Схема подключения оин 1 в трехфазную сеть
Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.
Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.
Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта “начинка” щитка у вас может быть совсем другая.
1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.
На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать “фазу”, а куда “ноль” можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.
Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.
Также рекомендуется защищать устройства УЗИП с помощью предохранителей.
Думаю тут все понятно.
Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.
2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.
На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.
Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.
3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.
Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.
На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.
Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.
Нет постояннее соединения, чем временная скрутка!
Если вы получили технические условия на ул. Карагандинская, 59, значит ваша сетевая компания – это ПАО МРСК “Волги”, если договор вы заключили в другом месте, то ищите соответствующую статью на нашем сайте.
В этой статье вы узнаете, как правильно подготовить стройплощадку для подключения к МРСК “Волги”. Информация касается только физических лиц, подключающих участки и частные жилые дома, таунхаусы, квартиры. Если вы подключаетесь как юридическое лицо, ваш объект – это производство или минипроизводство, магазин и прочее, условия подключения будут отличаться, уточняйте их по нашему телефону.
По адресу Карагандинская, 59, находится единый центр обслуживания клиентов, который выдаёт ТУ (технические условия на подключение), а непосредственно приёмку и подключение вашей стройплощадки будут производить местные РЭС (районные электросети по прописке, например Дзержинский РЭС, Ленинский РЭС, Зауральный РЭС и т.д.), после выполнения монтажа и лабораторных испытаний.
Общий порядок действий такой: заключается договор с МРСК “Волги”, получаются Технические условия, выполняется монтаж, проводятся испытания электролабораторией, открывается лицевой счёт в Энергосбыте, собираются все остальные документы (акты, разрешения), подключается ЩУ под напряжение. не пытайтесь самостоятельно подключать щит учёта под напряжение к опоре, это сделают работники РЭС бесплатно, после сбора всех документов. В технических условиях необходимо найти следующую информацию: напряжение, мощность, тип прибора учёта. Остальные требования ТУ, как правило, неизменны.
Напряжение: тут два варианта, либо 0,23кВ (220В или однофазное подключение), либо 0,4кВ (380В или трёхфазное подключение).
Мощность: измеряется в кВт (киловатты), указывается так: 7кВт. Это значит вам поставили верхний предел потребляемой мощности 7 киловатт. Обычно, в пределах от 5 до 15 кВт
Тип прибора учёта: может быть указан электронный счётчик с классом 2.0, а может быть прописан счётчик РИМ. РИМ-это прибор учёта, который устанавливается на опоре, наверху.
Теперь, когда вы ознакомились с требованиями ТУ, можно комплектовать щит учёта.
Проколы: при подключении вашего вводного кабеля СИП, непосредственно под напряжение к ВЛ (воздушной линии), используют проколы. Когда специалисты РЭС приедут вас подключать, они потребуют проколы. Для 220В потребуется два прокола, для 380В – четыре.
Натяжители: для натяжения вводного кабеля СИП и его крепления к опоре, стойке/стене щита учёта, потребуется два анкерных натяжителя (смотрите фото). Один на опору, один на стойку/стену щита учёта. Некоторые не покупают второй натяжитель, если щиток установлен на временной стойке, но в будущем, при переносе ЩУ на стену дома/гаража, натяжитель всё равно понадобится. Натяжитель для 220/380В один и тот же, в случае 220В используется два входных отверстия из четырёх. Для крепления натяжителя на опору специалисты РЭС привозят с собой ленту. Для крепления к стене дома используется пластиковый дюбель и анкер с кольцом на конце.
Вводной кабель СИП: СИП (самонесущий изолированный провод) поэтому ему не требуются дополнительные несущие металлические тросики. При напряжении 220В приобретайте СИП 2х16, для 380 В покупайте СИП 4х16. Вводной кабель нужно покупать с запасом, так как удлинить его уже не получится. Если, в будущем, вы планируете перенести ЩУ в другое место (например с временной стойки на стену дома), то длину кабеля нужно рассчитывать до дома, запас, временно, будет находится на стойке, смотанный кольцом. Не оставляйте запас кабеля на верхней части опоры, кто потом будет его спускать? И почём? Учтите, также, что к дому кабель крепится в верхней точке (например в месте перехода стены в кровлю), в щит учёта он заходит снизу, поэтому на опуск уходит не менее 2-3 метров. Номер опоры подключения вводного кабеля указан в ТУ, самовольничать нельзя, длину вводного кабеля считайте от указанной опоры.
Корпус щита учёта: В ТУ стандартно прописывают, что щит учёта должен быть антивандальный, иметь смотровое окошко, устанавливаться на наружной стороне дома, гаража, забора. Наружная установка прописана для того, чтобы невозможно было подключится до прибора учёта, чтобы такое подключение было видимо работникам электросетей. В случае применения счётчика РИМ, требование наружной установки не актуально. Итак, требования к корпусу щита учёта: металлический, степень защиты IP54 и выше (обязательно! Это уличное исполнение), с замком, с окошком для счётчика (для РИМ можно без окошка). Обратите внимание: для напряжения 380В щит должен быть просторней, чтобы поместилась вся начинка. Счётчик внутри щитка может крепится на DIN-рейку, может на болты, уточняйте вид крепления ЩУ и счётчика у продавца.
Провод от ЩУ до заземления: используйте ПВ-1 жёлто-зелёной окраски, сечением 10мм2, нужной вам длины. Конец провода, который крепится к полосе заземления, загибается кольцом, и крепится болтовым соединением (полоса заземления поднимается из земли, на небольшую и удобную высоту, наваривается болт, на болт две гайки и две шайбы). Этот контакт должен быть всегда доступен для осмотра и ремонта.
Счётчик: счётчик покупайте однофазный или трёхфазный, как написано в ТУ. Счётчик должен быть электронный класса точности 2.0 и выше, обычно, в наших магазинах, все счётчики класса 1.0. Уточняйте вид креления: болт или DIN-рейка. Если в ТУ прописан счётчик РИМ, то внутрь ЩУ счётчик не ставится. Некоторые абоненты, ставят дублирующий счётчик, для контроля счётчика РИМ. У крышки счётчика, как правило, два винта, один из них с пломбой, его не трогайте при сборке. Не теряйте паспорт от счётчика.
ОИН-1: ограничитель импульсных напряжений должен быть обязательно установлен в щите учёта. Нам часто говорят, что в технических условиях не прописано требование установки ограничителей перенапряжений (не путать с ограничителем мощности). Это не так, в ТУ чёрным по белому написано “установить устройства защиты от замыканий и перенапряжений“. В щит 220в ставится один ОИН, в щит 380В ставится три ОИНа. Какие именно ОИНы покупать: ОИН-1, ОПС, NU-9 решайте сами. Внимание! ОИНы подключаются после вводного автомата (смотрите схему).
Вводной автомат: это обязательное для установки устройство. Он защищает счётчик и внутренние провода от коротких замыканий и перегрузок, позволяет обесточить щит для его обслуживания (замена счётчика, ОИНов, автоматов, УЗО). Кроме того, вводным автоматом в МРСК “Волги”, ограничивают потребляемую мощность. Не используйте в качестве вводного автомата УЗО или дифференциальные автоматы! Для 220В покупайте однополюсный автомат, для 380В покупайте трёхполюсный автомат. Номинал вводного автомата выбирайте по следующей формуле:
НОМИНАЛ (220В) = МОЩНОСТЬ / 220.
Например: мощность в ТУ 7кВт, значит НОМИНАЛ=7000/220=31,8А, округляем до 32А. Автомат, в примере, будет однополюсный 32А. Справочно, для напряжения 220В номиналы вводных автоматов: 5кВт – 25А; 7кВт – 32А; 10кВт – 40А; 15кВт – 63А. Для напряжения 380В вводной автомат всегда будет 32А, трёхполюсный. Рекомендуем использовать вводные автоматы со шторками на контактах, такие шторки пломбируются свинцовыми пломбами, а не наклейками, наклейки, имеют нехорошее свойство, отклеиваться.
УЗО: в технических условиях прописана обязательная установка устройств защитного отключения. Для ЩУ 220В ставьте двухполюсное (однофазное) УЗО, для щитков 380В ставьте четырёхполюсное (трёхфазное) УЗО. Вместо устройства защитного отключения можно использовать дифференциальный автомат. УЗО выбирается по номинальному току и току утечки. Номинальный ток должен быть не менее тока вводного автомата (больше можно). Ток утечки должен быть 30мА (тридцать миллиампер). Если вы применяете дифавтомат, то его номинал, теоретически, может быть ниже вводного автомата, и, даже, по условиям селективности, должен быть ниже на одну ступень. Но, мы не рекомендуем понижать номинал дифавтомата, так как вы снижаете максимальную потребляемую мощность. Ставьте дифавтомат, такого же номинала, как и вводной автомат.
Провод для обвязки: для соединения устройств внутри ЩУ между собой вам понадобится соединительный (обвязочный) провод. Лучше использовать провод марки ПВ-1 (цельножильный), если использовать ПВ-3 (многопроволочный), то неодходимо будет каждый конец опрессовть контактным наконечником. Провода, желательно, применять разных расцветок: синий для обвязки нуля (на схеме синим цветом), жёлто-зелёный для обвязки заземляющих цепей (на схеме зелёный цвет), для фазной обвязки любой другой цвет, кроме синего и жёлто-зелёного (на схеме красный цвет). Хотя, при приёмке, работники электросетей на расцветку проводов внимания не обращают, но не делайте все провода синими или жёлто-зелёными.
Шинки N и PE: N (нулевая шина), PE (шина заземления). В приведённом нами примере, на схеме, используется только шина PE. Шинку удобнее применять с креплением на DIN-рейку, внутренний диаметр винтовых отверстий не менее 10мм2 (для крепления провода от контура заземления), минимальное количество отверстий 6 (в нашем примере на схеме 380В).
Когда все необходимые комплектующие закуплены, можно приступать к монтажным работам. Сборку щита учёта и монтаж заземления можно выполнять самостоятельно, а можно привлечь электриков. Никаких лицензий и допусков СРО для данного вида работ не требуется. Заказать электромонтаж можно в нашей лаборатории. Вам в помощь приведены две схемы сборки ЩУ, однофазного и трёхфазного.
Основные моменты, которые нужно знать при подготовке стройплощадки.
Щит можно временно устанавливать на стойке из дерева или металла. Стойка должна быть надёжно вкопана в землю. Также ЩУ можно прикрепить к опоре ВЛ, с помощью специальных креплений-хомутов (продаются), не нарушая целостность опоры. Некоторые РЭС против размещения щитков на своих опорах, уточняйте этот вопрос у свойх районных электросетей (телефон на оборотной стороне ТУ). Размещать щит учёта на участке нужно так, чтобы он и СИП не мешали вам и транспорту. Учтите, что ЩУ должен быть заземлён от контура заземления, построенный дом также должен быть заземлён от контура. Поэтому, если вы забьёте контур заземления недалеко от дома, разместив рядом ЩУ или вытянув до него полосу заземления, то не придётся забивать контур повторно.
СИП бывает с разноцветными полосками на изоляции, бывает полностью чёрный. Если разноцветный, то в качестве ноля используйте жилу с синей полоской. Обратите внимание, на нашей схеме вводной ноль заходит напрямую в счётчик – это требование некоторых РЭС. Фазные жилы СИП можно заводить снизу автомата, такое допущение прописано в паспортах автоматических выключателей (например фирмы IEK). УЗО и дифференциальные автоматы запитываются только сверху, иначе выходят из строя. Напоминаем, УЗО и ВДТ на вводе не ставятся.
Строго говоря ОИН-1 должен подключаться через отдельный автомат, но если этот отдельный автомат не ставить, то подключение ограничителей производится после вводного автомата (как на наших схемах). Так, в своё время, нам ответил инженер-конструктор фирмы производителя. То есть, если СИП заходит снизу автомата, то ОИНы подключаются сверху, и наоборот.
Щит учёта обязательно должен быть подключен к заземляющему устройству. Без заземления стройплощадку под напряжение не подключат. Как правильно выполнить контур заземления читайте в рубрике “статьи” нашего сайта.
Наличие В наличии
Вес товара: 0.10 кг.
Ограничитель импульсного перенапряжения (ограничитель напряжения) является устройством для защиты от импульсных перенапряжений.
Этот товар не продается отдельно. Вы должны выбрать как минимум 1 количество этого товара
Добавить в Корзину
Предупреждение: Товар заканчивается!
Твит Поделиться Google+ Pinterest
- Подробнее
- Характеристики
- Загрузить
- Вопросы: (13)
- Отзывы (0)
Производитель | МИРТЕК |
Номинальное напряжение | 220 В 50 Гц |
Диапазон рабочих температур | -40 C – +55 C |
Степень защиты | IP20 |
Рабочее напряжение | 270 В |
Максимальный разрядный ток | 10 кА |
Номинальный разрядный ток | 5 кА |
Уровень напряжения защиты | 1,8 кВ |
Неповреждающее временное перенапряжение | 380 В |
Ограничитель импульсного перенапряжения (ограничитель напряжения) является устройством защиты от импульсных перенапряжений и предназначен для защиты электроустановок зданий от грозовых импульсных перенапряжений.
Ограничитель напряжения может быть применен в качестве встраиваемого комплектующего изделия в низковольтных устройствах с фазным напряжением 220В частотой 50 Гц. Ограничители напряжения рекомендованы для эксплуатации в вводных устройствах, в распределительных щитах, в групповых квартирных и этажных щитках систем типа TN.
К одному выводу ограничителя напряжения подключается фазный проводник, к другому – совмещенный защитный и нулевой рабочий проводник (PEN) или нулевой рабочий N проводник питающей сети.
Подключение фазного проводника ограничителя напряжения допускается производить к выключателю с номинальным током 16-40А, питающему групповую цепь.
Ограничитель напряжения допускает длительное рабочее напряжение 275 В и выдерживает без повреждений временные перенапряжения до 380 В.
Ограничитель импульсных перенапряжений: принцип работы, схемы подключения
В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.
Принцип работы
В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.
Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
- Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
- Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.
На изображении цифрами обозначены следующие конструктивные элементы:
- 1 — корпус;
- 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
- 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
- 4 — индикатор, показывающий текущий ресурс работы устройства;
- 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.
Технические характеристики
Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.
- Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
- Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
- При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
- Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
- Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.
Виды
Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:
- от замыканий на высокой стороне низковольтных сетей;
- от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
- от возможных перенапряжений, вызванных электромагнитными факторами.
В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.
- Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
- Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.
Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.
Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.
- Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
- Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
- Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.
Что означает аббревиатура УЗИП
УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).
Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.
Как подключить УЗИПы в домашних условиях
Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.
Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.
На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.
В схеме:
- фаза — обозначена черным проводом;
- нулевой — обозначен синим проводом;
- зеленый — защитный заземляющий провод.
На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.
В схеме:
- черный провод — первая из трех фаз;
- красный провод — вторая из трех фаз;
- коричневый — третья фаза;
- синий — нулевой заземляющий провод;
- зеленый — защитный провод заземления.
Рекомендации по монтажу
Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.
- Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
- Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
- Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
- Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
- Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.
Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.
Видео по теме
Схема подключения УЗИП – 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.
Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).
Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.
УЗИП или реле напряжения
Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.
Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.
Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.
Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.
Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.
Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?
Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.
Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”
Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!
Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.
Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.
Поэтому оба устройства РН и УЗИП дополняют друг друга.
Защита дома от грозы
Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.
Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.
Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.
Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.
Сюда входят как силовые цепи так и слаботочка:
- интернет
- TV
- видеонаблюдение
- охранная сигнализация
Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.
Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.
Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.
Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.
Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.
Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.
На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.
Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.
После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.
Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.
Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.
Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:
То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.
Третий модуль защищает уже непосредственно конкретного потребителя.
Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.
Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.
Схема электрощита с УЗИП
Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.
На вводе перед счетчиком – вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.
Между счетчиком и вводным автоматом – УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.
В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.
Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.
После прибора учета находятся:
- реле напряжения УЗМ-51 или аналог
- УЗО 100-300мА – защита от пожара
- УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
- простые модульные автоматы
Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?
На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.
Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.
Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.
Схемы подключения
Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:
Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.
Схема трехфазного УЗИП в системе TT или TN-S:
Схема подключения 3-х фазного устройства в системе TN-C:
На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.
От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:
Трехфазная схема:
Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.
Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.
В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.
Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.
Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.
Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.
Принцип действия
Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.
Определить состояние устройства защиты достаточно просто:
- зеленый индикатор – модуль рабочий
- красный – модуль нужно заменить
При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.
УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!
Автоматы или предохранители перед УЗИП
Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.
Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.
В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.
Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.
Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.
При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.
Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.
Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.
Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.
Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.
Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.
Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.
Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.
Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.
Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.
Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:
Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.
И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.
Ошибки при подключении
1Самая распространенная ошибка – это установка УЗИП в электрощитовую с плохим контуром заземления.Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.
2Не правильное подключение исходя из системы заземления.Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.
3Использование УЗИП не соответствующего класса.Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.
Статьи по теме
Схема подключения оин 1 в трехфазную сеть. Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений
Схема подключения ограничителя импульсных перенапряжений
Ограничитель импульсных перенапряжений
- Преимущества в использовании ОПН
- Технические характеристики ОПН
- Устройство ограничителей импульсных перенапряжений
- Защита от импульсных перенапряжений
Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.
Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).
Преимущества в использовании ОПН
В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.
Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.
Технические характеристики ОПН
Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.
Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.
Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.
Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.
Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.
Устройство ограничителей импульсных перенапряжений
Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.
Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.
Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.
Защита от импульсных перенапряжений
Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений
Просмотров 1 856
Причины возникновения импульсных перенапряжений
Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.
Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты. разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.
Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.
Устройство защиты от импульсных перенапряжений УЗИП
Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.
Схема подключения УЗИП к сети TNC и сети TNS
Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.
Защита от импульсных перенапряжений тремя ступенями УЗИП
Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).
Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП
Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.
Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,
Схема подключения одного УЗИП в частном доме
УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.
Тоже интересные статьи
Принцип работы стабилизатора напряжения
Скачки напряжения в электросети
Схема подключения реле напряжения
Как выбрать стабилизатор напряжения для дома
Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.
Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.
Особенности защит домашней электропроводки от повышенного напряжения
Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.
Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:
1. отключения электрической схемы дома или квартиры от повышенного напряжения;
2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.
При незначительном повышении напряжения в сети исправить положение призваны также стабилизаторы различных конструкций. Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.
В домашней проводке напряжение может повыситься:
1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;
2. кратковременным импульсом.
С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.
Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:
1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;
2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.
Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.
Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на контур заземления. В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.
Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.
Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.
Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.
В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .
Виды ограничителей перенапряжения для домашней электропроводки
Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.
Принципы формирования элементной базы ОПН
При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.
Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.
В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства. При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.
Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям
Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.
В технической литературе их принято называть «УЗИП». что расшифровывается как устройство защиты от импульсного перенапряжения. Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.
Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.
Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.
Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.
В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.
Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.
Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.
Подбор варисторов для разных классов ограничителей перенапряжений
Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.
Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.
Принципы формирования схем включения ограничителей перенапряжения
Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:
В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.
Комбинированный способ позволяет объединять оба предшествующих метода.
Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S
Схема с электронными УЗИП и разрядниками
В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод — провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.
Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.
Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.
Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.
Схемы с электронными УЗИП в классах защит I и II
В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.
Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).
В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.
Особенности использования различных моделей ОПН с учетом очередности работы каскадов
При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.
Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.
По такому же принципу подключаются и последующие каскады защит.
Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.
Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.
Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.
В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.
Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.
При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.
Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.
Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.
Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.
Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.
Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.
Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.
Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.
Особенности защиты сложной бытовой техники от импульсов перенапряжений
Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.
Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.
Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.
На выпуске подобных разрядников также специализируется копания Hakel.
Дополнительное требование к защите ОПН от коротких замыканий
Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.
Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.
По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.
Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.
Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.
Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.
Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.
Информация и обучающие материалы для начинающих электриков.
Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.
Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+
Перепечатка материалов сайта запрещена.
Источники: http://electric-220.ru/news/ogranichitel_impulsnykh_perenaprjazhenij/2015-02-26-841, http://electricavdome.ru/zashhita-ot-impulsnyx-perenapryazhenij.html, http://electrik.info/main/electrodom/1179-ogranichiteli-perenapryazheniya-vidy-i-shemy.html
electricremont.ru
Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2
ОИН1, ОИН2
РМЕА 656111.011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 – без индикатора рабочего состояния; ОИН2 – с индикатором рабочего состояния.
Нормативно-правовое обеспечение
- Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
- Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19
Функциональные возможности
ОИН1 – ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 – ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.
Конструктивные особенности
Ограничитель импульсных напряжений (ОИН) обеспечивает:
- Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
- Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
- Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
- Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
- Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
- Выдерживает без повреждений воздействие временного перенапряжения 380 В
- Классификация по тепловой защите: ОИН1 и ОИН2 – без тепловой защиты.
- Классификация по наличию индикатора состояния: ОИН1 – без индикатора; ОИН1С (по дополнительному заказу) – со световым индикатором наличия напряжения сети; ОИН2 – со световым индикатором рабочего состояния.
- Классификация по ремонтопригодности: ОИН1 и ОИН2 – моноблочные (неремонтируемые в условиях эксплуатации).
- Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристики | Значение параметров |
Номинальное напряжение питающей сети, В | 220 |
Номинальный разрядный ток, кА | 5; 10; 20 |
Максимальный разрядный ток, кА | 12,5; 25; 50 |
Остаточное напряжение при номинальном токе не выше, В | 2000 |
Класс испытаний по ГОСТ Р 51992 | II |
Степень защиты, обеспечиваемая оболочками | не ниже IP20 |
Температура окружающего воздуха, С | от -45 до 55 |
Габаритные разметы, мм | 80 x 17,5 x 65,5 |
Масса, не более, кг | 0,12 |
Гарантийный срок эксплуатации, лет | 3 |
www.energomera.ru
Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений
Причины возникновения импульсных перенапряжений
Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.
Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.
Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.
Устройство защиты от импульсных перенапряжений УЗИП
Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.
Схема подключения УЗИП к сети TNC и сети TNS
Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.
Защита от импульсных перенапряжений тремя ступенями УЗИП
Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).
Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП
Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.
Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,
Схема подключения одного УЗИП в частном доме
УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.
Тоже интересные статьи
electricavdome.ru
Как организовать защиту от перенапряжения сети в частном доме: схемы, приборы, оборудование
Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.
В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.
Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.
Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).
Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.
Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.
Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.
Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):
- на вводе в дом
- внутри дома, в учётно-распределительном шкафу
- индивидуальная защита электроприборов внутри помещений дома
Защита от перенапряжения
Что важно учесть при выполнении работ
В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.
Теперь о технической стороне вопроса:
Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.
1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.
Что важно отметить по данному оборудованию:
- Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
- В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
- В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.
2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.
Из особенностей данных аппаратов можно отметить следующее:
- В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
- В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
- Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.
3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.
Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.
Практическое выполнение работ
Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.
Монтаж ОПН-0,38 на вводе в дом
На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.
При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).
Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.
Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.
На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.
Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).
Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу
Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.
С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.
Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.
Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).
В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком — не допускается, можно сделать следующий вывод:
В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.
В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать. В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) — мне малопонятно. Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу. Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.
Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.
В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно. Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя. Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.
Использование индивидуальных защитных приборов
Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.
Выводы
1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени. С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.2. В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.
Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.
www.diy.ru
Трехфазное подключение дома. Что следует учесть
Если вы столкнулись с проблемой электроснабжение дома, или же просто хотите заменить электропроводку, тогда перед вами представится необходимость сделать выбор, какой тип электрического питания лучше использовать (однофазный или трехфазный). От выбранного типа питания напрямую будет завесить схема электрической сети. И так, сегодня давайте разберемся, что такое трехфазное подключение дома.
Решая эти вопросы владелец сталкивается с многочисленными задачами, которые требуется решать техническими и организационными способами.
Сравнение преимуществ и недостатков однофазного и трехфазного подключения дома
При выборе схемы следует учесть ее влияние на конструкцию проводки и условия эксплуатации, создаваемые разными системами.
Однофазная сеть
Трёхфазная сеть
Потребляемая мощность
Та величина разрешенной мощности, которую вам предоставит организация продающая электроэнергию, станет основой для создания проекта электропроводки. За счет распределения ее по двум проводам в однофазной схеме толщина сечения жил кабеля всегда требуется больше, чем в трёхфазной цепи, где нагрузка равномерно разнесена по трем симметричным цепочкам.
При одинаковой мощности в каждой жиле трехфазной схемы будут протекать меньшие номинальные токи. Под них потребуются уменьшенные номиналы автоматических выключателей. Несмотря на это их габариты, как и других защит и электросчетчика, все равно будут больше за счет применения утроенной конструкции. Потребуется более емкий распределительный щит. Его размеры могут значительно ограничивать свободное пространство внутри небольших помещений.
Трёхфазные потребители
Асинхронные электродвигатели механических приводов, электрические нагревательные котлы, другие электроприборы, рассчитанные на эксплуатацию в трехфазной сети, эффективнее, оптимально работают в ней. Чтобы их запитать от однофазного источника необходимо создавать преобразователи напряжения, которые будут потреблять дополнительную энергию. Причем, в большинстве случаев происходит снижение КПД таких механизмов и расход мощности на преобразователе.
Использование трехфазных потребителей основано на равномерном распределении нагрузки в каждой фазе, а подключение мощных однофазных приборов способно создать пофазный перекос токов, когда часть их начинает протекать по жиле рабочего нуля.
При большом перекосе токов на перегруженной фазе снижается напряжение: начинают тускло светиться лампы накаливания, наблюдаются сбои электронных устройств, хуже работают электродвигатели. В этой ситуации владельцы трехфазной электропроводки могут перекоммутировать часть нагрузки на ненагруженную фазу, а потребителям двухпроводной схемы требуется эксплуатировать стабилизаторы напряжения или резервные источники.
Условия работы изоляции электропроводки
Владельцы трехфазной схемы должны учитывать действие линейного напряжения 380, а не фазного 220 вольт. Его номинал представляет бо́льшую опасность для человека и изоляции электропроводки или приборов.
Габариты оборудования
Однофазная электропроводка и все входящие в нее компоненты более компактны, требуют меньше места для монтажа. На основе сравнения этих характеристик можно сделать вывод, что трехфазное подключение частного дома зачастую может быть в современных условиях нецелесообразным. Его имеет смысл применять в том случае, если существует необходимость эксплуатации мощных трехфазных потребителей типа электрических котлов или станочного оборудования для постоянной работы в определённые сезоны. Большинство же бытовых электрических потребностей вполне может обеспечить однофазная электропроводка.
Как выполнить трехфазное подключение дома
Когда вопрос трехфазного подключения частного дома стоит остро, то придется:
- заниматься подготовкой технической документации
- решать технические вопросы
Какие документы необходимо подготовить
Обеспечить законность трехфазного подключения могут только следующие свидетельства и паспорта:
- технические условия от энергоснабжающей организации
- проект производства электроснабжения здания
- акт разграничения по балансовой принадлежности
- протоколы измерений основных электрических параметров собранной схемы подключения дома электротехнической лабораторией (монтаж разрешено выполнять после получения первых трех документов) и акт осмотра электротехнического оборудования
- заключение договора с энергосбытовой организацией, дающее право на получение наряда на включение
Технические условия
Для их получения требуется заранее подать заявку в электроснабжающую организацию, где должны быть отражены требования к абоненту и электроустановке с указанием:
- способов подключения
- использования защит
- мест размещения электроприборов и щитов
- ограничение доступа посторонних лиц
- характеристики нагрузки
Проект производства электроснабжения
Разрабатывается проектной организацией на основе действующих нормативов и правил эксплуатации электроустановок с целью предоставления бригаде электромонтажников подробной информации по технологии монтажа электрической схемы.
В состав проекта входят:
- пояснительная записка с отчетом
- исполнительные принципиальные и монтажные схемы
- ведомости
- требования нормативных документов и предписаний
Акт разграничения по балансовой принадлежности
Определяются границы ответственности между электроснабжающей организацией и потребителем, указывается разрешенная мощность, категория надежности электроприемника, схема электропитания, некоторые другие сведения.
Протоколы электротехнических замеров
Они выполняются электрической измерительной лабораторией после полного окончания монтажных работ. В случае получения положительных результатов измерений, отраженных в протоколах, предоставляется акт осмотра оборудования с заключением, дающим право на обращение в электросбытовую организацию.
Договор с энергосбытом
После его заключения на основе документов от электротехнической лаборатории можно обращаться в электроснабжающую организацию на включение смонтированной электроустановки в работу по специальному наряду.
Трехфазное подключение дома, технические вопросы
Принцип подвода электрической энергии к отдельно стоящему жилому зданию осуществляется по следующему принципу: от трансформаторной подстанции по линии электропередачи подается напряжение по четырем проводам, включающим три фазы (L1, L2, L3) и один общий нулевой проводник PEN. Подобная система выполняется по стандартам схемы TN-C, которая максимально распространена до сих пор в нашей стране.
Линия электропередачи чаще всего может быть воздушной или реже кабельной. На обоих конструкциях могут возникнуть неисправности, которые быстрее устраняются у воздушных ЛЭП.
Особенности разделения PEN проводника
Старые линии электропередач энергетики постепенно начинают модернизировать, переводить на новый стандарт TN-C-S, а строящиеся сразу создают по нормативам TN-S. В нем четвертый проводник PEN от питающей подстанции подается не одной, а двумя разветвленными жилами: РЕ и N. В итоге у этих схем используется уже пять жил для проводников.
Трехфазное подключение дома по TN-S
Трехфазное подключение дома основано на том, что все эти жилы подключаются к вводному устройству здания, а от него электроэнергия поступает на электрический счетчик и далее — в распределительный щит для осуществления внутренней разводки по помещениям и потребителям здания.
Практически все бытовые приборы работают от фазного напряжения 220 вольт, которое присутствует между рабочим нулем N и одним из потенциальных проводников L1, L2 или L3. А между линейными проводами образовано напряжение 380 вольт.
Внутри вводного устройства, использующего стандарт TN-C-S, делается выделение рабочего нуля N и защитного РЕ из проводника PEN, который соединяют здесь же с ГЗШ — главной заземляющей шиной. Ее подключают к повторному контуру заземлению здания.
От вводного устройства рабочие и защитные нули идут изолированными цепочками, которые запрещено объединять в любой другой точке схемы электропроводки.
По старым правилам, действовавшим в схеме заземления TN-C, расщепление проводника PEN не делалась, а фазное напряжение бралось прямо между ним и одним из линейных потенциалов.
Конечный промежуток линии между ее опорой до ввода в дом прокладывают по воздуху или под землей. Его называют ответвлением. Оно находится на балансе электроснабжающей организации, а не хозяина жилого здания. Поэтому все работы по подключению дома на этом участке должны выполняться с ведома и по решению владельца ЛЭП. Соответственно, законодательно они потребуют согласования и оплаты.
У подземной кабельной линии ответвление монтируют в металлическом шкафу, который размещают поблизости с трассой, а для воздушной ЛЭП — непосредственно на опоре. В обоих случаях важно обеспечить безопасность их эксплуатации, закрыть доступ посторонних людей и выполнить надежную защиту от повреждения вандалами.
Выбор места расщепления PEN проводника
Оно может быть выполнено:
- на ближайшей опоре
- или на вводном щите, расположенном на стене либо внутри дома
В первом случае ответственность за безопасную эксплуатацию несет электроснабжающая организация, а во втором — владелец здания. Доступ жильцов дома к работам на конце PEN проводника, расположенного на опоре, запрещен правилами.
При этом надо учесть, что провода на воздушной линии способны обрываться по различным причинам и на них могут возникать неисправности. Во время аварии на питающей ЛЭП с обрывом PEN проводника ее ток потечет через провод, подключенный к дополнительному контуру заземления. Его материал и сечение должны надежно выдерживать такие повышенные мощности. Поэтому их выбирают не тоньше, чем основная жила линии электропередачи.
Трехфазное подключение дома, обрыв PEN проводника на КТП
Когда расщепление выполняется прямо на опоре, то к нему и контуру прокладывают линию, называемую повторным заземлением. Ее удобно изготавливать из металлической полосы, заглубленной в землю на 0,3÷1 м.
Поскольку через нее в грозу создается путь протекания молнии в землю, то ее надо отводить от дорожек и мест возможного размещения людей. Рационально прокладывать ее под забором здания и в подобных труднодоступных местах, а все соединения выполнять сваркой.
Когда расщепление производится в водном щите здания, то через линию ответвления с подключенными проводами будут протекать аварийные токи, которые могут выдержать только проводники с сечением фазных жил ЛЭП.
Вводное распределительное устройство электроэнергии
Оно отличается от простого вводного устройства тем, что в его конструкцию внесены элементы, осуществляющие распределение электричества по группам потребителей внутри здания. Его монтируют на вводе электрического кабеля в пристройке или каком-то отдельном помещении.
ВРУ устанавливают внутри металлического шкафа, куда заводят все три фазы, PEN проводник и шину контура повторного заземления в схеме подключения здания по системе TN-C-S.
Внутри шкафа вводного распределительного устройства фазные проводники подключаются к клеммам входного автоматического выключателя или силовых предохранителей, а PEN проводник к своей шине. Через нее выполняется его расщепление на PE и N с образованием главной заземляющей шины и ее подключением к повторному контуру заземления.
Ограничители повышения напряжения работают по импульсному принципу, защищают схему цепей фаз и рабочего нуля от воздействий возможного проникновения посторонних внешних разрядов, отводят их через РЕ проводник и главную защитную шину с контуром заземления на потенциал земли.
При возникновении высоковольтных импульсных разрядов больших мощностей в питающей линии и прохождении их через последовательную цепочку из автоматического выключателя и УЗИП вполне возможен выход из строя силовых контактов автомата из-за подгорания и даже приваривания их.
Поэтому защита этой цепочки мощными предохранителями, выполняемая простым перегоранием плавкой вставки, остается актуальной, широко применяется на практике.
Трехфазный электрический счетчик учитывает расходуемую мощность. После него подключаемые нагрузки распределяются по группам потребления через правильно подобранные автоматические выключатели и устройства защитного отключения. Также на вводе может стоять дополнительное УЗО, выполняющее противопожарные функции у всей электрической проводки здания.
После каждой группы УЗО может производиться дополнительное деление потребителей по степеням защиты индивидуальными автоматами или обходиться без них, как показано разными участками на схеме.
На выходные клеммы щита и защит подключаются кабели, идущие к группам конечных потребителей.
Особенности конструкции ответвления
Чаще всего трехфазное подключение дома на питающей ЛЭП выполняется воздушной линией, на которой может возникнуть короткое замыкание или обрыв. Чтобы их предотвратить следует обратить внимание на:
- общую механическую прочность создаваемой конструкции
- качество изоляции внешнего слоя
- материал токоведущих жил
Современные самонесущие алюминиевые кабели обладают небольшим весом, хорошими токопроводящими свойствами. Они хорошо подходят для монтажа воздушного ответвления. При трехфазном питании потребителей сечения жилы СИП 16 мм2 будет достаточно для длительного получения 42 кВт, а 25 мм кв — 53 кВт.
Когда ответвление выполняется подземным кабелем, то обращают внимание на:
- конфигурацию прокладываемого маршрута, его недоступность для повреждения посторонними людьми и механизмами при работах в грунте
- защиту выходящих из земли концов металлическими трубами на высоту не меньше среднего человеческого роста
Лучшим вариантом считается полное размещение кабеля в трубе вплоть до ввода в ВУ и распределительный шкаф.
Для подземной прокладки используют только цельный кусок кабеля с прочной броневой лентой или выполняют его защиту трубами или металлическими коробами. При этом медные жилы предпочтительнее, чем алюминиевые.
Технические аспекты трехфазного подключения частного дома в большинстве случаев требуют бо́льших затрат и усилий чем при однофазной схеме.
Видео по сборке трёхфазного щита учёта на дом
Будем рады, если подпишетесь на наш Блог!
powercoup.by
ремонт квартир в Мурманске – Схемы подключения к трехфазной, однофазной цепи.
04. Схемы подключения к трехфазной, однофазной сети.
Обычно квартиры запитываются от одно- или трехфазных внешних сетей. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.Самый тонкий вопрос – организация заземления и зануления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля. Очень хорошо, если к Вашему дому приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода 3 фаз, ноль и земля).
Сложнее, когда Вы имеете 2 провода при однофазном или 4 провода при трехфазном подключении. В этом случае, если к Вам приходит один провод зануления/заземления (т.н. называемый PEN, Вы можете выделить из него PE (т.е. заземление) и N (т.е. нейтраль или нулевой провод).
Конечно это будет несколько условно, но достаточно безопасно. А если Вы оборудуете Ваш щиток специальными приборами УЗО (устройство защитного отключения), то Вы можете считать себя в безопасности.Устройства защитного отключения (УЗО) реагируют на ненормативные токи утечки, являющиеся следствием прямого или косвенного касания человеком токоведущих частей, нарушения целостности или возгорания проводки. УЗО в первую очередь спасает человеку жизнь и защищает оборудование от возгорания.
подробнее об УЗО Общая рекомендация следующая. На входе коттеджа или квартиры должно стоять так называемое “пожарное УЗО” с током срабатывания 100 или 300 мА. Оно предназначено для отключения сети при возникновении пожара, что очень важно для деревянных домов. Ставить на входе УЗО с токами 30мА не рекомендуется – будут постоянные отключения.Итак, через УЗО в 300 мА мы завязываем всю электрическую сеть в доме. А вот, через УЗО 30 мА или 10 мА мы подключаем тех потребителей, где возможны утечки. Прежде всего это помещения, связанные с водою (ванная, туалет, кухня, бойлерная, насосная станция и т.д.). Не помешает вывести на УЗО все розетки – хуже не будет. А вот освещение выводить на УЗО смысла нет, вероятность поражения током мала, наоборот, может получиться только хуже. Представьте, темным вечером у Вас срабатывает УЗО на кухне. Если при этом еще и погаснет свет, то это только усугубит ситуацию. Обратите внимание на тот факт, что, в отличие от автоматов, на УЗО замыкаются и нулевые провода. Но самое главное – нулевые провода вышедшие из разных УЗО нельзя соединять вместе – сработают эти УЗО, сигнализируя об утечке.
Так как же работает наше УЗО. Очень просто. Оно представляет собою трансформатор тока: две обмотки, через одну протекает входящий в УЗО ток, а через вторую – ток, прошедший через нагрузку, т.е. выходящий.
Если все нормально и утечки тока “на сторону” на нагрузке не было, то входящий и выходящий токи равны и УЗО работает в штатном режиме. Если же произошла утечка (например, нулевой кабель замкнут на корпус стиральной машины, а Вы к ней прикоснулись), то часть тока уйдет через Ваше тело и УЗО моментально сработает.
Схемы подключения к трехфазной, однофазной сети.
В интернете можно найти несколько десятков схем подключения домов.Приводим три наиболее удачных варианта подключения к трехфазной сети: два варианта для режима раздельного подвода PE и N, и один вариант объединенного подвода PEN (самый дешевый и поэтому самый распространенный вариант). Порядок подключения к однофазной сети аналогичен.
Схемы распределительных щитов 3ф сети.
Вариант 1. Схема группового распределительного щита коттеджа (PE и N раздельны)
В приведенной ниже схеме все группы защищены УЗО с чувствительностью не менее 30 мА. Электрооборудование санузлов, влажных помещений, где ток утечки наиболее опасен, защищается УЗО с отключающим дифференциальным током 10 мА для обеспечения полной безопасности. 1 – Пластиковый или металлический корпус щита. 2 – Соединительные элементы нулевых рабочих проводников. 3 – Соединительный элемент зажимов РЕ проводника, а также проводника уравнивания потенциалов. 4 – Соединительный элемент фазных проводников групповых цепей. 5 – Выключатель дифференциального тока. 6 – Автоматические выключатели. 7 – Линии групповых цепей. 8 – Счетчик.
Вариант 2. Схема группового распределительного щита индивидуального здания (дома или дачи) – (PE и N раздельны)
В приведенной схеме все основные устройства выделены в отдельные группы. Предназначенные для защиты людей устройства дифференциальной защиты с чувствительностью 30 мА установлены на все основные группы потребителей, кроме освещения комнат, где маловероятен контакт человека с токоведущими частями, и климатизатора, который должен быть дополнительно заземлен. 1 – Пластиковый или металлический корпус щита. 2 – Соединительные элементы нулевых рабочих проводников. 3 – Соединительный элемент РЕ проводника, а также проводника уравнивания потенциалов. 4 – Соединительный элемент фазных проводников групповх сетей. 5 – Выключатель дифференциального тока. 6 – Автоматические выключатели. 7 – Линии групповых цепей. 8 – Дифференциальный автоматический выключатель. 9 – Счетчик.
Вариант 3. Схема группового распределительного щита для индивидуального жилого дома (PEN: т.е. PE и N объединены)
На вводе в коттедж устанавливается УЗО с дифференциальным током 300 мА (при установке УЗО с меньшим током утечки возможны ложные срабатывания вследствие большой протяженности электропроводки и высокого естественного фона утечки электрооборудования). Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки,короткого замыкания и токов утечки. Группа из УЗО и трех автоматических выключателей предназначена для защиты розеток. Трехфазный автоматический выключатель и УЗО защищают мощные потребители (например, электроплита). Последняя лини, состоящая из одного УЗО и двух автоматических выключателей предназначена для защиты цепей отдельно стоящего здания (например, подсобного помещения). 1 – Пластиковый корпус щита. 2 – Соединительный элемент нулевых рабочих проводников . 3 – Соединительный элемент зажимов нулевых рабочих проводников, а так же проводника уравнивания потенциалов . 4 – Соединительный элемент входных выводов защитных аппаратов групповых цепей. 5 – Автоматический выключатель дифференциального тока. 6 – Выключатель дифференциального тока. 7 – Автоматические выключатели. 8 – Линии групповых цепей. 9 – Счетчик.
Схемы распределительных щитов 1ф сети.
Вариант 1. Схема группового распределительного щита (PE и N раздельны)
Московские городские строительные нормы МГСН 3.01-01 “Жилые здания”
Схема электроснабжения квартир II категории комфорта:
Схема электроснабжения квартир I категории комфорта:
vg-repair.ru
Ограничитель перенапряжения: разновидности и характеристики
Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.
Применение
Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).
Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:
- переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
- при резком изменении нагрузки в распределительных системах;
- при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.
Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:
- молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
- разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
- удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.
В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».
Как работают
В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.
Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.
Видео «Ограничитель высокого напряжения»
Виды и классы
С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.
По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.
Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.
Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.
Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.
Видео «Нелинейные ограничители перенапряжения»
Из видео вы узнаете, в чем особенности эксплуатации данных комплектующих и для чего они используются.
otoke.ru
Способы защиты дома от импульсного перенапряжения
Природа импульсных перенапряжений и их влияние на технику
Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.
Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы, подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.
1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод
Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.
Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.
Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах
Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.
Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.
Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.
Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.
Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:
- питающую ЛЭП;
- близлежащие деревья и строения;
- почву, расположенную рядом со зданием.
Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.
Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.
При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.
Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.
Как выглядит устройство
Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.
Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.
УЗИП в щитке
В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.
Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.
Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять
УЗИП устраняет перенапряжения:
- Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
- Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.
Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.
Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника
В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.
УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.
В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.
УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.
Есть ли необходимость в УЗИП, оценка рисков
Полный перечень требований к организации защиты от ИП изложен в МЭК 61643–21, определить обязательность установки можно по стандарту МЭК 62305–2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.
В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.
Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.
Установка устройств в ГРЩ
Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.
При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.
УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.
Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей
При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.
Как устроен и как работает УЗИП
УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.
При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.
Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.
В чем различие между классами защиты
В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.
Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.
УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.
Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.
Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.
Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20–30 циклами.
Категории УЗИП
По месту установки устройства импульсной защиты от повышенного напряжения делят на 3 класса: I (B), II (C), III (D).
Класс I (B)
Защита предохраняет от проникающих через молниезащиту высоковольтных разрядов при ударах молнии в дом или питающую линию электропередачи. Ее устанавливают на вводном электрическом щите здания.
Работа УЗИП при разряде молнии в молниеприемник
При ударе высоковольтного импульса в молниеприемник он проходит по молниеотводу к контуру заземления, разветвляясь на два потока в месте подключения РЕ шины:
- примерно 50% тока уходит на потенциал земли;
- столько же идет на питающую линию, разделяясь на два дополнительных маршрута (при пробое УЗИП) через PEN проводник и фазный провод — 25/25%.
Сила молнии редко превышает 100 кА, поэтому рабочий ток УЗИП на 25 кА считается достаточным.
Работа УЗИП при разряде молнии в ВЛ
На питающей ВЛ и трансформаторной подстанции уже стоят собственные разрядники. Они срабатывают при высоковольтном ударе и срезают часть импульса перенапряжения. На УЗИП вводного щита дома поступит уже пониженная мощность молнии и через него тоже пойдет ток импульса, но только срезанный.
Как и в предыдущем случае, уменьшенный импульс молнии разойдется на контур земли и PEN проводник.
Если ВЛ находится в плохом техническом состоянии, то ее разрядники не сработают, а весь ток молнии поступит на ввод дома и пройдет через УЗИП. В этой ситуации защита здания, рассчитанная напряжение на 6 кВ, не выдержит повышенный потенциал разряда и сгорит.
Чтобы исключить подобную ситуацию необходимо:
- иметь четкое представление о техническом состоянии питающей ВЛ и ее защите;
- при плохом качестве линии добиться от электроснабжающей организации установки надежных разрядников на ближайшей к дому опоре, которые будут выполнять защитную функцию.
Класс II (C)
Осуществляется защита схемы токораспределения системы электропроводки здания при возникновении коммутационных помех. Дополнительное назначение — вторая ступень защиты от ударов молнии.
Монтируется в распределительном щите дома.
Класс III (D)
Выполняется дополнительная защита подключенных потребителей от оставшихся импульсов напряжения с фильтрацией помех высокой частоты.
Устанавливают около потребителей электроэнергии.
Как выбрать УЗИП для частного дома
Последовательность действий домашнего мастера-электрика для правильного подбора устройств защиты от импульсного перенапряжения представлена картинкой.
Заостряем внимание на том, что установка УЗИП в доме бессмысленна и запрещена правилами при отсутствии:
- надежного заземляющего устройства дома:
- разрядников на питающей ВЛ и ТП.
Ко второму случаю следует отнести и плохое техническое состояние воздушной ЛЭП. Следует знать, что сейчас идет интенсивная замена открытых проводов ВЛ изолированными СИП (самонесущие изолированные провода). Такие линии называют ВЛИ.
Когда реконструкция ВЛИ выполнена на всем ее протяжении, а не на отдельных участках, прямой удар молнии в фазный провод практически нереален. Работает слой изоляции. Энергетики на подобных линиях усиленно следят за качеством разрядников, поддерживают их в рабочем состоянии.
Выбор схемы включения УЗИП для дома зависит от:
- системы заземления здания TN-C-S либо TT;
- местных условий жилища;
- способов подключения к ВЛ;
- наличия внешней молниезащиты.
Но, это материал очередной статьи, которая готовится к публикации. Подписывайтесь на рассылку, чтобы своевременно получить уведомление о ее выходе.
Для закрепления материала рекомендуем к просмотру видеоролик владельца Staaaarsky «Демонстрация работы УЗИП».
Более полную информацию предоставляет вебинар компании ABB «Устройства защиты от импульсных перенапряжений».
Возможно, у вас появились вопросы или желание прокомментировать статью. Воспользуйтесь подготовленной формой.
Сейчас самое благоприятное время поделиться прочитанным материалом с друзьями в соц сетях с помощью специальных кнопок.
Полезные товары
- Бесконтактный индикатор проводки с фонариком
- Термометр для бариста
- Инструмент для вскрытия корпуса планшета
При определении перечня нормируемых параметров ОПН используется утвержденный Международной электротехнической комиссией (МЭК) в 1991 г. Стандарт 99-4, требования которого дополнены и несколько изменены (как правило, ужесточены) в соответствии с отечественными традициями разработки защитных аппаратов. Таким образом, основными параметрами нелинейных ограничителей перенапряжений являются: Таблица 1 Ограничитель перенапряжений присоединен к сети в течении всего срока службы, поэтому через его варисторы, образующие нелинейное сопротивление, непрерывно протекает ток. Допустимая плотность активного тока составляет (1,0 5,0)-10_6 А/см2 при плотности полного тока (10 -г- 30)-10″6 А/см2. Ограничитель сохраняет работоспособность до тех пор, пока в результате воздействия рабочего напряжения и импульсов перенапряжений активная составляющая тока не превысит критического значения, при котором количество теплоты, выделяемой в HP, превысит возможности конструкции ОПН по его рассеянию в окружающую среду, т.е. пока не нарушится тепловое равновесие аппарата. Поглощение ограничителем энергии из сети снижает уровень перенапряжений, что обеспечивает защиту изоляции линий электропередачи. По этой причине при проектировании нелинейного ограничителя необходимо создать условия для удовлетворения двух, в значительной степени противоречивых, требований. С одной стороны, должны быть обеспечены необходимые защитные характеристики аппарата при ограничении как коммутационных, так и грозовых перенапряжений. С другой стороны аппарат должен обладать достаточным ресурсом пропускной способности при импульсных токовых воздействиях и стабильностью параметров как при приложении рабочего напряжения (нормальный эксплуатационный режим), так при воздействии квазистационарных перенапряжений.
При использовании фарфоровой покрышки в ОПН предусматривается сквозная демпфирующая полость 8, обеспечивающая передачу избыточного давления при аварийном дуговом перекрытии внутри корпуса на клапаны взрывобезопасности 4 и предохраняющая аппарат от взрывного разрушения. Все свободное пространство внутри покрышки, не занятое колонками ОЦВ, элементами их крепления к корпусу и фланцам и демпфирующей полостью, заполняется веществом 9, обладающим высокой теплопроводностью (например, чистым кварцевым песком) и служащим для отвода теплоты от варисторов на корпус ограничителя. После сборки внутренняя полость аппарата вакуумируется, а затем заполняется осушенным азотом, элегазом или каким-либо инертным газом при атмосферном давлении. Система герметизации предотвращает проникновение вовнутрь покрышки влаги и загрязнений, которые могли бы вызвать перекрытие ОПН по внутренней полости и выход его из строя.
Применяемые компаунды обладает высокой адгезией к оксидно-цинковой керамике. По этой причине пропускная способность HP ограничителя при грозовых импульсах тока в 1,5 – 2,0 раза выше пропускной способности составляющих его варисторов, испытанных индивидуально вне оболочки аппарата.
При несимметричных КЗ распределения суммарного напряжения поврежденных фаз по искровым промежуткам ОПНИ при отсутствии емкости С может оказаться резко несимметричным. В этом случае оказывается весьма вероятным, что разрядное напряжение какого-либо ИП превысит воздействующее напряжение и его пробоя не произойдет, т.е. ограничитель не включится в режим ограничения междуфазных перенапряжений. Емкость С создает постоянный подпор напряжения на ИП и исключает возможность возникновения подобной ситуации. |
Ограничитель перенапряжения: разновидности и характеристики
Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.
Применение
Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).
Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:
- переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
- при резком изменении нагрузки в распределительных системах;
- при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.
Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:
- молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
- разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
- удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.
В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».
Как работают
В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.
Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.
Видео “Ограничитель высокого напряжения”
Виды и классы
С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.
По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.
Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.
Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.
Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.
Видео “Нелинейные ограничители перенапряжения”
Из видео вы узнаете, в чем особенности эксплуатации данных комплектующих и для чего они используются.
Где, черт возьми, контакт 1? Вот пять способов найти его
Итак, вот и вы, болтающийся ленточный кабель и вопрос. Где пин 1? В этой ежедневной статье Кен Дуайт дает вам пять способов найти булавку в стоге сена.
Возможно, вы устраняете неполадки на ПК или устанавливаете новое устройство. Неизбежно, что вы держите болтающийся ленточный кабель и гадаете, как он подключается. Правильно, вы ищете контакт 1.
Поиск ведется на
В то время как некоторые ленточные кабели имеют такой ключ, что их можно подключить только одним способом, многие используемые сегодня по-прежнему симметричны. Другими словами, разъем можно подключить наоборот, если вы не будете осторожны. Здесь важны обозначения номеров контактов. На ленточном кабеле есть полоса, обычно красная, чтобы сообщить вам, где находится контакт 1 на его разъемах. Найти контакт 1 на устройстве и на материнской плате – настоящая головная боль. К тому времени, когда вы закончите эту ежедневную функцию, вы всегда сможете найти пин 1.
Материнские платы могут использовать любой из пяти методов для обозначения контакта 1. Вам может потребоваться использовать разные методы идентификации для разных материнских плат, и вы всегда захотите проверить обозначение контакта 1, по крайней мере, двумя из этих методов, если это возможно. Первые два метода – это «практические правила». Они не будут применяться ко всем доскам, но в отсутствие других четких указаний они заслуживают доверия. Используйте их для перекрестной проверки других методов.
Все дело в расположении
- Разъемы, которые расположены на плате спереди назад по отношению к корпусу компьютера, почти всегда будут иметь контакт 1 в направлении задней части корпуса (см. Рисунок A ).Есть редкие исключения, но обычно вы можете полагаться на это правило для соединителей, ориентированных в этом направлении. К сожалению, для разъемов, параллельных задней части корпуса, практическое правило не применяется.
Рисунок A |
Разъемы гибкого диска, а также первичного и вторичного контроллеров IDE ориентированы на этой материнской плате спереди назад, что позволяет использовать метод 1. С другой стороны, последовательный и параллельный порты (вверху справа) ориентированы слева направо, поэтому этот метод нельзя использовать для этих разъемов. |
- Соединители, ориентированные в одном направлении, будут согласованы. Другими словами, контакт 1 будет на одном конце всех этих разъемов. Если вы не можете определить контакт 1 на одном разъеме, возможно, на другом, обращенном в том же направлении. Здесь тоже могут быть исключения, но в целом вы можете рассчитывать на последовательность.
Прочтите знаки
- Найдите этикетку на плате вокруг разъема. Он может называться Pin 1 или просто отображать 1 и 2.Другие возможности включают 39 и 40 или 33 и 34, что означает, что вы найдете контакт 1 на другом конце. Единственная проблема с этим правилом заключается в том, что на многих материнских платах так много надписей, что цифра «1» может относиться к чему-то еще поблизости. Вот почему так важно провести перекрестную проверку хотя бы с одним другим методом.
Это символический
- Этот метод имеет наибольшее количество вариаций: обратите внимание на характерные белые отметки вокруг или рядом с выводом 1. Отметки могут иметь форму стрелки или наконечника стрелки, прямоугольника, нарисованного вокруг вывода 1, или белого блока или круга, нарисованного под штифт (см. Рисунок B ).Иногда вокруг разъема или рядом с ним будет нарисована рамка с белым равнобедренным треугольником, нарисованным в углу, содержащем контакт 1.
Рисунок B |
Эти разъемы IDE и контроллера гибких дисков имеют отличительную белую маркировку под контактом 1. |
Некоторые материнские платы не используют ни один из этих методов; в некоторых случаях у вас могут быть сомнения. Если вы дойдете до этой точки, попробуйте пятый метод.Это требует, чтобы вы смотрели на обратную сторону платы, поэтому вам нужно будет вынуть ее из футляра, если она еще не снята.
Хотите посмотреть мои офорты?
- Если смотреть на заднюю часть материнской платы, в большинстве случаев контакт 1 будет квадратным припоем, тогда как паяные соединения всех остальных контактов будут круглыми. Если вы раньше не видели эту технику, у вас могут возникнуть проблемы с ее распознаванием (см. Рисунок C ). Однако, как только вы освоитесь, вы узнаете квадратную булавку.
Рисунок C |
Обратите внимание, что нижний правый контакт каждого разъема представляет собой квадратное паяное соединение на материнской плате, обозначающее контакт 1. Эти разъемы предназначены для (сверху вниз) первичный и вторичный контроллеры IDE и контроллер гибких дисков. |
Обратной стороной метода 5 является то, что он не используется на всех материнских платах, и вы даже можете обнаружить, что этот метод непоследовательно применяется к одним разъемам, а не к другим на той же плате.Подавляющее большинство плат используют его на всех разъемах с помощью ленточных кабелей. Большинство прыгунов используют ту же технику. Поэтому, если у вас установлена 3-контактная перемычка, и вы не знаете, на каком конце находится контакт 1, поищите квадратный паяный стык на задней стороне платы.
Будьте ближе к власти
Вышеупомянутые пять методов относятся к материнским платам. Количество методов, применимых к каждой материнской плате, будет различным, но все будут использовать хотя бы один. Конечно, в крайнем случае, документация к вашей материнской плате также должна содержать эту информацию.Но как насчет других компонентов системы, таких как жесткие диски?
На самих дисках контакт 1 обычно отмечен, хотя и не всегда в таком положении, которое вам легко увидеть. Если вы не можете найти маркировку на жестком диске или компакт-диске, найдите контакт 1 на конце рядом с разъемом питания. Вы можете рассчитывать на это согласование с жесткими дисками, устройствами компакт-дисков и DVD-дисков. Однако большая часть дисководов гибких дисков не соответствует этому стандарту.
Если вы подключите ленточный кабель к дисководу гибких дисков в обратном направлении, вы узнаете об этом, как только подадите питание на устройство.Светодиод дисковода гибких дисков будет гореть, пока система включена. Каждый раз, когда вы видите этот симптом при включении компьютера, его выключение и перестановка кабеля гибкого диска должны решить проблему.
Заключение
При подключении устройств к современным материнским платам поиск контакта 1 может быть похож на поиск булавки в стоге сена. С помощью рекомендаций, которые я представил в этой ежедневной статье, вы всегда сможете правильно подключить ленточные кабели. Ваши устройства заработают с первого раза, а жизнь наладится!
Авторы и редакторы позаботились о подготовке содержания, содержащегося в данном документе, но не дают никаких явных или подразумеваемых гарантий любого рода и не несут ответственности за ошибки или упущения.Мы не несем ответственности за любой ущерб. Перед внесением изменений всегда имейте проверенную резервную копию.
Пересмотрен контакт 1
Джим Браун, Audio Systems Group
RaneNote 165, © 2003 Syn-Aud-Con
Эта статья впервые появилась в информационном бюллетене Syn-Aud-Con, vol. 31, №№ 2 и 3, 2003 г., перепечатано здесь с разрешения.- Проблема
- Примеры
- Исправление
- Приложения
Введение
В своей знаменательной статье AES 1994 года Нил Манси описал типичную ошибку конструкции оборудования, которая позволяет току, протекающему по экранам аудиопроводов, проникать в оборудование и вызывать звуковые помехи.Он назвал эту конструктивную ошибку «проблемой контакта 1», потому что это было неправильное соединение клеммы экрана, контакт 1 в разъемах XLR.
Проблема с штифтом 1
Экраны кабелей, по сути, являются продолжением экранирующего кожуха оборудования, и их следует подключать непосредственно к этому экранирующему кожуху. Чтобы удешевить сборку оборудования, производители начали подключать экраны кабелей к общей дорожке печатной платы, а затем перенесли ее на корпус.Проблема заключается в том, что любое падение напряжения в проводке, которое является общим как для тока экрана, так и для пути цепи к земле, будет попадать в звуковую схему.
Токи экрана включают в себя шумовые токи, связанные с землей фильтрами линии электропередач, разность потенциалов между «землей» на противоположных концах длинных кабелей и экран, действующий как антенна, улавливающий шум РЧ диммера и другие радиосигналы. Очень часто сигналы AM, FM и телевизионного вещания проходят по экранам аудиопроводов.
Нил заметил, что большая часть радиочастотных помех для аудиооборудования вызвана проблемами с контактами, и некоторые недавние исследования, которые я провел, убедили меня в его правоте.
Примеры микрофонов
Вот внутренняя часть довольно дорогого конденсаторного микрофона (рис. 1), производитель которого давно настаивает на том, что экраны микрофонных кабелей должны быть подключены к корпусу, чтобы предотвратить радиопомехи. Беглый взгляд на фото говорит нам, почему – у этого микрофона проблема с кричащим контактом 1 на УКВ частотах!
Рисунок 1 (вверху) и Рисунок 2 (внизу).Сопротивление земли зависит от частоты. Хорошее соединение в диапазоне звуковых частот может быть плохим соединением в диапазоне RF.
Черный провод соединяет контакт 1 с корпусом микрофона, а оранжевый провод – контакт 1 с печатной платой. На звуковых частотах это работает нормально. Но на частоте 56 МГц (частота ТВ канала 2) индуктивное сопротивление черного провода составляет около 4 Ом. Если вы попытаетесь использовать этот микрофон в центре Чикаго с правильно проложенным микрофонным кабелем, ток экранирования, наведенный Каналом 2, Каналом 5 и несколькими радиовещательными станциями FM, вызовет достаточное падение напряжения в черном проводе (которое оранжевый провод добавляет к аудиосхема) четко слышны как видео, так и FM сигналы! В обзоре этого микрофона, сделанном Риком Чинном несколько лет назад для журнала, были отмечены радиочастотные помехи от телестанций, ближайшие из которых находились на расстоянии 13 миль!
У этого микрофона тоже есть проблема с контактом 1 (Рисунок 2), хотя и не такая серьезная – требуется примерно на 6 дБ больше РЧ, чтобы вызвать звуковые помехи.Здесь экран идет к шасси через крошечный провод, соединяющий контакт 1 с широким выступом, удерживающим винт крепления разъема. Общая длина этого пути составляет порядка 1 см, что дает индуктивное сопротивление около 2 Ом на частоте 60 МГц. Опять же, общий контур цепи подключен к контакту 1 и видит падение индуктивности. Я впервые обратил внимание на проблему с этим микрофоном, когда заметил, что затягивание винта снижает помехи примерно на 3 дБ!
Проблема с выводом 1 работает и в обратном направлении – любые токи ВЧ-шума (например, шум цифровых часов), протекающие в этом общем импедансе, создают падение напряжения, которое передается на экран.Экран действует как антенна, и шум излучается на близлежащее оборудование и проводку. Совсем не редко можно увидеть пути щита внутри оборудования длиной 3-5 дюймов! На 100 МГц длина 5-дюймового провода составляет около 60 Ом! На частоте 1 ГГц – около 600 Ом.
Пример линейного уровня
На рисунке 3 показаны соединения на задней панели с блоком DSP, который имеет небольшую проблему с шумом. Заглянув за панель, мы видим, что следы схемы идут к шасси через два черных винта примерно в 4 и 7 дюймовых точках на линейке, которая была наложена сверху, чтобы показать размеры.Все входящие щиты собираются вместе и переходят на саморезы. Эти длинные провода (обычно 2–4 дюйма со всеми зигзагами и заграждениями) похожи на открытые двери для радиочастотных сигналов – любой ток, протекающий по экранам, излучается внутрь через действие антенны, а шум внутри коробки передается на экраны, которые также действуют как антенны.
Рис. 3. Внутренние проводники (включая дорожки на печатной плате), которые подключаются к контакту 1, могут действовать как антенны. Радиочастоты, проходящие через экраны кабелей, повторно излучаются внутри устройства.И наоборот, радиочастоты, генерируемые внутри устройства (часы DSP и т. Д.), Могут выходить из устройства через контакт 1 и загрязнять окружающее оборудование.
Правильный путь
Есть способы сделать это лучше. Некоторые производители (на рис. 4 показан продукт Rane) поставляют винт шасси рядом со съемными ленточными разъемами для правильного подключения экрана. Внутри сигнальные провода идут напрямую к сетям радиочастотных фильтров.
В серии тестов, которые я недавно провел на более чем 45 конденсаторных микрофонах, использующих стандартные разъемы XLR, почти все испытали серьезные помехи от сотовых телефонов, а около одной трети испытали значительные помехи от телевизионных станций и / или моей радиолюбительской радиостанции.
Рис. 4. Прямое подключение к шасси – лучшее решение для широкополосного заземления. Это позволило показанному устройству получить оценку класса «B» (более строгий).
Решение Neutrik
Европейская директива по электромагнитной совместимости, принятая в конце 1990-х годов, устанавливает ограничения на уровень шума от электронного оборудования, продаваемого в большинстве европейских стран. Это побудило многих производителей принять религию EMC и дало новую жизнь радиочастотным инженерам, работающим в лабораториях, посвященных проверке соответствия.Инженеры, работающие в этих лабораториях, и те, кто специализируется на проектировании для обеспечения хороших характеристик электромагнитной совместимости, думают с точки зрения устойчивости к радиочастотам и компьютерных / цифровых систем. Немногие из них имеют большой практический опыт работы с аналоговыми аудиосистемами, и некоторые предлагаемые ими конструкторские решения могут причинить нам немало огорчений – особенно обработка экранов кабелей.
С точки зрения радиочастоты оболочка разъема XLR выглядит так, как будто она должна работать как расширение экрана кабеля. Для обеспечения устойчивости к широкополосным радиочастотам полезно заземлять экраны при каждой возможности и тщательно связывать все заземленные объекты вместе в нескольких точках.Такая философия является основой так называемой «ячеистой» топологии заземления, и она может хорошо работать в установках, где есть небольшая разница в потенциале между заземлениями на противоположных концах аудиотрактов. Но токи утечки в энергосистеме приводят к тому, что в большинстве реальных установок протекает достаточно тока экрана, связанного с питанием, для передачи шума в звуковую систему, если оба конца экрана кабеля заземлены.
С 1930-х годов инженеры знали, что шумовая связь звуковых частот будет сведена к минимуму при одноточечном (звездообразном) заземлении, в то время как связь радиочастотных шумов сведена к минимуму при многоточечном (сетчатом) заземлении.Решение простое – экран симметричного аудиокабеля соединяется с экранирующим кожухом на источнике возбуждения и с экранирующим кожухом на приемном конце через конденсатор. Это было легко сделать в 40-х годах, когда радиочастотные сигналы выше 30 МГц встречались редко. Сейчас это намного сложнее, когда источниками помех являются сильные радиочастотные сигналы от сотовых телефонов УВЧ и мощных телевизионных передатчиков. Опять же, жизнь усложняется последовательной индуктивностью, на этот раз индуктивностью проводов конденсатора.См. Рисунки 5 и 6.
Рис. 5. Это классическая проблема RF-контакта 1 микрофона. Экран кабеля идет к корпусу, но через провод, достаточно длинный, чтобы иметь значительное индуктивное сопротивление на УКВ. Падение индуктивности связано с нулевым опорным сигналом, где оно добавляется к сигналу.
Рис. 6. Конфигурация схемы, позволяющая избежать проблемы с контактом 1. Экран идет прямо к защитному кожуху.Общий опорный сигнал также идет к экранированному корпусу, но не имеет общего сопротивления.
Проходные конденсаторы были решением этой проблемы с 1930-х годов. Они устанавливаются в круглое отверстие в корпусе. Одна «пластина» конденсатора представляет собой провод, проходящий через корпус, а другая «пластина» представляет собой цилиндр, окружающий провод и соединенный с корпусом с диэлектриком (изоляцией) между пластинами. Эта круглая конструкция минимизирует индуктивность через конденсатор к корпусу шасси, в то время как провод, идущий в корпус шасси, по-прежнему имеет индуктивность.Результирующая электрическая цепь представляет собой эффективный радиочастотный фильтр, а также предотвращает образование дыр в экране.
Для обеспечения наиболее эффективного экранирования экраны кабелей и корпуса разъемов оборудования должны быть прикреплены к корпусу. (Бывший инженер Bell Labs и специалист по электромагнитной совместимости Генри Отт отмечает, что, если это соединение находится снаружи корпуса, скин-эффект будет удерживать радиочастотные токи и вне корпуса.) Но как насчет разъемов для монтажа на кабеле? Чтобы порадовать инженерное сообщество EMC, микрофонные кабели должны привязывать экран кабеля к корпусу разъема, но, чтобы порадовать аудиолюбителей, экран должен идти только к контакту 1.Несколько лет назад я предложил идею создания цилиндрического соединения с экраном в соединителях, установленных на кабеле, во многом так же, как в соединителе BNC, с этим цилиндром, окруженным цилиндрическим диэлектриком, который сам был окружен цилиндрической пластиной, соединенной с соединителем. оболочка. Такая конструкция будет образовывать конденсатор с очень низкой последовательной индуктивностью, превращая разъем XLR в двухконтурный проходной конденсатор. Он будет соединять экран с оболочкой на RF, изолируя его от оболочки на звуковых частотах и постоянном токе.При использовании на микрофонном кабеле экран также припаян к контакту 1. При использовании на линейных входах в стойке установщик может решить не подключать экран к контакту 1, но он все равно будет подключен к корпусу через RF через конденсатор.
ИнженерДжоан Доу заметила, что если бы такой разъем использовался для подключения к контакту 1, конденсатор и последовательная индуктивность к шасси через контакт 1 образовали бы параллельный резонанс, и предположил, что контакт 1 в кабеле окружен ферритовым шариком. разъем для понижения добротности резонанса.
Потребовалось время, чтобы эти идеи зародились, но вскоре инженеры Neutrik начали работу над практической реализацией (рис. 8) и к началу 2002 года разработали инженерные прототипы. Британский консультант Джон Вудгейт тестировал их в своей лаборатории, а я тестировал их как в своей лаборатории, так и в полевых условиях. Результаты оправдали мои ожидания и дали неожиданный бонус – они решили проблемы с контактом RF 1, даже когда контакт 1 был подключен с обоих концов!
Простое исследование схемы показывает, почему.На рисунке 7 показан кабель с новыми разъемами, используемыми с микрофоном, показанным на рисунке 5. Концентрический конденсатор связывает экран с корпусом микрофона с индуктивностью, которая намного меньше, чем у провода внутри микрофона.
Рис. 7. Новый разъем EMC, который будет использоваться на обоих концах микрофонного кабеля. Экран имеет соединение постоянного тока с контактом 1 с ферритовой шайбой вокруг него. Концентрический конденсатор также соединяет его с оболочкой. Ферритовый шарик последовательно увеличивает сопротивление через вывод 1 на ВЧ, в то время как конденсатор обеспечивает соединение экрана с корпусом оборудования (или микрофона) с очень низким импедансом.
Рис. 8. Этот рисунок был создан Neutrik для моей статьи AES. Изображение нового разъема EMC, любезно предоставлено Neutrik.
Не только это, но и ферритовая бусина вокруг контакта 1 внутри нового разъема добавляет последовательный импеданс к тракту, проходящему через контакт 1, эффективно отсоединяя экран от проблемы контакта 1. Таким образом, ток экранирования разделяется, большая часть которого проходит по низкоомному пути через емкость к оболочке, при этом очень небольшая часть протекает через контакт 1.Фактически, новый разъем решает эту проблему!
Но даже это хорошо спроектированное решение не может быть эффективным, если сопрягаемые корпуса разъемов не имеют хорошего контакта или если корпус разъема оборудования не прикреплен к корпусу. У меня есть портативный DAT-аппарат, у которого серьезная проблема с контактом 1, настолько сильная, что, когда он используется с собственным предусилителем с динамическим микрофоном в центре Чикаго, обнаруженные FM- и телестанции почти так же громки, как интервьюер в футе от микрофона. . Новый разъем EMC полностью устраняет обнаруженную радиочастоту – если я осторожно надавлю на боковую часть разъема, чтобы заставить корпуса разъема соприкоснуться.Но без этого давления снаряды могут потерять контакт, и радиочастотные помехи вернутся! И новый разъем не помогает популярному микшеру с серьезной проблемой RF pin 1, потому что корпус разъема оборудования не соединен с корпусом!
Теперь, когда я был предупрежден об этом, эти проблемы с стыковкой корпуса разъема оказались более распространенными, чем любой из нас мог предположить. Похоже, что это не ограничивается использованием нестандартных или пиратских разъемов – это обнаруживается на разъемах, которые, как было подтверждено, были произведены одним и тем же производителем! Я также видел это в разъемах, встроенных в высококачественные предусилители и микрофоны от различных производителей.Пока что в список входят Audio-Technica, Mackie, Neumann, Sound Devices и Tascam.
Номер ссылки
- 1. Нил А. Манси, «Восприимчивость к шуму в системах аналоговой и цифровой обработки сигналов », представленный на 97-м съезде AES Общества звукоинженеров в Сан-Франциско, Калифорния, ноябрь 1994 г.
- 2. Веб-сайт Syn-Aud-Con.
“Пин 1 пересмотрен” Это примечание в формате PDF.
Как подключить разъем системной панели и кабели корпуса
Ура мальчик.А вот и самая интересная часть нашего руководства «Как собрать компьютер». И под весельем я имею в виду мучительно ужасное и бесполезное занятие. Пришло время подключить разъем системной панели и все кабели корпуса ко всем крошечным металлическим штырям, разбросанным по материнской плате. Ура!
Шаг 1: Хорошо, давайте сначала уберем с дороги самое худшее. Вы можете использовать для этой части фонарик / налобный фонарь или увеличительное стекло, так как вам нужно будет найти расположение разъема системной панели на материнской плате.Здесь вы будете подключать некоторые элементы управления на передней панели корпуса, например кнопку питания. Этикетки на самой материнской плате обычно довольно крошечные, поэтому, возможно, будет полезнее обратиться к руководству по материнской плате, чтобы найти его. Но в целом вы ищете что-то вроде этого:
Если вы прищурились, вы увидите крошечные буквы, обозначающие + PWR LED и + HDD LED на самом нижнем крае материнской платы под всеми этими контактами в правом нижнем углу.Это разъем вашей системной панели.После того, как вы нашли разъем системной панели, пора найти соответствующие разъемы, выходящие из вашего корпуса – это крошечные провода с тонкими пластиковыми трубками на концах, которые должны болтаться где-то с правой стороны корпуса. ваш чемодан, возможно, спрятанный где-нибудь в отсеке для дисковода.
Вы заметите, что на каждом маленьком пластиковом бите есть что-то написанное, например, HDD LED +, HDD LED -, PLED +, PLED- и RST SW и PWR SW. Как вы понимаете, это соответствующие разъемы для кнопки питания (и соответствующего светодиодного индикатора, если он есть в вашем корпусе), переключателя сброса и индикатора жесткого диска.
Поприветствуйте кабели на передней панели: USB3 (крайний левый), передняя панель (центральный левый), динамик (центральный правый) и USB2 (крайний правый).Если вы не хотите, чтобы биты мигали на вас в темноте, то во что бы то ни стало не включайте разъемы светодиодов. Но вам нужно будет как минимум подключить кнопки питания и сброса. Вы также заметите, что на каждом разъеме есть плюс и минус – подключите их неправильно, и они не будут работать.
Опять же, вероятно, было бы разумно открыть руководство по материнской плате на этом этапе, так как должна быть хорошая большая диаграмма, которую намного легче увидеть, чем пытаться всматриваться в ярлыки на самой материнской плате.Однако все, что вам нужно сделать, это вставить правильный кусок пластика в соответствующий металлический стержень. Несложно, просто чертовски неудобно.
На самом деле, все материнские платы должны поставляться с одним из них в стандартной комплектации. Они делают жизнь намного проще!И если вам действительно повезет, ваша материнская плата будет поставляться с одним из этих красот Q-коннектора (см. Выше), который позволит вам выполнять сложные задачи на открытом воздухе, где есть больше света. Как только это будет сделано, вы можете без проблем прикрепить все это к разъему на системной панели.В противном случае разъем вашей системной панели должен выглядеть примерно так:
Если у вас нет Q-разъема, вам придется вручную вставить все контакты на самой материнской плате. Приготовьте эти очки для чтения.Шаг 2: Хорошо, мы почти у цели. Далее идут заголовки USB. В наши дни в большинстве случаев есть как минимум пара USB-портов на передней панели, а также соответствующий кабель, торчащий из передней панели вместе с системными разъемами, описанными выше.К счастью, на этот раз мы имеем дело с заголовками нормального размера, а не с палочками для муравьев.
На передней панели корпуса может быть даже два разъема USB – один для любых портов USB2, а другой – для более быстрых подключений USB3. Как вы, наверное, догадались, вам нужно поместить их в правильные заголовки на материнской плате, чтобы получить нужную скорость. В конце концов, вы же не хотите в конечном итоге вставлять заголовок USB3 в слот USB2.
Это заголовок USB3. Обратите внимание на пустую булавку в верхнем левом углу – это поможет вам решить, в какую сторону поместить заголовок.Опять же, здесь, вероятно, стоит обратиться к руководству по материнской плате, так как чистка платы в поисках соответствующих этикеток может быть довольно сложной для старых глаз. Обычно имеется только один разъем USB3 (см. Выше), но вы, вероятно, обнаружите, что у вас есть несколько разъемов USB2 (см. Ниже). Если они вам не нужны, просто используйте тот, который находится ближе всего к тому месту, где вы вытащили разъем в отверстии лотка материнской платы.
Большинство материнских плат имеют более одного разъема USB2, поэтому просто используйте тот, который ближе всего к вашему кабелю.После того, как вы найдете подходящие разъемы, убедитесь, что жатка, которую вы держите, находится в правильном положении – у каждого из них отсутствует штифт, чтобы помочь вам определить, какой путь вверх он должен быть – и нажмите на него, пока не идет дальше.
Естественно, то же самое относится и к любым разъемам USB Type-C, которые у вас могут быть – см. Ниже. Не все материнские платы имеют разъемы USB Type-C, поэтому, если у вас есть корпус с одним на передней панели, убедитесь, что вы приобрели материнскую плату, которая позволит вам воспользоваться этим.В противном случае у вас будет просто бесполезный порт в верхней части вашего ПК, который никому не нужен.
Если на вашей материнской плате есть разъем USB Type-C, он будет выглядеть следующим образом.Шаг 3: Мы уже так близко. Последнее, что нам нужно сделать, это подключить разъемы для наушников и микрофона на передней панели вашего ПК. Вероятно, остался только один кабель среди всех других, которые вы выбрали до сих пор, на этот раз с маркировкой HD AUDIO. К нему также может быть прикреплен прилагаемый кабель с маркировкой AC’97.Не волнуйся. Это для старых материнских плат, у которых нет подключения HD Audio, поэтому не обращайте на это внимания.
Если вы не уверены, в каком направлении должны проходить кабели передней панели, ищите пустой контакт.Кабель HD Audio входит в заголовок, который иногда называют AAFP, но также может быть обозначен как JAUD1. Обычно он находится в нижней части материнской платы, часто рядом с разъемами USB2, и вы сможете определить его по форме и расположению контактов.
Как и раньше, для этого достаточно просто убедиться, что жатка находится в правильном положении вверх, и надавить ею на штыри.Если вы не знаете, где он находится, не забудьте свериться со схемой в руководстве к материнской плате.
Заголовок HD Audio иногда обозначается как AAFP.Шаг 4: Наконец, все почти закончилось. Фактически, для некоторых из вас больше . Поздравляю! Вы успешно создали свой собственный компьютер. Пойдите и купите себе вторую чашку чая – вы ее заслужили.
Однако, если в вашем кейсе есть динамики или вы можете подавать предупреждающие звуковые сигналы, у вас, возможно, осталось установить последнюю цепочку кабелей (извините).Пришло время вернуться к тому беспорядку из пластиковых трубок, который мы выбрали ранее, поскольку контакты ваших динамиков будут расположены рядом с разъемами вашей системной панели.
Если в вашем корпусе есть динамик (а в большинстве его нет), вы найдете эти разъемы рядом с разъемом системной панели.Надеюсь, на этот раз их немного легче найти, поскольку они должны быть единственными оставшимися контактами в этом конкретном кластере. Наденьте правильные кусочки пластика на правильные штифты и вуаля. Готово! Теперь вы можете получить и вторую чашку чая.
Теперь все, что нам нужно сделать, это выяснить, как снова собрать этот корпус, подключить периферийные устройства и все привести в порядок. Мы на финише!
Состав:
Руководство по сборке ПК
Как установить блок питания
Как установить материнскую плату
Как установить вентилятор корпуса
Как установить CPU
Как установить RAM
Как установить видеокарту
Как установить SSD / HDD
Как подключить разъем системной панели и кабели корпуса
Как снова собрать корпус и подключить периферийные устройства
Как установить Windows 10
– узнайте.sparkfun.com
Добавлено в избранное Любимый 48Введение
Разъемы используются для соединения частей цепей вместе. Обычно разъем используется там, где в будущем может потребоваться отключение подсекций: входы питания, периферийные соединения или платы, которые, возможно, потребуется заменить.
, описанные в этом учебном пособии
В этом уроке мы рассмотрим:
- Базовая терминология разъемов
- Разделить соединители на отдельные категории
- Расскажите о различиях между разъемами этих категорий.
- Покажите, как определить поляризованные разъемы
- Обсудите, какие разъемы лучше всего подходят для определенных приложений
Рекомендуемая литература
Вы можете найти эти концепции полезными перед тем, как начать изучение этого руководства:
Что такое схема?
Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.
Полярность
Введение в полярность электронных компонентов.Узнайте, что такое полярность, в каких частях она есть и как ее идентифицировать.
Терминология разъема
Прежде чем мы начнем обсуждать некоторые часто используемые соединители, давайте исследуем терминологию, используемую для описания соединителей.
Пол
Пол – Пол разъема указывает на то, подключается он или вставляется, и, как правило, мужской или женский, соответственно (дети, попросите родителей дать более подробное объяснение).К сожалению, бывают случаи, когда разъем может называться «штыревой», хотя может показаться, что он женский; в разделе примеров мы укажем на некоторые из них, обсуждая отдельные типы компонентов и объясняя, почему это так.
Разъемы JST типа “папа” (слева) и “мама” 2,0 мм PH. В этом случае пол определяется индивидуальным проводником.
Полярность
Полярность – Большинство разъемов можно подключать только с одной ориентацией.Эта особенность называется полярностью, а разъемы, которые имеют некоторые средства предотвращения неправильного подключения, называются поляризованными или иногда с ключом .
Поляризованная розетка для сети для Северной Америки. Благодаря двум разным ширинам ножек вилки вилка будет входить в розетку только в одном направлении.
Контакт
Контакт – Контакты являются деловой частью разъема. Это металлические части, которые соприкасаются друг с другом, образуя электрическое соединение.Здесь также возникают проблемы: контакты могут загрязняться или окисляться, или упругость, необходимая для удержания контактов вместе, со временем может исчезнуть.
Контакты на этом разъеме хорошо видны.
Шаг
Шаг – Многие разъемы состоят из множества контактов, расположенных в повторяющемся порядке. Шаг соединителя – это расстояние от центра одного контакта до центра следующего. Это важно, потому что существует множество семейств контактов, которые выглядят очень похожими, но могут отличаться по шагу, что затрудняет понимание того, что вы покупаете правильный ответный разъем.
Шаг контактов на разъемах на стандартной Arduino составляет 0,1 дюйма.
Циклы стыковки
Циклы сопряжения – Соединители имеют ограниченный срок службы, и их подключение и отключение – вот что их изнашивает. Таблицы данных обычно представляют эту информацию с точки зрения циклов спаривания , и она широко варьируется от одной технологии к другой. USB-разъем может иметь срок службы в тысячи или десятки тысяч циклов, в то время как межплатный разъем, предназначенный для использования внутри бытовой электроники, может быть ограничен десятками циклов.Важно выбрать разъем с подходящим сроком службы для данного приложения.
Крепление
Mount – Это может сбивать с толку. Термин «крепление» может относиться к нескольким вещам: способу установки разъема при использовании (монтаж на панели, свободному подвешиванию, монтаж на плате), под каким углом разъема по отношению к его креплению (прямой или прямоугольный) или как он крепится механически (паяльная пластина, поверхностный монтаж, сквозное отверстие). Мы обсудим это подробнее в разделе примеров для каждого отдельного разъема.
Сравнение трех различных методов монтажа одного цилиндрического разъема: (слева направо) монтаж на плате, монтаж на линейный кабель и монтаж на панель.
Устройство для снятия напряжения
Устройство для снятия натяжения – Когда разъем устанавливается на плату или кабель, электрические соединения становятся несколько хрупкими. Обычно обеспечивается какое-то снятие напряжения для передачи любых сил, действующих на этот разъем, на более механически прочный объект, чем хрупкие электрические соединения.Опять же, позже будет несколько хороших примеров.
Этот разъем для наушников 1/8 “поставляется с” чехлом “для снятия натяжения, надетым на кабель, чтобы предотвратить передачу сил, воздействующих на кабель, непосредственно на электрические соединения.
USB-коннекторы
USB-разъемы бывают двух типов: хост и периферийные устройства. В стандарте USB есть разница между ними, и разъемы на кабелях и устройствах отражают это.Однако у всех USB-разъемов есть общие черты:
- Поляризация – USB-разъем может быть вставлен только в одном направлении. Можно принудительно вставить разъем неправильно, но приведет к повреждению устройства .
- Четыре контакта – Все разъемы USB имеют как минимум четыре контакта (хотя у некоторых их может быть пять, а у разъемов USB 3.0+ и того больше). Это для питания, заземления и двух линий передачи данных (D + и D-).Разъемы USB предназначены для передачи 5 В, до 500 мА.
- Экранирование – USB-разъемы экранированы, поэтому предусмотрена металлическая оболочка, не являющаяся частью электрической цепи. Это важно, чтобы сигнал оставался неизменным в средах с большим количеством электрических “шумов”.
- Надежное подключение к источнику питания – Важно, чтобы выводы питания подключались до линий передачи данных, чтобы избежать попыток подачи питания на устройство по линиям передачи данных. Все USB-разъемы разработаны с учетом этого.
- Литой ограничитель натяжения – Все USB-кабели имеют пластиковую накладку на разъеме, чтобы предотвратить натяжение кабеля, которое может потенциально повредить электрические соединения.
Разъемы USB-A
Гнездо USB-A – это стандартный тип разъема “хоста”. Это можно найти на компьютерах, концентраторах или любом другом устройстве, к которому должны быть подключены периферийные устройства.Также можно найти удлинительные кабели с гнездом A и штекером A на другом конце.
Гнездо USB-A порта на боковой стороне ноутбука. Синий разъем совместим с USB 3.0.
USB-A, вилка – разъем стандартного «периферийного» типа. Большинство USB-кабелей имеют один конец, оканчивающийся штекерным разъемом USB-A, а многие устройства (например, клавиатуры и мыши) будут иметь встроенный кабель, оканчивающийся штекерным разъемом USB-A.Также можно найти штекерные разъемы USB-A, которые можно установить на плату, для таких устройств, как карты памяти USB.
Два типа разъемов Male USB-A , на кабеле SparkFun Cerberus и на плате разработки AVR Stick.Разъемы USB-B
USB-B, розетка – это стандарт для периферийных устройств. Он громоздкий, но прочный, поэтому в приложениях, где размер не является проблемой, он является предпочтительным средством обеспечения съемного разъема для подключения USB.Обычно это разъем для монтажа на плату в сквозное отверстие для максимальной надежности, но есть и варианты для монтажа на панели.
Платы Arduino , включая этот Uno, уже давно используют гнездовой разъем USB-B из-за его низкой стоимости и долговечности.Штекер USB-B почти всегда находится на конце кабеля. Кабели USB-B распространены повсеместно и недороги, что также способствует популярности соединения USB-B.
Штекерный разъем USB-B на конце кабеля SparkFun Cerberus.Разъемы USB-Mini
Соединение USB-Mini было первой стандартной попыткой уменьшить размер USB-разъема для небольших устройств. Гнездо USB-Mini обычно встречается на небольших периферийных устройствах (MP3-плееры, старые мобильные телефоны, небольшие внешние жесткие диски) и обычно представляет собой разъем для поверхностного монтажа, надежность которого зависит от размера. USB-Mini постепенно заменяется разъемом USB-Micro.
Гнездовой разъем USB-Mini на Protosnap Pro Mini.USB-Mini male – еще один разъем, предназначенный только для кабеля. Как и USB-B, он чрезвычайно распространен, а кабели можно дешево найти практически везде.
Штекерный разъем USB-Mini на конце кабеля SparkFun Cerberus.Разъемы USB-Micro
USB-Micro – довольно недавнее дополнение к семейству разъемов USB. Как и в случае с USB-Mini, основной проблемой является уменьшение размера, но USB-Micro добавляет пятый контакт для низкоскоростной передачи сигналов, что позволяет использовать его в приложениях USB-OTG (On-the-go), где устройство может захотеть работать как хост или как периферийное устройство в зависимости от обстоятельств.
USB-Micro розетка используется во многих новых периферийных устройствах, таких как цифровые фотоаппараты и MP3-плееры. Принятие USB-micro в качестве стандартного порта зарядки для всех новых сотовых телефонов и планшетных компьютеров означает, что зарядные устройства и кабели для передачи данных становятся все более распространенными, и USB-Micro, вероятно, вытеснит USB-Mini в ближайшие годы в качестве компактного устройства. USB-разъем на выбор.
Гнездовой разъем USB-Micro на USB-плате LilyPad Arduino.USB-Micro штекер также предназначен для подключения кабеля.Как правило, существует два типа кабелей с вилками USB-Micro: один для подключения устройства с портом USB-Micro в качестве периферийного устройства к хост-устройству USB, а другой для адаптации гнездового порта USB-Micro к гнезду USB-A. , для использования в устройствах с поддержкой USB-OTG.
Штекерный разъем USB-Micro на кабеле SparkFun Cerberus. Пигтейл адаптера для использования устройств с поддержкой USB-OTG, имеющих только порт USB-Micro, со стандартными периферийными устройствами USB. Обратите внимание, что не все устройства, поддерживающие USB-OTG, будут работать с этим пигтейлом.Кабель USB 3.0 micro-B
Кабели USB 3.0 micro-B похожи на разъемы USB 2.0 micro-B, но имеют дополнительные контакты для двух дифференциальных пар и заземления.
Кабель USB 3.0 типа A – Micro-BКабель USB 3.1 C
USB C содержит 24 контакта в разъеме USB. В отличие от предыдущих версий-предшественников, эта версия обратимая! Конструкция кабеля USB C также позволяет использовать ток более 500 мА для энергоемких устройств.
Внимание! В зависимости от кабеля не все контакты предназначены для USB C. Некоторые кабели могут иметь только 4 контакта в соответствии со спецификацией USB 2.0, а не полную спецификацию USB 3.1. Двусторонние кабели USB от A до C и SuzyQable – несколько примеров. В зависимости от используемого порта USB вы также можете быть ограничены в количестве тока, который может подаваться на ваше устройство.Реверсивный USB
С развитием технологий и производства разъемы USB можно вставлять любым способом! Ниже приведены примеры реверсивных разъемов типа A и типа micro-b из каталога.
Если вы ищете USB-разъем или кабель, ознакомьтесь с нашим Руководством по покупке USB-устройств или каталогом.
Разъем SparkFun USB-C
В наличии BOB-15100SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом отключая каждый контакт на соединении…
5Контроллер GPIB-USB
Осталось всего 3! BOB-00549Используйте это уникальное устройство для загрузки данных и управления осциллографами с поддержкой шины GPIB, логическими анализаторами, генераторами функций, мощностью…
7Аудиоразъемы
Еще одна знакомая группа разъемов – это те, которые используются для аудиовизуальных приложений – RCA и phono.Хотя они и не могут считаться принадлежащими к одному семейству, в отличие от различных USB-разъемов, мы будем считать, что они оба принадлежат к одному и тому же ключе.
Разъемы типа “телефон”
Вы, вероятно, сразу узнаете версию этого разъема 1/8 “как штекер на конце пары наушников. На самом деле эти разъемы бывают трех распространенных размеров: 1/4” (6,35 мм), 1/8 Разъемы размером “(3,5 мм) и 2,5 мм. ¼” находят широкое применение в профессиональном аудио- и музыкальном сообществе – большинство электрогитар и усилителей имеют разъемы с наконечником 1/4 дюйма (TS).1/8 “наконечник-кольцо-рукав (TRS) очень распространен в качестве разъема для наушников или выходных аудиосигналов на MP3-плеерах или компьютерах. Некоторые сотовые телефоны имеют разъем 2,5 мм для наконечника-кольца-кольца-рукава (TRRS) для подключение к наушникам, которые также включают микрофон для громкой связи.
Широкая доступность этих разъемов и кабелей делает их хорошим кандидатом для приложений общего назначения – например, задолго до USB, графические калькуляторы Texas Instruments использовали 2.Разъем TRS 5 мм для разъема последовательного программирования. Следует помнить, что типы соединителей типа “наконечник-втулка” не рассчитаны на несущую мощность; во время введения наконечник и гильза могут на мгновение закоротиться вместе, что может привести к повреждению источника питания. Отсутствие экранирования делает их плохими кандидатами для высокоскоростных данных, но через эти разъемы можно передавать низкоскоростные последовательные данные.
Штекер TRS для наушников, 1/8 дюйма. Обычно через наконечник и кольцо передаются стереофонические аудиосигналы, в то время как муфта подключается к заземлению.Телефонный штекер 1/8 “. Обратите внимание на отсутствие кольцевого контакта на этом разъеме.
Гнездо для наушников 1/8 “на плате с помеченными контактами, соответствующими соединениям контактов. Когда разъем не вставлен, внутренний переключатель соединяет наконечник и кольцевые контакты с соседними немаркированными контактами, обеспечивая обнаружение вставки.Соединители RCA
Известный в течение многих десятилетий как разъем для домашних стереосистем, разъем RCA был представлен в 1940-х годах компанией RCA для домашних фонографов.В аудиовизуальной сфере он постепенно вытесняется такими соединениями, как HDMI, но повсеместное распространение разъемов и кабелей делает его хорошим кандидатом для домашних систем. Пройдет много времени, прежде чем он устареет.
Гнездовые разъемы RCA обычно встречаются на устройствах, хотя можно найти удлинительные или переходные кабели с гнездовыми гнездами на них. Большинство разъемов RCA подключаются к одному из четырех типов сигналов: компонентное видео (PAL или NTSC, в зависимости от того, где было продано оборудование), композитное видео, стереозвук или аудио S / PDIF.
Гнездовой разъем RCA, для видеосигналов. Обычно разъемы видеосигнала NTSC или PAL желтого цвета.Штекерные разъемы RCA обычно находятся на кабелях.
Штекеры RCA. Красный и белый обычно используются для аудиоприложений, а красный означает «правильный» аудиоканал.Разъемы питания
Хотя многие разъемы передают питание в дополнение к данным, некоторые разъемы используются специально для подключения питания к устройствам.Они сильно различаются в зависимости от области применения и размера, но здесь мы сосредоточимся только на некоторых из наиболее распространенных.
Бочковые соединители
Разъемы типаBarrel обычно используются в недорогой бытовой электронике, которую можно подключить к электросети через громоздкие настенные адаптеры переменного тока. Настенные адаптеры широко доступны, с различными номинальными мощностями и напряжениями, что делает цилиндрические соединители обычным средством подключения питания к небольшим проектам.
Гнездовой цилиндрический соединитель или «джек» можно приобрести в нескольких вариантах: для монтажа на печатной плате (поверхностный монтаж или сквозное отверстие), для монтажа на кабеле или на панели.Некоторые из этих разъемов будут иметь дополнительный контакт, который позволяет приложению определять, подключен ли источник питания к цилиндрическому разъему или нет, что позволяет устройству обходить батареи и продлевать срок их службы при работе от внешнего источника питания.
Женский цилиндрический соединитель. Если вилка не вставлена, штифт «обнаружения вставки» будет закорочен на штифт «муфты».Штекерный цилиндрический соединитель, или «вилка», обычно встречается только в разновидностях концевой заделки проводов, хотя существует несколько способов прикрепления вилки к концу провода.Также можно приобрести штекеры, которые заранее прикреплены к кабелю.
Штекер для подключения к любому источнику питания. Обратите внимание, что соединение муфты предназначено для обжима провода для дополнительной разгрузки от натяжения. Внимание! Существуют разные мнения относительно пола гнезда и штекера для этих коаксиальных разъемов малой мощности. В зависимости от того, где у вас есть эти разъемы, разъем можно назвать «штекерным» цилиндрическим разъемом из-за штифта в центре и наоборот для вилки.Обязательно ознакомьтесь с изображением продукта и спецификациями, чтобы найти то, что вы ищете!Цилиндрические соединители обеспечивают только два соединения, часто называемых «штифтом» или «наконечником» и «гильзой». При заказе есть три отличительных характеристики цилиндрического соединения: внутренний диаметр (диаметр штифта внутри гнезда), внешний диаметр (диаметр гильзы на внешней стороне вилки) и полярность (соответствует ли напряжение втулки. выше или ниже напряжения на наконечнике).
Диаметр втулки чаще всего равен 5.5 мм или 3,5 мм.
Диаметр штифта зависит от диаметра втулки; втулка 5,5 мм будет иметь штифт 2,5 мм или 2,1 мм. К сожалению, это означает, что штекер, предназначенный для вывода 2,5 мм, подойдет к разъему 2,1 мм, но соединение будет в лучшем случае прерывистым. Штекеры 3,5 мм обычно подключаются к разъему со штекером 1,3 мм.
Полярность – последний аспект, который необходимо учитывать; Чаще всего втулка будет считаться 0 В, а на наконечнике будет положительное напряжение относительно гильзы.Многие устройства имеют небольшую диаграмму, показывающую полярность, ожидаемую устройством; Соблюдайте это с осторожностью, так как неподходящий источник питания может повредить устройство.
Заглушки обоих размеров втулки обычно имеют длину 9,5 мм, но существуют и более длинные, и более короткие. Во всех продуктах SparkFun используются отрицательная гильза 5,5 мм и положительный штифт 2,1 мм; мы рекомендуем по возможности придерживаться этого стандарта, так как это наиболее распространенный ароматизатор, встречающийся в дикой природе.
Общие схемы полярности для адаптеров переменного тока с цилиндрическими вилками.Положительная полярность (наконечник положительный, гильза 0 В) является наиболее распространенной. Диаграмма любезно предоставлена пользователем Википедии Три четверти десять.Разъемы “Molex”
Большинство компьютерных жестких дисков, оптических приводов и других внутренних периферийных устройств получают питание через так называемый разъем «Molex». Чтобы быть более точным, это разъем Molex серии 8981 – на самом деле Molex – это название компании, которая первоначально разработала этот разъем еще в 1950-х годах, – но его обычное использование несколько опровергло этот факт.
Разъемы Molexрассчитаны на большой ток: до 11 А на контакт. Для проектов, где может потребоваться много энергии – например, станок с ЧПУ или 3D-принтер – очень распространенным методом питания проекта является использование источника питания настольного ПК и подключение различных системных схем через разъемы Molex.
Разъем Molex – это тот, в котором терминология «папа / мама» немного странная. Гнездовой соединитель обычно находится на конце кабеля и скользит внутри пластиковой оболочки, которая окружает штыри на штыревом соединителе.Обычно разъемы запрессовываются и очень, очень тугие – они предназначены для подключения и отключения только несколько раз и, как таковые, являются плохим выбором для систем, в которых соединения будут часто меняться.
Штекерный разъем Molex. Пол контактов внутри разъема – это то, что означает пол разъема в целом. Гнездовой разъем Molex на проектном блоке питания.Разъем IEC
Как и в случае соединителя Molex, в данном случае обобщенное имя компонента стало синонимом отдельного конкретного элемента.Разъем IEC обычно относится к входу блока питания, который обычно встречается в блоках питания настольных ПК. Строго говоря, это разъемы IEC 60320-1 C13 (розетка) и C14 (вилка).
C14 Вход питания IEC, вилка, на проектном источнике питания постоянного тока. Обратите внимание, что, как и в случае разъема Molex, пол разъема определяется контактами внутри кожуха. Гнездовой разъем питания IEC C13 на довольно стандартном кабеле питания переменного тока. Кабели с этим концом можно найти по всему миру, обычно с доминирующим локальным разъемом переменного тока на другом конце. РазъемыIEC используются почти исключительно для подачи питания переменного тока. Хорошая вещь в использовании одного в проекте заключается в том, что кабели IEC-to-wall очень распространены. и доступны с локализованными розетками для большинства стран!
Соединитель JST
В SparkFun мы часто ссылаемся на «разъемы JST 2,0 мм». Это еще одно обобщение конкретного продукта. JST – японская компания, которая производит высококачественные разъемы, а наш предпочтительный 2,0-мм разъем JST – это двухпозиционный поляризованный разъем серии PH.
Все одноэлементные литий-полимерные ионные батареи SparkFun стандартно поставляются с этим типом разъема JST, и многие из наших плат включают этот разъем (или место для него) в качестве входа источника питания. Его преимущество в том, что он компактный, прочный и сложный для обратного подключения. Еще одна особенность, которая может быть преимуществом или недостатком, в зависимости от того, как вы на нее смотрите, заключается в том, что разъем JST сложно отсоединить (хотя аккуратно примененный диагональный резак может быть полезен!) После его соединения.Хотя это снижает вероятность выхода из строя во время использования, это также означает, что отключение аккумулятора для зарядки может повредить разъем аккумулятора.
2-контактный штекерный разъем JST на USB-плате LilyPad Arduino. Опять же, как и в случае с Molex, контакты внутри кожуха определяют пол разъема. Штекерные и розеточные 2-контактные разъемы JST.Есть разъемы серии PH с более чем двумя позициями; SparkFun даже продает их. Однако чаще всего мы используем двухпозиционное подключение батареи.
Антенные разъемы SMA
Далее следует объяснение запутанных соглашений об именах для разъемов SMA. Если вы не хотите понимать, почему так принято, вы можете просто взглянуть на 4 картинки и двигаться дальше. В противном случае получайте удовольствие от чтения!
Условные обозначения разъема RF
SparkFun использует разъемы типа SMA на нескольких платах, которым требуется подключение с сопротивлением 50 Ом к внешней антенне (GPS, Bluetooth, сотовая связь, Nordic и XBee).Однако на некоторых из этих плат используются разъемы SMA другого пола и полярности. Поэтому нам нужны разные антенны, чтобы соответствовать определенному полу или полярности РЧ-соединений.
Существует 4 различных типа разъемов SMA, использующих комбинацию пола, которая относится к центральному контакту, и полярности, которая относится к… ..ээ, здесь это сбивает с толку. Википедия пытается это объяснить. Но из того, что я обнаружил, была оригинальная «старая» конструкция разъемов SMA.
Разъемы SMA
Первоначальная конструкция SMA требовала наличия двух совместимых разъемов:
Наружная резьба SMA Центральный штифт, внутренняя резьба | Внутренняя резьба SMA Центральное отверстие, внешняя резьба |
Два вышеуказанных разъема были разработаны для совместного использования, но с этой конфигурацией возникла проблема, и FCC начала двигаться в направлении соответствия Части 15.Все это означает, что все разъемы SMA RF меняют пол (центральный штифт). Действительно раздражает тех из нас, кому нужно подключить антенну к радиочастотному устройству. Изменение пола FCC было введено, чтобы домашние пользователи не могли повредить радиочастотное оборудование (например, домашний Wi-Fi) при прикручивании антенны. Если все антенны – розетки, повредить центральный разъем невозможно.
Однако есть одна закономерность; все антенны, кабели или что-либо еще было прикреплено к потенциальному стационарному объекту с использованием конструкции с внешней гайкой или внутренней резьбой, а все стационарные устройства использовали конструкцию с внешней резьбой.Это относится ко всем продуктам SparkFun. Все наши антенны – это SMA-штекер или RP-SMA-мама. Все наши платы имеют тип SMA female или RP-SMA male.
Соединители RP-SMA
Единственное, что изменилось в соответствии с Частью 15, – это центральный штифт, что изменило полярность соединения и сформировало «новый» стандарт; обращенно поляризованный SMA (RP-SMA). RP (обратная полярность) названа в честь «пола резьбы» и имеет штифт противоположного пола.
Следующие две фотографии считаются обратно поляризованными (RP-SMA).
RP-SMA Наружная резьба Центральное отверстие, «наружная» внутренняя резьба | RP-SMA Внутренняя Центральный штифт, «внутренняя» внешняя резьба |
Если на плате нет разъема u.FL для подключения внешней антенны, платы и антенны SparkFun RF будут использовать комбинацию старого (SMA) и нового (RP-SMA):
Сотовая связь и GPS (900/1700/1800 МГц и 1.57542 ГГц соответственно) обычно используют старое соглашение: вилка SMA для антенн и розетка SMA для модулей.
Anything 2.4GHz (Bluetooth, ZigBee, WiFi и Nordic) обычно используют новое соглашение: вилка RP-SMA на антеннах и розетка RP-SMA на модулях.
Действительно, вы можете игнорировать дескриптор пола. Если у вас есть плата или модуль RP-SMA, вам понадобится антенна RP-SMA и т.д. для SMA. Довольно просто, правда ?! Просто убедитесь, что частота антенны совпадает с частотой вашей платы.
И на всякий случай, если вы найдете старый и новый микшер, мы продаем штекер SMA к штекеру RP-SMA и гнездо RP-SMA к штекерному разъему RP-SMA, которые будут сопрягать большинство комбинаций антенны и разъема.
Надеюсь, вы не совсем запутались!
Если вы ищете радиочастотный разъем или антенну, ознакомьтесь с нашим Руководством по покупке радиочастотных разъемов или каталогом.
Штыревые разъемы имеют несколько различных способов подключения.Как правило, одна сторона представляет собой серию контактов, которые припаяны к печатной плате, и они могут быть либо под прямым углом к поверхности печатной платы (обычно называемой «прямой»), либо параллельно поверхности платы (что сбивает с толку как «правый»). -угловые булавки). Такие соединители бывают разных шагов и могут иметь любое количество отдельных рядов контактов.
Соединение штыря разъема под прямым углом “мама” на базовой плате FTDI.Чаще всего встречаются контактные разъемы размером 0,1 дюйма (2,54 мм), однорядные или двухрядные.Это стандартный шаг, совместимый с макетной платой. Они бывают двух типов: вилка и розетка – это разъемы, используемые для соединения плат и экранов Arduino. Пользователи могут легко подключать перемычки к макетным платам.
Разъемы с контактами 0,1 дюйма, вилка и розетка, на плате Arduino Uno.
Другие участки не редкость; например, в беспроводном модуле XBee используется версия того же разъема с шагом 2,0 мм. Ниже представлен вид сверху, показывающий гнездовой разъем SMD с шагом 2,00 мм, припаянный к плате.Как вы можете видеть, два ряда металлических сквозных отверстий для разъемов, совместимых со стандартной макетной платой, рядом с заголовками расположены на расстоянии 0,1 дюйма (2,54 мм) друг от друга.
XBee Explorer USB с SMD-разъемами с шагом 2,00 мм, припаянными к плате.Распространенной разновидностью этой детали является версия с “машинным штифтом”. В то время как обычная версия изготавливается из штампованного и гнутого листового металла, соединители машинных штифтов формируются путем придания металлу нужной формы. В результате получается более прочный соединитель с лучшим соединением и более длительным сроком службы, что делает его несколько более дорогим.
Заголовки машинные с внутренней резьбой. Обратите внимание, что они предназначены для разделения на более мелкие секции, в то время как стандартные 0,1-дюймовые штыревые разъемы с гнездовой головкой – нет. Также важно отметить, что не все разъемы, не относящиеся к штыревым штырям, совместимы с различными штырями машины.Кабели, предназначенные для подключения к этим контактным разъемам, обычно бывают одного из двух типов: отдельные провода с обжимными разъемами на них или ленточные кабели с разъемами смещения изоляции .Их можно просто закрепить на конце ленточного кабеля, что создаст соединение с каждым из проводников ленточного кабеля. Как правило, кабели доступны только для женского пола, и ожидается, что с ними будет сопрягаться штекер.
Шестиконтактный обжимной кабель. Каждый провод зачищается по отдельности, к нему обжимается соединитель, а затем соединители вставляются в пластиковую рамку. Разъемы смещения изоляции (IDC) 2×5 на ленточном кабеле. Этот тип кабеля можно быстро собрать, поскольку он не требует зачистки отдельных разъемов.Он также имеет поляризационные выступы на каждом конце, чтобы предотвратить неправильную вставку в соединительный разъем на стороне платы.В гибких схемах также можно использовать выводы для пайки, расположенные со стандартным шагом 0,1 дюйма. Эти выводы скреплены скобами через гибкую подложку для обеспечения контакта с полупроводящим материалом.
Паяльная пластина, прикрепленная скобами к гибкому датчику.
В зависимости от области применения вашего проекта и набора навыков существует несколько способов подключения к паяным вкладышам.Пользователи могут вставлять выводы припоя в макетные платы или паять непосредственно к контактам. Тем не менее, тонкие выводы под пайку могут со временем сломаться при чрезмерном сгибании и могут ослабнуть в гнезде платы. Гибкие датчики также могут быть чувствительны к теплу из-за полупроводящего материала. В качестве альтернативы, разъемы Amphenol FCI Clincher были разработаны с более толстыми выводами и разъемами, совместимыми с макетными платами, для более надежного соединения.
Соединители Amphenol FCI Clincher с опрессовкой на гибкие датчики для более надежного соединения.Временные соединители
Винтовые клеммы
В некоторых случаях может потребоваться подключить к цепи неизолированный провод без клемм. Винтовые клеммы – хорошее решение для этого. Они также подходят для ситуаций, когда соединение должно поддерживать несколько различных подключаемых устройств.
Обратной стороной винтовых клемм является то, что они довольно легко откручиваются, оставляя оголенный провод в вашей цепи.Небольшая капля горячего клея может решить эту проблему, и ее не будет слишком сложно удалить позже.
Винтовые клеммы обычно предназначены для узкого диапазона размеров проводов, и слишком маленькие провода могут быть такой же большой проблемой, как и слишком большие провода. SparkFun имеет четыре типа винтовых клемм – 2,54 мм (стандартная макетная плата 0,1 дюйма), версия с шагом 3,5, 5 и 10 мм.
Нажмите здесь, чтобы увидеть больше винтовых клеммБольшинство винтовых клемм имеют модульную конструкцию, и их можно легко удлинить на один и тот же шаг, просто соединив вместе две или несколько меньших секций.
Винтовые клеммы с шагом 3,5 мм, показывающие точку вставки подключаемого провода, фиксирующий винт, удерживающий провод на месте, и модульные разъемы по бокам отдельных блоков, позволяющие соединять несколько частей вместе.Пружинные клеммы
Альтернативой винтовым клеммам являются пружинные клеммы (также известные как “вставные”, “клеточные зажимы” или “самодельные” разъемы). Пружинные клеммы работают аналогично винтовым клеммам. Однако вместо того, чтобы затягивать винт для соединения с куском проволоки, пружина сжимает вместе куски металла.
Пружинные клеммы представляют собой альтернативу винтовым клеммам. Они лучше работают в условиях сильной вибрации (например, в автомобильной промышленности) или когда провод расширяется / сжимается из-за циклического изменения температуры. Кроме того, натяжение автоматически регулируется в соответствии с калибром провода (при условии, что оно находится в пределах допустимой толщины провода), в отличие от колебаний натяжения, когда пользователь затягивает винтовой зажим. Ниже приведены несколько пружинных клеммных разъемов, которые SparkFun имеет в каталоге.
Терминал динамика – 4 пружины
На пенсии COM-11145Вы можете узнать в них разъемы, которые обычно используются для домашних стереодинамиков. У них получается хорошая пружина тэ…
На пенсииНекоторые платы (например, gamer: bit, LumiDrive и Qwiic MP3 Trigger и многие другие) оснащены пружинным зажимом для легкого доступа к контактам ввода / вывода.
Шариковая ручка, прижимающая язычок gamer: bit к коннектору poke-home для подключения куска провода.Банановый соединитель
Большинство единиц оборудования для проверки мощности (мультиметры, блоки питания) имеют очень простой разъем, называемый «банановый разъем». Они соединяются с «банановыми вилками», гофрированными пружинными металлическими вилками, предназначенными для единственного подключения к источнику питания. Они часто доступны в штабелируемой конфигурации и могут быть легко подключены к любому типу проводов.Они способны выдерживать ток в несколько ампер и недороги.
Штабелируемый банановый штекер. Обратите внимание, что есть два разных способа подключить дополнительную банановую вилку. Регулируемый комплект скамейки Extech с банановыми домкратами спереди.Зажим для аллигатора
Названные по понятным причинам, зажимы типа «крокодил» подходят для тестовых подключений к стойкам или оголенным проводам. Они имеют тенденцию быть громоздкими, легко замыкаются на ближайшем голом металле и имеют достаточно плохой захват, который может быть легко нарушен.В основном они используются для недорогих соединений во время отладки.
Инструмент «третьей руки», в котором для удержания деталей используются зажимы из крокодиловой кожи, а для электрических испытаний удерживается провод с зажимом из крокодиловой кожи. Обратите внимание на пластиковый чехол вокруг зажима типа «крокодил», чтобы уменьшить вероятность его короткого замыкания на другие соединения.Зажим IC (или крючок IC)
Для более тонких измерительных операций на рынке имеется множество зажимов для микросхем. Их размер позволяет пользователю закрепить их на выводах ИС, не касаясь соседних выводов; некоторые из них достаточно хрупкие, чтобы их можно было закрепить даже на ножках компонентов SMD с мелким шагом.Эти небольшие зажимы можно найти на логических анализаторах, а также на измерительных выводах, которые отлично подходят для создания прототипов или поиска неисправностей в схемах.
Большой зажим для микросхемы на конце провода. Этот зажим все еще достаточно мал, чтобы его можно было подсоединить к одной ножке микросхемы со сквозным отверстием, не создавая проблем для соседних контактов.Разъемы прочие
Модульные соединители типа RJ
Зарегистрированные разъемы jack являются стандартными для подключения телекоммуникационного оборудования к местной АТС.Имена, которые обычно ассоциируются с ними (RJ45, RJ12 и т. Д.), Не обязательно верны, поскольку обозначение RJ основано на комбинации количества позиций, количества фактически присутствующих проводников и схемы подключения. Например, хотя концы стандартного кабеля Ethernet обычно обозначаются как «RJ45», на самом деле RJ45 подразумевает не только 8-позиционное 8-проводное модульное гнездо, но также подразумевает, что он подключен к сети Ethernet.
Эти модульные соединители могут быть очень полезными, поскольку они сочетают в себе готовность к эксплуатации, несколько проводников, умеренную гибкость, низкую стоимость и умеренную допустимую нагрузку по току.Хотя изначально эти кабели не предназначались для передачи большого количества энергии, они могут использоваться для передачи данных и нескольких сотен миллиампер от одного устройства к другому. Следует позаботиться о том, чтобы разъемы, предусмотренные для таких приложений, не были подключены к обычным портам Ethernet, так как это может привести к повреждению.
Стандартный модульный разъем 8p8c (8-контактный, 8-проводной) «RJ45». Имейте в виду, что если вы собираетесь использовать этот тип разъема для передачи сигналов постоянного тока и питания, вам следует избегать использования разъемов со встроенными трансформаторами сигналов.Разъемы типа D-sub
Названные по форме корпуса, сверхминиатюрные разъемы D являются классическим стандартом в мире вычислений. Существует четыре наиболее распространенных разновидности этого разъема: DA-15, DB-25, DE-15 и DE-9. Номер контакта указывает количество предоставленных соединений, а буквенное сочетание указывает размер корпуса. Таким образом, ДЕ-15 и ДЕ-9 имеют одинаковый размер корпуса, но разное количество соединений.
Гнездовой разъем DE-9 для монтажа на плату.Пол определяется контактами или гнездами, связанными с каждым сигналом, а не соединителем в целом, что делает этот соединитель гнездовым, несмотря на то, что он эффективно вставляется в оболочку ответного соединителя.DB-25 и DE-9 – самые полезные для взломщика оборудования; многие настольные компьютеры по-прежнему имеют по крайней мере один последовательный порт DE-9 и часто один параллельный порт DB-25. Также широко доступны кабели с разъемами DE-9 и DB-25. Как и вышеупомянутый модульный соединитель, он может использоваться для обеспечения питания и двухточечной связи между двумя устройствами.Опять же, поскольку обычное использование этих кабелей , а не включает передачу энергии, очень важно, чтобы любое перепрофилирование кабелей проводилось осторожно, поскольку нестандартное устройство, подключенное к стандартному порту, может легко вызвать повреждение.
Ресурсы и дальнейшее развитие
Теперь у вас должно быть хорошее представление о том, какие разъемы лучше всего подходят для определенных приложений и какие разъемы будут вам полезны в вашем следующем проекте. Пожалуйста, ознакомьтесь с этими другими ссылками, чтобы узнать больше о разъемах.
Если вы хотите изучить больше руководств по SparkFun, ознакомьтесь с другими предложениями:
Последовательная связь
Концепции асинхронной последовательной связи: пакеты, уровни сигналов, скорости передачи, UART и многое другое!
Что такое Ардуино?
Что вообще такое «Ардуино»? В этом руководстве подробно рассказывается о том, что такое Arduino, а также о проектах и виджетах Arduino.
Логические уровни
Узнайте разницу между устройствами 3,3 В и 5 В и логическими уровнями.
Электроэнергия
Обзор электроэнергии, скорости передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальной мощности. 1,21 гигаватта учебного удовольствия!
I2C
Введение в I2C, один из основных используемых сегодня протоколов встроенной связи.
Или ознакомьтесь с этим сообщением в блоге:
Основы: Поиск вывода 1 | Лаборатории злых безумных ученых
У вас есть компоненты и таблица данных, и вы готовы приступить к взлому. Но в какую сторону идет микросхема? Вывод 23 – это , где? Если вам повезет, ориентация будет четко обозначена или, возможно, изображена на диаграмме в таблице данных. Но если это не так или вы просто новичок в этом вопросе, полезно знать, что искать.
На картинке выше контакт 1 – это , четко обозначенный как на блоке резисторов Аллена-Брэдли. И хорошо это или плохо, но это исключение, а не правило.
Вот основное правило, которое применяется к большинству интегральных схем : где-то есть отметка полярности. От этой отметки полярности поверните против часовой стрелки вокруг микросхемы и пронумеруйте контакты, начиная с 1.
Обычный маркер полярности представляет собой форму полумесяца на одном конце микросхемы.Другой – это небольшая точка у контакта 1, а иногда и небольшой треугольник или выступ. Иногда может появиться несколько таких отметок.
Часто вывод 1 находится в углу микросхемы, и только этот угол , а не сам вывод, отмечен маленьким кружком или треугольником.
На этом эскизе мы нарисовали воображаемую деталь под номером «THX1138D», изготовленную на 37 неделе 2013 года, и у нее есть загадочная партия или внутренний код «OHAI», который может или не может быть объяснен в таблице данных.Знаки полярности представляют собой углубление в виде полумесяца на левой стороне, а также точку у контакта 1. Это устройство имеет 20 контактов, пронумерованных против часовой стрелки по двум краям от 1 до 20.
Как мы увидим, существует множество примеров этого или близких вариантов. Но бывают также случаи, когда * нет * прямых отметок, но вместо этого вы можете полагаться на ориентацию текста, чтобы понять нумерацию. Ориентация текста одинакова, и для чипов такой формы (с выводами на двух противоположных сторонах) можно с уверенностью предположить, что знак полярности идет слева от текста.
Вот несколько классических и красивых примеров микросхем с хорошо обозначенной полярностью. Это корпуса интегральных схем «керамического DIP», датированные концом 1978 года. Каждый из них имеет форму полумесяца, а также более тонкую точку на штыре 1.
Это современный вариант той же конструкции с более высокой плотностью. Это широкий низкопрофильный пластиковый корпус, называемый 66-контактным TSSOP (и 128 МБ DDR SDRAM, если вам интересно). Ориентация задается формой полумесяца с левой стороны и точкой в нижнем левом углу.Теперь эта точка выглядит так, как будто она ближе к контакту 2, чем к контакту 1. Опять же, маркер часто обозначает угол , где находится контакт 1, а не отдельный контакт.
Эта микросхема «восьмеричного шинного приемопередатчика» 74HC245D от NXP имеет форму полумесяца с левой стороны, а также немного более необычную функцию маркировки полярности. Вся передняя кромка чипа – кромка со штифтом 1 – слегка скошена.
А теперь вот микросхема, у которой меньше «прямого» указания на ее ориентацию – нет точки или формы полумесяца.Как мы обсуждали ранее, вы можете полагаться на ориентацию текста в подобных случаях и представить эффективную отметку полярности на левой стороне чипа. Контакт 1 находится внизу слева.
Если вы присмотритесь, то увидите, что есть еще одна особенность маркировки полярности, так как этот чип также имеет очень слегка скошенный передний край.
Это несколько необычный DIP-чип с семью и семью выводами. Это аккуратное маленькое твердотельное реле, способное коммутировать небольшие нагрузки от сети переменного тока (0.9 А при напряжении до 240 В переменного тока) от низковольтного цифрового входа. Предположительно, у него семь контактов, так что вы не можете вставить его задом наперед. В этом чипе также используется комбинация ориентации текста и скоса на стороне вывода 1.
Осторожно: эта видимая «точка» не является индикатором полярности; контакт 1 все еще находится в углу микросхемы.
Вот еще одна вариация. На левой стороне этого чипа напечатана полоса , которая служит индикатором полярности и заменяет форму полумесяца.
Вот тот, о котором нас часто спрашивают: 17-сегментный буквенно-цифровой дисплей. Светодиодные дисплеи могут быть довольно непонятными, потому что расположение контакта 1 явно не обозначено, а также нет формы полумесяца или другого очевидного маркера полярности. Однако сам ярлык является маркером полярности, и это важно помнить.
Edit: Мы изначально писали, что они следуют правилу ориентации меток, но оказалось, что это не так.Хотя обычно можно ожидать, что контакт слева от метки будет начинаться с вывода 1, это устройство (и, очевидно, некоторые другие буквенно-цифровые / 7-сегментные дисплеи) следует соглашению, согласно которому контакт 1 находится в верхнем левом углу дисплея – напротив десятичной точки. Это большой плюс для проверки таблицы!
Вот светодиодный матричный дисплей 5 × 7. Вы можете различить следы на обратной стороне под эпоксидной смолой, так что заманчиво искать там подсказки для ориентации, но эти типы обычно соответствуют правилу ориентации этикеток.Когда вы сориентируете деталь так, чтобы можно было прочитать этикетку, метка эффективной полярности будет слева.
На левой фотографии, где дисплей расположен вертикально и видна метка, контакт 1 находится под нижним левым углом. На правой фотографии, где этикетка видна, но деталь перевернута, в правом нижнем углу виден контакт 1.
Иногда можно встретить микросхемы с очень разным внешним видом и очень четкими маркерами полярности.Этот чип от Agilent имеет золотую полосу в верхнем левом углу.
Иногда микросхема имеет зазубренный угол, указывающий, где находится контакт 1. Белая шелкография на печатной плате показывает увеличенное изображение этой выемки в нижнем левом углу.
Модель 486 представляет собой хороший пример микросхемы с зазубриной в углу, а модель 68030 имеет золотую полосу для обозначения контакта 1.
Этот чип Broadcom имеет точку в углу с контактом 1, но это довольно тонкая отметка.Если ваш чип уже установлен на плате, это может дать некоторую лучшую информацию для проверки ориентации. Например, вывод 1 этой микросхемы также отмечен белой точкой на печатной плате, а три других угла имеют отметку, как если бы эти углы не имели выемки.
Вот еще одна неоднозначная фишка. Контакт 1 четко обозначен стрелкой на плате. Если бы чип был незакрепленным, он был бы немного менее четким, потому что не только есть точка рядом с контактом 1, но также, очевидно, есть точка в противоположном углу.Это может быть просто случайный след от плесени, но он все равно может сбивать с толку.
А вот простая точка для обозначения ориентации.
Это далеко не исчерпывающий список, но он предназначен для демонстрации некоторых распространенных способов дифференциации ориентации чипа. Если у вас есть исправления или ссылки на другие интересные фишки, мы будем приветствовать их в комментариях.
Описание выводов прямого, перекрестного и перекрестного кабеля
Когда мы говорим о разводке выводов кабелей, мы часто получаем вопросы о разнице в прямой, перекрестной и перекрестной разводке кабелей, а также о предполагаемом использовании каждого типа кабеля.Эти термины относятся к способу подключения кабелей (какой контакт на одном конце соединен с каким контактом на другом конце). Ниже мы попытаемся пролить свет на эту часто запутанную тему.
Прямые проводные кабели
Прямой относится к кабелям с назначением контактов на каждом конце кабеля. Другими словами, контакт 1 разъема A подключается к контакту 1 разъема B, контакт 2 – к контакту 2 и т. Д. Прямые проводные кабели обычно используются для подключения хоста к клиенту.Когда мы говорим о патч-кабелях cat5e, прямой проводной патч-кабель cat5e используется для подключения компьютеров, принтеров и других сетевых клиентских устройств к коммутатору или концентратору маршрутизатора (хост-устройству в данном случае).
- Разъем A
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
- Разъем B
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
Проводные кабели с кроссовером
Перекрестные проводные кабели (обычно называемые перекрестными кабелями) очень похожи на прямые кабели, за исключением того, что линии TX и RX пересекаются (они находятся в противоположных положениях на обоих концах кабеля.Используя стандарт 568-B в качестве примера ниже, вы увидите, что контакт 1 на разъеме A переходит в контакт 3 на разъеме B. Контакт 2 на разъеме A идет на контакт 6 на разъеме B и т. Д. Перекрестные кабели обычно используются для подключите два хоста напрямую. Примерами могут быть подключение компьютера напрямую к другому компьютеру, подключение коммутатора напрямую к другому коммутатору или подключение маршрутизатора к маршрутизатору. Примечание. Раньше при прямом подключении двух хост-устройств требовался перекрестный кабель. В настоящее время большинство устройств имеют технологию автоопределения, которая обнаруживает кабель и устройство и при необходимости пересекает пары.
- Разъем A
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
- Разъем B
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
Проводные кабели для переворачивания
Проводные кабели для одновременного нажатия клавиш, чаще всего называемые кабелями для одновременного нажатия клавиш, имеют противоположные назначения контактов на каждом конце кабеля, или, другими словами, они «перекручены».«Контакт 1 разъема A будет подключен к контакту 8 разъема B. Контакт 2 разъема A будет подключен к контакту 7 разъема B и так далее. консольный порт устройства для внесения изменений в программирование устройства. В отличие от перекрестных и прямых кабелей, перекрестные кабели не предназначены для передачи данных, а вместо этого создают интерфейс с устройством.
- Разъем A
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
- Разъем B
- Штифт 1
- Штифт 2
- Штифт 3
- Штифт 4
- Штифт 5
- Штифт 6
- Штифт 7
- Штифт 8
Как заделать кабели Ethernet
- Дом
- Учебный центр
- Уголок с инструкциями
- Инструкции по подключению сети
Автор: Кристина Хансен
Разъем RJ-11 (телефонный) | Штекер RJ-45 (Data) | 110 Block / 66 Block Punchdown
- RJ-11 (Телефонный) Штекер
На Рисунке 1 показана схема подключения разъема RJ-11 со стороны штекера.Схема показана с «зажимом-крючком» на нижней стороне. Типичный разъем RJ-11 имеет шесть выводов. Обычно используются только четыре средних контакта. Домашняя телефонная проводка POTS (Plain Old Telephone Service) обычно состоит из двух пар проводов, предназначенных для двух отдельных телефонных линий. Центральные контакты (красный и зеленый) содержат первую телефонную линию. Обратите внимание, что системы служебной (цифровой) телефонной связи могут быть подключены по-другому. Рисунок 2
Рисунок 2 представляет собой схему подключения стороны штекера разъема RJ-45 в соответствии со стандартами T-568B.Чаще всего используется стандарт Т-568Б. Схема подключения показана с «зажимом для крючка» на нижней стороне. Настенная розетка может быть подключена в другой последовательности, потому что провода могут быть перекрещены внутри розетки. Разъем должен иметь схему подключения или обозначенные номера / цвета контактов, соответствующие цветному коду, указанному ниже. При подключении к гнезду или штекеру RJ-45 не забудьте держать «скрученным» как можно ближе к розетке (штекер или штекер). Это обеспечит соответствие стандартам проводки Ethernet.
Спецификация T-568B
Контакт # Цвет Пара # Имя 1 белый / оранжевый 2 Передача данных + 2 оранжевый 2 Передача данных – 3 белый / зеленый 3 Прием данных + 4 синий 1 не используется 5 белый / синий 1 не используется 6 зеленый 3 Получение данных – 7 белый / коричневый 4 не используется 8 коричневый 4 не используется
(четные номера контактов всегда сплошного цвета.Нечетные номера контактов обозначаются белым / полосатым цветом.)Только для справки, на Рисунке 3 показана схема подключения в соответствии со стандартами T-568A. Обязательно соблюдайте ЛИБО стандарт T-568B или T-568A. Не допускайте одновременного использования кабелей разных спецификаций в одной и той же установке.
Рисунок 3
Спецификация T-568A
Штифт # Цвет Пара # Название 1 белый / зеленый 3 Прием данных + 2 зеленый 3 Прием данных – 3 белый / оранжевый 2 Переданные данные + 4 синий 1 не используется 5 белый / синий 1 не используется 6 оранжевый 2 Передача данных – 7 белый / коричневый 4 не используется 8 коричневый 4 нет б / у Перекрестный кабель
Для некоторых приложений может потребоваться перекрестный кабель.Чаще всего перекрестный кабель используется при соединении двух концентраторов. Перекрестный кабель «перекрещивается» для передачи и приема данных. Контакты 1 и 3 перекрещиваются, а контакты 2 и 6 перекрещиваются. Чтобы построить кабель CROSSOVER, просто подключите одну сторону в соответствии со спецификацией T-568 B , а подключите другую сторону в соответствии со спецификацией T-568 A .- 110 Блок / 66 Перфорация блока
Перфорация выполняется парами по порядку, сначала провод с белой полосой, затем цветной провод.
Пара 1 белый / синий – Синий
Пара 2 белый / оранжевый – Оранжевый
Пара 3 белый / зеленый – Зеленый
Пара 4 белый / коричневый – Коричневый
Напоминание: БЛОГ– СИНИЙ Оранжевый зеленый и коричневый
Приказ о блокировке Punchdown
© 2021 CableOrganizer.