Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Подключение светодиодов от батареек. Как получить нестандартное напряжение Стабилизатор напряжения на 3 вольта своими руками

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 - это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений - от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы - 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП "Завод ТРАНЗИСТОР".

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так - взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта - Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Питаем мощные светодиоды от 3.7 вольт. Подключение светодиодов от батареек. Какие светодиоды используют в мощных фонариках

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние - в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания - параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов - это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором - плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться - в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Переделка LED-фонаря с батареек на Б/П - Электроника

в самых дешевых, китайцы обычно вкрячивают все светодиоды впараллель, и напрямую к батарейкам,

Я таких не встречал, с тремя батарейками которые. Там обязательно должно стоять резистор.

А вот при двух батарейках и прямом включении так бывает.

одни ленты со светодиодами

Да, при такой нагрузке внутреннее сопротивление батареек уже учтено. Но если поставить щелочные, вместо солевых, то тоже быстро сдохнут.

Блок питания, который я хотел приладить

Зарядники разные бывают. Раньше они были трансформаторные, сейчас импульсные. Трансформаторные могут быть без стабилизации напряжения на выходе. Нужно померить без нагрузки.

Обычно все китайширпотребовские поделки имеют слабенькие светики, которые и 20-ю миллиамперами питать нельзя. Нужно прикинуть сколько светиков параллельно у Вас стоит, умножить это количество на 12-15 мА, и получите ток которым можно питать этот бублик. Под каждое конкретное питание (ведь у Вас разные БП) придётся подбирать свой резистор. Включите для начала через прибор миллиамперметр и начинайте с резистора 20 Ом .....

Их у Вас 48. Общее потребление не должно превышать 0.7А. Лучше даже 0.5-0.6. Смотрите по прибору, сколько они потребляют через 20 Ом (один ватт берите). Потом уменьшайте номинал.

Как подключить светодиод? | Сила Тока .NET

Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня.

Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них важна полярность подключения, или расположения плюса и минуса. При неправильном подключении. светодиод работать не будет.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

  1. У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
  2. Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
  3. Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.

N.B. Хотя на практике последний способ иногда не подтверждается.

Как бы там ни было, следует заметить, что если кратковременно (1-2 секунды) не правильно подключить светодиод, то ничего не перегорит и плохого не произойдет. Так как диод сам по себе в одну сторону работает, а в обратную нет. Перегореть он может только из-за повышенного напряжения.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Как подключить светодиод к 12 вольтам

Подключать светодиод напрямую к 12 вольт — запрещено, он сгорит в долю секунды.  Необходимо использовать ограничительный резистор (сопротивление). Размерность резистора высчитывается по формуле:

R= (Uпит-Uпад)/0,75I,

где  R –величина сопротивления резистора;

Uпит и Uпад – напряжение питания и падающее;

I – проходящий ток.

0.75 — коэффициент надёжности для светодиода (величина постоянная)

Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

В данном случае:

  • Uпит — 12 вольт (напряжение в авто аккумуляторе)
  • Uпад — 2,2 вольта (напряжение питания светодиода)
  • I — 10 мА или 0,01 А (ток  одного светодиода)

По вышеуказанной формуле, получим R=(12-2.2)/0.75*0.01 = 1306 Ом или 1,306 кОм

Ближайшее стандартное значение резистора — 1,3 килоОм

Это еще не всё. Требуется вычислить требуемую минимальную мощность резистора.

Но для начала определим фактический ток I (он может отличаться от указанного выше)

Формула: I = U / (Rрез.+ Rсвет)

где:

  • Rсвет — Сопротивление светодиода:

Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

из этого следует, что ток в цепи

I = 12 / (1300 + 220) = 0,007 А

Фактическое падение напряжения светодиода будет равно:

 Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец, мощность равна:

P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Следует взять чуть больше мощности стандартной величины. В данном случае лучше подойдет 0,125 Вт.

Итак, чтобы правильно подключить один светодиод к 12 вольтам, (авто аккумулятор) потребуется в цепь вставить резистор, сопротивлением 1,3 кОм и мощностью 0,125 Вт.

Резистор можно присоединять к любой ноге светодиода.

У кого в школе, по математике была твердая двойка — есть вариант попроще. При покупке светодиодов в радиомагазине, спросите у продавца какой резистор Вам нужно будет вставить в цепь. Не забудьте указать напряжение в цепи.

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

Итак:

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

где:

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт.

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду. Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении. Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Digital Chip

Дело было ночером, делать было нечего… Находясь в приподнятом настроении, думал чем бы себя  занять. Хотелось поковыряться с железом, что-нибудь разобрать, собрать. Заморачиваться с чем-нибудь «глобальным» не хотелось. Просто хотелось немного поэкспериментировать.

Где-то в интернете наткнулся на схему питания светодиода от 1 пальчиковой батарейки на 1.5V. Решил попробовать собрать. А так как я являюсь счастливейшим обладателем беспаечной макетной платы ( 🙂 ), то решил сделать все на ней. Теорию рассказывать не буду, так как сам не очень в этом шарю. Просто покажу, что у меня получилось.

Для начала приведу схему, по которой я собрал это простейшее устройство. Вот она:

Схема блокинг-генератора для питания светодиода от батареи на 1.5V

Как было сказано в описании к схеме — это классический блокинг-генератор. Схема прекрасно работает, но для конкретного светодиода (или линейки светодиодов) желательно подобрать резистор R1 по оптимальному свечению.

Трансформатор я сделал из ферритового колечка от сгоревшей энергосберегающей лампы. Взял два проводочка (красный и белый), сложил их вместе и намотал до заполнения кольца, два конца соединил и пропаял для лучшего контакта. Вот что получилось:

Трансформатор для схемы

Главное в этой схеме не перепутать начала и концы обмоток. Это принципиально. Если перепутать — работать не будет. Обратите внимание, что соединенные выводы первичной и вторичной обмоток находятся по разные стороны кольца. В моем варианте это выглядит вот так:

Схема соединения обмоток трансформатора

После изготовления трансформатора, я взял макетную плату и воткнул его в нее. Добавил транзистор, собственно сам светодиод и пару проводочков.

Собранная схема на беспаячной макетной плате. Вид 1.

Как видите, я даже резистор не ставил.

Собранная схема на беспаячной макетной плате. Вид 2.

Теперь подаем питание и…. вуаля! Все работает.

Работы схемы.

Если не работает, значит просто перепутаны начала и концы обмоток трансформатора. У меня трансформатор был собран правильно, поэтому заработало все сразу.

Работы схемы. Другой вид.

Наигравшись с этой схемой, я оставил ее работать на ночь. Вечером батарейка показывала напряжение 1.51V. Утром я замерил напряжение на ней — оно стало 1.42V. Т.е. один обычный светодиод, проработав более 8 часов, практически не просадил батарейку.

Еще, играясь со схемой,  я параллельно запитывал 8 светодиодов. После подключения 4-го светодиода, стало хорошо заметно  уменьшение яркости светодиодов.  При 6 светодиодах начал греться транзистор. При 8 — он грелся очень ощутимо. Но светодиоды светились! Хоть не так ярко, как один.

Уже потом, погуглив, я нашел кучу сайтов, на которых с разной степенью углубления в теорию описывалась такая схема. Для себя вынес, то, что схему надо доработать. Если соберусь делать фонарик по такой схеме, то доработаю как показано на схеме:

Доработанная схема

Ну вот в принципе и все. Я удовлетворил свое желание и получил хорошую порцию положительных эмоций. 🙂

Подключение светодиодов к батарее 9V

Да, вам нужен последовательный резистор. Причина в том, что напряжение светодиода не совсем 4,5 В, и оно также зависит от тока. Наличие последовательного резистора - единственный способ убедиться, что вы подаете нужную величину тока. Однако вам нужно некоторое падение напряжения на резисторе, поэтому два последовательных светодиода не нужны. Вам нужно 4,5 В через резистор для 20 мА, так

R = 9 В - 4,5 В 20 м = 220 Ом р знак равно 9 В - 4.5 В 20 м знак равно 220 Ω

Батарея 9 В не может подавать большой ток, но без последовательного резистора ток может быть слишком большим для светодиодов. В настоящее время я работаю с белыми светодиодами с типичным током 20 мА, которые имеют максимум только 25 мА.

редактировать (пересмотреть ваш комментарий)
Теоретически вы могли бы обойтись без резистора, но светодиоды никогда не бывают точно 4,5 В, а ваша батарея никогда не бывает точно 9 В. Если напряжение батареи снизится до 8,9 В, ваши светодиоды будут (намного) тусклее или (намного) ярче, если напряжение светодиодов равно 4,4 В, поскольку ток будет намного выше и, возможно, станет слишком высоким.

Pedery

Да, но мой вопрос был связан с двумя светодиодами в серии. Это сделало бы ваше уравнение R = (9 В - 2 * 4,5 В) / 20 мА = 0 Ом. И это отныне суть моего вопроса. Могу ли я обойтись без использования резистора в этом случае?


stevenvh

@Pedery - отредактировал мой ответ.


Pedery

Ах я вижу. Резисторы именно тогда 🙂


stevenvh

@Pedery - Как и другие прокомментировали, 4,5 В очень странно для светодиода, поэтому возможно, что резистор встроен. В этом случае напряжение светодиода ниже, и резистор рассчитывается для компенсации разницы между 4,5 В и фактическим напряжением светодиода. Лучший способ проверить это - подать переменное напряжение и уменьшить его с 4,5 В. Если при напряжении 4,3 В или 4,2 В у вас остается более или менее такая же яркость, резистор встроен.


Pedery

Понимаю. Один из моих «странных» светодиодов мигает, поэтому он, вероятно, имеет микросхему. Что касается других, я не знаю, и у меня нет переменного источника питания. Во всяком случае, это любимый проект, так что не важно. Я пойду на обычные светодиоды 3,4 В, добавлю резистор, и проблема решена 🙂

Простой фонарик из кроны и светодиода smd 5730 своими руками

Здравствуйте дорогие друзья! Сегодня, я бы хотел рассказать вам, как изготовить простейший фонарик на основе батарейки крона. 

И так, из деталей нам понадобятся:● Светодиоды SMD 5730●Нерабочая батарейка типа крона●Рабочая батарейка крона)

Инструменты:●Паяльник●Клеевой пистолет.

Для начала нужно вытащить «верхушку» из старой батарейки, она будет служить основой нашего фонарика.

Убираем все лишнее.

Теперь берёмся за светодиоды (они очень маленькие и хрупкие, соблюдайте аккуратность при работе с ними). Нам необходимо соединить их последовательно, чтобы при напряжении 9 вольт они не сгорели. При их пайке соблюдаем полярность.

Паяем светодиоды вплотную друг к другу, предварительно залудив контакты.

Теперь готовую конструкцию припаиваем к основе для фонарика, важно не перепутать полярность. 

ВНИМАНИЕ! Не передержите паяльник, иначе спалите светодиоды.

Ну вот и всё! Основная конструкция готова. Теперь по краям проходимся горячим клеем, для пущей надёжности.

Примечание: светодиоды не перегреваются, даже при длительной работе, так как на каждый из них идёт по 3 вольта, в то время как максимальное напряжение, при котором требуется радиатор, 3.2 ~ 3.4 В.

Характеристики:

●Мощность 1,5 Вт●Угол 180˚

Спасибо за внимание! 

Источник

Источник: https://nig.mirtesen.ru/comments/42864436719/page

Характеристики светодиодов для фонариков. Ремонт и увеличение мощности

  • Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.
  • Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

Главная характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Оцените, пожалуйста, статью. Мы старались:) (16

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/xarakteristiki-svetodiodov-dlya-fonarikov.html

Светодиодный фонарь из старой «Кроны»

Приветствую Всех самоделкиных! В этой статье хотел рассказать, как из того что обнаружилось в ящике с детскими игрушками сделать фонарик. Порывшись в закромах у своего чада было обнаружено и изъято:

  • Одна старая батарейка «Крона»
  • Куча светодиодов извлеченных из сломанных игрушек

За основу фонарика взята отслужившая свой век батарея «Крона»

Батарея аккуратно разбирается. Чтобы не повредить форму, завальцованная «бесконтактная» часть стерта  на наждачной бумаге. После чего из корпуса извлечено задняя крышка  («дно») батареи, активный элемент и передняя крышка с контактной частью.

В «дне» батареи высверлены отверстия d=5мм, в количестве 6шт. Чтобы долго не мучится с разметкой центров для отверстий я прикладываю файлик (правда в Кадовском формате). Печатаем его на А4 и обрезаем. Далее я просто обернул чертежик вокруг пластины. И просверлил по разметке.фонарик заготовка

В отверстия установлены светодиоды, спаянные последовательно в группу  по 3шт. Две группы спаяны параллельно и подключены к соответствующим контактам на контактной пластине. Желательно провода подключения к контактной пластине оставить подлиннее, чтобы потом удобнее было работать.

В цепь включен микро выключатель. Вся сборка подключается контактной пластиной к «свежей» батарее и проверяется на предмет правильности спайки.

Далее вся спайка примеряется по месту. Лишняя часть корпуса отпиливается (пилить лучше защитив корпус малярным скотчем. На нем  же провести разметку) Сверлится отверстие под выключатель.

В подготовленный корпус устанавливается сборка. И все внутренности заливаются эпоксидной смолой.

Остается дождаться, когда смола «встанет».

В моём случае получился маленький недочет- негерметичность корпуса. Думаю, надо было сначала термоклеем изнутри переднюю пластину со светодиодами залить, а потом смолу заливать…

В результате смола начала вытекать, пришлось срочно что-то придумывать. Отмывать ее бесполезно. Поэтому было принято решение из остатка корпуса сделать опалубку)) и залить все вместе с диодами…

Вот результат:

ВСЁ! Фонарик готов! Соединяем получившийся блок  с рабочей батареей.

  1. Наслаждаемся готовой работой!
  2. Получившийся световой блок легко переставляется на новую батарею!

Источник: http://mozgochiny.ru/electronics-2/diodnyiy-fonar-iz-staroy-kronyi/

Как подключить светодиод к батарейке: 1,5 и 3 Вольта, 9В Крона

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах.

Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах.

Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер.

Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*Uбат)/(Uраб.led*Iраб.led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для сверхьярких светодиодов эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.

3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу.

Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным.

Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик.

Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6.

Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет регулировать яркость свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM).

Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Источник: http://ledno.ru/svetodiody/kak-podklyuchit-led-k-batareike.html

Какие светодиоды используются в фонариках и какие лучше?

При приобретении либо сборке новых светодиодных фонариков непременно следует обратить внимание на используемый светодиод.

Если фонарь вы приобретаете только для подсветки темной улицы, то тут выбор огромный – выбираем любой с ярким светодиодом белого свечения.

Но если вы хотите купить портативное осветительное устройство с характеристиками под более сложные задачи, тут важным моментом является выбор соответствующего светового потока, то есть способность прибора освещать большое пространство с помощью мощного луча.

Главные характеристики

Светодиоды отвечают за качество света, которое излучает фонарь. Стабильность освещения зависит от множества характеристик, среди которых – ток потребления, поток света и цветовая температура. Среди законодателей моды стоит отметить фирму Cree, в ее ассортименте можно обнаружить очень яркие светодиоды для фонарей.

Современные карманные модели создаются на единственном светодиоде, мощность которого достигает 1, 2, либо 3 Вт.

Указанные электрические характеристики – это свойства различных моделей светодиода от известных марок.

Интенсивность световых лучей или световой поток – это показатель, который зависит от типа светодиода и компании-изготовителя. Фирма-производитель также указывает в характеристиках количество люмен.

Мощный ручной фонарик

Этот показатель напрямую соотносится с цветовой температурой света. Светоизлучающие диоды могут излучать световой поток, достигающий 200 люмен на 1 ватт, и производятся сегодня с разной температурой для свечения: тепло-желтоватый или холодно-белый.

В фонарях с теплым белым оттенком излучение является приятным для человеческого глаза, однако они светят менее ярко. Свет с нейтральной температурой цвета эффективным образом дает возможность рассмотреть наиболее маленькие элементы. Холодно-белое освещение обычно свойственно для моделей с огромной дальностью светового луча, однако при длительной работе может раздражать глаза.

Если температура достигает примерно 50 °C, то срок эксплуатации кристалла может быть до 200 000 часов, однако это не оправдывается с экономической точки зрения. По этой причине многие компании выпускают продукцию, которая способна выдержать рабочую температуру до 85 °C, при этом удается сэкономить на охлаждении. Из-за превышения отметки в 150 °C техника может вовсе выйти из строя.

Индекс цветопередачи является качественным показателем, который характеризует свойство светодиода освещать пространство, при этом нет искажения настоящего оттенка.

Светодиоды для фонариков с характеристикой источника цветопередачи в 75 CRI и более – это хороший вариант.

Важный элемент светодиода – это линза, благодаря которой задается угол рассеивания световых потоков, то есть определяется дальность свечения луча.

В любой технической характеристике светодиода непременно отмечается угол излучения. Для любой из моделей данная характеристика считается индивидуальной и обычно варьируется в диапазоне от 20 до 240 градусов. У мощных светодиодов для фонарей угол достигает примерно 120 °C, и в основном в комплектацию входит отражатель и дополнительная линза.

Типы светодиодных фонарей

Хотя на сегодняшний день можно наблюдать сильный скачок в производстве мощных светодиодов, состоящих из множества кристаллов, мировые марки все еще выпускают светодиоды с меньшей мощностью.

Производятся они в небольшом корпусе, который не превышает 10 мм в ширину.

При сравнительном анализе можно заметить, что один такой мощный кристалл имеет менее надежную схему и угол рассеивания, чем одновременно пара подобных элементов в единственном корпусе.

Не лишним будет напомнить о четырехвыводных светодиодах «SuperFlux», так называемой «пиранье».  У этих светодиодов для фонариков улучшенные технические характеристики. Светодиод «пиранья» обладает следующими основными преимуществами:

  1. равномерным образом распределяется поток света;
  2. не нужно отводить тепло;
  3. более низкая цена.

Типы светодиодов

На сегодняшний день на рынке доступно множество фонарей с улучшенными свойствами. Самыми востребованными считаются светодиоды от фирмы Cree Inc.: XR-E, XP-E, XP-G, XM-L.

Сегодня популярны также новейшие XP-E2, XP-G2, XM-L2 — их в основном применяют в некрупных фонарях.

А вот, к примеру, светодиоды Cree MT-G2 и MK-R от фирмы Luminus получили широкое применение в огромных моделях поисковых фонарей, которые могут работать одновременно от пары аккумуляторов.

К тому же светодиоды принято различать по яркости — существует специальный код, благодаря которому можно сортировать светодиоды по этому параметру.

Типы светодиодов для фонариков

При сравнении одних диодов с другими стоит обратить внимание на их габариты, а вернее, на участок светоизлучающих кристаллов. Если участок такого кристалла небольшой, значит, легче сосредоточить его свет в узенький луч.

Если же хотите от светодиодов XM-L получать неширокий луч, то необходимо будет применять очень большой отражатель, что отрицательно влияет на массу и габариты корпуса.

А вот с небольшими отражателями на подобном светодиоде выйдет довольно эффективный карманный фонарик.

Область применения светодиодов

В основном потребители при подборе фонарей выбирают модели с максимальным лучом свечения, но во многих случаях им такой вариант не нужен.

Во многих случаях подобный инвентарь применяется для того, чтобы осветить близлежащую местность либо объект, который находится на удалении не больше 10 000 м. Дальнобойный фонарик светит на 100 м, хотя во многих случаях довольно узким лучом, плохо освещающим окружающий участок.

В итоге при освещении подобными осветительными приборами удаленного объекта пользователь не заметит те объекты, которые располагаются в непосредственной близости от него.

Рассмотрим сравнение тональности света, который дают светодиоды: теплый, нейтральный и холодный. При подборе соответствующей температуры света фонарика необходимо принимать во внимание следующие важные моменты: светодиоды с теплым свечением могут минимально искажать цвет освещаемых объектов, однако у них меньшая яркость, чем у светодиодов нейтрального спектра.

При выборе мощного поискового либо тактического фонаря, где важным моментом является яркость прибора, рекомендуется подбирать светодиод с холодным спектром света.

Если же фонарик необходим для быта, туристических целей или для применения в налобной модели, то тут важное значение имеет грамотная цветопередача, а значит, светодиоды с теплым светом окажутся более выигрышными.

Нейтральный же светодиод является золотой серединой по всем характеристикам.

Фонарик с ярким свечением

Не принимая во внимание самые дешевые фонари, у которых есть лишь одна-единственная кнопка, у многих фонарей имеется пара режимов работы, среди которых режимы «стробоскоп» и «SOS».

У небрендовой модели есть следующие варианты работы: самый высокий показатель мощности, средняя мощность и «стробоскоп».

К тому же средняя мощность в основном равняется 50% самой высокой яркости света, а самая низкая – 10%.

Брендовые модели имеют более сложное строение. Тут управлять режимом работы вы можете с помощью кнопки, вращения «головки», поворотами магнитных колец и сочетанием всего перечисленного выше.

[ads-pc-2]

Источник: https://LampaGid.ru/vidy/svetodiody/dlya-fonarikov

Мастерская LED освещения в Днепре

Сегодня в магазинах можно купить различные светодиодные лампы, имеющие стандартные,  для существующих светильников, габариты. Но и на рынке хендмэйда сегодня можно купить мнжество готовых модулей, из которых легко собрать светодиодную лампу.

  • Рассмотрим процесс изготовления LED лампы своими руками на светодиодах SMD 5730 в корпусе от компактной люминесцентной лампы.
  • Для сборки нам потребуются светодиоды SMD 5730;
  •  Алюминиевая плата под светодиоды SMD 5730;
  • Драйвер для питания светодиодов SMD 5730;
  • И, как говорилось выше,  корпус от КЛЛ (куда влезет вся схема в сборе).

Имеем корпус от КЛЛ  MR 16 с алюминиевым отражателем и пластиковым отсеком для драйвера.  Внутренний диаметр отражателя позволяет запихнуть вовнутрь круглые алюминиевые платы со светодиодами диаметром от 26 мм и до 50 мм.

Имея возможность варьировать количеством светодиодов и размерами плат, останавливаем внимание на плате диаметром 40 мм с контактами под распайку восьми полуваттных светодиодов SMD 5730. Приобретаем плату и нужное количество светодиодов.

Теперь необходимо рассчитать драйвер для питания светодиодов от сети 220 вольт. Внимательно рассматриваем плату. Дорожки на плате коммутируют параллельно две группы по  четыре светодиода. Исходя из технических характеристик  светодиодов выбираем подходящий драйвер.

Технические характеристики светодиодов SMD 5730:

Тип светодиода Мощность светодиода, Вт Цвет свечения Размер, мм Световой поток, лм Угол, град. Ток, мА Напряжение, В
SMD5730 0,5 белый 5,7×3,0 45 120 180 3,1-3,3

Драйвер

   В общем случае драйвер — это источник тока для светодиодов. Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность.  На практике это означает следующее. Допустим, параметры драйвера: ток — 300 миллиампер, мощность — 3 Вт. Делим 3 на 0,3 — получаем 10 вольт.

Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из которых  рассчитан на 300 мА, а напряжение на светодиоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет  3 вольта, а ток 300 мА.

Подключим последовательно цепочку из трех таких светодиодов — напряжение на выходе драйвера будет  9 вольт, а ток 300 мА, так как при последовательном подключении светодиодов потребляемый ток всей цепочки остается равен току 1 светодиода, а падение напряжений на каждом диоде складывается.

 Рабочий  драйвер  при любом подключении светодиодов не выдаст больше тока, чем он рассчитан. Поэтому, если к драйверу мощностью 3 Вт и током 300 мА мы подключим две параллельные цепочки светодиодов SMD 5730, то каждая цепочка будет потреблять ток 150 мА, что в сумме составит 300 мА. Максимально допустимый ток светодиода SMD 5730 — 180 мА.

Питание светодиода SMD 5730 чуть меньшим током только продлит его срок службы из-за меньшего нагрева.  Выбираем для реализации задуманного этот АС-DC драйвер, и отправляемся в мастерскую.

Вначале, чтобы убедиться на практике в правильности своих рассуждений, быстренько впаиваем светодиоды на плату и подключаем к драйверу.

Включаем.

По яркости свечения вполне приличный результат. 

Проверяем на нагрев все модули. Плата нагревается до 50 °C, а драйвер всего  до 40 °C.

Так как в дальнейшем плата будет находиться в алюминиевом отражателе, который, в свою очередь, будет контактировать с металлическим корпусом светильника,  допускаем, что общей площади  теплоотвода  будет достаточно для охлаждения светодиодов, и будут они жить долго, а светить будут ярко.

Теперь дело за малым. Все эти модули (плата и драйвер) необходимо закрепить и разместить в корпусе от КЛЛ. 

Вначале тремя шурупами закрепляем плату  с припаянными проводами внутри отражателя на внутренней поверхности отсека драйвера.  Затем припаиваем сетевые провода от драйвера к контактам разъема МR 16. Впаиваем провода от платы к драйверу. Проверяем работоспособность. Окончательно собираем.  Готово!

  1. Последний штрих.
  2. Кроме вышеперечисленных деталей для сборки LED лампы своими руками на светодиодах SMD 5730, по совсем бросовой цене дополнительно была приобретена хрустальная линза от какого-то светильника R 50.
  3. Несколькими точками суперклея фиксируем хрустальную линзу к алюминиевому отражателю, и получаем суперэксклюзивную  LED лампу с разъемом МR 16, сделанную своими руками на светодиодах SMD 5730, которую и помещаем в потолочный светильник R 50.

В итоге – масса удовольствия, куча полезной информации и эксклюзивный свет над столом на 300 Lm, который, кстати, обошелся дешевле магазинной светодиодной лампочки с такими же параметрами. Потребляет такая лампочка от сети всего 3 Вт, что тоже актуально в свете последних тарифов на электроэнергию.

Внимание!

SMD  светодиоды  5730 необходимо паять очень быстро, не допуская перегрева, так как они конструктивно выполнены из легкоплавкого пластика, да и лишний перегрев может привести к досрочной деградации кристаллов.

Источник: https://dp-installer.at.ua/publ/led_light/led_lighting/le_lamp_with_his_hands_on_the_leds_smd_5730/14-1-0-27

Светодиодные фонарики своими руками

Как-то заказал с Китая SMD светодиоды 5630 для будущего робота, которого уже собираю пол года, и вот диодов пришло много, целая бухта, а излишки надо куда-то использовать 

Источник: https://eanik.ru/2017/05/01/fonariki/

Как подключить светодиодную лампу к автомобильному аккумулятору

Подключение светодиодных фонарей (и подсветки) к аккумуляторной батарее автомобиля

Светодиодные лампы

становятся все более популярными в нашей повседневной жизни. Люди используют их для украшения своих садов и интерьеров домов, но мы также видели по крайней мере один пример, который был немного смелее: украшения для автомобилей на светодиодах.

Снаружи или внутри автомобиля эти светодиодные фонари могут полностью изменить внешний вид вашего автомобиля - не говоря уже о том, что они также улучшают видимость и позволяют вам легче находить предметы вокруг автомобиля в ночное время.

Они доступны по цене, бывают разных видов и цветов, и все, что вам нужно, это продолжать читать, чтобы узнать, как подключить светодиодные фонари к автомобильному аккумулятору. Итак, приступим.

Светодиоды… ага близко к тому, что в фаре 🙂

Что такое светодиодная подсветка?

LED - это светодиоды, излучающие свет. Эти полупроводниковые компоненты являются электронными, обычно они состоят из кремния и других деталей, которые пропускают электроны (или просто электрический ток).

Диоды позволяют потоку идти только в одном направлении, но они также излучают свет, который мы видим. Технически анод, который является положительным выводом, подключается к положительному источнику питания, а отрицательный вывод, называемый катодом, подключается к отрицательному проводу или земле.

Светодиоды чрезвычайно важны в мире электроники. Хотя они присутствовали в той или иной форме в течение многих десятилетий, только в последнее десятилетие они приобрели популярность в нашей повседневной деятельности, такой как украшение домов и автомобилей.

Диод изготовлен из кремния и германия, которые соединены между собой, образуя мост. В них используется принцип полупроводниковых переходов (мостов). Они работают по одному и тому же основному принципу, который позволяет работать многочисленным технологическим компонентам, таким как микропроцессоры.

Есть ли у вас в машине светодиоды? Если нет, ознакомьтесь с нашими лучшими наборами для переоборудования светодиодов .

Как светодиоды излучают свет?

Мы уже установили, что светодиоды пропускают электричество.Чудо наступает, когда мы, как следствие, видим свет! Доступны светодиоды разных цветов - это связано с тем, что при их производстве используются разные материалы.

Многие компании начали производить эти светодиоды, поэтому теперь они невероятно доступны по цене и представлены в большом разнообразии цветов.

Обратный недостаток в том, что по сравнению с обычными лампочками они работают с низким напряжением, примерно 1,5 вольта. Это означает, что нам нужно добавить резистор для ограничения силы тока; в противном случае они сгорят.

Обычно мы вставляем резистор, если хотим подключить их к автомобильному аккумулятору, потому что каждый светодиод работает с напряжением около 1,5 вольт, а автомобильный аккумулятор обычно имеет 12 вольт.

Простой резистор не встроен в светодиодный источник

Что такое резистор?

Как упоминалось ранее, светодиодный светильник потребляет всего 1,5–2 вольт, а автомобильный аккумулятор - 12 вольт. Поэтому необходимо иметь резистор, чтобы не перегоревший светодиодный светильник. К каждой светодиодной лампе должен быть подключен собственный резистор.

Светодиоды в сравнении с лампочками

Почему светодиоды так популярны в наши дни? Ну, это должно быть из-за их многочисленных преимуществ перед лампочками и неоновыми лампочками.

Во-первых, светодиод потребляет гораздо меньше энергии по сравнению с лампочкой, в то время как неоновые лампы также потребляют меньше энергии. Кроме того, с точки зрения стоимости, как светодиодные, так и электрические лампы доступны по доступным ценам, в то время как неоновые лампы относительно дороги.

Подробнее о том, почему вы должны заменить старые галогенные фары на светодиодные

Низкое напряжение как для светодиодных, так и для лампочек, но для неоновых ламп требуются специальные источники питания.Светодиодные фонари имеют максимальную долговечность, в отличие от лампочек и неоновых трубок. Их ожидаемая продолжительность жизни равна десяткам тысяч часов для светодиодов и только сотням для двух других альтернатив.

Подключение светодиодных фонарей к автомобильному аккумулятору

Перед тем, как начать, посмотрите это видео на Youtube от kooper salmo, показывающее базовую схему подключения светодиодов к батарее:

Вот что вам нужно:

  • Отвертки
  • Светодиодные фонари
  • Гаечный ключ
  • Резистор (убедитесь, что он соответствует характеристикам светодиодных ламп, иначе он может перегореть)
  • Электропровода - калибр 14
  • Паяльник и припой
  • Клещи электрические
  • Проволочная щетка
  • Застежка-молния

Сначала откройте капот автомобиля и осторожно отсоедините отрицательный кабель аккумулятора, медленно ослабив стопорную гайку гаечным ключом.Снимите кабель. Решите, где разместить светодиодные фонари - идеи и пошаговое руководство можно найти в следующих разделах.

Протяните провод питания светодиода к положительной клемме аккумулятора. Поднесите (но не трогайте) второй провод, рядом с минусовой клеммой - заземляющий провод светодиода.

Затем с помощью электрических плоскогубцев снимите изоляцию с обоих концов провода. Светодиоды имеют два вывода, один из которых длиннее другого. Припаяйте один конец провода к положительной клемме аккумулятора, а другой конец - к более длинному выводу светодиода.

Аналогичная операция выполняется и со вторым проводом - электрическими плоскогубцами снимите изоляцию с обоих концов провода. Однако не подключайте провод к отрицательной клемме . Присоедините только один конец провода к оставшемуся проводу, который является более коротким.

Обрежьте заземляющий провод (тот, который находится рядом с отрицательной клеммой аккумулятора) и снимите изоляцию с помощью электрических плоскогубцев. Вы должны отрезать его примерно на 16 дюймов от батареи.

Присоедините один конец заземляющего провода к каждому концу резистора - вы можете использовать любой провод, он не имеет направления, которому вам нужно следовать.Наконец, прикрепите последний конец заземляющего провода к аккумулятору (отрицательный полюс).

Последний шаг - это, конечно, установка светодиода в нужное положение. Вы можете использовать стяжки, чтобы убрать провода светодиодов; вы можете прикрепить их к тире.

Установка светодиодных фонарей под машину

BRZ от AJ сделал отличное руководство по установке Underglow на Youtube:

Если вы хотите прикрепить светодиодные фонари для лучшего дизайна вашего автомобиля, вот подробное пошаговое руководство, как это сделать.

Что вам понадобится:

  • Светодиодные ленты
  • Застежка-молния
  • Скотч
  • Модуль коробки

Во-первых, разместите светодиодные фонари под автомобилем и закрепите их на месте с помощью стяжек (навсегда) или вы можете использовать скотч для временного оформления. Проложите четыре провода полностью к модульной коробке (рядом с аккумулятором) или протяните их, чтобы добраться до моторного отсека.

Подключите блок модуля с помощью красного провода к положительной клемме аккумулятора и черного провода к отрицательной клемме.Коробку модуля необходимо расположить так, чтобы она находилась подальше от радиатора и двигателя, иначе ее можно легко повредить. Кроме того, вам также необходимо разместить модульную коробку где-нибудь без влаги. Убедитесь, что антенна (из коробки с модулем) выдвинута, что обеспечит лучший прием.

Этот простой двухэтапный процесс подключения светодиодных ламп к модульной коробке - один из самых простых. Все, что вам нужно сделать, это протестировать и убедиться, что все светодиодные индикаторы работают должным образом.

После этого, если вы временно прикрепили их с помощью скотча, вы можете заменить его на застежку-молнию, чтобы сделать его постоянным. Застежки-молнии следует размещать каждые 12 дюймов или около того. Не рекомендуется использовать двусторонний скотч, потому что он слишком слабый, но в вашей машине должны быть щели, чтобы вы могли закрепить стяжки.

Установка светодиодных фонарей в автомобиле

Это может быть чрезвычайно полезно, если вы часто ездите ночью или просто хотите улучшить внешний вид своего автомобиля.Вот подробное пошаговое руководство, как это сделать.

Что вам понадобится:

  • Светодиодные фонари
  • Соединители с винтовыми зажимами
  • Отвертка
  • Ножницы
  • Инструмент для зачистки проводов
  • Изолента
  • Провод динамика или кабель 18-22 AWG, класс 2
  • Скотч или малярный скотч
  • Кольцевые зажимы
  • Рядный держатель предохранителей

Первый шаг - составить план, куда вы хотите прикрепить светодиодные фонари.Например, вы можете выбрать из-под сиденьями, багажником или под приборной панелью. Измерьте пространство, которое у вас есть для каждой полосы света, и убедитесь, что вы оставили не менее 1 1/2 дюйма там, где вам нужны кабельные соединения. Отрежьте полоски в соответствии со своим дизайном - убедитесь, что вы не повредили их, разрезая только медные контактные площадки.

Следующим шагом является установка разъемов с винтовыми клеммами на концах всех светодиодных лент. Снимите клейкую ленту гибкой ленты, откройте язычок лапки и вставьте гибкие полоски.Нажмите на черный язычок, чтобы надежно закрыть. Ослабьте винты на винтовом зажиме и соедините вместе каждую гирлянду фонарей.

Затяните винты так, чтобы они соединились, соблюдая полярность. Используйте скотч, чтобы разместить светодиоды в нужных местах (временно). Убедитесь, что автомобиль выключен.

Это последний шаг - подключение к источнику питания. Следуя описанному ранее методу, отсоедините обе клеммы аккумулятора. Подключите линейный предохранитель к положительной клемме, отогнув конец кабеля предохранителя и прикрепив кольцевую клемму, которая соответствует режиму работы от батареи.Кроме того, подключите гайку прямо к положительной стороне кабеля 18-22 AWG, в то время как отрицательная сторона будет контактировать с землей напрямую или через кольцевую клемму.

Включите автомобиль и проверьте свои светодиодные фонари. Если вас устраивает, вы можете закрепить их навсегда и удалить держатели скотча.

Завершение

Вот и улучшенная конструкция автомобиля! Надеемся, что эти простые пошаговые инструкции покажут вам, как подключить светодиодные фонари к автомобильному аккумулятору.Затем вы можете адаптировать это к любому светодиодному свету и любому месту. Для получения дополнительной информации и подробностей мы также объяснили, как подключить светодиодные фонари к автомобильному аккумулятору из салона автомобиля и под ним. Это позволит вам легко осветить те участки автомобиля, которые в этом больше всего нуждаются.

Как подключить светодиод постоянного тока к источнику питания

При использовании Duracel на 9 В наш сварочный блок светится красиво и ярко в течение 36 часов, затем вам понадобится новый аккумулятор. При таком подходе у вас есть решение для мгновенного подключения для краткосрочного использования.

Итак, я помещаю светодиоды в сарай, чтобы выглядело так, будто я что-то привариваю к поезду. К чему я подключаю светодиоды ???

У вас есть несколько вариантов выбора.

  • Вы можете подключить светодиоды к настенному адаптеру на 12 В. Продаем регулируемый адаптер 12В.
  • вы можете использовать регулируемый адаптер 12 В, который уже есть у вас дома
  • , вы можете купить использованный трансформатор со скидкой в ​​обменном пункте поездов или в магазине поездов (они стоят около 5-15 долларов).
  • , вы можете включить фонари непосредственно от сети поезда, подключив их к линиям электропитания, проходящим под вашей компоновкой, или подключив их непосредственно к ближайшему рельсовому пути.

Для использования нашего настенного адаптера 12 В Соберите красные провода от светодиодов, скрутите их с зачищенным концом красного провода на разъеме питания.
Соберите свои черные провода и скрутите их с черным зачищенным проводом на разъеме питания. Защитите ваши соединения друг от друга проволочными гайками или изолентой.

Вот отличное предложение для подключения к кучу домов и построек: возьмите длинный участок пути HO, подключите + и - провода на разъеме питания к участку пути.Затем поместите дорожку HO ПОД макетом. Теперь у вас есть 2 направляющих, которые действуют как «зачищенные провода», проложенные под каждым зданием или структурой, к которой вы хотите подключить питание. Когда вы будете готовы подключить светодиод, который вы разместили в своем здании, просверлите глубину через подложку Layout и подключитесь к HO трек, который вы разместили внизу.

Bread Boards отлично подходят для соединения большого количества источников света в одном месте, например, в аэропорту.
Не беспокойтесь о соединении светодиодов "неправильным путем" с выпрямленными светодиодами моста, нет "неправильного пути" благодаря мосту.Они всегда будут гореть, вперед или назад. Что касается светодиодов постоянного тока, если вы подключите их назад, они не загорятся, но вы можете пойти дальше и подключить их другим способом, никакого вреда.

Питание светодиодных лент от аккумулятора

Светодиодные ленты - это гибкие и универсальные осветительные приборы, но для освещения требуется источник питания. Что делать, если вы хотите использовать светодиодные ленты в месте, где у вас нет доступа к источнику питания или розетке? Вам может быть интересно, есть ли какое-нибудь портативное решение для питания!

В этой статье мы покажем вам, как выбрать и подключить аккумуляторную батарею (или стандартные батарейки AA) к светодиодной ленте, и позволим вам использовать ваши светодиодные ленты где угодно!

Протестировано и рекомендовано


В компании Waveform Lighting мы часто убираем наши светодиодные ленты с электросети.«Мы провели поиск и протестировали различные варианты батарей на основе следующих требований:

1) Перезаряжаемый с выходом 12 В

2) Легкий и удобный для потребителя

3) Достаточный заряд для работы всей катушки светодиодных лент FilmGrade в течение более час

В конечном итоге мы обнаружили, что аккумуляторная батарея RAVPower Xtreme отлично работает в сочетании со светодиодными лентами Waveform Lighting.


Возможности подключения


Аккумулятор RAVPower включает в себя порты USB с выходом 5 В, а также разъем постоянного тока с переменным напряжением, одним из вариантов является 12 В.

Порт постоянного тока на батарейном блоке является «гнездовым», и для его подключения к светодиодной ленте можно использовать прилагаемый кабель «папа-вилка».

Сначала нажмите кнопку питания на аккумуляторе и убедитесь, что выбран выход 12 В. Затем просто подключите один конец кабеля постоянного тока к разъему для аккумулятора с пометкой «Выход постоянного тока». Затем вставьте другой конец в цилиндрический конец светодиодной ленты. Вот и все!



Срок службы батареи


После полной зарядки аккумуляторная батарея способна обеспечить около часа непрерывного освещения всей катушки.

Официальная спецификация емкости аккумулятора, предоставленная RAVPower, указывает на 85 Втч. Это соответствует примерно 1 часу, исходя из спецификации мощности светодиодной ленты FilmGrade, составляющей 90 Вт на катушку.

Чтобы временно отключить питание, просто нажмите кнопку питания на батарейном блоке. Когда светодиодная лента не используется, мы рекомендуем полностью отсоединить светодиодную ленту в качестве меры предосторожности.


Увеличение срока службы батареи


Мы часто обнаруживаем, что яркость светодиодной ленты может быть уменьшена в определенных сценариях.Для этого мы используем диммер с ШИМ, который подходит для низковольтной системы постоянного тока. Диммер

Waveform FilmGrade соединяет аккумуляторную батарею и светодиодную ленту, действуя как «клапан», который снижает яркость без какого-либо мерцания или изменения цвета.

Как и ожидалось, срок службы батареи увеличивается в прямой зависимости от настройки диммера.


Другие варианты батарей


Варианты подключения аккумулятора к светодиодной ленте никоим образом не ограничиваются протестированным нами методом и аксессуарами.Ниже приведены некоторые общие советы и рекомендации по поиску совместимой пары.


Основные требования


Основные требования для питания светодиодной ленты от батареи:

1) Напряжение светодиодной ленты должно соответствовать выходному напряжению батареи

2) Емкость источника питания батареи должна быть достаточной для ваших нужд

3) Метод подключения между светодиодной лентой и аккумуляторным блоком должен соответствует


Выбор напряжения


Главное, что нужно знать, это то, что батарея, обеспечивающая уровень напряжения выше спецификации напряжения светодиодной ленты, может привести к повреждению светодиодов.И наоборот, пониженное напряжение обычно не опасно для светодиодов, но может привести к снижению яркости или полному отсутствию освещения.

Наиболее распространенная комбинация напряжения светодиодной ленты и батареи составляет 12 В постоянного тока. Если у вас нет конкретной ситуации, требующей чего-то еще, 12 В должно работать нормально.

Если вы хотите использовать стандартные батарейки AA, вы можете использовать батарейный отсек, который создает напряжение 12 В от 8 батареек AA по 1,5 В.


Расчет мощности


Емкость аккумулятора обычно рассчитывается в миллиампер-часах, сокращенно мАч, или ватт-часах, сокращенно Wh.Это значение указывает количество часов, в течение которых аккумулятор может обеспечивать определенный электрический ток (мА) или мощность (Вт), прежде чем он разрядится.

Чтобы рассчитать, как долго полностью заряженный аккумулятор можно использовать для питания светодиодной ленты, требуется немного простых математических расчетов.

Сначала определите потребляемую мощность светодиодной ленты в ваттах. Обычно это указывается в технических характеристиках светодиодной ленты. Обычно выражается в ваттах на фут или метр. Если он указан в А (амперах), умножьте число на 1000, чтобы преобразовать его в миллиамперы (мА).Если указано в ваттах (Вт), разделите число на напряжение (например, 12 В) и умножьте результат на 1000.

Затем найдите емкость аккумулятора в мАч. Ниже приведены номинальные значения мАч для обычных типов батарей:

Сухая батарея AA: 400-900 мАч

Щелочная батарея AA: 1700-2850 мАч

Щелочная 9В: 550 мАч

Стандартный автомобильный аккумулятор: 45000 мАч

Наконец, разделите аккумулятор Значение мАч по значению мА светодиодной ленты. Результат - ожидаемое время автономной работы в часах.


Мгновенная потребляемая мощность


Многие батареи также указывают максимальный мгновенный предел силы тока, обычно выражаемый в амперах.Мы настоятельно рекомендуем следить за тем, чтобы светодиодная лента не превышала этот предел. Превышение этого предела может привести к сокращению срока службы аккумулятора или повреждению аккумулятора.


Подключение аккумулятора


Еще одна часть головоломки - убедиться, что провода и разъемы совместимы. В большинстве аккумуляторных блоков в качестве выходной клеммы предусмотрены либо неизолированный провод, либо разъемы постоянного тока, как и в большинстве блоков питания с настенной розеткой.

Мы рекомендуем прочитать наше руководство по подключению светодиодной ленты к источнику питания для получения дополнительных сведений.

Вы также можете свериться с нашей краткой справочной таблицей ниже.


Заключительные замечания


Аккумуляторные блоки хорошо подходят для работы со светодиодными лентами, поскольку они по своей сути являются совместимыми устройствами постоянного тока. С учетом основных ограничений, описанных выше, вы также можете принять во внимание вес аккумулятора, портативность, способ и возможности подзарядки, чтобы сузить область поиска.

Различные плюсы и минусы отдельных типов батарей выходят за рамки нашей статьи, но совместимых вариантов много, и они значительно расширяют возможные сценарии использования светодиодных лент!

Другие сообщения



Что такое лампа E26 и как она выглядит?

Если вы собираетесь купить новую лампочку, вы могли встретить термин «E26», но вы могли не знать, что он означает.Читайте дальше ... Подробнее


Лампы E26 против E27 - Взаимозаменяемы? Не обязательно!

Вам может быть интересно, являются ли E26 и E27 одинаковыми или взаимозаменяемыми, и можно ли использовать лампу E26 в патроне E27 или наоборот. Перед ... Подробнее


Все, что вам нужно знать об освещении под шкафом

Освещение под шкафом - очень удобное и полезное приложение для освещения.Однако, в отличие от стандартной ввинчиваемой лампочки, установка ... Подробнее


Электрические принципы, лежащие в основе ограничений длины светодиодной ленты

Светодиодные ленты чрезвычайно популярны благодаря своей универсальности. Возможность отрезать светодиодные ленты любой желаемой длины - это, безусловно, ху... Подробнее


Вернуться к блогу об освещении осциллограмм

Просмотрите нашу коллекцию статей, практических рекомендаций и руководств по различным приложениям освещения, а также подробные статьи по науке о цвете.


Обзор светотехнической продукции


Как подключить светодиодную лампу к батарее и выключателю?

Диод - это электронное полупроводниковое устройство, через которое ток может течь только в одном направлении.Светоизлучающий диод ( LED ) - это устройство, которое загорается, когда через него течет ток в нужном направлении.

В то время как ранние светодиоды были низкой интенсивности и излучали только красный свет, доступны современные светодиоды, которые излучают свет во всем видимом спектре. Благодаря этому их можно использовать для самых разных целей. Чтобы контролировать, когда горит светодиод, вы должны подключить его к переключателю.

Запишите номинальную силу тока и напряжение для приобретенного вами светодиода.

Рассчитайте номинал резистора, который вам понадобится для вашей схемы, используя формулу: (напряжение источника - падение напряжения светодиода) / ток светодиода = Ом. Например, использование источника питания 12 В с светодиодом LED номиналом 3,1 В и 20 мА дает сопротивление резистора 445 Ом. Купите резистор с номиналом, близким к этому значению, с минимальным округлением в большую сторону.

Припаяйте резистор к плюсовому проводу светодиода; он называется анодом и является более длинным из двух проводов, выходящих из светодиода.

Убедитесь, что переключатель установлен в положение «Выкл.». Подключите другую сторону резистора к одному выводу переключателя с помощью куска медного провода. Припаяйте провод к переключателю и резистору.

Припаяйте кусок медного провода между другой клеммой переключателя и положительной стороной источника питания; эта сторона блока питания будет отмечена знаком «+» и обычно является красной клеммой на коммерческом блоке питания.

Поместите третий кусок провода между отрицательной стороной светодиода и источником питания; отрицательная сторона называется катодом и будет более коротким из двух выводов, выходящих из светодиода.Припаиваем провод к светодиоду и блоку питания.

Установите переключатель в положение «Вкл.» И убедитесь, что светодиодный индикатор горит должным образом.

Наконечник
Убедитесь, что вы подключили светодиод с анодом и катодом в правильных положениях, иначе светодиод не загорится.

Необходимые вещи
Светодиод
Переключатель
Резистор
Медный провод
Источник питания 12 В
Паяльник
Припой
Ссылки

Unclean.org: Знакомство с проводкой светодиодов для начинающих
Клуб электроники: светоизлучающие диоды (светодиоды)

Как запустить светодиодную подсветку от батареи 12 В ?

Светодиодные светильники - популярный способ сэкономить дома.Они служат в течение многих часов, а аккуратный свет может прослужить до 25 лет. Большинство светодиодных фонарей устроены так, что они могут работать от батареи 12 В - на самом деле, лампы 12 В могут вызвать короткое замыкание при подключении непосредственно к розетке, которая обычно имеет ток 110 В. Это может быть очень опасно, поэтому лучшее решение - вместо этого пропустить эти огни через реле.

Шаг 1 - Решите, где его разместить
Первое, что необходимо сделать при подключении светодиодов к батарее, - это подумать, куда они пойдут.Например, для батарей, работающих на светильниках на высокой стене, потребуется что-то, поддерживающее их вес. Если вы не устанавливаете их рядом с существующим аккумулятором на 12 В, приготовьтесь построить выступ, коробку или другую опору. Если оставить батарею болтаться, это в конечном итоге приведет к разрыву соединений.

Найдите поблизости место, чтобы поставить аккумулятор и выключатель; затем измерьте расстояние между тем, где находятся огни, и тем местом, где они будут. Это длина провода, необходимого для подключения светодиодов к источнику питания.

Батареи и выключатели должны быть проверены на наличие неисправностей перед подключением к светодиодной системе домашнего освещения. Это можно сделать, проверив ток вольтметром или подключив оба элемента к лампе или устройству, которое заведомо работает.

Шаг 2 - Подключите светодиод к батарее
Когда светодиоды встанут на свои места, осмотрите их и найдите провода; отрицательный вывод (или катод) можно идентифицировать одним или несколькими из следующих способов: это более короткий вывод, это сплющенная часть круглого светодиода или внутри светодиода, каждый вывод прикреплен к узел треугольной формы; положительный вывод (или анод) присоединяется к большему узлу.При правильном применении индикатор функции проверки диодов загорится светодиодом. Когда он горит, черный измерительный провод будет прикреплен к катоду, а красный измерительный провод - к аноду.

Когда вы уверены, какой вывод к какому идет, пора припаять провода к батарее 12 В. Катод уходит в землю - его можно припаять прямо к минусовой клемме 12в аккумуляторной батареи. Анод должен быть подключен к переключателю включения / выключения, который затем подключается к положительному порту батареи.

На этом этапе рекомендуется проверить, работает ли система домашнего освещения. Проблемы могут включать перегоревший предохранитель или поврежденный светодиод (это легко сделать во время подключения) или неплотное соединение где-то между лампами и батареей. Исправить эти проблемы - несложная задача, и если домашняя система освещения подключена правильно, проблем с ее использованием в обозримом будущем возникнуть не должно.

Для получения более подробной информации свяжитесь с нами по электронной почте: [адрес электронной почты защищен].

Батарея и светодиод без резистора

Рисунок 1.Многие дешевые крошечные светодиодные лампы используют кнопочные элементы (или батарею) и светодиод без каких-либо признаков токоограничивающего резистора. Но есть одно - внутреннее сопротивление батареи. Типичный брелок-лампа имеет элемент питания или батарейку (видна через корпус), замыкающий переключатель и светодиод.

Тот факт, что многие дешевые фонари для брелоков используют кнопочную ячейку и светодиод без признаков последовательного резистора или каких-либо ограничений по току, часто вызывает некоторую путаницу. Если светодиод в этом случае не перегорает при подключении к батарее 3 В, то что вообще за токоограничивающие и последовательные резисторы?

Ответ состоит в том, что есть последовательный резистор; мы просто этого не видим! Все элементы и батареи имеют внутреннее сопротивление.Обычно мы моделируем батареи как идеальный источник постоянного напряжения с последовательным сопротивлением.

Рисунок 2. Измерение напряжения холостого хода и напряжения нагруженного элемента позволяет нам измерить внутреннее сопротивление ячейки.
  • На рисунке 2a мы измеряем напряжение холостого хода батареи и получаем 3 В.
  • На рисунке 2b мы снова измеряем напряжение при подключенном светодиоде. Получаем, что это 2,2 В.
  • (c) Переключаем измеритель на мА и подключаем его последовательно со светодиодом.Меряем 30 мА.

С помощью этих трех измерений мы можем рассчитать внутреннее сопротивление ячейки. Падение напряжения составляет 3 - 2,2 = 0,8 В при 30 мА, поэтому, используя закон Ома, мы можем рассчитать внутреннее сопротивление как

. \ (R = \ frac {V} {I} = \ frac {0.8} {0.03} = 26,7 Ом \)

Обратите внимание, что внутреннее сопротивление может быть непостоянным, так как оно связано со сложным химическим и физическим действием внутри элемента. Если вы повторите измерения с двумя параллельно включенными светодиодами, вы получите другое, но близкое значение.Если вы закоротите ячейку с помощью амперметра, вы снова получите другое значение и, как правило, выше, поскольку вы потребляете гораздо более высокий ток.

Урок?

Тот факт, что он работает с кнопочным аккумулятором, не означает, что его можно использовать с другими источниками питания. Повторение теста с батареей с более низким внутренним сопротивлением повысит ток и может вывести из строя светодиод. Если подключить светодиод к регулируемому источнику питания 3 В, светодиод обязательно перейдет в разряд. См. Страницу кривых IV для более подробной информации.

Прочие чтения

Для расчета мощности, рассеиваемой на внутреннем сопротивлении, см. Статью о расчете мощности.

Питание светодиодного освещения от батареек

Вы, возможно, задавались вопросом, есть ли способ питания светодиодной ленты, который был бы портативным и надежным. Возможно, вы хотите установить его на свой велосипед, жилет для бега / езды или световые панели, и вам нужно что-то легкое и простое в установке.

Также может быть, что вам просто нужна полная возможность перемещаться с места на место, не беспокоясь о кабелях, подключенных к стене для вашего светодиодного костюма для шоу, концертов и тому подобного.

Вы не поверите, но в наших высококачественных светодиодных лентах можно использовать аккумулятор вместо удлинителя.

Различные типы батарей

Доступны различные типы батарей, включая никель-кадмиевые (NiCd), свинцово-кислотные, литий-полимерные (Lipo), литий-железо-фосфатные (LiFeP0) и никель-металлогидратные (NiMh).

Лучшие из них могут оставаться включенными до часа, и их можно использовать для замены источника питания. Вы можете использовать свои батареи с RF-контроллером, DMX-контроллером или диммером и по-прежнему иметь полную возможность изменения цвета, которая была бы у вас с блоком питания

Литий-полимерные (липо) батареи лучше всего подходят для использования со светодиодами, потому что светодиоды требуют большого тока..

Напряжение и сила тока для светодиодных приложений

Батареи

бывают разной силы тока и напряжения, а также разных размеров и форм, и они бывают с разными ячейками.

Каждая ячейка - это напряжение аккумулятора. Например, батарея 2S будет иметь две ячейки, 3,7 вольта на элемент равняется 7,4 вольт при сложении. Следовательно, батарея 3S будет иметь 11,1 Вольт при номинальном напряжении.

Когда аккумуляторные блоки полностью заряжены, напряжение повышается до 12.6 вольт для трехэлементной батареи, что достаточно для питания светодиодной ленты с номинальным напряжением 12 В постоянного тока.

Время работы

Вы, наверное, задаетесь вопросом, как долго батарея будет питать полосу. Существует множество переменных, таких как количество используемой светодиодной ленты, тип светодиода и миллиампер-часы аккумуляторной батареи.

По приблизительной оценке, каждые 250 мАч (миллиампер-час) заряжают полоску емкостью 16,4 фута на 5-7 минут для полоски с одинарной плотностью и 3-4 минуты для полоски с двойной плотностью.Основываясь на этой оценке, вы можете рассчитать, какая батарея лучше всего подойдет для вашего приложения. Литий-полимерные (Lipo) аккумуляторы емкостью от 250 мАч до 8000+ мАч.

Приложения

Способ использования литий-полимерной (липо) батареи с вашими светодиодными лентами полностью зависит от вас. Есть много разных приложений, которые будут работать от батареи вместо удлинителя.

Лучше всего подходит для мобильной установки, где нет места для проводов или нет источника питания.Возможности безграничны, когда вы используете батарею со светодиодными лентами; Вы можете делать все, что угодно, от облегчения передвижения по комнате, не спотыкаясь о провода, до стильной езды на велосипеде ночью.

Одно из приложений, которое я считаю действительно крутым, - это светодиодный комплект для шоу в ночном клубе, где танцор носит светодиодный костюм. Это действительно добавляет что-то особенное в шоу, и танцор выглядит невероятно!

Батарейки

- отличное решение, когда вы хотите добавить немного света на свои концерты и у вас нет времени, чтобы все подключить.Еще одно их использование - это если вам нужно сделать несколько легких панелей для работы и иметь полную портативную возможность.

Хотите ли вы сделать это для развлечения или для работы, возможности безграничны, когда вы питаете светодиодные ленты от батареек.

Как преобразовать рождественские огни для работы от батарей / постоянного тока (обычных или светодиодных)

Запуск рождественских огней от батарей (питание постоянного тока)


Фото Майка Маллена

Эта страница была оригинальным подключением к сети для батареи Рождественские огни!

Еще в 1990-х годах эта страница показывала читателям, как повторно подключить рождественские огни, чтобы они разряжались от батарей , , так как Рождественские огни с батарейным питанием были крайне редки.В статья также привлекла внимание читателей к светодиодным рождественским огням, которые были новый и крайне редкий в то время. (Светодиоды важны при ходовых горит батарейки, потому что получается до шестнадцать раз в время автономной работы по сравнению с обычными лампочками.) Никто еще говорил об этих вещах тогда.

Несколько лет спустя светодиодные фонари которые были предварительно смонтированы для постоянного тока. Это сделали все проще, но вам все равно пришлось купите фары, специальный аккумулятор и специальный зарядное устройство. И я был здесь, чтобы заинтересовать читателей этой комбинацией.

Но примерно в 2011 году многие компании начали производить светодиодные рождественские огни на батарейках, которые можно просто лопнуть нормальный AA батареи в. Теперь вы можете просто отправиться в Home Depot, Target, Амазонка , или Рождество Огни И Т. Д.и купите с полки комплект, рассчитанный на три AA батарейки примерно за 9 долларов. Задача решена.

Таким образом, широкая доступность аккумуляторных рождественских гирлянд сделал мою страницу немного менее особенной, , но у меня все еще есть полезный информация здесь для вас. Черт возьми, если бы вы искали фонари на батарейках, это означает, что вы, вероятно, не знали вас мог получить их в Home Depot или Amazon, ты сделал? Итак, я уже подключил вас!

Продолжайте читать, если хотите более подробную информацию.

Источники аккумуляторные светодиодные рождественские фонари

Если не указано иное, товары во всех магазинах ниже взять только бытовые батарейки (например, три AA) и не рассчитаны на 12 В, за тем, кто хочет использовать аккумулятор на 12 В.

Также, не забудьте проверить слово "LED" в продукте. описание, потому что в некоторых местах продаются фонари на батарейках старого образца, которые недолговечны почти столько же.

  • Биг-бокс. Я точно знаю, что ты можешь получить дома светодиодные фонари для батарей Депо и Таргет, и, возможно, другие, как Что ж. Теперь вы знаете, что этот продукт действительно исчез. Основной поток!
  • Специализированные Интернет-магазины. Сюда входит Рождество Огни И т. Д. И светодиод Рождество Огни. Я заказал четыре комплекта в декабре.6, 2011 от бывшего, и они нормально работают. Также Рождество Источник света имеет жилы 12 В, а двое других - нет.
  • Amazon. У Amazon есть все эти дней. Несколько вариантов на выбор сейчас, и я ожидаю больше в будущее.
  • Воображаемое Цвета / Inirgee. Эти парни раньше была чуть ли не единственной игрой в городе для такого рода товар, так что опора для этого, но с тех пор их обошли конкуренты. Сайт Инирджи уродливый, на нем трудно ориентироваться, и их товаров часто нет в наличии. Но у них есть струны предварительно смонтирован на 12 В, что по достоинству оценят любители.

Использование светодиода огни!


Я не могу этого подчеркнуть: Использовать светодиод огни при работе фары от батарей! Они используют На 90-98% меньше электричество, чем стандартные огни, и вы обойдетесь шестнадцать раз время автономной работы.Вместо 15 минут со старой школой огни вы получите четыре часа со светодиодами. Я только что провел тест с большой аккумулятор и получил всего два часа на комплект старых фонарей, и колоссальный 31 час со светодиодами. Обе нити были по 20 луковиц каждый. Чувак / чувак, используйте светодиоды.

Какие батареи использовать


Батарейки АА

Большинство светодиодных нитей, подключаемых к батареям, занимают три AA батареи. По моему опыту, аккумуляторная NiMH работают нормально и обеспечивают отличное время автономной работы, несмотря на их начальное более низкое напряжение, чем у щелочей, поэтому я рекомендую (и используйте) NiMH.

Аккумуляторы 12В

Большинство людей предпочтут использовать простые батарейки типа AA, но если ваш дом уже подключен к 12V (например, RV или дом вне сети), или вы просто хотите подключить 12 В аккумулятор потому что это заставляет вас чувствовать себя круто, тогда вы можете покупать пряди предварительно подключенный для 12 В.Пока я пишу это, я знаю только источники 12 В, это Рождество. Источник света и Inirgee.

Перезаряжаемый аккумулятор NiMH 12 В и зарядное устройство будут установлены вы возвращаете около 20 долларов каждый. Вы можете получить их от Amazon (аккумулятор упаковка, зарядное устройство) или Powerizer (аккумулятор упаковка, зарядное устройство). Если аккумулятор, зарядное устройство или фары нуждаются в разъемах, вы можете получить их в Radio Shack или Powerizer.

Вы можете сделать свой собственный пакет из батареек AA или AAA, но тогда у вас будет много батарей для зарядки. Но эй, это твоя жизнь. Если вы пойдете по этому маршруту, то было бы 10 никель-металлгидридных аккумуляторов (10x1,2 В = 12 В) или 8 щелочных батарей (8x1,5 В = 12 В). Для этого у Radio Shack есть держатели для батареек. цель. Если вы соединяете несколько держателей вместе, соединять противоположные цвета вместе (красный + черный).

При работе от сети переменного тока 120 В, рождественские огни выключают батареи


Если не хотите покупать аккумулятор , там два пути для работы вашего обычного (120 В переменного тока) рождественские огни выключают батареи.

Первый - использовать аккумулятор на 12 В и инвертор. Инвертор - это небольшое устройство, преобразующее электричество. от постоянного тока к переменному току (или менее технически, от батарейного типа к настенного типа).Ты подключите аккумулятор 12 В к инвертору, а затем просто подключите Рождественские огни в стандартную розетку переменного тока на инвертор. Это как мини-электростанция. Вы можете выбрать этот маршрут, если ты уже есть тонна обычных (вилка переменного тока) рождественских огней, и вы не хочу купить совершенно новые фонари с батарейным питанием. У

Radio Shack есть инверторы по цене от 14 долларов.Вы также можете наверное найти хорошие инверторы на eBay. Обратите внимание, что многие инверторы поставляются с вилкой прикуривателя. Если инвертор представляет собой универсальное устройство, вы будете запускать провода от инвертор к аккумулятору. Если прикуриватель отдельный, тогда отрубите его и прикрепите провода к источнику батареи. Это ожидает 12 В вход, который может быть встречен батареей пачка или десять 1.2 В NiMH батареи.

Второй способ выключить рождественские гирлянды переменного тока - это перемонтировать их, как я объясню ниже. Но это такая неприятность, что ты вероятно, не захотел бы переплетать их целую кучу.

Сколько времени работы вы получите от батареи

Рассчитать потребление электроэнергии легко. Формула простой:

Вольт x Ампер = Ватт

Обычно мы сокращаем.(например, 2,5 В = 2,5 В, 25 Вт = 25 Вт).

Вам даже не нужно знать, что такое вольт, ампер или ватт, в качестве пока вы знаете формулу.

Когда вы используете ватт электроэнергии в течение часа, это ватт-час, или Wh. Усилитель электричества на час - это ампер-час, или Ах. Батареи хранят такое крошечное количество электричества, что они обычно измеряется в миллиампер-часах вместо ампер-часов (мАч).1800mAh это то же, что и 1.8Ач.

Типичная нить из 50 лампочек ( не -LED) Рождества огни использует 25 Вт. Таким образом, каждая лампочка потребляет около половины ватта. (Помните который, мы будем использовать его позже.) Теперь нам нужно посмотреть, сколько электричества хранится в батарее.

Типичная аккумуляторная батарея AA (NiMH) выдает 1.2В и есть рассчитан на 2200 мАч. Помня, что V x A = W, мы видим, что одна батарея имеет емкость 1,2 В x 2,2 Ач = 2,64 Втч. Но фонари потребляют 25 Вт. Так вам понадобится десять батареек для питания ваших фонарей всего на один час. Ой.

У вас есть четыре варианта увеличения времени автономной работы вашего батареи:

  • Используйте светодиодные фонари вместо . Использование светодиодов 90 +% электричества меньше , чем штатные фары. Так что ваши батареи прослужат примерно в 16 раз дольше.
  • Используйте меньше лампочек. Кто сказал, что нужно использовать 50 огни? Используйте только 25, и тогда ваших батарей хватит вдвое. Использовать еще меньше загорается и получает еще больше времени работы от батареи.
  • Используйте больше батареек. Чем больше батарей вы используете, в больше энергии у вас будет.
  • Используйте батареи большей емкости. NiMH D-клетки хранят до 11000 мАч. Вы также можете использовать небольшой свинцово-кислотные аккумулятор или аккумулятор, используемый для видеокамер или дистанционно управляемый игрушечные машинки.

Я предпочитаю использовать светодиодные лампы. Туда я не нужно ограничивать количество источников света, которые я использую или с которыми имею дело покупка и перезарядка газиллионных батарей. Светодиоды предлагают другие преимущества: они не выгорают (не около десяти годы, в любом случае), и они прочные - они не ломаются так легко, как обычный хлипкие рождественские огни.


Все рождественские гирлянды производятся в Китае

Если вы хотели купить освещение "Сделано в США" пряди, нельзя. Их не существует. И даже если вы смог найти бренд, который был собран в США, светодиодные лампы сами наверняка были бы произведены в Китае. я не нравится поддерживаю китайский рабский труд, поэтому я стараюсь покупать все свои вещи подержанные на eBay и в благотворительных магазинах. (Я только что получил набор из Светодиодные праздничные огни в Goodwill на прошлых выходных за 6 долларов, спасибо очень много.) Вот статья о отсутствие рождественских огней американского производства.

Остерегайтесь свинца в проводах

В проводке рождественских фонарей есть свинец. Некоторые источники говорят, что все электрические шнуры имеют вести. Некоторые сразу говорят, что количество свинца настолько мало, что это не вредны, но глава ЦГНП говорит: «Научный литература в изобилии и установил, что безопасного предела для вести." Это не шутка, так как ребенок моего друга отравился свинцом из старый дом, в котором они жили и должны были пройти лечение, и теперь родители всегда будут задаваться вопросом, не страдала ли она от когнитивных нарушений. способности, так как нет возможности узнать, что ее способность были без разоблачения. Итак, не позволяйте своим детям обращаться с электрическими шнурами и всегда мыть руки после так себя.

Фары от велосипедного генератора

Некоторые читатели спрашивали о включении света от велосипед генератор вместо аккумуляторов , поэтому у них всегда есть власть для их огни, когда они едут, не беспокоясь о батареи. Что ж, позвольте мне сказать вам, возиться с генератором намного сложнее, чем возня с батареями.Плюс ваш свет будет гаснуть каждый раз ты остановишься.

Одна проблема с генераторами заключается в том, что вам нужно способ регулировать напряжение, потому что в противном случае свет бы постоянно становиться ярче и тусклее по мере того, как вы крутили педали быстрее и помедленнее - и они полностью взорвутся, если вы поедете слишком быстро. я также не знаю, где получить генератор, монтажный кронштейн и регулятор напряжения, так что пока Кто-то подсказывает мне все эти вещи, тебе лучше питание вашего освещает легкий путь: с батареи.


Ремонт рождественских огней, чтобы погаснуть батареи

Вот где вы можете сыграть безумного ученого. Многие устройства работают только от переменного или постоянного тока, но освещение не разборчиво и убежит либо. Хитрость заключается в том, чтобы просто перемотать нить так, чтобы луковицы получить в правильное напряжение.Это напряжение - это напряжение вашего аккумулятор или Аккумуляторная батарея. Вот ваш выбор напряжения батареи, в зависимости от того, какого цвета и цвета лампочек вы меняете проводку.

    • Белые, синие или зеленые светодиоды 3,3 В:
      • 6 В (пять батарей по 1,2 В) для последовательно подключенных светильников из двух
      • 12 В (десять батарей 1,2 В или одна батарея 12 В) для светильников, соединенных последовательно по четыре
    • Красный, оранжевый или желтый 2.Светодиоды 0 В:
      • 6 В (пять батарей по 1,2 В) для последовательно подключенных светильников из трех
      • 12 В (десять батарей 1,2 В или одна батарея 12 В) для светильников, соединенных серией по шесть штук
    • NON-LED фары (олдскул "нормальный" 2.4V Рождество фары)
      • 2,4 В (две батареи 1,2 В) для освещения, подключенного к серия из одного
      • 4.8 В (четыре батареи 1,2 В) для ламп, подключенных к серия из двух
      • 9,6 В (восемь батарей 1,2 В) для ламп, подключенных к серия из четырех
      • 12 В (десять батарей 1,2 В или одна батарея 12 В) для светильников, соединенных последовательно по пять штук

Мы будем использовать стандартные ( не -LED) лампы в нашем пример ниже, потому что у меня валялся старый набор, когда я получил в импульс написать эту статью.

Настенная розетка обеспечивает около 120 В, поэтому, если есть 50 горит в жгуте, каждая лампочка получает 2,4В. Лампочки на самом деле хочу 2,5 В, поэтому подача им только 2,4 В делает их совсем немного диммер но не намного, а пониженное напряжение продлевает срок их службы так или иначе. В в нашем примере ниже мы предоставим 9.6В к нашей нити с батареи, которые будет питать четыре лампочки (4 x 2,5 В = 10 В). Прежде чем ты начнешь кричать, что четырех лампочек мало, не волнуйтесь, через минуту покажу ты как соедините вместе несколько наборов по четыре штуки.

Большинство рождественских лампочек на 2,5 В, но некоторые другие, и они могло быть более или менее. Обычно напряжение указывается на коробка фары пришли или на этикетке на пряди. Если они светодиоды огни тогда каждый цвет имеет разное напряжение; белые светодиоды в общем ~ 3,5 В. Если вы не можете найти напряжение, проверьте производитель. Кроме того, не думайте, что если в цепи из 50 ламп накаливания 2,5 В который В нити из 100 луковиц должно быть 1.Лампочки 25В; более вероятно, что в Нить из 100 лампочек - это всего лишь две жилы из 50 ламп, соединенные вместе.

В любом случае, вот как соединить четыре лампы 2,5 В вместе:

Но что делать, если вы хотите запитать более четырех огни? Легко, просто создайте несколько наборов из четырех лампочек и зацепите их все вместе.Вы можете иметь столько сетов из четырех, сколько захотите, хотя чем больше у вас лампочек, тем быстрее разрядятся батарейки. Вот как соединить вместе три комплекта из четырех лампочек.

Вот как это выглядит с реальным освещением:

ШАГ 1. Сделайте три набора по четыре лампы
I подвязал слабину, чтобы фары были компактнее. Есть ничего особенного между лампочками, просто непрерывный провод. Помните что во внешней оболочке проводки есть свинец, и вы должны мыть твои руки когда вы закончите играть с проводами!

ШАГ 2: Подключите все «головы» вместе.
То есть убедитесь, что начало каждый набор подключается проводом.Обычно вы оборачиваете мощность Проведите вокруг других проводов, но здесь я сделал отдельный провод так что это легче увидеть как проводка работает.

ШАГ 3: Подключите все «хвосты» вместе.
То есть убедитесь, что конец каждого набора соединены проводом.
Обычно обратный провод также наматывается на другой провода.
Я сделал его отдельно, чтобы было легко увидеть, как он подключен.
Обратите внимание, что на самом деле аккумулятор состоит из восьми батарей, хотя только четыре видны
(остальные четыре снизу; это две батареи глубиной).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *