Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как подключить двигатель с 4 проводами?

Подключение двигателя с 4 проводами

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Л. Рыженков

Редактировал А. Повный

Источник: http://electrik.info/main/master/597-kak-opredelit-rabochuyu-i-puskovuyu-obmotki-u-odnofaznogo-dvigatelya.html

Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.

Находим пару проводов
Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки — нам это понадобится.
Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.
Многие считают, что для запуска такого двигателя нужен конденсатор. Это ошибка, конденсатор применяется в двигателях другого типа без пусковой обмотки. Здесь же он может сжечь мотор во время работы.
Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.
Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее — для этого и нужна кнопка (SB).
ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.
Схема подключения мотора
ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.
После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.
Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.
Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

Источник: https://ok.ru/dlyanachi/topic/68038816361385

Как подключить однофазный электродвигатель на 220 Вольт- схемы, инструкции

В прошлой статье Я рассказывал как подключить и запустить двигатель на 380 Вольт в однофазной электросети 220 В. Сейчас Я расскажу о том, как подключить однофазный электродвигатель от сломавшейся стиральной машины, пылесоса  и т. д.  Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. п.

Схема подключения коллекторного электродвигателя на 220 Вольт

В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. Он   успешно запускается и работает в однофазных сетях без лишних пусковых устройств.

Для того, что бы подключить коллекторный электромотор

, необходимо соединить между собой перемычкой два конца №2 и №3, один идущий от якоря, а второй от статора. А оставшиеся 2 конца присоединить к электропитанию 220 Вольт.

Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.

Может быть мотор и 2 скоростным, тогда со статора будет выходить 3 конец с половины его обмотки. При подключении  к нему уменьшится скорость вращения вала, но при этом увеличивается риск нарушения изоляции при запуске мотора.

Для изменения направления вращения необходимо поменять местами концы подключения статора или якоря.

Схемы подключения однофазных асинхронных электродвигателей

Если в однофазных электродвигателях была бы только одна обмотка в статоре, тогда внутри него электромагнитное поле было бы пульсирующим, а не вращающимся. И запуск произошел бы только после раскручивания вала рукой. Поэтому для самостоятельного запуска асинхронных двигателей  добавляется  вспомогательная обмотка или пусковая, в которой фаза при помощи конденсатора или индуктивности оказывается сдвинутой на 90 градусов. Пусковая обмотка и толкает ротор электродвигателя  в момент включения.

Основные схемы включения изображены на рисунке.

Первые две схемы рассчитаны на  подключение пусковой обмотки на время запуска мотора, но не более 3 секунд по продолжительности. Для этого используется реле или пусковая кнопка, которую необходимо нажать и удерживать пока не запустится мотор.

Пусковая обмотка может подключаться через конденсатор, или в очень редких случаях через сопротивление. В последнем случае обмотка должна быть намотана по бифилярной технологии, т.е сопротивление является частью обмотки. Оно увеличивается в ней за счет длины провода, но при этом индуктивность катушки не меняется.

В третьей самой распространенной схеме конденсатор постоянно включен к сети при работе электродвигателя, а не только на время его запуска.

Что бы определить какие провода идут на каждую из обмоток, сначала вызваниваем их по парам, а затем меряем сопротивление каждой по этой инструкции. У пусковой обмотки сопротивление всегда будет больше (обычно около 30 Ом), чем у рабочей обмотки (чаще всего  в районе 10-13 Ом).

Подбирать конденсатор необходимо по потребляемому току мотором, например для I = 1.4 А потребуется конденсатор емкостью  6 мкФ.

Как подключить электродвигатель стиральной машины

В современных стиральных машинах могут стоять либо коллекторные или трехфазные двигатели. Последние можно запустить только при помощи электронного пуск-регулирующего устройства, которое необходимо будет достать со стиральной машины и переделать схему на ручной запуск. Но для этого надо хорошо разбираться в радиотехнике.

Коллекторный двигатель же двигатель от стиральной машины

подключить очень просто. Как правило на колодку подключения выходит 6-7 проводов, не считая на заземление корпуса.

Два провода идут с тахометра, которые не будут использоваться. И по паре проводов выходит со статора и якоря (ротора). Так же иногда может выходить еще один конец с половины обмотки.

Вызваниваем пары обмоток и соединяем перемычкой между собой конец роторной с началом статарной обмотки. На начало роторной подключаем один конец электропитания и другой- на конец статарной.

Если необходимо подключение второй скорости, тогда один конец электропитания подключаем к выходу с половины обмотки. У нее будет меньше сопротивление, чем у целой.

Иногда на колодку подключения еще может выходить дополнительно пара контактов от термозащиты.

В старых стиральных машинах советского образца стояли простые асинхронные электродвигатели с пусковой обмоткой. Для их запуска рекомендую использовать соответствующее реле от стиральной машины, которое устанавливается только вертикально по указателю на корпусе. Подключение производится по этой схеме.

А можно запустить и по другой схеме только с рабочим конденсатором, подключенным к пусковой обмотке.

Проверка работоспособности

Для того, что бы проверить правильность собранной схемы необходимо включить электродвигатель и дать ему поработать сначала  одну минуту, а затем около 15. Если двигатель горячий, то причинами может быть:

  1. Изношенность, загрязненность или зажатость подшипников.
  2. Большая ёмкость конденсатора, отключите его и запустите двигатель рукой, если он перестанет греться- уменьшите емкость конденсаторов.

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Содержание статьи

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Подключение однофазного электрического двигателя

Однофазный асинхронный двигатель с замкнутым ротором состоит из ротора — вращающейся части с неподвижно закрепленном на нем замкнутым контуром и статора — корпуса с неподвижно закрепленными на нем двумя обмотками. Существует несколько способов подключения : без конденсатора, с одним или двумя конденсаторами, с постоянно работающими двумя обмотками или с одной из обмоток работающей только при старте. Здесь описан простейший вариант, который подойдет в большинстве случаев.

Найти обмотки

Из клеммной коробки двигателя торчит 3 или 4 конца провода. Если выводов 3, то значит два вывода соединены внутри, что немного усложнит нам задачу. В любом случае нам потребуется мультиметр.

Четыре провода

Ставим мультиметр на «прозвон» и находим концы обмоток, они звонятся попарно. Замеряем сопротивление каждой обмотки. Та, у которой сопротивление меньше — рабочая, та, у которой сопротивление больше — разгонная.

Три провода

Замеряем сопротивление между тремя выводами. Наименьшее значение — рабочая обмотка, среднее значение — разгонная.

Подключение

Подключение без конденсатора

Если сопротивление отличается в разы, то разгонная обмотка должна работать кратковременно, только при пуске двигателя. В таком случае конденсатор не нужен. Достаточно коммутирующего устройства, которое бы обеспечивало подачу напряжения на разгонную обмотку в момент запуска двигателя. В простейшем случае это кнопка без фиксации.

Подключение через конденсатор

Если сопротивление рабочей и разгонной обмоток примерно одинаковое, то при работе двигателя должны быть подключены обе обмотки, одна из которых подключена через конденсатор.

Параметры конденсатора зависят от мощности двигателя, нужен неполярный конденсатор, расчитанный на напряжение 450 Вольт, с емкостью 80 мкФ на каждый киловатт мощности двигателя.

К выводам рабочей обмотки подключаем ноль и фазу, к разгонной обмотке подключаем конденсатор, а потом ноль и фазу. Если требуется изменить направление вращения двигателя, необходимо поменять местами ноль и фазу на разгонной обмотке. В случае, если постоянно менять направление вращения, в схеме нужно предусмотреть коммутационный блок, который бы менял местами ноль и фазу на выводах разгонной обмотки.

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

– использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО “Насосы Ампика”
Моисеев Юрий.


Как определить рабочую и пусковую обмотки

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) – провода красного цвета
  • пусковая (В1-В2) — провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

Итак, приступим.

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники, можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

2. Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Более подробно об этом читайте в моей статье про реверс однофазного электродвигателя.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)

Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как подключить электродвигатель в сеть 220В

Как подключить электродвигатель

Приобрели электродвигатель и не знаете, как его подключить? Сейчас такой проблемы не существует, все моторы подключаются довольно легко, в клеммной коробке для этого все предусмотрено. Но если вы желаете разобраться или у вас электродвигатель старого образца эта инструкция научит вас, как правильно установить агрегат, измерить характеристики мощности и числа оборотов системы, и использовать полученные показатели.

Как подключается электродвигатель

Для электродвигателей однофазных

Вариант пусковой обмотки

1) Купите кнопку ПНВС. Вещь пригодится для объединения контактов и при их последующем перенаправлении.

2)  Определите, какой вид у каждой отдельной обмотки. Виды обмоток: пусковая, рабочая. Найдите 3-4 провода от вывода двигателя.

3) Общий выход характеризуется наибольшим сопротивлением, у пусковой обмотки показатели заметно ниже, то, что осталось – и есть рабочая обмотка.

• Перед началом работы убедитесь в исправности каждого элемента рабочей системы.

• Измерьте резистентность каждой пары обмотки.

Это вариант для 3-х проводов. «Комплект» из 4-х и более проводов проверяется попарно. В этом случае соедините рабочий и пусковой провод, затем выведите общий. Получается ситуация с 3 проводами.

4) Остались провода, с которыми нужно продолжить работу. Пусковой провод соответствует среднему контакту, остальные распределяются произвольно. На этом этапе используйте кнопку, в которой также есть 3 контакта. Крайние выходные кабели остаются для подключения силового кабеля, рабочий – для среднего контакта.

Как подключить электродвигатель с 2-мя фазами. Вариант с конденсаторным типом двигателя.

Для данного типа систем характерно, что без конденсаторов двигатель шумит, но не запускается (если использовать метод подключения пускового электродвигателя). Есть три варианта работы с конденсаторами, которые представлены ниже.

• На пусковой конденсатор – специализированный вариант для устройств тяжелого пуска.

• На рабочий конденсатор – способ для достижения максимальной результативности с использованием конденсаторов.

• На два конденсатора – самый «популярный» способ. Вспомогательная обмотка идет к конденсатору, всего 2 подключенных обмотки.

Начните работу с соединения контактов «треугольником» или «звездой». Ориентируйтесь на схему запуска с конденсаторами даже в том случае, если ваш электродвигатель с 2-мя фазами работает через одну фазу.

Как подключить трехфазный электродвигатель через однофазную сеть

Не забывайте, что подключая трехфазный двигатель к однофазной сети потеря в мощности составит порядка 30%.

Прибор с 3-мя фазами можно подключить и через одну фазу, и через конденсатор. Последовательность действий при подключении такого прибора включает более простые элементы, которые уже были описаны в случае 1-фазного, 2-фазного двигателя. Система подключается по схемам «звезда», «треугольник»; используется пусковое реле.

Как проверить электродвигатель на работоспособность

Для пользователя существует несколько вариантов, как проверить двигатель на работоспособность.

• Анализ внешнего состояния прибора. Перегрев системы связывают с потемнением краски на двигателе в средней части.

• Сверьтесь с заявленными производителем характеристиками, указанными на маркировке прибора. Не ожидайте, что двигатель выдаст большие мощности и RPM (число оборотов), чем это написано на маркировке.

• Измерьте показания с помощью мультиметра.

• Устройте прибору аппаратную диагностику.

Проверка мощности электродвигателя.

Электродвигатель сталкивается с большой нагрузкой в ходе работы отдельной или комплексной системы. Опытный пользователь знает, что любое, даже самая надежное устройство со временем дает сбой. Поэтому важно снимать показания электрической машины до нескольких раз после установки, как мощность электродвигателя, так и другие значения.

• Мощность можно определить по счетчику.

• Параметр мощности считается исходя из таблиц (понадобятся данные, например, диаметр D вала, S см/м до оси, длина мотора).

• Данные о габаритах двигателя также служат вспомогательным материалом для вычисления мощности двигателя.

• Непосредственно мощность определяют исходя из значений скорости вращения вала. Частоту умножают на k 6.28, силу и радиус системы (узнается с помощью штангенциркуля).


 Электродвигатель 220В характеристики
Тип

Электродвигатели однофазные АИРЕ 220В – электрические параметры

Масса, кг
Р, кВт U, B КПД, % cos Мп/Мн Мmax/Mн Iп/In С, мкф Uнc, B
3000 об/мин
АИРЕ56А2 0,12 220 62 0,92 0,4 1.7 3,2 6,3 450 3,7
АИРЕ56В2 0,18 220 65 0,95 0,4 1,7 2,8 8,0 450 4,0
АИРЕ56С2 0,25 220 63 0,92 0,4 1,7 3,5 12,5 450 4,3
АИРЕ63В2 0,37 220 66 0,92 0,4 1,7 4,0 20,0 450 6,3
АИРЕ71А2 0,55 220 67 0,92 0,4 1,7 4,3 16,0 250 8,9
АИРЕ71В2 0,75 220 67 0,92 0,4 1,7 4,0 20,0 450 9,6
АИРЕ71С2 1,10 220 68 0,95 0,4 1,7 4,0 30,0 450 10,5
АИРЕ80В2 1,50 220 69 0,95 0,4 1,7 4,5 35,0 450 15,1
АИРЕ80С2 2,20 220 73 0,95 0,3 1,7 4,5 60,0 450 15,9
1500 об/мин
АИРЕ56А4 0,12 220 50 0,88 0,4 1,7 2,0 8,0 450 3,8
АИРЕ56В4 0,18 220 55 0,90 0,4 1,7 2,2 10,0 450 4,4
АИРЕ63В4 0,25 220 60 0,80 0,4 1,7 2,6 10,0 450 6,2
АИРЕ71А4 0,37 220 64 0,90 0,4 1,7 3,0 14,0 450 8,3
АИРЕ71В4 0,55 220 64 0,92 0,4 1,7 3,5 16,0 450 9,6
АИРЕ71С4 0,75 220 66 0,92 0,4 1,7 3,5 25,0 450 10,3
АИРЕ80В4 1,10 220 71 0,95

0,32

1,7 4,0 30,0 450 14,1
АИРЕ80С4 1,50 220 72 0,95 0,32 1,7 4,5 45,0 450 15,1
AИPE100S4 2,20 220 75 0,95 0,4 1,9 3,2 60,0 450 24,4

Тип двигателя

Электродвигатели однофазные АИСЕ 220В – электрические параметры


Масса, кг
Р, кВт Номинальная частота
вращения, об/мин
КПД, % cos φ Мп/Мн Мmax/Mн Iн, А Конденсатор,
мкФ/В
АИСЕ56А2 0,09 2740 54 0,91 0,69 1,8 0,80 4/450 2,8
АИСЕ56В2 0,12 2760 60 0,93 0,69 1,8 0,90 6/450 3,05
АИСЕ56С2 0,18 2760 60 0,93 0,69 1,8 1,40 8/450 3,5
АИСЕ63А2 0,18 2760 62 0,93 0,55 1,8 1,40 8/450 4,1
АИСЕ63В2 0,25 2780 66 0,93 0,55 1,8 1,70 10/450 4,5
АИСЕ63С2 0,37 2780 67 0,93 0,45 1,65 2,50 12/450 5,25
АИСЕ71А2 0,37 2780 67 0,93 0,50 1,65 2,60 12/450 5,6
АИСЕ71В2 0,55 2790 73 0,95 0,50 1,8 3,50 16/450 6,95
АИСЕ71С2 0,75 2810 74 0,97 0,48 1,8 4,50 25/450 8,15
АИСЕ80А2 0,75 2810 74 0,98 0,40 1,8 4,40 25/450 8,5
АИСЕ80В2 1,1 2810 75 0,98 0,40 1,8 6,30 35/450 11,0
АИСЕ80С2 1,5 2810 77 0,98 0,33 1,8 8,50 40/450 12,75
АИСЕ90S2 1,5 2820 77 0,98 0,33 1,72 8,40 45/450 13,7
АИСЕ90L2 2,2 2850 78 0,98 0,29 1,8 12,10 60/450 16,7
АИСЕ100L2 3,0 2860 79 0,99 0,28 1,8 16,50 80/450 23,1
АИСЕ56А4 0,06 1370 48 0,92 0,73 1,75 0,60 4/450 3,3
АИСЕ56В4 0,09 1370 50 0,92 0,60 1,75 0,80 6/450 3,6
АИСЕ63А4 0,12 1370 52 0,92 0,60 1,75 1,30 8/450 4,45
АИСЕ63В4 0,18 1370 54 0,94 0,60 1,6 1,50 12/450 5,05
АИСЕ63С4 0,25 1370 58 0,95 0,60 1,6 2,00 14/450 5,4
АИСЕ71А4 0,25 1390 61 0,96 0,50 1,6 1,80 14/450 5,8
АИСЕ71В4 0,37 1390 62 0,96 0,50 1,6 2,70 16/450 6,9
АИСЕ71С4 0,55 1390 64 0,97 0,48 1,7 3,70 20/450 8,25
АИСЕ80А4 0,55 1410 64 0,98 0,37 1,8 3,50 25/450 9,55
АИСЕ80В4 0,75 1410 68 0,98 0,37 1,65 4,70 30/450 10,45
АИСЕ90S4 1,1 1410 71 0,98 0,35 1,75 6,30 40/450 13,1
АИСЕ90L4 1,5 1420 73 0,96 0,33 1,8 8,50 45/450 16,45
АИСЕ100LА4 2,2 1440 77 0,96 0,32 1,8 12,90 80/450 22,8
АИСЕ100LB4 3,0 1440 78 0,99 0,30 1,7 16,20 100/450 29,2
АИСЕ63А6 0,09 900 46 0,97 0,45 1,5 0,92 8/450 4,2
АИСЕ63В6 0,12 900 46 0,98 0,45 1,5 1,16 10/450 5,6
АИСЕ71А6 0,18 920 57 0,92 0,45 1,5 1,49 16/450 6,3
АИСЕ71В6 0,25 920 59 0,92 0,45 1,5 2,00 20/450 7,6
АИСЕ80А6 0,37 920 63 0,92 0,35 1,6 2,78 20/450 9
АИСЕ80В6 0,55 920 66 0,93 0,35 1,6 3,90 25/450 11,6
АИСЕ90S6 0,75 920 68 0,95 0,35 1,6 5,05 35/450 13,5
АИСЕ90L6 1,1 920 69 0,95 0,35 1,6 7,30 50/450 16,2
Схемы однофазных электродвигателей

и клеммные соединения

Уважаемый г-н электрик: Где я могу найти схемы подключения однофазного электродвигателя?

Ответ: Я составил группу схем подключения однофазного внутреннего электродвигателя и клеммных соединений ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока. ПРИМЕЧАНИЕ. Некоторые текстовые ссылки ниже ведут к применимым продуктам на Amazon, EBay и Northern Tool and Equipment .

Клеммы вращения двигателя – одно напряжение

ВРАЩЕНИЕ L1 L2
По часовой стрелке 1,5 4,8
Против часовой стрелки 1,8 4,5

Вращение двигателя – двойное напряжение, только основная обмотка

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1 4, 5 2 и 3 и 8
Высокая CW 1 4, 8 2 и 3 и 5
Низкая Против часовой стрелки 1, 3, 8 2, 4, 5
Низкая CW 1, 3, 5 2, 4, 8

Вращение двигателя – двойное напряжение, основная и вспомогательная обмотки

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1, 8 4, 5 2 и 3, 6 и 7
Высокая CW 1, 5 4, 8 2 и 3, 6 и 7
Низкая Против часовой стрелки 1, 3, 6, 8 2, 4, 5, 7
Низкая CW 1, 3, 5, 7 2, 4, 6, 8

Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.

СХЕМА ЭЛЕКТРОДВИГАТЕЛЯ

Внутренние электрические схемы электродвигателей малой и малой мощности

Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск с разделенным фазным конденсатором
Работа с разделенным фазным конденсатором
Запуск с другой разделенной фазой с конденсатором Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный

Электродвигатель с разделенной фазой.

Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.

Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает примерно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.

Эти двигатели подходят для масляных горелок, воздуходувок, бизнес-машин, полировальных машин, шлифовальных машин , и т. Д.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой.Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.

Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, а вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрическое смещение фаз.

Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.

Электродвигатель запуска конденсатора с расщепленной фазой.

Электродвигатель с пусковым механизмом с разделенным фазным конденсатором может быть определен как разновидность электродвигателя с расщепленной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.

Также известен как асинхронный двигатель с конденсаторным пуском. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .

Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом и т. Д.

Электродвигатель, работающий через конденсатор, разделенный фазой

Электродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.

Northern Tool продает различные электродвигатели и аксессуары

Когда двигатель достигает 70–80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы. Они могут варьироваться от 3 до 16 микрофарад.

Пусковой конденсатор обычно электролитического типа и может иметь диапазон от 80 до 300 мкФ для двигателей на 110 В, 60 Гц.

Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Другой электродвигатель, работающий через конденсатор с расщепленной фазой.

Другой тип электродвигателя типа «Split Phase Capacitor Run » использует блок конденсаторного трансформатора и является короткозамкнутым ротором с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре. В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.

После того, как двигатель достигнет скорости от 70 до 80 процентов синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.

Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Асинхронный электродвигатель (реверсивный), работающий с расщепленным конденсатором.

Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.

В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по размеру провода и количеству витков.

Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с переменным номинальным током и высоким крутящим моментом.

Электродвигатель с разделенной фазой и запуском реактора.

Асинхронный электродвигатель с разделенной фазой и пуском реактора. Этот двигатель снабжен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и включенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.

При примерно 75% синхронной скорости пусковой выключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.

Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т. Д.

Щелкните здесь, чтобы просмотреть различные инструменты для работы с двигателями

Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения).

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть включены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется 120 вольт.

Вспомогательная пусковая обмотка смещена в пространстве от основной обмотки на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 вольт, чем при подключении на 240 вольт.

Электродвигатель отталкивания.

Отталкивающий электродвигатель по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору.Щетки и коммутаторы закорочены и расположены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть еще один набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.

Электродвигатель индукционный с пуском отталкивания (реверсивный).

Асинхронный электродвигатель с отталкиванием (реверсивный) Асинхронный электродвигатель с отталкивающим запуском – это однофазный двигатель, имеющий ту же обмотку, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена для получения эквивалента обмотка беличьей клетки.

Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью.Имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.

Когда достигается почти синхронная скорость, коммутатор замыкается накоротко, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.

Электродвигатель с экранированными полюсами.

Электродвигатель с экранированными полюсами – это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.

Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента.Когда ток увеличивается в основных катушках, в затеняющих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.

Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.

Когда ток основной катушки падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, вызывающее самозапуск двигателя.

Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , маленьких вентиляторах и т. Д.

Каркасный электродвигатель с экранированными полюсами

Каркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа предназначен для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, так же, как собираются сердечники небольших трансформаторов.

Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.

Электродвигатель с экранированным полюсом не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей сути высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.

Ebay продает ручные пускатели двигателей

Универсальный электродвигатель.

Универсальный электродвигатель разработан для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.

Скорость вращения при полной нагрузке обычно составляет от 5000 до 10 000 об / мин, а скорость холостого хода – от 12 000 до 18 000 об / мин.Типичное применение – переносные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.

Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующего значения. Это делает его подходящим для таких приложений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как компенсированными, так и некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.

Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора – для получения другого направления, при этом в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.

РАЗМЕР РАМЫ

Ниже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.

Таблица размеров электродвигателя

Эту информацию о монтажных размерах двигателя я нашел в той же книге.

Таблица монтажных размеров электродвигателя NEMA C и J-Face.
НЕКОТОРЫЕ СВЕДЕНИЯ О ДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА Схема электрических соединений двигателя постоянного тока

Другие электрические схемы можно найти здесь .

Четырехпроводные схемы треугольника – Continental Control Systems, LLC

Четырехпроводная схема подключения по схеме «треугольник» (4WD) – это подключение по схеме «трехфазный треугольник» с центральным ответвлением на одной из обмоток трансформатора для создания нейтрали для однофазных нагрузок.Нагрузки двигателей обычно подключаются к фазам A, B и C, а однофазные нагрузки подключаются к фазе A или C и к нейтрали. Фаза B, «высокая» ветвь, не используется для однофазных нагрузок.

Этот тип обслуживания, который также известен как услуга «высокая нога», «дикая нога», «стингер-нога» или «дикая фаза», распространен на старых производственных предприятиях с в основном трехфазными двигателями и нагрузками. около 120 вольт однофазного освещения и розеток.

Загрузить: Four Wire Delta Service (AN-113) (PDF, 1 страница)

120/208/240 Вольт Сервис


Совместимые модели WattNode
Любая дельта 240 вольт (3D) модель

Это наиболее распространенная четырехпроводная трехфазная схема подключения по схеме «треугольник», которая представляет собой трехфазную трехпроводную схему подключения по схеме «треугольник» с напряжением 240 В, при этом одна из центральных обмоток трансформатора на 240 вольт отводится для обеспечения двух цепей 120 В переменного тока, которые на 180 градусов не совпадают по фазе друг с другом.Напряжение, измеренное от этой центральной отводной нейтрали до третьего «дикого» плеча, составляет 208 В пер.

Эта услуга почти всегда имеет нейтральное соединение, но в некоторых редких случаях нейтральный провод недоступен. Обычно он находится у служебного входа, но может не доходить до панели или нагрузки. Теоретически четырехпроводный треугольник без нейтрали – это просто трехфазный треугольник, но есть одно отличие. В нормальном трехфазном треугольнике заземление будет либо центральным напряжением, либо одной ветвью, но трехфазная дельта, полученная от четырехпроводного дельта-трансформатора, будет иметь заземление на полпути между двумя ветвями.Измерители WattNode модели Delta – лучший выбор, так как они будут работать с нейтральным подключением или без него.


240/415/480 Вольт Сервис


Совместимые модели WattNode
Любая дельта 480 вольт (3D) модель

Это встречается гораздо реже, но иногда мы получаем запросы на измерение этого типа услуги, которая по сути идентична услуге 120/208/240, но с удвоением всех напряжений.

Общие замечания

  • Высоковольтная ветвь или фаза с более высоким напряжением, измеренным относительно нейтрали, традиционно называлась «фазой B». Изменения в NEC 2008 года теперь позволяют обозначать верхнюю часть четырехпроводной трехфазной дельта-сети как фазу «C», а не фазу «B».
  • Кодекс NEC требует, чтобы верхняя часть ноги определялась оранжевым цветом (ее часто называли дельтой красной ноги) или другими эффективными средствами, и обычно это фаза «B».Однако, чтобы приспособиться к конфигурациям счетчиков коммунальных услуг, разрешается использовать верхнюю опору в фазе «C», когда счетчики являются частью распределительного щита или щитовой панели. Для изменения кода в этом разделе требуется четкая, постоянная маркировка полей на распределительном щите или щите управления.
  • На этикетке коробки CAT III на текущих производимых счетчиках WattNode указано « Ø-N 140 В ~ » (или « Ø-N 277 В ~ »), но напряжение между фазой и нейтралью на высокой ветви будет 208 В пер. (или 416 В переменного тока). Это нормально и не повредит глюкометру.
  • Фазовые углы (относительно нейтрали) будут A = 0 градусов, B = 90 градусов, C = 180 градусов. Это отличается от обычной схемы 3Y-208 или 3D-208, где фазовые углы составляют 0, 120, 240 градусов.
  • Для точных измерений межфазного (или межфазного) напряжения настройте параметр PhaseOffset следующим образом:
    • Для моделей BACnet установите объект PhaseOffset на 3 .
    • Для прошивки Modbus версии 16 или более поздней установите для регистра PhaseOffset (1619) значение 90 .
    • В версиях прошивки Modbus до версии 16 измерения межфазного напряжения неточны, но другие измерения будут работать нормально.
  • Из-за необычных фазовых углов при измерении цепи 4WD с резистивной нагрузкой коэффициенты мощности будут равны 1,0, 0,87, 0,87. При нагрузке двигателя вы можете получить такие коэффициенты мощности, как 0.9, 0,5, 0,0 (или даже отрицательный на одной фазе). Следует ожидать очень несбалансированных показаний мощности (кВт) и изменения реактивной мощности от фазы к фазе. Но, если все подключено правильно, фазные токи должны почти совпадать.
  • Средний измеренный коэффициент мощности может быть неточным для четырехпроводных схем, связанных треугольником.

См. Также

Что подразумевается под однофазным или трехфазным подключением? – Энергид

Переменный электрический ток, которым питается ваш дом, может подаваться через различные типы подключения:

  • 2-проводное: однофазное подключение
  • 3- или 4-проводное: трехфазное подключение

У каждого типа подключения есть свои преимущества.С однофазной системой легче сбалансировать электрические нагрузки сети. С другой стороны, трехфазное соединение больше подходит для потребления здания, которое включает в себя мощные машины (например, помещения самозанятого подрядчика) или лифт, для которого требуется трехфазная система. . Фактически, он может нести в три раза больше мощности .

Как мне узнать, подключен ли мой дом к однофазному или трехфазному соединению?

Достаточно взглянуть на сервисную электрическую панель .Вы увидите либо 2, либо 3 или 4 провода.

2-проводное: однофазное подключение

Если это однофазное соединение, в вашу электрическую сервисную панель входят два провода:

  • черный или красный провод под напряжением
  • синий «нейтральный» провод

Эти два провода разделяет разность напряжений 230 В.

3- или 4-проводное: трехфазное подключение

Если это трехфазное соединение, в вашу электрическую сервисную панель входят 3 или 4 провода, в зависимости от того, что ваш электрик смог установить с имеющейся электросетью.

  • три провода под напряжением: черный, красный, коричневый или серый
  • синий «нейтральный» провод

Это позволит ему правильно распределить силовые кабели вашего дома в зависимости от типа подключения для поддержания баланса электрической сети.

В большинстве случаев разница напряжений 230 В отделяет каждый провод под напряжением от нейтрали, в то время как разница напряжений 400 В между двумя проводами под напряжением.Это позволяет питать как бытовые кабели напряжением 230 В, так и устройства, требующие 400 В (например, автомобильное зарядное устройство).

Обратите внимание, что в некоторых домах 3 фазы 3 x 230 В . Напряжение 230 В отделяет каждый провод под напряжением, нейтральный провод отсутствует.

Нужны ли мне специальные розетки, если мое здание подключено по трехфазной схеме?

Да, но только для устройств , которые работают в трехфазном режиме , таких как двигатель лифта или коммерческая печь.Это круглые 4-контактные разъемы + заземление, подключенные к 5 проводам : 3 провода под напряжением + нейтраль + заземление.

Для остальных розеток подходит стандартная модель 2 пин + земля. Эти розетки имеют 2 провода и заземление : 2 провода под напряжением (трехфазное напряжение 400 В) или 1 провод под напряжением + нейтраль (трехфазное напряжение 230 В).

Нейтральный и заземляющий провода: не путать!

Если ваша электрическая система установлена ​​правильно, нейтральный провод будет синего цвета .Это дает возможность получить необходимое напряжение между двумя выводами.

Его не следует путать с желтым и зеленым заземлением . Это позволяет передавать электрический ток от неисправного устройства или кабеля на землю, защищая вас от поражения электрическим током.

Можно ли увеличить мощность однофазного подключения или поменять на трехфазное?

При необходимости мощность вашего однофазного подключения может быть увеличена максимум до 63 А.В некоторых конкретных случаях вам действительно может потребоваться переключиться на трехфазный, например, если вы хотите, чтобы ваш электромобиль заряжался быстрее.

Однофазное и трехфазное питание Объяснение

В электричестве фаза относится к распределению нагрузки. В чем разница между однофазным и трехфазным блоком питания? Однофазное питание – это двухпроводная силовая цепь переменного тока. Обычно имеется один провод питания – фазный провод – и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом.Трехфазное питание – это трехпроводная силовая цепь переменного тока, в которой каждый фазный сигнал переменного тока разнесен на 120 электрических градусов.

Жилые дома обычно питаются от однофазного источника питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное питание. Одно из ключевых различий между однофазным и трехфазным состоит в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки. Однофазные источники питания обычно используются, когда типичными нагрузками являются освещение или обогрев, а не большие электродвигатели.

Однофазные системы могут быть производными от трехфазных систем. В США это делается через трансформатор для получения нужного напряжения, а в ЕС – напрямую. Уровни напряжения в ЕС таковы, что трехфазная система может также служить в качестве трех однофазных систем.

Однофазное и трехфазное питание

Еще одним важным отличием трехфазного питания от однофазного является постоянство подачи питания. Из-за пиков и провалов напряжения однофазный источник питания просто не обеспечивает такой стабильности, как трехфазный источник питания.Трехфазный источник питания обеспечивает постоянную подачу питания.

По сравнению с однофазным питанием и трехфазным, трехфазные источники питания более эффективны. Трехфазный источник питания может передавать в три раза больше мощности, чем однофазный источник питания, при этом требуется только один дополнительный провод (то есть три провода вместо двух). Таким образом, трехфазные источники питания, независимо от того, имеют ли они три провода или четыре, используют меньше проводящего материала для передачи заданного количества электроэнергии, чем однофазные источники питания.

Разница между трехфазной и однофазной конфигурациями

В некоторых трехфазных источниках питания действительно используется четвертый провод, который является нейтральным проводом. Две наиболее распространенные конфигурации трехфазных систем известны как звезда и треугольник. Конфигурация треугольника имеет только три провода, в то время как конфигурация звезды может иметь четвертый, нейтральный, провод. Однофазные блоки питания также имеют нейтральный провод.

Как однофазные, так и трехфазные системы распределения электроэнергии имеют функции, для которых они хорошо подходят.Но эти два типа систем сильно отличаются друг от друга.

Статьи по теме

Узнайте больше об анализаторах качества электроэнергии.

Функция нейтрального провода в 3-фазной 4-проводной системе

В этой статье я обсуждаю функцию 3 нейтрального провода в 4-проводной системе . Прочитав эту статью, вы сможете понять некоторые очень удивительные факты о необходимости нейтрального провода в трехфазной системе распределения.


Электроэнергия от генерирующих станций передается на большие расстояния по линиям передачи на различные приемные станции.Затем мощность распределяется между различными подстанциями, расположенными в разных местах и ​​населенных пунктах. В конечном итоге напряжение снижается до 400/230 вольт, т.е. 400 вольт для оптовых потребителей и 230 вольт для обычных бытовых потребителей.

Обмотки трансформаторов, установленных на подстанции, подключены по схеме треугольник на первичной стороне и звездой на вторичной стороне.

Распределение обычно однофазное двухпроводное и трехфазное четырехпроводное. Напряжение между любым фазным проводом и нейтралью составляет 230 вольт, а между любыми двухфазными проводами – 400 вольт.

Питание домов, небольших офисов, магазинов и других помещений, требующих малых нагрузок, осуществляется от распределительной сети 230 В с помощью одной фазы и одного нулевого провода.

В тех случаях, когда питание должно быть передано в крупное предприятие, такое как гостиницы, офисы, больницы, применяется система трехфазного четырехпроводного питания. Он состоит из трех фазных проводов и нейтрали.


Функция нейтрального провода в трехфазной четырехпроводной системе заключается в том, чтобы служить обратным проводом для общей бытовой системы электроснабжения.Нейтраль подключена к каждой однофазной нагрузке. Потенциал нейтральной точки можно очень хорошо понять из следующего рисунка.

На приведенной выше схеме генератор подключен к нагрузке по трехфазной четырехпроводной системе. Нейтральные точки как генератора переменного тока, так и нагрузки соединены вместе. Нейтральный провод служит общим обратным проводом для всех трех фаз, выходящих наружу от N 1 .

Следовательно, полный ток нейтрали является векторной суммой трех линейных токов.В сбалансированных условиях векторная сумма равна нулю, и, следовательно, ток нейтрали равен нулю. В этом случае нет вопроса о падении напряжения вдоль нейтрали, и потенциал N 2 такой же, как и у N 1 .

Это проясняет, что если система питания переходит на трехфазную трехпроводную систему, нейтральный проводник может быть удален без каких-либо изменений в распределении потенциала в сети. В этом случае потенциал N 2 по-прежнему будет равен потенциалу N 1 .Поэтому основная передающая сеть представляет собой трехпроводную систему.

Трехфазные нагрузки сбалансированы и не вносят вклад в ток нейтрали, поэтому нейтральный проводник можно удалить.

Но баланс нагрузки на каждой фазе затруднен в случае однофазных нагрузок. Из-за этого дисбаланса всегда течет нейтральный ток. Поэтому нейтральный провод в этом случае очень важен.

Балансировка фаз в трехфазной четырехпроводной системе


Балансировка фаз означает равномерное распределение однофазных осветительных нагрузок по проводам трехфазной четырехпроводной линии питания, так что линейные токи на всех фазах приблизительно равны.

Разница в нагрузке вызовет несбалансированный ток, протекающий через нейтральный провод. Полное сопротивление трех проводников будет одинаковым, и неравный ток, протекающий по ним, вызовет неравные падения напряжения, что может привести к несбалансированности напряжений на нагрузках. Однако добиться в таких случаях абсолютно равного распределения невозможно, и в результате может существовать небольшой ток в нейтрали.

Чтобы получить достаточно равномерное распределение нагрузки в трехфазных проводах, жилые дома следует подключать последовательно, при этом трехфазное питание подается на большие здания, такие как гостиницы, школы, коммерческие здания и т. Д., важно, чтобы равное распределение нагрузки по всем фазам было основной задачей .

«Балансировка» обеспечивает наиболее эффективное использование генератора и трансформатора. Например, трансформатор 100 кВА может удовлетворительно выдерживать однофазную нагрузку 33,3 кВА на каждой из своих фаз. Если он подключен только к одной фазе питания, он будет перегружен.

Почему нейтраль заземлена?


Назначение заземления нейтрали показано на рисунке.

На рисунке A показан трансформатор 11 кВ / 230 В, питаемый от линии 11 кВ. Вторичная обмотка этого трансформатора в этом случае не заземлена.

При нарушении изоляции между обмотками HT и LT по какой-либо причине на клеммах трансформатора 230 В появится напряжение питания 11 кВ. Это будет очень опасная ситуация как для оборудования, подключенного к этой линии, так и для оператора.

Теперь посмотрим на рисунок B, вторичная обмотка трансформатора в этом случае заземлена. Если на клеммах вторичной обмотки появляется напряжение 11 кВ, то по пути, показанному на рисунке, будет протекать чрезмерный ток, и предохранитель перегорит.

Следовательно, заземление нейтрального провода распределительного трансформатора на подстанции очень необходимо с точки зрения безопасности .

Напряжение между нейтралью и землей


Может существовать очень небольшое напряжение между нейтралью и землей, поскольку нейтраль жестко соединена с землей на подстанции, и оно может возрасти, если заземление подстанции не работает должным образом.

При неисправных условиях, например, предохранитель или автоматический выключатель, защищающий фидер, не срабатывает в случае замыкания на землю на одной из линий, нейтраль может достичь гораздо более высокого потенциала по отношению к земле.

В таких условиях произойдет сильное падение напряжения на земле подстанции из-за тока короткого замыкания, что может привести к серьезному поражению электрическим током.

Что происходит при отсоединении нейтрального провода?


Когда нейтральный провод в 3-фазной 4-проводной системе отключен, нагрузки, которые подключены между любыми двумя линейными проводниками и нейтралью, подключаются последовательно, и разность потенциалов на комбинированной нагрузке становится равной линейное напряжение.Разность потенциалов на каждой нагрузке изменяется в соответствии с номинальной нагрузкой.

Рисунок : Эффект отключения нейтрального провода в трехфазной четырехпроводной системе можно более четко пояснить на следующем рисунке:

Предположим, что между фазой R и нейтралью подключено сопротивление 100 Ом, а также сопротивление. 50 Ом подключается между фазой Y и нейтралью в 3-фазном, 4-проводном источнике питания, как показано на рисунке (а). Упрощенная схема показана на рисунке (б).

Если нейтральный провод отключен, две нагрузки R 1 и R 2 подключаются последовательно, и разность потенциалов на них становится равной линейному напряжению, т.е. 400 В.
Следовательно, ток
через нагрузки, I = V L / (R 1 + R 2 )
= 400 / (100 + 50) = 2,67 A
Следовательно,
разность потенциалов на сопротивлении R 1 = I * R 1
= 2.67 * 100 = 267 В

Аналогично,
разность потенциалов на сопротивлении R 2 = I * R 2
= 2,67 * 50 = 133 В

Из рисунка выше видно, что если нейтральный провод при отключении в 3-фазной, 4-проводной системе разность потенциалов на высокоомной нагрузке увеличивается, а разность потенциалов на низкоомной нагрузке уменьшается.

В этом процессе напряжение на высокоомной нагрузке может вырасти больше, чем расчетное значение, и может повредить высокоомную нагрузку .

Спасибо, что прочитали о функции нейтрального провода в 3-фазной 4-проводной системе. .

Основные понятия | Все сообщения

© www.yourelectricalguide.com/ Функция нейтрального провода в 3-х фазной системе 4-х проводной системе.

Руководство по питанию (одно- и трехфазное)

Для электрически ненастроенных, трехфазное и однофазное питание можно рассматривать по тем же принципам, что и механическое питание.Несмотря на различия, у них есть одна общая черта – они передают мощность с помощью давления и потока. Обсуждая электрическую мощность, давление относится к силе, а поток – к скорости.

Вы вычисляете мощность, передаваемую через однофазную и трехфазную сети, следующим образом: давление, умноженное на расход, или сила, умноженная на скорость.

Когда дело доходит до механической мощности, люди используют несколько разных терминов вместо слов «сила» и «скорость». Например, термины «фут-фунты» и «фунты на квадратный дюйм» описывают силу.Между тем, термины «скорость вращения» и «галлоны в минуту» относятся к скорости.

Что касается электроэнергии, то терминология становится более ограниченной. Например, только один термин «напряжение» описывает силу. Между тем, только два термина – «ток» и «амперы» – описывают скорость.

В прошлые десятилетия стандартом подачи электроэнергии был постоянный ток (DC), при котором мощность текла в одном направлении. В современном мире стандартом подачи электроэнергии является переменный ток (AC), при котором поток энергии имеет переменное направление.

Стандарт мощности изменен с постоянного тока на переменный, поскольку последний обеспечивает более эффективную подачу энергии на большие расстояния. Частота переменного тока различается в зависимости от страны:

  • 60 Гц (циклов в секунду) – частота переменного тока в США.
  • 50 Гц (циклов в секунду) – это частота переменного тока во многих других странах.

В механической мощности уравнение мощности представляет собой произведение фут-фунта (давления) и скорости вращения (скорости).В электроэнергетике уравнение мощности представляет собой произведение напряжения (силы) на ток (расход).

В домах наиболее часто используемая силовая цепь состоит из однофазной двухпроводной сети переменного тока (AC), которая питает все, от компьютеров и бытовой техники до телевизоров, фенов и вентиляторов. Большинство установок имеют два провода – нейтральный и силовой. Питание проходит между двумя проводами, начиная с провода питания.

Что такое однофазный (двух- или двухфазный) и трехфазный?

Различия между однофазными, двухфазными и трехфазными системами сводятся к их конфигурациям, которые определяют уровень напряжения, подаваемого на оборудование на принимающей стороне.Чем тяжелее груз, тем выше требования.

Что такое однофазное питание?

Однофазная трехпроводная система – это система распределения питания переменного тока, которая экономит материал проводов в однофазной системе. Для распределительного трансформатора требуется только одна фаза на стороне питания. Трансформатор, который питает трехпроводную распределительную систему, содержит однофазную первичную входную обмотку.

В США и других округах есть разные уровни стандартного напряжения.В США стандартное однофазное напряжение составляет 120 В. Во многих других странах стандартное однофазное напряжение составляет 230 В. Оба состоят из одного провода напряжения – 120 В или 230 В – и одного нейтрального провода.

Что такое двухфазное питание?

Двойная фаза – также известная как разделенная фаза – в основном то же самое, что и однофазная. Двойная фаза состоит из переменного тока (AC) с двумя проводами. В Соединенных Штатах типичная система электропитания в домах состоит из двух силовых проводов на 120 В – фазы A и фазы B, которые сдвинуты по фазе на 180 градусов.Многие предпочитают этот подход из-за его гибкости.

В нагрузках с низким энергопотреблением, таких как освещение, телевизор, стереосистема и компьютерная периферия, питание подается от одной из двух цепей питания на 120 В. В нагрузках, которые используют большое количество энергии, таких как стиральная машина, посудомоечная машина, кондиционер и обогреватели, одна силовая цепь 240 В действует как источник питания.

Что такое трехфазное питание?

Трехфазное питание – это силовая цепь, состоящая из трехпроводной цепи переменного тока.Большинство коммерческих зданий в Соединенных Штатах имеют трехфазную цепь питания. Схема питания обычно состоит из четырех проводов – 208 Y / 120 В – расположение считается наиболее плотным и гибким.

По сравнению с однофазным, трехфазный источник питания обеспечивает большую мощность – в 1,732 раза больше, чем однофазная – при том же токе:

  • В нагрузках с низким энергопотреблением, таких как освещение, телевидение, радио, компьютер и сканер, питание может подаваться от любой из трех однофазных цепей питания на 120 В.
  • Для нагрузок со средней мощностью, таких как водонагреватели и осушители воздуха, питание может подаваться от любой из трех однофазных цепей питания на 208 В.
  • Нагрузки, требующие больших объемов энергии, включая обогреватели, кондиционеры и сверхмощное гаражное оборудование, питаются от одной трехфазной цепи питания 208 В.

Большинство промышленных предприятий в Соединенных Штатах используют трехфазные четырехпроводные схемы питания, поскольку эта схема – 480 Y / 277 В – является самой плотной и мощной.По сравнению с трехфазным двигателем на 208 В трехфазный на 480 В обеспечивает значительно больший источник питания с таким же током или с пониженным на 43% током. Преимущества этой установки заключаются в следующем:

  • Снижение затрат на строительство благодаря меньшим размерам электрических устройств и схем.
  • Снижение затрат на электроэнергию за счет сохранения электрических токов, которые преобразуются в тепло, а не теряются.

Если учесть задействованное мощное оборудование, трехфазные системы ответственны за самые невероятные достижения в области архитектурной инженерии, которых когда-либо достигало человечество.

Разница между энергосистемой США и Европы

Энергетические системы в Северной Америке, Великобритании, континентальной Европе и Океании различаются.

Европейская энергосистема

В Европе в большинстве энергосистем используются трехфазные сети 230/400 В. Основное исключение из этого правила – на фермах и в сельских деревнях, где для получения электроэнергии используются однофазные установки. Исключение связано с тем, что в сельской местности обычно имеется доступ только к одному высоковольтному проводу.

В Соединенном Королевстве федеральный закон требует, чтобы на строительных площадках электроинструменты и переносные фонари подавались через системы с центральным отводом напряжением 55 В. Подобные устройства используются с оборудованием на 110 В, для которого не требуется нейтральный провод. Цель здесь – снизить вероятность поражения электрическим током, который часто представляет собой серьезную угрозу на открытом воздухе, особенно в сырые и дождливые дни.

Одна из самых распространенных строительных машин в США.K. – переносной трансформатор, особенно тот, который преобразует энергию между однофазными 240 В и 110 В. Электропитание на строительных площадках обеспечивается напрямую через генераторные установки. Одним из дополнительных преимуществ такой компоновки является то, что лампы накаливания на 110 В – типичные для этой установки – имеют нити накаливания, которые более прочны и лучше приспособлены для выполняемой работы, чем нити накаливания ламп на 240 В.

В антиподном содружестве, которое предпочитает недорогие варианты, электрические сети обеспечивают однопроводные линии передачи с заземлением (SWER) для удаленных нагрузок.

Североамериканская энергосистема

Для жилых домов и небольших коммерческих объектов в США и Канаде трехпроводные однофазные системы являются наиболее распространенным источником электроэнергии. Установка позволяет работать двумя способами:

  • 120 В между нейтралью
  • 240 В между линиями

Первый из них подает питание на стандартные розетки и заземленные светильники. В более тяжелом оборудовании, таком как холодильники, духовки, посудомоечные машины, обогреватели и другие приборы, требующие более мощных источников энергии, используется второе.

Положение о коммутации управляющих двухфазных цепей. Обратный провод не имеет защиты автоматического выключателя. Таким образом, нейтральный провод должен использоваться исключительно цепями питания противоположной линии. Нейтраль может совместно использоваться двумя цепями противоположных линий, если имеется перемычка для подключения двух выключателей, поскольку это позволяет обоим срабатывать одновременно, а также предотвращает прохождение 120 В по цепям 240 В. В исключительном варианте терминологии 220 В называется однофазным в Соединенных Штатах, но не за рубежом.

Какие основные различия существуют между двух- и трехфазным питанием?

В зданиях, где используются трехфазные источники питания, инженеры разработали электрические системы, обеспечивающие балансировку нагрузок. Это позволяет избежать дисбаланса в течение дня, поскольку разные стороны используют легкие, средние и тяжелые грузы. Инженеры также применили тот же принцип к источникам питания, которые они распределяют по разным зданиям.

В Великобритании на одну фазу подается нейтраль при токах до 100А для отдельных объектов.В Германии и других странах Европы каждая недвижимость получает три фазы и нейтраль. Однако номинал предохранителя в Германии ниже, и он перетасовывается, чтобы предотвратить воздействие, которое повышенные нагрузки могут оказать на первую фазу.

В США и Канаде часто наблюдается высокий уровень предложения дельты. В этой схеме одна обмотка имеет центральный отвод, что позволяет использовать три разных уровня напряжения. Основное назначение этого источника питания, подключенного по схеме треугольника, – обеспечить питание двигателей большой мощности, которым требуется вращающееся поле.

Однофазные нагрузки

За исключением систем с высоким перепадом треугольника, однофазная нагрузка может работать между любыми двумя фазами. Когда однофазные нагрузки распределяются по фазам системы, это сохраняет баланс нагрузок и создает более управляемую ситуацию для проводников. В сбалансированной системе звезды, состоящей из трех фаз и четырех проводов, три проводника и нейтраль системы имеют однородное напряжение.

Когда питающий трансформатор получает обратные токи из домов и зданий потребителей, эти токи совместно делят нейтральный провод.Если все возвращающие нагрузки равномерно распределены по каждой из трех фаз, нейтральный провод будет пропускать обратный ток, равный нулю. Однако использование мощности трансформатора может оказаться неэффективным, если вторичная сторона трансформатора имеет несимметричную фазную нагрузку.

Если в нейтрали питания возникает разрыв, напряжение между фазой и нейтралью не сохраняется. Более низкое напряжение будет на фазах с более высокими нагрузками, а более высокое напряжение будет на фазах с более низкими нагрузками.

Несбалансированные нагрузки

В трехфазной системе, где токи в проводах под напряжением не равны или не образуют идеального фазового угла 120 градусов, нагрузка несимметрична, поскольку потери мощности выше, чем в сбалансированной системе.

Электродвигатель относится к особому классу, когда речь идет о трехфазных нагрузках. Трехфазный асинхронный двигатель, применяемый в различных отраслях промышленности, обеспечивает высокую скорость и пусковой момент. Трехфазные двигатели, известные своей эффективностью, превосходят однофазные двигатели аналогичного номинала и напряжения.Трехфазный двигатель, требующий меньшего количества обслуживания и относительно низкую стоимость, служит дольше и меньше вибрирует, чем однофазный.

Трехфазные системы часто также обеспечивают питание электрического освещения, электрических котлов и других нагрузок резистивного отопления. По всей Европе к трехфазному питанию подходят бытовые электроплиты и отопительные приборы. Вы также можете подключить нагреватели между нейтралью и фазой, в которых отсутствует трехфазный доступ. В местах, где трехфазное питание недоступно, конфигурация с расщепленной фазой позволяет получить доступ к удвоенному значению напряжения для тяжелых нагрузок.

Двухфазная система использует два напряжения переменного тока, разделенных фазовым сдвигом на 90 градусов. Некоторые из первых общественных кондиционеров, а также самые первые генераторы на Ниагарском водопаде работали на двухфазных системах. Трансформатор Скотт-Т может использоваться для соединения двухфазных систем с трехфазными системами. Двухфазные системы в значительной степени были заменены трехфазными системами, но некоторые остатки двухфазных систем все еще существуют.

Какие бывают трехфазные конфигурации? Цепи звезда (Y) и треугольник (Δ)

Трехфазные цепи бывают двух конфигураций – звезда (Y) и треугольник (Δ).В звездообразной конфигурации используются три, а иногда и четыре провода, в то время как в треугольной конфигурации используются только три провода. В звездообразных конфигурациях дополнительный четвертый провод обычно заземляется и предлагается в качестве нейтрали.

Ни трехпроводный, ни четырехпроводной варианты не учитывают заземляющий провод, который проходит по линиям передачи с целью защиты от неисправностей. В нормальных условиях заземляющий провод даже не пропускает ток.

При одновременном использовании однофазной и трехфазной нагрузки вступает в силу четырехпроводная конфигурация “звезда”.Примером этого может быть случай, когда источник питания питает свет, а также обогреватели. В местах, где муфты потребителей имеют общую нейтраль и имеют разное количество фазных токов, результирующие токи передаются по общей нейтрали.

Дельта соединяет обмотку между разными фазами в трехфазной конфигурации. Звезда соединяет каждую обмотку в источнике питания между фазой и нейтралью. В этих конфигурациях будет работать один трехфазный или три однофазных трансформатора.

В системе с открытым треугольником, также известной как V-система, конфигурация состоит из двух трансформаторов. Если трансформатор выходит из строя или становится злокачественным в замкнутом треугольнике, который состоит из трех однофазных трансформаторов, этот треугольник может работать как разомкнутый треугольник. Два трансформатора в разомкнутом треугольнике не только проводят ток для соответствующих фаз, но и пропускают ток третьей фазы.

Для того, чтобы система треугольника обнаруживала паразитные токи, необходимо заземление.Зигзагообразный трансформатор часто защищает дельта-конфигурацию от скачков напряжения. Зигзагообразный трансформатор возвращает токи короткого замыкания на землю.

Как проверить трехфазное напряжение

Чтобы иметь трехфазное электрическое питание, у вас должна быть установка с тремя проводами подключения для передачи. Электроэнергетические компании Северной Америки вырабатывают трехфазные токи, которые передают энергию по электрическим сетям, и это снабжает энергией города, поселки и пригороды на всей территории Соединенных Штатов и Канады.

В жилых домах и небольших офисных зданиях однофазное питание является наиболее распространенным источником энергии. На стадионах и промышленных предприятиях трехфазное питание является стандартным источником питания. Две схемы подключения трансформаторов, работающих от трехфазного тока, известны как треугольник и звезда. Между ними есть небольшая разница в напряжении, и все зависит от проводки.

Шаги, необходимые для проверки напряжения на двигателе, легко выполнить:

  • Выключите выключатель на двигателе.Снимите винты, которыми крышка крепится к разъединителю, и отложите крышку в сторону.
  • Переместите мультиметр на переменное напряжение. Присоединяемые провода зонда к следующим выводам подключаются – общий и вольтный. Если мультиметр имеет функцию автоматического выбора диапазона, переходите к следующему шагу. Если нет, выберите диапазон напряжения, который превышает предполагаемое напряжение.
  • Проверьте внутреннюю часть распределительной коробки двигателя. Должно быть два набора проводов. Однажды набор должен включать три входящих провода, а другой должен состоять из трех исходящих проводов.
  • Входящие провода должны быть подключены к клемме со следующими тремя символами – L1, L2 и L3. В качестве альтернативы терминал может перечислить их как Line 1, Line 2 и Line 3.
  • Выходящие провода следует присоединить к клемме, имеющей следующие три символа – T1, T2 и T3. В качестве альтернативы терминал может перечислить их как «Нагрузка 1», «Нагрузка 2» и «Нагрузка 3».
  • Из трех фаз тока каждая фаза проходит по проводу и обозначена входом и выходом соответствующим номером.Например, L3 и T3 представляют третью фазу.
  • Испытайте L и T попарно с помощью мультиметрических щупов. Поместите щуп на L1 и L2, затем посмотрите на отображение напряжения. Повторите этот шаг с комбинацией L1 и L3, а затем L2 и L3. Напряжение для каждой из этих пар должно быть одинаковым.
  • Когда вы запускаете этот тест на парах T – T1 и T2, T1 и T3, а также T2 и T3 – напряжение для каждой пары должно быть нулевым.
  • Включите размыкающий выключатель.Еще раз проверьте пары T. Напряжение для каждой пары должно быть таким же, как для пар L.

Если у вас есть свободная клемма нейтрали, проверьте однофазное напряжение между ней и L1. Повторите тест между нейтралью и L2 и нейтралью и L3. Тестируемое здесь напряжение должно составлять половину от того, что выходит для пар линий.

Во вращающемся преобразователе фаз одна фаза трехфазного тока может иметь другое напряжение, чем остальные две. В условиях нагрузки, которые связаны с работающими двигателями, напряжение будет изменяться, но этого следовало ожидать.

Когда вы проводите проверку напряжения, внимательно следите за тем, что вы делаете, и не позволяйте себе отвлекаться. Проведение этих тестов может быть опасным.

На некоторых двигателях выключатель такой же, как выключатель. Следовательно, переключение разъединителя в положение «включено» фактически приведет к включению двигателя.

Получите дополнительную информацию об электроэнергии

В сегодняшнем мире высоких технологий и высоких технологий доступ к электроэнергии в любое время и в любых условиях не является роскошью.Это обязательно. Global Electronic Services выполняет сервисные работы по полному спектру промышленной электроники, двигателей и другого высокомощного оборудования. Мы рекомендуем вам оставаться в курсе событий в области электроэнергетики на благо вашей компании.

Запросить цену

Схемы подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д.www.leeson.com

Однофазные соединения: (трехфазные – см. Ниже)
Однофазные соединения:

Вращение L1 L2
CCW 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться к
Высокая против часовой стрелки 1 4,5 2 и 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 ——-
CW 1,3,5 2,4,8 ——-

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться к
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ———
CW 1,3,5,7 2,4,6,8 ———

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Деталь Начало намотки:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 T2 T3 T7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 отведений Номенклатура NEMA
WYE Connected (только низкое напряжение)

Т1 T2 T3 T7 T8 T9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 T2 T3 T7 T8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema – 6 выводов:

Одно напряжение – внешнее соединение WYE

L1 L2 L3 Присоединиться к
1 2 3 4 и 5 и 6

Одно напряжение – внешнее соединение треугольником

Соединения WYE-треугольник с одним напряжением

Режим работы Соединение L1 L2 L3 Присоединиться к
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 ——-

Соединения WYE-треугольник с двойным напряжением

Напряжение Соединение L1 L2 L3 Присоединиться к
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 ——-

Номенклатура NEMA – 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ————

Номенклатура NEMA – 12 выводов:
Двойное напряжение – Внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться к
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Пуск, соединение WYE
Работа, соединение треугольником

Напряжение Conn. L1 L2 L3 Присоединиться к
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ————

Номенклатура IEC – 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий режим
Conn. L1 L2 L3 Присоединиться к
Старт WYE U1 V1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 ————–

Соединения WYE-треугольник с двойным напряжением

Вольт Conn. L1 L2 L3 Присоединиться к
Высокая WYE U 1 V1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 ————–

Пуск с двойным напряжением, соединением по схеме «звезда»
Работа по схеме «треугольник»

Вольт Conn. L1 L2 L3 Присоединиться к
Высокая WYE U 1 V1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 V1, U6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКИЙ WYE U1, U5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
—————————–

Номенклатура NEMA – 6 отведений:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (л.с. одинаковы на обеих скоростях)

Скорость L1 L2 L3 Типовое
Соединение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC – 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое
Соединение
Высокая 2 Вт 2U 1U, 1V и 1W – ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое
Соединение
Высокая 2 Вт 2U 1U, 1V и 1W – ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *