раньше отключится, чем перегреется.

    Например в таком варианте его мощность может быть 600 Ватт, а при длительной работе всего 400.Еще есть китайские производители, которые бывает используют в дешевых адаптерах трансформаторы "маломерки", которые греются как печки, это ненормально, часто реальная мощность трансформатора может быть в 1.2-1.

    5 раза меньше заявленной.Чтобы измерить мощность вышеуказанным способом, берем любую нагрузку, лампочки, резисторы и т.п. Как вариант, можно использовать электронную нагрузку, но в этом случае подключаем ее через диодный мост с фильтрующим конденсатором.Ждем примерно с час, если температура не превысила 60, то увеличиваем нагрузку. Дальше думаю процедура понятна.

    Есть правда небольшая оговорка, температура трансформатора может заметно отличаться в зависимости от того, есть ли корпус и насколько он большой, но зато дает весьма точный результат. Единственный минус, тест очень долгий.

    Подобные трансформаторы я использую в последние 10-15 лет крайне редко, потому они лежат где нибудь на дальних полках балкона и когда искал, наткнулся на весьма любопытные индикаторы, ИН-13. Покупал для индикатора уровня в усилитель, но так и забросил в итоге. Теперь вот нашел и думаю, что из них можно сделать, возможно у вас есть идеи и предложения.

    В случае интересной идеи, попробую сделать и показать процесс в виде обзора.На этом все, а в качестве дополнения видео по определению габаритной мощности трансформатора.

    Эту страницу нашли, когда искали: как определить на какой ток рассчитан силовой трансформатор, как мощность передается через трансформатор, рассчитать трансформатор на 12 ватт, 60 вольт, как определить мощность транса по сечению проводу, сколько выдает ампер трансформатор 18в, определить мощность трансформатора напряжения 220 /12 в, узнать трансформатора в ват шеобразный, как найти ток первичную обмотки если известен ток вторичной обмотки напряжение и мощность, как узнать сколько ампер выдаёт понижающий трансформатор на 12 вольт, как правильно проверить сколько вольт выдаёт трансформатор, мощность тр-ра по сечению, как найти мощность и количество трансформаторов, мощность на вторичной обмотке 1%, как можно определить потребляемую мощность первичной обмотки трансформатора?, как посчитать ток потребления трансформатора, как узнать мощность трансформатор tv бу4700.086, как вычислить мощность старой дальнего сердечника трансформатора, как рассчитать понижающий трансформатор с 220 на 12 вольт, как узнать мощность у трансформатора тока, как узнать мощность тороидального трансформатора если нет этикетки, сколько ватт может выдать трансформатор расчет, как определить какой ток способен выдать трансформатор, мощность малогабаритного силового трансформатора, как определить мощность трансформатора по сечению стержневого сердечника таблица, как определить первичную и вторичную мощность трансформатора

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

    Возможно ли узнать мощность и ток трансформатора по его внешнему виду

    Возможно ли узнать мощность и ток трансформатора по его внешнему виду

    Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

    Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

    Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

    Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

    Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

    Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

    Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

    Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

    Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

    Итак, давайте найдем площадь сечения окна.

    Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

    В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

    Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

    Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

    Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

    Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

    Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

    Ранее ЭлектроВести писали, что АББ получила заказ на более 20 млн. долл. США от компании MHI Vestas Offshore Wind на поставку надежных энергоэффективных и компактных трансформаторов WindSTAR, разработанных для установки на ветровых турбинах.

    Как узнать мощность трансформатора?

    Радиоэлектроника для начинающих

    Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

    Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

    Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

    Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

    Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

    Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

    Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток ( на напряжение питания прибора (). Думаю, многие знакомы с этой формулой ещё по школе.

    P=Uн * Iн

    ,где – напряжение в вольтах; – ток в амперах; P – мощность в ваттах.

    Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин.

    Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре.

    К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

    Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

    Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

    При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

    Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

    Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом.

    Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра.

    Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

    Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

    ,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

    После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

    Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

    В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

    Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

    Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

    Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

    Главная » Радиоэлектроника для начинающих » Текущая страница

    Также Вам будет интересно узнать:

    Как определить параметры неизвестного трансформатора

    Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

    Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.

    Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом.

    Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков.

    Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.

    О том, как правильно измерить сопротивление мультиметром смотрите здесь: Как измерить мультиметром напряжение, ток, сопротивление, проверить диоды и транзисторы

    Рис. 1. Схема обмоток трансформатора (пример)

    Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

    Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

    Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

    Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки.

    У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой.

    Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

    Рис. 2. Трансформатор ТПП-281

    Как измерить ток холостого хода трансформатора

    Ток холостого хода следует измерить амперметром переменного тока.

    При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть.

    Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

    Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, — напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

    Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

    Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

    Рисунок 3. Схема испытания вторичной обмотки трансформатора

    Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

    Для питания усилителя требуется одна обмотка со средней точкой (см. статью «Трансформаторы для УМЗЧ»). Соединяем последовательно две вторичные обмотки и измеряем напряжение.

    Должно получиться 48В, точка соединения обмоток будет средней точкой.

    Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.

    В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.

    Борис Аладышкин

    Что такое первичная и вторичная обмотка трансформатора

    Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

    24.05.2013

    Трансформатор — статический (без подвижных частей) электромагнитный аппарат, предназначенный для повышения или понижения напряжения переменного тока.

    Принципиальная схема трансформатора приведена на рис. 1.

    Основные части трансформатора: замкнутый стальной сердечник 1 и размещенные на этом сердечнике обмотки 2 и 3. Обмотки изолированы от стального сердечника и друг от друга, т. е. обмотки электрически не связаны между собой.

    Сердечники трансформаторов набирают из листов специальной так называемой трансформаторной стали толщиной 0,35 или 0,5 мм.

    Листы стали изолируют друг от друга специальной бумагой или лаковой изоляцией.

    Трансформаторная сталь имеет повышенное по сравнению с обычной сталью электрическое сопротивление, способствующее, так же как и наличие прокладок и лака, уменьшению вихревых токов, индуктируемых в сердечнике, и связанных с ними потерь.

    В трансформаторной стали потери, связанные с гистерезисом (перемагничиванием), меньше, чем в других сортах стали.

    Обмотка трансформатора, к которой подводится электрическая энергия, называется первичной обмоткой, другая, к которой присоединяются приемники энергии, — вторичной обмоткой.

    Соответственно все электрические величины (мощность, напряжение, ток, сопротивление и т. д.), относящиеся к электрической цепи первичной обмотки, называются первичными, а относящиеся ко вторичной обмотке, — вторичными.

    Обмотка с более высоким напряжением называется обмоткой высшего напряжения (в. н.), обмотка, присоединенная к сети с меньшим напряжением, называется обмоткой низшего напряжения (н.н.).

    Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, а если больше — повышающим.

    Режим работы трансформатора, при котором вторичная обмотка разомкнута, а к зажимам первичной подведено напряжение, называется холостым ходом.

    Если к зажимам первичной обмотки подвести напряжение переменного тока U1, то в первичной обмотке потечет ток, который создаст переменный магнитный поток.

    Преобладающая часть магнитных линий потока замкнется по стальному сердечнику, пронизывая все нитки первичной и вторичной обмоток. Эта часть магнитного потока называется основным, или рабочим, магнитным потоком Фт.

    Другая часть потока, обычно гораздо меньшая, замыкается через воздух, пронизывая только витки первичной обмотки, и называется потоком рассеяния первичной обмотки Фs1. При разомкнутой вторичной цепи (цепи, питаемой от вторичной обмотки) ток в ней отсутствует и с ней не связано никакое магнитное поле.

    При замыкании вторичной цепи в ней появляется ток; связанное с ним магнитное поле образует два потока: один в сердечнике, другой, замыкающийся через воздух, Фs2; таким образом, около вторичной обмотки также создается поток рассеяния.

    Потоки рассеяния аналогичны магнитному потоку самоиндукции, который создает ток в любой катушке индуктивности и любом проводе. Эти потоки являются вредными.

    Согласно закону электромагнитной индукции при изменении основного магнитного потока индуктируется э. д. с. в первичной обмотке Е1 и во вторичной Е2.

    Так как первичная обмотка с числом витков w1 и вторичная обмотка с числом витков w2 пронизываются одним и тем же основным потоком, то очевидно, что в каждом витке обеих обмоток индуктируется одинаковая по величине э. д. с. е. Следовательно, Es1 = ew1 и Е2 = ew2, откуда

    где К — коэффициент трансформации трансформатора.

    Поток рассеяния в свою очередь индуктирует э. д. с. рассеяния в первичной обмотке Es1.

    Следовательно, напряжение, приложенное к первичной обмотке трансформатора, U1 должно быть уравновешено падением напряжения в активном сопротивлении I1r1 первичной обмотки, э. д. с. Esl рассеяния и э. д. с. E1 основного потока.

    При холостом ходе, т. е. при разомкнутой вторичной цепи, Es1 и I1r1 очень малы и можно считать, что э. д. с. Е1, индуктируемая в первичной обмотке, полностью уравновешивает подведенное напряжение U1.

    При разомкнутой вторичной цепи э. д. с. Е2 электрического тока не вызывает, но если мы замкнем вторичную обмотку, т. е. присоединим к ней приемники электроэнергии, то под действием вторичной э. д. с. по вторичной цепи потечет ток, подводимая к трансформатору первичная мощность преобразовывается во вторичную, где используется для приемников электроэнергии (электродвигателей, электрических ламп и т. д.).

    Если не учитывать потерь, можно считать, что подводимая мощность E1I1 приблизительно равна вторичной мощности Е2I2 (I1 и I2 — первичный и вторичный токи трансформатора), т. е.

    т. е. при трансформации первичный и вторичный токи приблизительно обратно пропорциональны числам витков соответствующих обмоток; э. д. с. первичной и вторичной обмоток прямо пропорциональны числам витков соответствующих обмоток.

    Вторичный ток I2, проходя в обмотке, создает ампер-витки I2w2, действующие в той же магнитной цепи трансформатора (сердечнике), что и ампер-витки первичной обмотки. Следовательно, при нагрузке основной магнитный поток (сцепленный с первичной и вторичной обмотками) будет определяться совместным действием ампер-витков l1w1 первичной и ампер-витков I2w2 вторичной обмоток.

    Согласно закону Ленца индуктированный во вторичной обмотке ток направлен таким образом, что препятствует изменению сцепленного с ним магнитного потока. Изменение магнитного потока вызывается первичными ампер-витками l1w1. Следовательно, вторичный ток должен быть такого направления, чтобы создаваемые ими ампер-витки действовали против ампер-витков первичной обмотки.

    Уменьшение основного магнитного потока из-за размагничивающего действия вторичных ампер-витков вызовет уменьшение индуктированной им э. д. с. Е1 в первичной обмотке. Так как напряжение, приложенное к зажимам первичной обмотки U1, остается постоянным, то при уменьшении Е1 оно не уравновешивает напряжения U1, поэтому ток увеличивается до величины, при которой восстанавливается равенство напряжения U1 и э. д. с. Е1. При этом основной магнитный поток должен практически сохранять величину, равную величине основного потока при холостом ходе.

    Действительно, при всех нагрузках трансформатора напряжение сети U1 должно уравновешиваться э. д. с. Е1 (падением напряжения в первичной обмотке пренебрегаем). Для этого необходимо, чтобы основной магнитный поток Фт оставался неизменным, т. е. постоянным при любой нагрузке трансформатора. Ток I1 в первичной обмотке должен быть таким, чтобы компенсировать влияние ампер-витков, создаваемых током I2 во вторичной обмотке. Напряжения на зажимах вторичной обмотки всегда меньше э. д. с. Е2 вследствие падения напряжения в активном и реактивном сопротивлениях вторичной обмотки.

    Для трансформации трехфазного тока применяют трехфазные трансформаторы (трехстержневые), или групповые, которые составляются из трех однофазных.

    Создателем первой конструкции трехфазного трансформатора является М. О. Доливо-Добровольский. Ученый применил его при сооружении в 1891 г. первой линии электропередачи трехфазного тока, по тому времени самой большой в мире по мощности и протяженности, осуществленной на расстоянии 178 км при напряжении до 30 000 в.

    Трехстержневые трехфазные трансформаторы имеют общую магнитную цепь для всех трех фаз, состоящую из трех вертикальных стержней и двух горизонтальных, связывающих вертикальные стержни (рис. 2). Каждый вертикальный стержень 1, 2 и 3 с двумя обмотками I и II представляет собой однофазный трансформатор. Одна из обмоток является первичной,а другая — вторичной. Процессы, происходящие в каждой фазе трехфазного трансформатора, не отличаются от процессов в однофазном трансформаторе.

    При этом в любой момент времени основной магнитный поток каждой фазы равен алгебраической сумме магнитных потоков двух других фаз.

    Первичные, а также вторичные обмотки могут соединяться между собой звездой:

    При передаче энергии из первичной обмотки трансформатора во вторичную часть мощности расходуется: на нагревание стального сердечника (гистерезис и вихревые токи), на нагревание первичной и вторичной обмоток (тепло Ленца).

    Мощность, расходуемая на нагревание стального сердечника, называется потерями в стали и обозначается Рст.

    Мощность, расходуемая на нагревание обмоток, называется потерями в меди и обозначается Рм.

    Отношение мощности Р2, отдаваемой вторичной обмоткой потребителям тока (вторичная мощность), к мощности Р1 подводимой к первичной обмотке (первичная мощность), называется коэффициентом полезного действия(к. п. д.) трансформатора:

    — мощность, отдаваемая трансформатором.

    Коэффициенты полезного действия трансформаторов достигают весьма высоких значений. К. п. д. некоторых мощных трансформаторов составляет 98—99%.

    Трансформаторы, обычно применяемые в береговых установках, погружают в бак со специальным трансформаторным маслом. Масло имеет большую теплоемкость, чем воздух, лучше отводит теплоту и является хорошим изоляционным материалом. Масло повышает электрическую прочность изоляции обмоток трансформатора. Поэтому масляные трансформаторы имеют меньшие габариты, чем воздушные той же мощности и с таким же напряжением. Стенки бака для лучшей теплоотдачи изготовляются из волнистого железа; иногда к баку пристраивается специальный радиатор.

    Трансформатор, имеющий только одну обмотку, часть которой является общей для первичной и вторичной цепи, называется автотрансформатором (рис. 3, б).

    Первичная обмотка (рис. 3, а) — витки w1 (участок обмотки 1—3), а вторичная — витки w2 (участок обмотки 1′ — 2′).

    В общей части обмотки 1—2 ток равен разности I2 — I1, так как в автотрансформаторе вторичная обмотка совмещена с первичной.

    называется коэффициентом трансформации автотрансформатора.

    Преимуществами автотрансформатора (по сравнению с трансформатором) являются уменьшение сечения общей части обмотки, больший к. п. д. и меньший вес.

    Наряду с указанными достоинствами автотрансформатор имеет существенный недостаток, а именно: возможность проникновения высокого напряжения в сеть низкого напряжения, так как первичные обмотки имеют электрическое соединение; поэтому автотрансформаторы применяются главным образом в установках низкого напряжения.

    Трансформаторы, предназначенные для береговых и общепромышленных установок, отличаются от судовых. Обычно трансформаторы мощностью свыше 10 кВА, применяемые в береговых установках, погружают в бак, наполненный специальным трансформаторным маслом.

    Для установки на судах отечественная промышленность выпускает специальные типы судовых трансформаторов — однофазные и трехфазные. Все судовые трансформаторы имеют естественное воздушное охлаждение. Масляные трансформаторы, несмотря на их преимущества, на судах не применяют, так как масло обладает горючестью и может выплескиваться при качке.

    Однофазные судовые трансформаторы выпускаются мощностью до 10,5 кВА, а трехфазные — до 50 ква.

    Первичное напряжение их равно 400, 230 и 133 в (последнее только для однофазных трансформаторов), а вторичное — 230, 133, 115 и 25 в.

    Для возможности регулирования вторичного напряжения первичная обмотка трансформатора имеет несколько выводов. У трансформаторов для номинального первичного напряжения 380 в эти выводы соответствуют напряжению сети 400, 390, 380 и 370 в, а у трансформатора на 220 в — 230, 225, 220 и 215 в.

    Если при номинальном напряжении первичной сети к ней будет подключена более высокая ступень напряжения первичной обмотки (например 400 или 390 в при номинале 380 в), то на вторичной стороне трансформатора напряжение будет ниже номинального. При подключении на первичной стороне более низкой ступени, чем номинальное напряжение, на вторичной стороне получим напряжение выше номинального.

    Судовые трансформаторы выпускаются для установки на открытых палубах и для установки в закрытых помещениях.

    Изоляция их рассчитана на длительное пребывание в условиях большой влажности окружающей среды.

    Все судовые трансформаторы выпускаются в гладких, закрытых металлических кожухах, снабженных лапами с отверстиями для крепления трансформаторов болтами к палубе или переборкам.

    Тема: как сделать, намотать, перемотать вторичную, выходную обмотку трансформатора под нужный ток и напряжение, её простой расчёт.

    Напомню, что трансформатор – это электротехническое устройство, способное преобразовывать электрическую энергию через промежуточную среду в виде электромагнитного поля. Устройство трансформатора достаточно простое. Он состоит из магнитного сердечника (может иметь различные формы) на который наматываются витки изолированного провода. Классический вариант трансформатора содержит две обмотки: первичная (она же входная) и вторичная (она же выходная). В зависимости от материала магнитного сердечника, общей мощности трансформатора, нужных параметров (входное и выходное напряжение и сила тока) данное устройство содержит определённое количество витков и сечение обмоточного провода.

    Первичные обмотки трансформаторов в большинстве своем рассчитаны на стандартное сетевое напряжение величиной 220 вольт (реже на 380 вольт, это трансформаторы используют в промышленной сфере). Одной из главных характеристик трансформатора является его мощность. Зная мощность данного устройства и имея первичную обмотку, рассчитанную на 220 вольт можно легко переделать любой трансформатор под свои нужды (если этой мощности вам будет хватать) намотав вторичную обмотку под нужное выходное напряжение и силу тока.

    А как можно определить эту самую мощность трансформатора? По его сердечнику! Электрическая мощность трансформатора (в ваттах) равна квадрату площади (в сантиметрах) поперечного сечения той части магнитопровода, на которую наматывается провод.

    Напомню, что электрическая мощность равна произведению напряжения на силу тока. То есть, если мы узнали мощность трансформатора, с которой он может работать мы можем вычислить номинальную силу тока, что может выдавать вторичная обмотка (зная величину напряжения).

    К примеру, вы решили сделать себе блок питания относительно небольшой мощности. Берём от старой, ненужной электротехники (если таковая у вас имеется в доме, гараже) понижающий силовой трансформатор (с железным магнитопроводом) или его покупаем. Допустим, по сердечнику вы определили, что трансформатор имеет мощность около 120 ватт. Это значит, что при напряжении в 12 вольт (на вторичной обмотке) он может обеспечивать силу тока величиной до 10 ампер (мощность разделили на напряжение и получили силу тока). В действительности же нужно учитывать, что у малогабаритных трансформаторов КПД равен около 80%, значит и максимальный выходной ток будет чуть меньше, чем 10 ампер (исходя из данного примера).

    Трансформатор, который вы нашли, приобрели, оказался рассчитанный (его вторичная, выходная обмотка) на другое напряжение, не то, которое нужно именно вам. Не беда! Мы его аккуратно разбираем, разматываем старую вторичную обмотку и наматываем новую. Если диаметр провода может обеспечить вам нужный ток, то просто перематываем старую вторичную обмотку под нужное напряжение. От количества витков зависит напряжение (чем больше витков, тем выше напряжение на выходе). От сечения провода обмотки зависит сила тока (чем больше сечение, тем больший ток провод может пропустить через себя, не перегреваясь).

    У различной мощности трансформаторов количество витков на 1 вольт будет также различное. Чем больше мощность, тем меньше нужно наматывать провода для получения 1 вольта (а в целом нужной величины напряжения). Сечение провода в значительной степени зависит от той плотности тока, которую вы можете допустить. Если площадь намотки велика, то и охлаждаться она будет лучше, следовательно, и плотность тока можно выбрать больше. Когда же обмотка намотана кучно, то лучше плотность тока брать меньше. В среднем плотность тока равна 2 А/мм2. При этой плотности диаметр провода (без учета изоляции) можно рассчитать по формуле:

    Количество витков вторичной обмотки проще будет определить практическим путём. Для этого, на скорую руку, на трансформатор мотаем, допустим, 20 витков. Подаем на первичную обмотку питание. Далее измеряем напряжение на вторичной обмотке (этих самых 20 витках), после чего эти 20 витков делим на измеренное напряжение, и получаем количество витков, которые будут выдавать нам 1 вольт. Ну, а потом, чтобы узнать общее количество витков вторичной обмотки, мы напряжение вторичной обмотки умножаем на количество витков на один вольт. К примеру, 1 вольт мы получим при намотке 10 витков, следовательно, мы 10 умножаем на 12 вольт (которые мы хотим получить на выходе трансформатора). В итоге наша вторичная обмотка должна содержать 120 витков.

    Прежде чем подключать трансформатор к сети,нужно определить первичную обмотку трансформатора, прозвонить его первичные и вторичные обмотки омметром.

    У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

    Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

    В двух каркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

    При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном определение первичного напряжения трансформатора, предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

    Видео: Простой способ диагностики силового трансформатор

    Когда неизвестен тип силового трансформатора, тем более мы не знаем его паспортных данных, на помощь приходит обыкновенный стрелочный тестер и не хитрое приспособление в лице лампы накаливания.

    Как подобрать предохранитель для трансформатора

    Рассчитываем ток предохранителя обычным способом:

    I – ток, на который рассчитан предохранитель (Ампер),
    P – габаритная мощность трансформатора (Ватт),
    U – напряжение сети (

    Ближайшее значение – 0,25 Ампер.

    определение первичного напряжения трансформатора

    Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

    При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

    Мощность (Вт)Ток ХХ (мА)
    5 — 1010 — 200
    10 -5020 — 100
    50 — 15050 — 300
    150 — 300100 — 500
    300 — 1000200 — 1000

    Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
    Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

    Схема подключения, при определения количества витков на вольт.

    Можно подобрать готовый трансформатор из числа унифицированных типа ТН,
    ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать
    трансформатор под нужное напряжение, что тогда делать?

    Тогда необходимо подобрать подходящий по мощности силовой трансформатор
    от старого телевизора, к примеру, трансформатор ТС-200 и ему подобные.

    Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.

    Что делаем далее, если неизвестно количество витков на вольт?

    Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток —
    амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся,
    диаметр провода любой, для удобства можем намотать и просто монтажным
    проводом в изоляции.

    Формула для расчета витков трансформатора

    P=U2*I2 (мощность трансформатора)

    Sсерд(см2)= √ P(ва) N=50/S

    I1(a)=P/220 (ток первичной обмотки)

    W1=220*N (количество витков первичной обмотки)

    W2=U*N (количество витков вторичной обмотки)

    D1=0,02*√i1(ma) D2=0,02*√i2(ma)
    K=Sокна/(W1*s1+W2*s2)

    50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
    Измерив площадь сердечника, прикидываем сколько надо
    витков намотать на 10 вольт, если это не очень трудно, не разбирая
    трансформатора наматываем контрольную обмотку через свободное
    пространство (щель).

    Подключаем лабораторный автотрансформатор к
    первичной обмотке и подаёте на неё напряжение, последовательно включаем
    контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала
    появления тока холостого хода.

    Если вы планируете намотать трансформатор с достаточно
    «жёсткой» характеристикой, к примеру, это может быть усилитель мощности
    передатчика в режиме SSB, телеграфном, где происходят довольно резкие
    броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например,
    тогда ток холостого хода трансформатора устанавливаем порядка 10% от
    максимального тока, при максимальной нагрузке трансформатора. Замерив
    полученное напряжение, намотанной вторичной контрольной обмотки, делаем
    расчет количества витков на вольт.

    Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

    Рассчитываем количества витков на вольт
    14/7,8=1,8 витка на вольт.

    Если нет под рукой амперметра, то вместо него можно использовать
    вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв
    подачи напряжения к первичной обмотке, потом рассчитать ток из
    полученных измерений.

    Первичная и вторичная цепи силового трансформатора

    Работа трансформатора основана на явлении взаимоиндукции. Электродвижущая сила взаимоиндукции возникает в одной из двух катушек (рисунок 1), например в катушке 2, когда в другой 1 протекает ток, создающий переменный магнитный поток Ф0. При изменении магнитного потока силовые линии магнитного поля, возникающие вокруг катушки 1, проникают в другую катушку и пересекают ее витки. В результате этого в катушке 2 создается электродвижущая сила (эдс), которая и является электродвижущей силой взаимоиндукции.

    1 – катушка (обмотка) первичной цепи; 2 — катушка вторичной цепи; 3 – реостат для изменения тока в первичной цепи
    Рисунок 1 – Магнитная связь двух катушек, обтекаемых переменным током

    Если концы катушки 2 соединяют с каким-нибудь приемником электрической энергии, то эдс взаимоиндукции создает в нем ток, т. е. передает ему некоторую энергию. Эту энергию катушка 2 получает с помощью магнитного поля, созданного током первой катушки, причем источник тока тотчас же пополняет эту энергию. Так, на основе электромагнитной связи происходит переход энергии источника из одной катушки в другую.

    Ток, протекающий в первой катушке и создающий вокруг нее магнитное поле, называют возбуждающим или первичным и обозначают I1. Электрическую цепь, составленную из источника тока, соединительных проводов и катушки 1, называют первичной. Переменное магнитное поле пересекает не только витки ω2 катушки 2, но и витки ω1 катушки 1. Поэтому и в первичной катушке возникает эдс самоиндукции E1.

    Электродвижущую силу взаимоиндукции, возникающую в катушке 2, называют вторичной и обозначают Е2; электрическую цепь, соединенную с этой катушкой, также называют вторичной. Ток, протекающий во вторичной цепи, называется вторичным и обозначается I2 (рисунок 2, а, б).


    а — режим холостого хода; б — режим нагрузки; 1 — первичная обмотка; 2 — вторичная обмотка, 3 — рубильник; 4 — магнитопровод
    Рисунок 2 – Первичная и вторичная обмотки на магнитопроводе

    Магнитный поток, пересекая любой замкнутый контур (например, виток обмотки), создает в нем эдс и ток. По правилу Ленца этот ток (например, вторичный ток I2) направлен так, что своим магнитным действием препятствует причине, его вызвавшей.

    Интенсивность магнитного поля, т. е. магнитная индукция, пропорциональна току, зависит от числа витков первичной обмотки и свойств среды (от магнитной проницаемости), в которой расположены витки. Для ферромагнитных веществ, например для стали, магнитная проницаемость во много раз больше магнитной проницаемости воздуха. Поэтому для усиления магнитного поля, созданного первичным током, группы последовательно соединенных витков, т. е. катушки обмотки, помещают на магнитопровод, изготовленный из пластин специальной электротехнической стали. Комплект пластин из электротехнической стали, собранный в такой геометрической форме, которая позволяет локализовать в ней основную часть магнитного поля, составляет магнитную систему, или магнитопровод трансформатора. Стержнем называют ту часть магнитопровода, на которой или вокруг которой располагаются катушки обмотки.

    Благодаря высокой магнитной проницаемости стали магнитопровод усиливает магнитное поле тока, увеличивает магнитный поток Ф0 и эдс Е2 (рисунок 2, а). При холостом ходе, когда ток протекает по обмотке, присоединенной к источнику питания, а в другой обмотке тока нет (нагрузка не включена), мощность, потребляемая от сети, расходуется только на создание потока Ф0, т. е. на намагничивание магнитопровода и индуктирование напряжения на разомкнутых зажимах обмотки 2. Поток Ф0, который полностью сцеплен со всеми витками обмоток 1 и 2, называют главным или основным, а первичный ток I1 при холостом ходе — током холостого хода трансформатора. Ток холостого хода обозначают обычно I0.

    Как известно, магнитный поток индуктирует эдс, создающую ток не только в обмотке, но и в стали магнитопровода. Ток, создаваемый эдс, протекает по замкнутому контуру (вихревое движение) в сердечнике в направлении, перпендикулярном магнитному потоку (рисунок 3, а).

    а — сплошном; б — шихтованном; 1 — магнитопровод; 2 — вихревые токи; 3 — слои (пластины) магнитопровода
    Рисунок 3 – Вихревые токи в магнитопроводе

    Магнитопровод всегда можно представить себе состоящим из большого числа цилиндрических слоев, образующих в сечении подобные замкнутые контуры. Совокупность токов, протекающих по всем этим контурам, образует вихревые токи магнитопровода; вследствие электрического сопротивления стали они вызывают в ней нагрев и потери мощности, поступающей от источника.

    Если магнитопровод выполнить из сплошной стали, то сопротивление его будет невелико и вихревые токи могут достигнуть больших значений. Для уменьшения величины вихревых токов (полностью устранить их не удается) магнитопровод собирают из отдельных изолированных листов стали.

    Действительно, для уменьшения вихревых токов следует уменьшить возникающую в магнитопроводе эдс и увеличить сопротивление. При этом, чем тоньше лист, тем меньше элементарная эдс, создающая ток, меньше сечение, т. е. больше сопротивление, меньше величина тока (рисунок 3, б). Как видно из рисунка, возникающие в контурах вихревые токи 2 замыкаются только в каждой отдельной пластине, а не по всему магнитопроводу.

    Вследствие небольшой величины эдс, а также увеличения сопротивления контура, сечение которого стало значительно меньше, чем у сплошного магнитопровода, вихревые токи оказываются небольшими. Чтобы сделать их еще меньше, в сталь, применяемую для изготовления магнитопровода, добавляют кремний, который существенно повышает удельное сопротивление, не ухудшая в то же время ее магнитных свойств. Свойства стали зависят, кроме того, от способа ее изготовления. В частности, большую роль играет способ прокатки стали. Горячекатаная сталь имеет значительно большие удельные потери, чем холоднокатаная. Учитывая, что удельные потери от вихревых токов пропорциональны квадрату толщины листа стали, сейчас вместо толщины 0,5 мм все шире используют сталь толщиной 0,33—0,35 мм и даже 0,28 мм.

    Однако вихревые токи — не единственная причина потерь в магнитопроводе. Другой причиной является перемагничинание стали вследствие непрерывного изменения величины и направления переменного тока. А так как изменение магнитного поля непосредственно связано с изменением направления и величины тока, то сталь магнитопровода непрерывно намагничивается и размагничивается.

    Известно, что кривая намагничивания, т. е. зависимость магнитной индукции от величины и направления тока, образует так называемую петлю гистерезиса (рисунок 4). Непрерывное перемагничивание сопровождается нагреванием стали, т. е. потерями энергии. Площадь, охватываемая петлей гистерезиса, пропорциональна удельным потерям мощности, затрачиваемой на намагничивание. Эти потери называют потерями от гистерезиса или потерями на перемагничивание. Для их уменьшения применяют сталь с малым содержанием углерода и другими присадками, улучшающими ее свойства.

    Рисунок 4 – Петля гистерезиса — зависимость индукции В от изменения тока намагничивания I

    Рассмотренные нами потери, возникающие в магнитной системе трансформатора при номинальном напряжении на первичной обмотке и номинальной частоте, называют магнитными потерями.

    Как определить, какой провод какой на трансформаторе?

    Как определить, какой провод какой на трансформаторе? – Обмен электротехнического стека
    Сеть обмена стеков

    Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange – это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 105к раз

    \ $ \ begingroup \ $

    Допустим, у меня есть трансформатор с 3-мя катушками.Когда первичная катушка подключена к 230 В, две вторичные выдают 12 В. Провода имеют цветовую маркировку, но я не знаю, что это за цвета, да и на сайте производителя информации об этом нет.

    Есть ли относительно простой способ определить, какой провод является первичным, какой вторичным, а какой – началом вторичной обмотки, а какой – концом вторичной катушки?

    Создан 17 дек.

    АндрейКо

    22.1k2424 золотых знака103103 серебряных знака176176 бронзовых знаков

    \ $ \ endgroup \ $ \ $ \ begingroup \ $

    В понижающем трансформаторе первичная обмотка будет иметь более высокое сопротивление. Сопротивление будет низким, но разница должна быть заметной, если только у вас нет действительно большого трансформатора.

    Если вы пытаетесь определить, что такое обмотка, то вот несколько примечаний:

    • Если 3 провода непрерывны, то, вероятно, у вас центральная обмотка (+, 0, -)
    • Если только 2 провода имеют непрерывность, то это простая обмотка.
    • Если 4 или более проводов имеют целостность, значит, у вас многоотводная обмотка трансформатора.

    Обмотки трансформатора имеют фазовое соотношение, но обычно это не важно для источников питания. Если один из проводов не соединен с сердечником трансформатора, полярность не имеет значения.

    Относительно безопасный способ проверки трансформаторов – подключить небольшое переменное напряжение (1–5 В переменного тока) и измерить напряжения на других обмотках.