Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как подключить к блоку питания цифровой вольтметр, амперметр (Китайский модуль) своими руками.

 

 

 

Тема: как поставить измеритель тока и напряжения на источник питания.

 

Достаточно удобно, когда на блоке питания установлен индикатор, показывающий постоянное напряжение и ток. При питании нагрузки всегда можно видеть падение напряжения, величину потребляемого тока. Но не все источники питания оснащены амперметрами и вольтметрами. У покупных, более дорогостоящих блоков питания они имеются, а вот у дешевых моделях их нет. Да и в самодельных БП их не всегда ставят. Сегодня имеется возможность приобрести за небольшие деньги цифровой модуль измеритель индикатор постоянного тока и напряжения (Китайский вольтметр амперметр). Стоит этот модуль в пределах 3х баксов. Купить его можно посылкой из Китая, на ближайшем радиорынке, магазине электронных компонентов.

 

Сам этот Китайский цифровой модуль вольтметра, амперметра измеряет постоянный ток (до 10, 20 ампер, в зависимости от модели) и напряжение (до 100, 200 вольт). Он имеет небольшие, компактные размеры. Легко может монтироваться в любые подходящие корпуса (нужно вырезать соответствующее отверстие и просто его туда вставить). На задней части, на плате имеются два подстроечных резистора, которыми можно производить коррекцию показаний измеряемых величин тока и напряжения. Точность у этого цифрового Китайского модуля вольтметра и амперметра достаточно высока — 99%. Экран имеет трехсимвольное табло красного (для напряжения) и синего (для тока) цвета. Этот блок питается от постоянного напряжения от 4 до 28 вольт. Потребляет мало тока.

 

Сама установка, электрическое подключение к схеме блока питания достаточно проста. На измерительном модуле тока и напряжения имеются такие провода: три тонких провода (черный минус и красный плюс питания модуля, жёлтый для измерения постоянного напряжения относительно любого черного), два толстых провода (черный минус и красный плюс для измерения силы постоянного тока).

 

 

 

 

Этот Китайский модуль амперметра, вольтметра можно питать как от самого источника, на котором измеряем электрические величины, так и независимым блоком питания. Итак, после монтажа в корпус измерителя мы спаиваем вместе два чёрных провода (тонкий и толстый), это будет общий минус, который мы и припаиваем к минусу блока питания. Спаиваем вместе тонкие провода красного и желтого цвета, подсоединяем их к выходу (плюса) источника питания. К толстому красному проводу, относительно спаянных чёрных проводов, подключаем саму электрическую нагрузку (это будут провода выхода блока питания).

 

 

Важно заметить, что для правильного измерения постоянного тока важна полярность токовых проводов. То есть, именно толстый красный провод должен быть выходом блока питания. В противном случае данный цифровой амперметр будет показывать нули на своем табло. На обычном блоке питания (без функции регулирования напряжения) на индикаторе можно отслеживать только падение напряжения. А вот на регулируемом источнике питания будет хорошо видно, какое напряжение вы сейчас имеете при его выставлении.

 

Видео по этой теме:

 

 

P.S. В целом подключение этого цифрового Китайского модуля вольтметра, амперметра на должно составить труда. При последующем использовании вы оцените его работу, вам она понравится. Наиболее популярным считается трёхсимвольный измерительный блок, хотя немного подороже будет стоит четырехсимвольный, у которого точность измерения уже не 99%, а 99,9%. Данные цифровые модули, измеряющие постоянный ток и напряжение, бывают и отдельного типа, то есть один такой блок является либо амперметром или вольтметром. Экран у них побольше.

 

Как подключить амперметр с шунтом

Как подключить вольтметр амперметр

Очень часто начинающие радиолюбители задают один и тот же вопрос: — Как подключить универсальный китайский вольтметр амперметр к самодельному зарядному устройству или регулируемому блоку питания? В последнее время меня буквально заваливают вопросами, как подключить, куда подключить. Поэтому я решил написать специально отдельную статью, в которой подробно расскажу, как и каким образом подключить китайский вольтметр амперметр к зарядному устройству или самодельному регулируемому блоку питания.

На сегодняшний день существует две популярные китайские, универсальные модели вольтметров амперметров со встроенным шунтом, которые так любят покупать в Китае на АлиЭкспресс все без исключения начинающие и профессиональные радиолюбители.

Давайте детально рассмотрим две модели самых популярных вольтметров амперметров китайского производства.

Оба прибора имеют пять проводов для подключения к блоку питания. У первого слева три толстых провода (черный, синий, красный) и два тонких (черный, красный). Тонкие провода предназначены для питания прибора: красный плюс, черный минус. Толстые провода: Черный минус амперметра, синий выход амперметра, красный вход вольтметра.

Второй прибор также имеет пять проводов три тонких (черный, красный, желтый) и два толстых провода (черный, красный). Тонкие провода предназначены для питания прибора: красный плюс, черный минус, желтый вход вольтметра. Толстые провода: черный минус амперметра, красный выход амперметра.

В каждый китайский универсальный измерительный прибор (КУИП) встроен измерительный шунт для амперметра, а это большой плюс, потому, что не надо ничего «колхозить», сделано по принципу «поставил и забыл». В некоторых КУИПах шунт изогнутый буквой «М» и блестящий, мне достались экземпляры с медным «П» образным шунтом. Как я понял, на качество измерений форма и цвет шунта никак не влияет.

У приборов на плате имеются подстроечные SMD резисторы с помощью которых, есть возможность подкорректировать показания вольтметра и амперметра.

На этом рисунке изображена схема подключения вольтметра амперметра первой модели к зарядному устройству из компьютерного блока питания.

Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания

Питание прибора осуществляется от отдельного источника питания в данном случае это пяти вольтовая зарядка от телефона, которую легко разместить в корпусе блока питания. Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4.5В прибор просто перестанет работать. Скорость вентилятора то же будет снижаться, но при низком напряжении радиаторы блока питания будут немного теплыми и ничего страшного не произойдет.

При выходном напряжении более 12В стабилизатор напряжения L7812CV включается в работу и тем самым поддерживает постоянное напряжение на вентиляторе не более 12В.

На этом рисунке изображена схема подключения вольтметра амперметра второй модели к зарядному устройству из компьютерного блока питания.

Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания

С зарядным устройством из компьютерного блока питания все понятно. Давайте рассмотрим схему подключения китайского вольтметра амперметра первой модели к регулируемому блоку питания. В верхней части схемы изображен регулируемый блок питания с защитой от короткого замыкания, состоящий из диодного моста, конденсатора, стабилизатора напряжения LM317, транзистора MJE13009, переменного резистора и трех постоянных резисторов.

Схема подключения вольтметра амперметра к регулируемому блоку питания

В нижней части схемы вентилятор и китайский вольтметр амперметр подключаются через стабилизатор напряжения L7812CV к выходу диодного моста параллельно конденсатору С1. Стабилизированное напряжение на вентиляторе и КУИПе не более 12В.

На этом рисунке изображена схема подключения китайского вольтметра амперметра второй модели к регулируемому блоку питания.

Схема подключения вольтметра амперметра к регулируемому блоку питания

Многие радиолюбители предпочитают устанавливать в зарядные устройства и регулируемые блоки питания аналоговые китайские измерительные приборы (КИП) за многие годы не утратившие своей популярности. Поэтому предлагаю рассмотреть схему подключения классического стрелочного вольтметра и амперметра.

На этом рисунке изображена схема подключения вольтметра и амперметра со встроенным токоизмерительным шунтом.

Схема подключения вольтметра и амперметра со встроенным шунтом к блоку питания

Вольтметр подключается параллельно к источнику питания с соблюдением полярности. На приборе должны быть отметки плюс и минус. Амперметр обычно подключают в разрыв минусового провода после вольтметра. Так же можно подключить в разрыв плюсового провода на точность измерений способ подключения прибора никак не влияет. Главное условие, соблюдение полярности.

Иногда бывают амперметры без встроенного токоизмерительного шунта. Тогда шунт приходится покупать отдельно. Чтобы у вас не было дополнительных расходов, перед покупкой амперметра всегда уточняйте у продавца наличие шунта внутри прибора. Иногда стоимость отдельного шунта больше стоимости прибора со встроенным шунтом.

На этом рисунке изображена схема подключения вольтметра и амперметра с отдельным токоизмерительным шунтом к блоку питания.

Схема подключения вольтметра и амперметра с отдельным шунтом к блоку питания

Шунт всегда подключается параллельно амперметру. Без него прибор просто сгорит. Как подобрать шунт? Если прибор рассчитан на 10А, значит и шунт должен быть на 10А. На каждом шунте имеется маркировка указывающая на какую силу тока он рассчитан.

Ну вот и все, моя статья подошла к концу, у вас теперь есть новая пища для размышлений.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как подключить вольтметр амперметр

Шунты для амперметра: подключение, применение и изготовление

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.

Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.

Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.

О том, как произвести расчет шунта для амперметра, смотрите далее.

Расчет измерительного шунта миллиамперметра

Шунт (англ. Shunt) — электрическое или магнитное ответвление, которое включают параллельно основного контура цепи. Параллельное подключение одного звена электрической цепи к другому с целью понижения общего электрического сопротивления называется процессом шунтирования. Это нашло широкое применение в схемотехнике.

Шунты измерительных приборов

Измерительный шунт — сопротивление, параллельно подключенное к зажимам измерительного амперметра (параллельно его внутреннему электрическому сопротивлению). Это позволяет прибору расширить измерительный диапазон по току при снижении его чувствительности и разрешающей способности.

Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:

Для определения небольших значений тока (не более 30 А) шунт чаще всего находится внутри корпуса прибора. В случае измерения внушительных значений тока во избежание чрезмерного нагрева корпуса шунт имеет наружную конфигурацию исполнения.

В портативных магнитоэлектрических устройствах, рассчитанных на силу тока не более 30 ампер, внутренние шунты рассчитаны на несколько граничных значений измеряемой величины.

Многопредельный шунт устроен в виде ряда резисторов, которые возможно коммутировать в соответствии с пределом измерения, рычажным тумблером либо путем перемещения провода с одной клемы на другую.

У внешних резисторов, как правило, присутствует калибровка, с расчётом на распространенные значения тока и напряжения. Такие шунтирующие сопротивления имеют ряд номинальных значений напряжения: 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

При использовании элементов шунтирования в измерениях величин переменного тока наблюдается добавочная погрешность, связанная с преобразованием частоты, поскольку сопротивления измерительного механизма и шунтирующего устройства находятся в различных зависимостях от частоты.

Шунтирующие звенья классифицируются согласно точности: 0,02, 0,05, 0,1, 0,2, и 0,5. Цифровые значения, отвечающие каждому классу, указывают на допустимую величину расхождения сопротивления с его номиналом, выраженную в процентах.

Эксплуатационные требования, выдвигаемые к элементам шунтирования: низкие потери напряжения в области шунта, во избежание перегрева оборудования; стабильное значение сопротивления, обеспечивающие точность измерения; стойкость к коррозии и к воздействиям окружающей среды.

Контроль величины постоянного тока имеет широкий диапазон применения, в том числе:

  • фотоэлектрическая промышленность,
  • источники электропитания общественного транспорта,
  • электрические генераторы и двигатели,
  • оборудование для сварочных работ,
  • инверторы,
  • и другие системы с наличием высоких значений постоянного тока.

Во многих промышленных отраслях применение шунтирующих резисторов зарекомендовало себя как надежный, точный и долговременный способ для беспрерывного измерения тока постоянной величины.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Следовательно, варьируя разными значениями сопротивления електр. звена, можно добиться любой области измерения. Чтобы подтвердить это на практике, можно создать шунт для амперметра своими руками.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

Тогда искомая величина будет равна:

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Амперметр для зарядного устройства

Нелишним будет знать, как сделать из вольтметра амперметр и применить его в процессе контролирования силы тока при зарядке аккумуляторных батарей.

Необходимый стрелочный вольтметр проверяется на способность стрелки полностью отклонятся вдоль измерительной шкалы. Следует убедиться в отсутствии добавочных сопротивлений или внутреннего шунта.

До этого был рассмотрен расчетный метод подбора шунтирующего резистора, в этом случае самодельный амперметр получается сугубо практическим путем, с помощью добавочного изм. прибора или тестера с пределом измерения до 8 А.

Соединяется в простую схему зарядный выпрямитель, дополнительный образцовый амперметр, проводник для будущего шунта и заряжаемая аккумуляторная батарея.

Для изготовления шунта для амперметра 10А своими руками на концах неизолированного толстого медного проводника длиною до 80 см выгибаются кольцеобразные дуги под крепеж болтом. После чего подсоединяется последовательно с образцовым изм. прибором в электрическую цепь выпрямитель — аккумулятор.

Один из концов стрелочного вольтметра основательно соединяется с шунтом, а другим, как щупом, проводится по медному проводу. Подается питание через выпрямитель и устанавливается по образцовому амперметру сила тока в цепи 5А.

Начиная от места крепления, щупом от вольтметра следует вести по проводу, пока на обоих приборах не установятся одинаковые значения тока. Согласно величине сопротивления рамки используемого стрелочного вольтметра определяется нужная длина провода шунтирования величиною до метра.

Проводник шунта возможно смотать в виде спирали либо как-то еще. Витки легонько растянуть с целью избежать прикосновений между ними или изолировать хлорвиниловой трубкой по всей длине спирали шунта.

Вариант предварительного определения длины провода для последующей замены изолированным проводником тоже вполне приемлем и практичен, но требует внимательности и тщательности в операциях замены шунта, повторяя все этапы по нескольку раз. Связано это с точностью показаний амперметра.

Соединительные провода от вольтметра должны быть обязательно припаяны непосредственно к шунтирующей спирали, иначе прибор будет иметь погрешности в показаниях.

Провода соединяющие шунт и изм. прибор выбирают произвольной длины, поэтому шунтирующий элемент возможно поместить в любой части корпуса выпрямителя.

Шкала амперметра для измерения величины постоянного тока равномерная, этим нужно руководствоваться при ее выборе. Букву V правильно заменить на А, а цифровые значения подогнать из расчета максимального тока в 10 А.

Как подключить амперметр с шунтом

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практике

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс 😉

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” 😉

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:

Полезный сайт

Амперметр – прибор, с помощью которого измеряют силу электрического тока (постоянного или переменного). Как известно, сила электрического тока измеряется в амперах. На электрических схемах обозначается кружком, внутри которого пишется «А», что значит ампер, то есть Ампер – единица измерения тока.

Таким образом, амперметр измеряет силу электрического тока в амперах.

Применение амперметра

Амперметр применяется для измерения электрического тока как постоянной, так и переменной величины в диапазоне от мкА до кА. Амперметр следует применять на ток, не превышающий максимальный ток шкалы, с учетом схемы подключения. В зависимости от верхнего предела измерений амперметры делятся на микроамперметры (10 -6 ), миллиамперметры(10 -3 ), амперметры, килоамперметры(10 +3 ).

Как подключить амперметр правильно?

Амперметр подключается в разрыв цепи, последовательно. Схема подключения амперметра через шунт

Расчет шунта для амперметра

Шунт необходим в тех случаях, когда необходимо измерить ток больше максимального измеряемого тока амперметра. В этом случае производится расчет сопротивления шунта, по формуле.

  • Rш – искомое сопротивление шунта, Ом
  • RА – внутреннее сопротивление амперметра, Ом
  • IА – максимальная величина тока, измеряемая амперметром, А
  • IШ – величина тока, которую необходимо измерить (с шунтом).

Внутреннее сопротивление амперметра

Внутреннее сопротивление амперметра должно на порядок меньше сопротивления измеряемой цепи. Если внутреннее сопротивление амперметра неизвестно, то его можно измерить. Подключаем к источнику питания амперметр и нагрузочное сопротивление последовательно, а параллельно амперметру ставим еще чувствительный вольтметр. Разделив показания чувствительного вольтметра, на показания амперметра получим величину внутреннего сопротивления амперметра.

Подключение:

  • С самого начала хотим предупредить, что шунт для амперметра должен быть из комплекта поставки данного прибора. Если возьмёте другой, это может привести к тому, что показания будут выдаваться неверно. С чем это связано? В первую очередь с тем, что даже у индикаторов разных марок с одинаковым током полного отклонения у стрелок может быть неодинаковое внутреннее сопротивление.
  • Теперь выберите шунт для амперметра, предельный ток которого будет ниже измеряемого. Допустим, если подразумевается, что ток в цепи будет колебаться в следующих пределах – от 5 до 8А, тогда вам нужно выбрать шунт на 10А.
  • На винтах прибора вы найдёте по две гайки. С каждого из винтов отверните первую из них, а вторую, которая находится ближе к корпусу, отворачивать не нужно, в противном случае винт провалится внутрь, и амперметр придётся вскрывать.
  • Теперь на винты наденьте шунты и закрепите гайками. Между шунтом и вторыми гайками, которые расположены на каждом из этих винтов, должны быть две шайбы, не забудьте об этом.
  • Схема подключения амперметра дальше такова: нужно обесточить устройство, у которого вы хотите измерить потребляемый ток. Просто разорвите цепь его питания, а затем, соблюдая полярность, амперметр включают в цепь с шунтом. Провода при этом зажимайте меду шайбами. После выполнения этих действий можно снова включать питание, прочитав показания, а затем опять обесточивайте цепь, убирайте амперметр и восстанавливайте соединение.
  • Умножьте показания прибора на коэффициент, который указан на шунте. Если этих данных нет, вычислить цену деления можно самостоятельно. Как это сделать? Вот пример – если ток при полном отклонении индикатора равен 100 мкА, а шунт рассчитан на 10 А, то каждому микроамперу на шкале соответствовать будет 0,1 А тока в цепи.
  • На худой конец вы можете воспользоваться шунтом без обозначений, а также любым магнитоэлектрическим индикатором. Последовательно соедините испытуемый и образцовый амперметр и затем смело подключайте их к стабилизатору тока. Постепенно повышайте ток от нуля, вследствие чего вы должны добиться полного отклонения стрелки испытуемого прибора. Таким образом, образцовый амперметр поможет вам узнать значение тока в цепи. Поделите это значение на количество делений, которые находятся на шкале, это поможет вычислить цену одного деления.

Теперь вы знаете, как подключить амперметр, надеемся, что вы сможете использовать предложенные инструкции на практике.

Добавить комментарий

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Вольтметр/амперметр постоянного тока 0-100В и 0-100А с шунтом.

Добрый день. Несколько слов про вольтметр, который вы видите на фото.


Честно говоря, до сих пор не пойму, почему не купил мультиметр… Наверное, понравился компактный размер и цветное табло, хороший диапазон измерений (от 0 до 100В и от 0 до 100А), однако, как показала практика, следовало посоветоваться с электриком).

Сам-то я с электроникой на «пошел ты на фиг», хотя ток иногда померить где-нибудь, скажем, на тестах тех же китайских блоков питания, было бы интересно…

В общем заказал. Вольтметр пришел в ПЭ пакетике с шунтом.



Инструкции не было, поэтому полез искать схему подключения. Нашел.

Решил померить ток в блоке питания своего телефона, для чего разобрал хаб, разрезал проводки и на скрутках (не паять же)) по-быстрому собрал.


Цифры зажглись.) Вольтаж еще, если и похож на правду, то вместо силы тока вольтметр показал какую-то ересь.
При подключении нагрузки — шнура телефона к USB хабу, тот вообще отказался заряжаться.
В общем, после нескольких дней колдований, я все-таки решил занести его на работу и отдать человеку с нехилыми радиотехническими знаниями.

Эксперт исследовал его, и даже нашел типовую схему в интернете.

Типовая схема. (сопротиления нет, встроенного шунта нет)

Оказалось, что данные вольтметры являются с одной стороны универсальными, а с другой — могут сильно отличаться друг от друга. Например, данная модель вольтметра вообще не может мерить силу тока без подключения шунта.

В описании на сайте написано, что можно подключать вольтметр напрямую при измерении токов до 10А, неправда, в этом вольтметре нет встроенного шунта, значит подключать придется по-любому через внешний шунт. Схема которую я нашел не подходит, электронщик нарисовал мне свою, как следует подключать этот вольтметр.

Как только я подключил по его схеме, телефон начал заряжаться, а вольтметр стал показывать вольтаж точно, но силу тока опять показывал в районе 50А.)

Без нагрузки

С нагрузкой

Причем реагировал на касание к корпусу и проводам на шунте.
Кстати, позже оказалось, что прибор чувствителен к собственному питанию. Хоть и написано, что его можно питать от 4,5В до 30В, на обычном китайском блоке питания 5В для телефона, показывал странные показания, при подключении 12В блока питания стал работать стабильно.

Электрик высказал мнение, что, вероятнее всего, данная модель не подходит для измерения маленьких токов. Также имеет значение сечение проводов, провода в моей «схеме» тонкие и неплотно прикручены к шунту.

В общем, эти вольтметры в какой-то мере универсальные, как я понял, их можно встроить в любой прибор или панель, скажем, в зарядное для авто аккумулятора, или даже в саму машину, чтобы отслеживать ток и напряжение на аккумуляторе, но для моих целей (измерять малые токи) эта модель не подходит.

Следовало прикупить подешевле и попроще, с диапазоном измерений до нескольких Ампер, например такой. У таких вольтметров и чувствительность была бы побольше и показания точнее для малых токов…

Электрик прибор похвалил, в нем есть калибровка показаний вольтажа и силы тока, но, поскольку машины у меня нет, вероятнее всего продам я его, и куплю попроще. А может и правда — лучше мультметр).

Всем спасибо за внимание, удачи в покупках.

Вольтметр/амперметр постоянного тока 0-100В и 0-100А с шунтом.

Добрый день. Несколько слов про вольтметр, который вы видите на фото.


Честно говоря, до сих пор не пойму, почему не купил мультиметр… Наверное, понравился компактный размер и цветное табло, хороший диапазон измерений (от 0 до 100В и от 0 до 100А), однако, как показала практика, следовало посоветоваться с электриком).

Сам-то я с электроникой на «пошел ты на фиг», хотя ток иногда померить где-нибудь, скажем, на тестах тех же китайских блоков питания, было бы интересно…

В общем заказал. Вольтметр пришел в ПЭ пакетике с шунтом.



Инструкции не было, поэтому полез искать схему подключения. Нашел.

Решил померить ток в блоке питания своего телефона, для чего разобрал хаб, разрезал проводки и на скрутках (не паять же)) по-быстрому собрал.


Цифры зажглись.) Вольтаж еще, если и похож на правду, то вместо силы тока вольтметр показал какую-то ересь.
При подключении нагрузки — шнура телефона к USB хабу, тот вообще отказался заряжаться.
В общем, после нескольких дней колдований, я все-таки решил занести его на работу и отдать человеку с нехилыми радиотехническими знаниями.

Эксперт исследовал его, и даже нашел типовую схему в интернете.

Типовая схема. (сопротиления нет, встроенного шунта нет)

Оказалось, что данные вольтметры являются с одной стороны универсальными, а с другой — могут сильно отличаться друг от друга. Например, данная модель вольтметра вообще не может мерить силу тока без подключения шунта.

В описании на сайте написано, что можно подключать вольтметр напрямую при измерении токов до 10А, неправда, в этом вольтметре нет встроенного шунта, значит подключать придется по-любому через внешний шунт. Схема которую я нашел не подходит, электронщик нарисовал мне свою, как следует подключать этот вольтметр.

Как только я подключил по его схеме, телефон начал заряжаться, а вольтметр стал показывать вольтаж точно, но силу тока опять показывал в районе 50А.)

Без нагрузки

С нагрузкой

Причем реагировал на касание к корпусу и проводам на шунте.
Кстати, позже оказалось, что прибор чувствителен к собственному питанию. Хоть и написано, что его можно питать от 4,5В до 30В, на обычном китайском блоке питания 5В для телефона, показывал странные показания, при подключении 12В блока питания стал работать стабильно.

Электрик высказал мнение, что, вероятнее всего, данная модель не подходит для измерения маленьких токов. Также имеет значение сечение проводов, провода в моей «схеме» тонкие и неплотно прикручены к шунту.

В общем, эти вольтметры в какой-то мере универсальные, как я понял, их можно встроить в любой прибор или панель, скажем, в зарядное для авто аккумулятора, или даже в саму машину, чтобы отслеживать ток и напряжение на аккумуляторе, но для моих целей (измерять малые токи) эта модель не подходит.

Следовало прикупить подешевле и попроще, с диапазоном измерений до нескольких Ампер, например такой. У таких вольтметров и чувствительность была бы побольше и показания точнее для малых токов…

Электрик прибор похвалил, в нем есть калибровка показаний вольтажа и силы тока, но, поскольку машины у меня нет, вероятнее всего продам я его, и куплю попроще. А может и правда — лучше мультметр).

Всем спасибо за внимание, удачи в покупках.

Схема подключения Вольтметр-Амперметра DSN-VC288 | IntroBox

DSN-VC288 это компактный и простой в использовании цифровой вольт-амперметр с точностью ±1%. Размер отверстия в корпусе для установки 45 x 26мм. Данные отображаются на двух семи-сегментных диодных дисплеях разного цвета, в данном случае это синий и красный. Частота обновления около 100-300мс/раз, бывают разные. Диапазон вольтметра и амперметра от 0 до 100В (разрешение 0,1 В) и от 0 до 9.99A (разрешение 0,01А) соответственно. Шунт амперметра встроенный. Купить можно тут

Технические характеристики DSN-VC288

Рабочее напряжение 4.5-30V DC
Рабочий ток ≤20mA
Дисплей 0,28″ Два цвета синий и красный
Диапазон измерения 0-100V 0-9.99A DC
Минимальное разрешение (V) 0.1V
Минимальное разрешение (A)
0.01A
Частота обновления ≥100-300mS / раз
Точность измерения 1%
Рабочая температура от -15 до 70°C
Рабочее давление от 80 до 106кПа
Размер 47 × 28 × 16мм / 1,85 * 1,10 * 0,63″
Вес нетто 19 г
Вес 29 г

Назначение выводов

Вывод / ПроводЦветНазначение
Vcc Красный тонкий Питание прибора (+3.5 — 30 В)
GND Черный тонкий Общий/земля
Vin Желтый тонкий Измерение напряжения (0 — 100 В)
I+ Красный толстый Вход тока + (0 — 9.99 А)
I- Черный толстый Вход тока —

Схема подключения Вольтметр-Амперметра DSN-VC288

Подключение с измерением напряжения в системы электроснабжения

Если измеряемый сигнал меньше, чем 30 В и имеют общий минус питания, то измеряемый сигнал может быть использован также для питания прибора: черный толстый провод «-«, красный и желтый провода соединенные вместе «+», черный тонкий можно не использовать

При питании самого прибора от измеряемого источника или источника имеющего общий провод, черный тонкий провод НЕ ПОДКЛЮЧАТЬ ни в коем случае!!
Перегорают дорожки и после этого амперметр показывает ерунду либо не показывает совсем.
А если сразу подключить все правильно, то не нужны никакие перемычки, все работает нормально

Подключение с изолированным источником питания

Если измеряемый сигнал больше, чем 30 В, тогда, для питания прибора, необходим отдельный источник питания от 4 В до 30 В.

Калибровка DSN-VC288

Данный прибор идёт откалиброванным. Те, кому требуется повышенная точность, могут откалибровать самостоятельно, вращая головки подстроечных резисторов на плате прибора.

Калибровка есть как по току (подстроечный резистор I_ADJ), так и по напряжению (резистор V_ADJ).

Подключение амперметра в автомобиле – Информация

В отличие от вольтметра, который просто подсоединяется к клеммам АКБ, подключение амперметра в автомобиле имеет массу особенностей. Во-первых, не каждый предлагаемый на рынке прибор подойдет. Во-вторых, стоят амперметры с шунтами на большие токи довольно дорого. В-третьих, в бортовой сети автомобиля присутствуют пусковые токи, пускать которые через шунт амперметра нельзя.

Однако после успешной установки амперметр, в отличие от того же вольтметра, окажется намного более интересным и информативным прибором. В этой статье подробно рассказано, зачем нужен данный прибор в машине, как он вообще работает, какими способами его можно подключить, как с ним работать. Также предлагается информация, позволяющая «прощупать» токи в цепях автомобиля, не устанавливая амперметр с шунтом.

Зачем амперметр в машине

Кто постарше, тот помнит, что некое подобие амперметра устанавливалось на отечественных автомобилях. Тот прибор работал «в обе стороны», и примитивно показывал, куда идет ток относительно АКБ – из нее, или к ней. По сути, амперметр служил лишь для того, чтобы контролировать, заряжается аккумулятор или наоборот – разряжается.

Современные же амперметры позволяют узнать о токах в автомобильных цепях намного больше информации. Это возможно благодаря тому, что приборы теперь цифровые, и могут показывать не только направление тока. По их показаниям можно узнать нагрузку с точностью до десятых долей ампера. А это существенно расширяет возможности прибора.

В данной статье речь не идет о тех приборчиках, которые являются аналогом советских стрелочных «амперметров». Сегодня они продаются в виде пластиковой коробочки с несколькими светодиодами разных цветов. Такие приборчики не измеряют силу тока. Они годятся только для того, чтобы понять примерно, заряжается АКБ, или же разряжается.

С помощью же цифрового амперметра в машине можно постоянно контролировать следующие параметры бортовой сети:

  1. Ток заряда АКБ. Дает ясную картину того, как аккумулятор заряжается при разной степени заряженности, в зависимости от температуры за бортом, на холостых оборотах и так далее.
  2. Ток разряда АКБ. Когда мотор (и генератор, соответственно) не выключен, реальное потребление тока из АКБ дает возможность вычислить время автономной работы.
  3. Работоспособность генератора. Заряжает ли он АКБ, питает ли бортовую сеть во время движения.
  4. Достаточность мощности генератора. Хватает ли способностей генератора для питания мощной нагрузки, например, подогрева чего-либо, внештатной акустики, инвертора на 220 В и прочего.
  5. Потребление тока электрооборудованием. По амперметру всегда видно, какой ток расходуется на работу потребителей.
  6. Зависимость между потреблением тока и включенной нагрузкой. Например, можно узнать, как изменяется потребление тока при включении особо «прожорливого» оборудования, не «обделяется» ли при этом АКБ и так далее.
  7. Реальная мощность того или иного оборудования. С помощью точного амперметра легко можно вычислить, сколько тока потребляет какой-либо отдельный мощный прибор. Затем, зная напряжение бортовой сети в текущий момент, можно вычислить реальную мощность в ваттах.

Это далеко не все список возможностей встроенного в бортовую сеть амперметра. Например, если установлен точный прибор, то можно оценить даже токи утечки, когда машина находится на стоянке.

Немного теории об амперметре

Если вы хорошо представляете себе, как работает амперметр, то этот подраздел можно перескочить. Для тех же, кто не очень ориентируется в этой теме, предлагается краткая информация, которая поможет понять изложенный дальше материал, и избежать некоторых опасных ошибок.

Амперметр для автомобиля состоит из двух основных компонентов, а именно – токового калиброванного шунта и собственно самого прибора с электронной начинкой и дисплеем. Токовый шунт представляет собой короткий проводник строго определенного сопротивления. Этого добиваются путем подбора материала, длины и сечения. Чтобы откалибровать шунт, на нем делаются пропилы, за счет которых постепенно уменьшается сечение, а значит, увеличивается сопротивление.

Сам амперметр для автомобиля – это ни что иное, как обычный вольтметр, который откалиброван под конкретный шунт. То есть, амперметр измеряет не амперы (ток), как многие полагают, а вольты (напряжение). Силу тока же прибор только отображает на дисплее, получая данные о нем путем нехитрых математических вычислений, которыми «занимается» электронная начинка.

Работает же это все следующим образом. Шунт устанавливается в разрыв провода, протекающий ток по которому мы хотим измерять. Поскольку шунт имеет какое-то сопротивление (хоть и очень маленькое – доли одного ома), на нем падает некое напряжение. Это означает, что на его концах при протекании тока присутствует разность потенциалов (напряжение). Амперметр измеряет это напряжение и, «зная» точное сопротивление шунта, по закону Ома в режиме реального времени вычисляет силу тока. Результат этих вычислений отображается на дисплее в амперах и его долях (десятых или сотых, в зависимости от точности амперметра).

Абсолютно так же работает и амперметр в популярных сегодня мультиметрах. Внутри него есть шунт (толстая проволока), на концах которого прибор измеряет напряжение, преобразуя полученные значения в амперы.

Чисто теоретически ток в любом интересующем нас проводе можно измерить и без амперметра. Для этого, пока провод обесточен, нам надо узнать его точное электрическое сопротивление в омах. Затем, когда через него течет ток, измеряется напряжение на концах. Зная сопротивление участка цепи и падение напряжения на нем, легко вычислить и ток. Для этого напряжение надо поделить на сопротивление.

Но проблема в том, что сопротивление провода очень мало, и измерить его точно обычными бытовыми мультиметрами почти невозможно. То же самое касается и напряжения. Оно там настолько маленькое, что точности недорогих вольтметров просто не хватит. Автомобильные же амперметры – это очень чувствительные мили- или даже микро-вольтметры, которые это падение напряжения способны определить с высокой точностью.

Выбор амперметра для автомобиля

Сразу же стоит отметить, что те амперметры, которые продаются тоннами у китайцев, и стоят не более 3-5 долларов, для автомобиля не подойдут. Они не рассчитаны на большие токи, и моментально выйдут из строя. Для подключения в автомобиль продаются рассчитанные на это приборы с соответствующими шунтами в виде толстой металлической пластины с клеммами.

Такие амперметры бывают нескольких видов, и в этом вопросе крайне важно ориентироваться. Иначе ничего не заработает, а весьма недешевый прибор просто перегорит.

При выборе амперметра для автомобиля смотреть надо на такие характеристики:

  1. Предел измерений прибора. Указывается в амперах. Пусковые токи в несколько сотен ампер мы измерять не будем, но порядка 50-100 А в интересующих нас цепях периодически присутствует.
  2. Максимальный ток шунта. Как правило, шунты продаются к определенным моделям амперметров, поскольку для каждого прибора важно точное сопротивление этой детали. Для автомобиля (легкового) шунт должен быть рассчитан на ток не менее 100 А.
  3. Направление измерений. Здесь все зависит от того, каким способом вы будете подключать амперметр в автомобиль. Если в разрыв цепи АКБ-генератор, то подойдет «односторонний амперметр. Если же вы хотите контролировать не только заряд, но и разряд АКБ, то нужен прибор, умеющий измерять и отображать ток в двух направлениях.
  4. Полярность амперметра. На рынке присутствуют приборы, рассчитанные на подключение либо на минусовом проводе, либо на плюсовом. Они не являются взаимозаменяемыми, поэтому покупать надо в соответствии с выбранным способом подключения.
  5. Точность прибора. Для обычных повседневных измерений вполне достаточно амперметра, способного измерять ток с точностью до одного ампера. Дополнительная точность – это весомый плюс к цене, а к функционалу плюсов почти нет.

Стоит также отметить, что на рынке без особых проблем можно найти амперметр и шунт к нему, рассчитанные на токи в сотни ампер. Это, с одной стороны, упростит монтаж и позволит «заценить» пусковые токи. С другой стороны, такое повышение предела измерений существенно скажется на точности, и вы не сможете провести другие, более интересные измерения.

Способы подключения амперметра в автомобиле

Существует всего три основных способа, как подключить амперметр в автомобиле. У этих схем есть вариации, которые при желании можно изучить отдельно. Выбор же из трех описанных способов зависит от того, какие цели вы преследуете, и какой прибор удалось найти за приемлемые деньги.

Амперметр в цепи генератор-АКБ

Для такого подключения подойдет амперметр, который умеет измерять ток только в одну сторону, а также рассчитанный на подключение к плюсовому участку цепи. При таком подключении можно будет контролировать ток, который выдается генератором для зарядки АКБ и питания электрооборудования. Ток разряда (при заглушенном двигателе) определить нельзя будет, даже если амперметр двухсторонний.

Подключение выполняется по следующему алгоритму:

  1. От генератора отсоединяется провод, идущий на плюсовую клемму АКБ.
  2. В полученный разрыв устанавливается токовый шунт с соблюдением полярности (согласно инструкции и маркировке).
  3. К слаботочным выводам шунта подключаются провода, идущие к самому амперметру.
  4. К амперметру подводится питание 12 В из бортовой сети.
  5. Желаемый разрыв для установки шунта можно также создать непосредственно возле АКБ.

Поскольку через шунт будет проходить плюс бортовой сети, во избежание короткого замыкания крайне рекомендуется тщательно заизолировать созданный узел.

Амперметр в цепи АКБ-потребители

Такой способ подключения ненамного сложнее предыдущего, а вот функционал существенно расширяется. Особенно, если приобрести амперметр, умеющий измерять ток в двух направлениях. Такой прибор позволит видеть не только ток от генератора, но также ток разряда и точный ток, потребляемый электрооборудованием автомобиля. Соответственно, шунт для амперметра для этого способа подключения должен быть предназначен для установки на плюсовую линию.

Алгоритм подключения амперметра в машину:

  1. На плюсовой клемме АКБ отсоединяются все провода, кроме того, что идет на стартер (это крайне важно).
  2. В полученный разрыв устанавливается токовый шунт с соблюдением полярности согласно схеме и маркировке.
  3. К шунту подключаются слаботочные провода к амперметру согласно инструкции.
  4. Для самого амперметра обеспечивается питание от бортовой сети.
  5. Созданный узел тщательно изолируется.

Если при таком способе подключения использовать односторонний амперметр, то он будет отображать только тот ток, который потребляется электрооборудованием автомобиля. Двусторонние же приборы позволят видеть и ток заряда, и ток разряда.

Данный способ является наиболее распространенным, так как наиболее полно раскрывает возможности установленного амперметра.

Другие способы подключения амперметра (на «минус»)

Встречаются также ситуации, когда рассчитанный на подключение в плюсовую линию амперметр найти за приемлемые деньги не получается. В таких случаях можно приобрести «минусовый» прибор, но его подключение подразумевает сразу две сложности. Во-первых, минус от АКБ может быть подключен к массе автомобиля несколькими проводами, а нужен только один, через который идет весь ток. Во-вторых, через этот самый минусовый провод при запуске двигателя течет пусковой ток, который способен сжечь амперметр. В-третьих, для такого амперметра требуется отдельное питание.

Потому, для подключения подобных амперметров применяется следующий метод:

  1. Отсоедините от АКБ минусовую клемму.
  2. В полученный разрыв установите токовый шунт амперметра.
  3. Параллельно шунту установите размыкатель, который позволит на время запуска двигателя разгрузить шунт.
  4. Подключите к слаботочным клеммам шунта измерительные провода к амперметру согласно инструкции.
  5. Для питания шунта используйте DC-DC преобразователь напряжения 12 В -12 В с гальванической развязкой.
  6. Тщательно заизолируйте созданные узлы.

В качестве размыкателя в пункте №3 можно использовать классический выключатель массы с предусмотренной отдельной кнопкой, которая выводится в салон автомобиля. Преобразователь напряжения из пункта №5 в обилии продается у китайцев. При его выборе важно обратить внимание на характеристики по напряжению, а также на наличие гальванической развязки (если подать питание на такой амперметр напрямую, он моментально выйдет из строя).

Альтернатива подключению амперметра в автомобиле (клещи)

В качестве заключения кратко рассмотрим, как можно обойтись без встраивания амперметра (поскольку не так уж и просто это сделать), и измерить интересующие нас токи. Для измерения токов утечки достаточно обычного мультиметра. Для других измерений понадобятся токовые клещи. Конечно, их стоимость мало кого обрадует, но поверьте, хороший качественный амперметр с шунтом для автомобиля обойдется не дешевле.

Чтобы измерить токи утечки, необходимо мультиметр включить в режим амперметра с пределом до 10 А, не забыв переставить плюсовой щуп в соответствующий разъем на приборе. Амперметр включается в разрыв между АКБ и одной из отсоединенных от него клемм. Показания прибора – это и есть токи утечки. Внимание! Описанную процедуру проводить только при выключенном двигателе и электропотребителях. Запускать двигатель или включать мощную нагрузку (фары, внештатную акустику, печку), пока амперметр находится в цепи – категорически нельзя.

Ну а чтобы измерить ток холодной прокрутки (пусковой ток стартера), заряда и разряда АКБ, потребление энергии приборами, достаточно прикупить токовые клещи. Работать ими очень просто. Клещами нужно оцепить провод, по которому протекают интересующие нас токи. Например, чтобы измерить пусковой ток, клещи устанавливаются на плюсовой провод, идущий к стартеру. Остальные параметры можно измерить, установив прибор в местах, в которых устанавливается токовый шунт из описанных в статье способов.

Схожий материал

5 возможных причин почему аккумулятор быстро разряжается на авто

Плохо крутит стартер: диагностика и устранение причин

Простые способы проверки высоковольтных проводов зажигания

Зачем нужно менять тормозную жидкость

5 способов проверить амортизаторы автомобиля

Вибрация при торможении авто: диагностика своими силами

Правила эксплуатации и мойка машины после покраски кузова

Кипит аккумулятор: причины и мифы

Просадки напряжения ВАЗ и на других автомобилях

Подготовка автомобиля к продаже

Как лучше настроить магнитолу в автомобиле

10 возможных причин почему хрипят динамики в машине

Советы как снизить расход топлива на автомобиле

Как правильно подключить любую автомагнитолу к чему угодно

Как починить магнитолу своими руками

В АКБ одна «банка» не кипит при зарядке

Неравномерный износ шин

Можно ли не снимая клеммы заряжать аккумулятор – мифы и реальность

Как в машине сделать 220 вольт

Почему глохнет машина при снятии клеммы с аккумулятора и можно ли так делать

Нужно ли отключать аккумулятор? 10 случаев, когда реально не помешает.

Подключение амперметра в автомобиле

Как правильно отключать и подключать аккумулятор на машине

Плохо ловит радио в машине: возможные причины и способы улучшить прием

Можно ли доливать воду в антифриз: мифы и реальность

7 способов как подключить телефон к штатной магнитоле автомобиля

10 причин почему могут греться колеса автомобиля

Можно ли подкрашивать номера на автомобиле

Принцип работы датчиков давления в шинах и их основные разновидности

Срок службы автомобильной резины и как его продлить

Как правильно обкатать автомобиль: мифы и реальность

Разница между 92-м и 95-м бензином – какой лучше заправлять и почему

Как правильно устанавливать светодиоды на машину

Гудит ГУР: причины

Какая самая экономичная скорость на автомобиле и почему

Почему окисляются клеммы на аккумуляторе и как правильно с этим бороться

Почему плохо играет магнитола и как улучшить музыку в машине

Что выбрать – шипованную резину или липучки

Как заряжать кальциевый аккумулятор – мифы и реальность

10 причин почему машину уводит в сторону

Как и сколько можно хранить бензин в домашних условиях

Обкатка шин – мифы и реальность

Где установить видеорегистратор в машине

Какие диски лучше – литые или штампованные

Полировка кузова своими руками без машинки

Нужно ли заряжать новый автомобильный аккумулятор и как правильно это делать

Установка и подключение второго аккумулятора в машину

История шин Dunlop / Данлоп

Самые большие шины Michelin / Мишлен для карьерных самосвалов

Как подключить амперметр, что это за прибор?

Весьма часто в нашей жизнедеятельности возникает ситуация, при которой нам необходимо измерить силу тока. Для чего? Чтобы узнать предполагаемую мощность того или иного оборудования, например. Для определения потенциально уровня нагревания кабеля и так далее. Примерно для этих целей нам и понадобится амперметр переменного тока. Именно он служит для измерения силы тока. К слову, с помощью прибора можно измерить силу не только переменного, но и постоянного тока. Как пользоваться этим инструментом?

Подключение

Чтобы понять, как подключить амперметр, нужно уяснить принцип диапазона измерения. То есть, прибор работает в определенном диапазоне, измеряя от значений в мкА до значений в кА. Учитывая техническую схему подключения, следует опередить максимальный уровень тока шкалы. Само подключение происходит последовательно, а не параллельно существующей нагрузки. Иначе существует опасность перенапряжения прибора. Соответственно, он станет нефункционален, проще говоря, перегорит.

Важным моментом является то, что измеряемый ток сильно зависит от общего сопротивления цепи. Из этого следует, что внутреннее сопротивление прибора должно быть предельно небольшим. Иначе, класс точности результатов может быть под вопросом. Ведь само оборудование будет влиять на числительный показатель. Чтобы точнее уяснить, понадобится схема подключения амперметра.

Шунт

Как подключить амперметр, если величина тока, которая необходима для измерения, превосходит возможности прибора? Для этого как раз и используются разнообразные шунты. Они позволяют расширить измеримый диапазон тока. Нагрузка будет распределена в пользу шунта, он примет на себя большую часть. По сути, шунт просто покажет снижение тока, которое зафиксирует прибор. В данном случае он будет работать по принципу милливольтметра, однако, его показатели будут в амперах, а значит и конечная информации будет корректной.
Для более детального понимания необходима схема включения амперметра через шунт.

Где применяется амперметр?

Амперметр постоянного тока применяется повсеместно. Если мы исключим бытовые нужды, то первым вариантом будут крупные промышленные предприятия. Естественно лишь те, которые, так или иначе, занимаются созданием (генерацией) и дальнейшим потреблением электрической или тепловой энергии.
Помимо этого, широкое применение прибор нашел в строительстве. Ни один серьезный проект не проходит без этого маленького помощника.

Разнообразие оборудования

Устройство амперметра может довольно сильно отличаться в зависимости от модели. Если классифицировать их по типу отсчета, можно выделить стрелочные, световые и электронные варианты.
Амперметр постоянного тока может быть различным также как и способы его функционирования. Тут ряд шире, и остановиться на нем стоит подробнее.

Электромагнитные амперметры необходимы для измерения переменного тока с невысокой частотностью. Схема амперметра данного типа самая простая, соответственно – они наиболее дешевые на рынке.
Если вам интересно, как называется прибор для измерения силы тока с высокой частотностью, то это термоэлектрический измеритель. Принцип действия амперметра такого рода заключается в работе проводника и термопары. Проводник с помощью проходящего по нему тока нагревает термопару, что и служит способом вычисления силы тока.

Ферродинамические устройства необходимы для стрессовой среды с повышенным магнитным полем. Они более устойчивы к внешнему и внутреннему воздействию. Самым последним словом техники является амперметр цифровой. Это наиболее прогрессивные модели, которые не боятся сильного напряжения, механических повреждений. Они гораздо проще в освоении и применении. Как подключить цифровой амперметр? В большинстве случаев, если производитель не указал иное, точно так же как и обычный.

На этом основные виды амперметров можно считать исчерпанными. Некоторые пользователи, правда, посчитают, что один вид мы пропустили. А именно вольтметр.

Отличия вольтметра от амперметра

Для начала давайте просто разберем этимологию слов. Сразу понятно, что приборы произошли от слов «ампер» и «вольт». И хотя первый может подключаться к той же цепи, что и вольтметр, назначение у них совершенно разное. Ампер – единица измерения силы тока, тогда как вольт – единица измерения напряжения. Так чем же амперметр отличается от вольтметра? Правильно, первый измеряет силу, а второй напряжение.

21.4 Вольтметры и амперметры постоянного тока – College Physics: OpenStax

Сводка

  • Объясните, почему вольтметр нужно подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. Рис. 1.) Внутренняя конструкция простейшего из этих измерителей и способ их подключения к системе, которую они контролируют, позволяют лучше понять применение последовательного и параллельного подключения.

Рис. 1. Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и температура двигателя. (Фото: Кристиан Гирсинг)

Вольтметры подключаются параллельно к любому устройству, которое необходимо измерить. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов.(См. Рисунок 2, где вольтметр обозначен символом V.)

Амперметры подключаются последовательно к любому измеряемому устройству. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. Рисунок 3, где амперметр обозначен символом A.)

Рис. 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов.Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую через ЭДС без учета его внутреннего сопротивления, r . (b) Используемый цифровой вольтметр. (предоставлено Messtechniker, Wikimedia Commons) Рис. 3. Амперметр (A) включен последовательно для измерения тока. Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении.(Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые измерители имеют стрелку, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых измерителей , которые имеют числовые показания, подобные портативному калькулятору. Сердцем большинства аналоговых счетчиков является устройство под названием гальванометр , обозначенное буквой G. Прохождение тока через гальванометр, [латекс] \ boldsymbol {I _ {\ textbf {G}}} [/ latex], вызывает пропорциональное отклонение стрелки. .(Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току – это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор. Например, гальванометр с текущей чувствительностью [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него, считывает половину шкалы, когда [latex] \ boldsymbol {25 \; \ mu \ textbf {A}} [/ latex] проходит через него, и так далее.

Если такой гальванометр имеет сопротивление [латекс] \ boldsymbol {25 – \; \ Omega} [/ latex], то напряжение только [латекс] \ boldsymbol {V = IR = (50 \; \ mu \ textbf { A}) (25 \; \ Omega) = 1,25 \; \ textbf {mV}} [/ latex] производит показание полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как вольтметр

На рисунке 4 показано, как гальванометр можно использовать в качестве вольтметра, подключив его последовательно с большим сопротивлением, [латекс] \ boldsymbol {R} [/ латекс].Значение сопротивления [латекс] \ boldsymbol {R} [/ латекс] определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего [латексный] \ boldsymbol {25 – \; \ Omega} [/ latex] гальванометр с [латексным] \ boldsymbol {50 – \; \ mu \ textbf {A}} [/ latex] чувствительность. Затем 10 В, приложенное к измерителю, должно производить ток [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex]. Общее сопротивление должно быть

[латекс] \ boldsymbol {R _ {\ textbf {tot}} = R + r =} [/ latex] [latex] \ boldsymbol {\ frac {V} {I}} [/ latex] [latex] \ boldsymbol { =} [/ latex] [латекс] \ boldsymbol {\ frac {10 \; \ textbf {V}} {50 \; \ mu \ textbf {A}}} [/ latex] [латекс] \ boldsymbol {= 200 \ ; \ textbf {k} \ Omega \; \ textbf {или}} [/ latex]

[латекс] \ boldsymbol {R = R _ {\ textbf {tot}} – r = 200 \; \ textbf {k} \ Omega – 25 \; \ Omega \ приблизительно 200 \; \ textbf {k} \ Omega} [ / латекс]

([латекс] \ boldsymbol {R} [/ latex] настолько велик, что сопротивление гальванометра, [латекс] \ boldsymbol {r} [/ latex], почти ничтожно.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение в половину шкалы, создавая ток [латекс] \ boldsymbol {25 – \; \ mu \ textbf {A}} [/ latex] через измеритель, и поэтому показания вольтметра пропорционально напряжению по желанию.

Этот вольтметр не годится для напряжений менее примерно половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно прочитать. Для других диапазонов напряжения другие сопротивления устанавливаются последовательно с гальванометром. У многих метров есть выбор шкалы.Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рисунок 4. Большое сопротивление R , включенное последовательно с гальванометром G, дает вольтметр, отклонение которого на полную шкалу зависит от выбора R . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.)

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению [латекс] \ boldsymbol {R} [/ latex], часто называемому шунтирующим сопротивлением , как показано на рисунке 5. Поскольку шунт сопротивление невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что необходим амперметр, который дает полное отклонение на 1.0 A, и содержит такой же гальванометр [latex] \ boldsymbol {25 – \; \ Omega} [/ latex] с его чувствительностью [latex] \ boldsymbol {50 – \; \ mu \ textbf {A}} [/ latex] . Поскольку [latex] \ boldsymbol {R} [/ latex] и [latex] \ boldsymbol {r} [/ latex] параллельны, напряжение на них одинаковое.

Эти [латекс] \ boldsymbol {IR} [/ latex] капли – это [latex] \ boldsymbol {IR = I_Gr} [/ latex], так что [latex] \ boldsymbol {IR = \ frac {I_G} {I} = \ frac {R} {r}} [/ latex]. Решая для [latex] \ boldsymbol {R} [/ latex] и отмечая, что [latex] \ boldsymbol {I_G} [/ latex] – это [latex] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] и [latex] \ boldsymbol {I} [/ latex] равно 0.{-3} \; \ Omega}. [/ Латекс]

Рис. 5. Небольшое шунтирующее сопротивление R , помещенное параллельно гальванометру G, дает амперметр, отклонение которого на полную шкалу зависит от выбора R . Чем больше измеряемый ток, тем меньше должно быть R . Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра.(Обратите внимание, что r представляет внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные масштабы достигаются путем переключения различных шунтирующих сопротивлений параллельно гальванометру – чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете цепь.В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. Рисунок 6 (a).) (Большое сопротивление, параллельное малому, имеет суммарное сопротивление, по существу равное малому.) Если, однако, сопротивление вольтметра сопоставимо с сопротивлением измеряемого устройства, то два параллельно подключенных устройства имеют меньшее сопротивление, что существенно влияет на цепь. (См. Рисунок 6 (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

Рис. 6. (a) Вольтметр, имеющий сопротивление намного больше, чем устройство ( R Voltmeter >> R ), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как и устройство, и не оказывает заметного влияния измеряемая цепь.(b) Здесь вольтметр имеет такое же сопротивление, что и устройство ( R Voltmeter ≅ R ), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен. Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно.(См. Рисунок 7 (a).) Однако, если задействованы очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, а ток в ветви измеряется уменьшается. (См. Рисунок 7 (b).)

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

Рис. 7. (a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается. Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью.Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Связи: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения.Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя. Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе – даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.6} [/ латекс].

Проверьте свое понимание

1: Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Исследования PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и наблюдайте за происходящим. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Рис. 8. Комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория
  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы получить полный ток, протекающий через ответвление, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

1: Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на рисунке 9? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Рис. 9.

2: Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставляете его в режиме вольтметра.Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

3: Укажите точки, к которым можно подключить вольтметр для измерения следующих разностей потенциалов на Рисунке 10: (a) разность потенциалов источника напряжения; (b) разность потенциалов на [латексе] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ latex]; (г) поперек [латекса] \ boldsymbol {R_3} [/ latex]; (e) через [латекс] \ boldsymbol {R_2} [/ latex] и [латекс] \ boldsymbol {R_3} [/ latex].Обратите внимание, что на каждую часть может быть несколько ответов.

Рис. 10.

4: Для измерения токов на рис. 10 замените провод между двумя точками на амперметр. Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) ток, протекающий через [латекс] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ латекс]; (г) через [латекс] \ boldsymbol {R_3} [/ латекс]. Обратите внимание, что на каждую часть может быть несколько ответов.

Проблемные упражнения

1: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {1.00 – \; \ textbf {M} \ Omega} [ / латекс] по шкале 30,0 В?

2: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {25.0 – \; \ textbf {k} \ Omega} [ / латекс] по шкале 100 В?

3: Найдите сопротивление, которое необходимо последовательно соединить с символом [латекса] \ bold {25.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как вольтметр с показаниями полной шкалы 0,100 В.

4: Найдите сопротивление, которое должно быть подключено последовательно с [latex] \ boldsymbol {25.0 – \; \ Omega} [/ latex] гальванометром, имеющим [latex] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве вольтметра с показаниями полной шкалы 3000 В.Включите принципиальную схему в свое решение.

5: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {25.0 – \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {50.0 – \; \ textbf {A }} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве амперметра с показаниями полной шкалы 10,0 A. Включите принципиальную схему в свое решение.

6: Найдите сопротивление, которое необходимо разместить параллельно символу [латекса] \ bold {25.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как амперметр с показаниями полной шкалы 300 мА.

7: Найдите сопротивление, которое необходимо подключить последовательно с [латексным] \ boldsymbol {10.0 – \; \ Omega} [/ latex] гальванометром, имеющим [латексный] \ boldsymbol {100 – \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве вольтметра при: (а) полномасштабном показании 300 В и (б) 0.Полномасштабное показание 300 В.

8: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {10.0 – \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {100 – \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве амперметра с: (a) показанием полной шкалы 20,0 A и b) показанием полной шкалы 100 мА.

9: Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {0.100 \; \ Omega} [/ latex], поместив вольтметр [latex] \ boldsymbol {1.00 – \; \ textbf {k} \ Omega} [/ latex] на его клеммы. (См. Рис. 11.) (а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Рис. 11.

10: Предположим, вы измеряете напряжение на клеммах литиевого элемента на 3.200 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {5.00 \; \ Omega} [/ латекс], помещая [латекс] \ boldsymbol {1.{-5} \; \ Omega} [/ latex] по шкале 3,00 A и содержит гальванометр [латекс] \ boldsymbol {10.0 – \; \ Omega} [/ latex]. Какая чувствительность у гальванометра?

12: Вольтметр [latex] \ boldsymbol {1.00 – \; \ textbf {M} \ Omega} [/ latex] размещается параллельно с [latex] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex] резистор в цепи. (а) Нарисуйте принципиальную схему подключения. б) Каково сопротивление комбинации? (c) Если напряжение на комбинации остается таким же, как на [латексе] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex] только резистор, каков процент увеличения тока? (d) Если ток через комбинацию остается таким же, как через резистор [latex] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex], каково процентное снижение напряжения ? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

13: Амперметр [latex] \ boldsymbol {0,0200 – \; \ Omega} [/ latex] последовательно с резистором [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex] в цепи схема.(а) Нарисуйте принципиальную схему подключения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение в комбинации остается таким же, каким оно было через резистор [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex], каков процент уменьшения тока? (d) Если ток остается таким же, как через резистор [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex], то каков процент увеличения напряжения? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

14: Необоснованные результаты

Предположим, у вас есть гальванометр [latex] \ boldsymbol {40.0 – \; \ Omega} [/ latex] с чувствительностью [latex] \ boldsymbol {25.0 – \; \ mu \ textbf {A}} [/ latex]. (a) Какое сопротивление вы бы включили последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением на 0,500 мВ? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

15: необоснованные результаты

(a) Какое сопротивление вы бы поставили параллельно с символом [латекс] \ bold {40.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью
[латекс] \ boldsymbol {25.0 – \; \ mu \ textbf {A}} [/ latex], позволяющий использовать его в качестве амперметра с полное отклонение для [латекса] \ boldsymbol {10.0 – \; \ mu \ textbf {A}} [/ latex]? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

Глоссарий

вольтметр
прибор для измерения напряжения
амперметр
прибор для измерения силы тока
аналоговый счетчик
измерительный прибор, дающий показания в виде движения иглы над отмеченным датчиком
цифровой счетчик
Измерительный прибор, дающий показания в цифровом виде
гальванометр
аналоговое измерительное устройство, обозначенное G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током
чувствительность по току
максимальный ток, который может показывать гальванометр
отклонение на всю шкалу
максимальное отклонение стрелки гальванометра, также известное как чувствительность по току; гальванометр с полным отклонением [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него
шунтирующее сопротивление
небольшое сопротивление [латекс] \ boldsymbol {R} [/ latex], помещенное параллельно гальванометру G, чтобы получить амперметр; чем больше измеряемый ток, тем меньше должен быть [латекс] \ boldsymbol {R} [/ latex]; большая часть тока, протекающего через счетчик, шунтируется через [латекс] \ boldsymbol {R} [/ latex] для защиты гальванометра

Решения

Проверьте свое понимание

1: Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики.{-4} \; \ Omega} [/ латекс]

7: (a) [латекс] \ boldsymbol {3.00 \; \ textbf {M} \ Omega} [/ latex]

(b) [латекс] \ boldsymbol {2.99 \; \ textbf {k} \ Omega} [/ латекс]

9: (a) 1,58 мА
(b) 1,5848 В (необходимо четыре цифры, чтобы увидеть разницу)

(c) 0,99990 (нужно пять цифр, чтобы увидеть разницу от единицы)

11: [латекс] \ boldsymbol {15.0 \; \ mu \ textbf {A}} [/ латекс]

13: (а)

Рисунок 12.{-1}} [/ latex] процент увеличения

(e) Не имеет значения.

15: (a) [латекс] \ boldsymbol {-66.7 \; \ Omega} [/ латекс]

(b) У вас не может быть отрицательного сопротивления.

(c) Неразумно, что [latex] \ boldsymbol {I_G} [/ latex] больше, чем [latex] \ boldsymbol {I _ {\ textbf {tot}}} [/ latex] (см. Рисунок 5). Вы не можете добиться полного отклонения, используя ток, меньший, чем чувствительность гальванометра.

Как соединить вместе амперметр и вольтметр

Вольтметр – это устройство, которое измеряет электродвижущую силу, также известную как напряжение.Он позволяет измерять напряжение в цепи.

Амперметр, напротив, измеряет электрический ток в амперах. Вольтметры и амперметры подключаются по-разному. Вы не можете просто подключить амперметр к тому же месту, где вы бы подключили вольтметр, потому что это вызовет только сильный выброс тока, который может нанести большой ущерб автоматическому выключателю. Вы должны понимать, что у амперметра очень низкое сопротивление, а у вольтметров очень высокое сопротивление. Амперметр имеет катушку с большим проводом с несколькими витками, в то время как вольтметр имеет катушку с тысячами витков.При этом амперметры подключаются последовательно, а вольтметры – параллельно. Итак, действительно нужны знания и навыки, чтобы объединить или соединить их вместе. Если вы хотите узнать, как соединить вместе амперметр и вольтметр, продолжайте читать ниже.

Шаг 1. Определитесь с нагрузкой

Какое устройство вы хотите протестировать? Это лампа, резистор, радио или телевизор? Лучше всего начать с небольшого и простого предмета, например, резистора. Всегда помните, что при измерении не держитесь за клеммы резистора, потому что сопротивление из рук в руки может прервать измерение.

Шаг 2 – Подключите амперметр и источник питания

Теперь возьмите источник питания, например аккумулятор, и подключите положительный полюс к одному концу клеммной колодки или нагрузки, например, к резистору. Теперь подключите отрицательную клемму аккумулятора к клемме заземления амперметра, обозначенной как «com». Затем подключите положительный вывод амперметра, который обычно представляет собой красный провод, к другому концу клеммной колодки или другому концу нагрузки, в данном случае другому концу резистора.Теперь у вас есть амперметр, включенный последовательно в цепь.

Шаг 4 – Подключите вольтметр

Теперь пришло время подключить вольтметр к амперметру и остальным объектам в цепи. Возьмите черный провод или отрицательную клемму вольтметра и подключите ее к отрицательной клемме ленты или резистора. Возьмите красный провод или положительную клемму вольтметра и подключите его к положительной клемме клеммной колодки или положительному полюсу резистора, к которому также подключена положительная клемма аккумулятора.

Теперь ваш вольтметр и амперметр подключены. Убедитесь, что настройки амперметра и вольтметра совпадают при их подключении. Это означает, что если вы используете источник постоянного тока (DC), такой как аккумулятор, настройки и в вашем вольтметре, и в амперметре должны быть в настройке DC. Если вы подключаете его к источнику питания в вилке, то есть к источнику переменного тока, настройки в измерителях также должны быть на переменном токе.

Источник питания

– Проблемы заземления с вольтметром и амперметром

Прошу прощения, если этот пост снова стал очередным новичком в электронике.У меня есть степень инженера в области аудио, но я недавно увлекся электроникой и учусь по ходу дела.

Я пытаюсь собрать настольный блок питания из старого блока питания ATX, который у меня есть.

Я проверил блок питания ATX, а также провел исследования и знаю, что есть общая земля между всеми выходами блока питания.

Я недавно купил 3 амперметра вольтметра 100В 50А.

Технические характеристики:

  Напряжение проводки: 4.5-30 В постоянного тока
Примечание: максимальное входное напряжение не может превышать 30 В, в противном случае существует опасность ожога.
Рабочий ток: ≤20 мА
Диапазон измерения: DC 0-100V 0-50A
Минимальное разрешение (В): 0,1 В
Частота обновления: ≥100 мс / раз
Точность измерения: 1% (± 1 цифра)
Минимальное разрешение (А): 0,01 А
Рабочая температура: от -15 до 70 ° C
  

Я хотел бы иметь 3 комплекта крепежных столбов, это будет моя «нагрузка» , 12В, 5В и 3,3В. В каждой схеме будет свой вольтметр-амперметр.Я знаю, что проблема , но также и причина того, что они такие недорогие , в том, что шунт подключен к отрицательной стороне нагрузки, и я знаю, что это может быть серьезной проблемой, потому что все выходы имеют общую землю. Я просто не уверен ПОЧЕМУ это проблема.

Я подумал о том, чтобы разместить респектабельные реле (управляемые тумблером) на минусе каждого шунта, чтобы иметь возможность отключать счетчики, которые я не использую. Но это, в свою очередь, означало бы, что я не могу использовать более одного выхода одновременно.

Я думал об этих двух вариантах, но не уверен, решат ли они проблему, потому что счетчики по-прежнему связаны с общей землей:

  1. Я могу подключить вход питания амперметра вольтметра 5 В и 12 В к их напряжению питания постоянного тока (работающему на нагрузку) от источника ATX, так как входное напряжение измерителя должно быть в пределах 4,5 – 30 В, и можно подключить 3,3 В к отдельной линии питания 5 В, которую я тоже беру от ATX.
  2. Я могу подключить все счетчики к отдельному напряжению питания, которое я беру с ATX.Т.е. Каждый счетчик имеет входное напряжение питания (1 линия 12 В и 2 линия 5 В), и каждый имеет напряжение питания, идущее к его нагрузке.

Пожалуйста, простите меня, я не составлял никаких схем, потому что не уверен, что это вообще сработает.

МОИ ВОПРОСЫ

  1. Почему у счетчиков возникает проблема с общим заземлением? Это связано с замыканием шунтов? У меня нет полного понимания проблемы, и поэтому я не могу ее решить.
  2. Если бы я гальванически изолировал входное напряжение питания каждого счетчика, помогло бы это решить проблему?
  3. Если у меня есть 3 контура, но только в одном контуре есть счетчик, повлияет ли этот счетчик, если другие 2 контура будут работать одновременно (с нагрузкой на них?)

Пожалуйста, помогите. Извините, если мой пост непонятен. Если мне нужно составить какие-то схемы, я могу, хотя они будут элементарными.

Подключение амперметра и вольтметра | Последовательное и параллельное соединение

Подключение амперметра и вольтметра
Амперметр подключен последовательно, для измерения тока, а вольтметр подключен параллельно для измерения напряжения.

Сегодня мы узнаем, как правильно подключить амперметр и вольтметр . Также мы обсудим Почему амперметр всегда подключается последовательно, а вольтметр – параллельно?

Вольтметр – это измерительное устройство, с помощью которого мы можем измерять электрическое давление, разность потенциалов или напряжение в электрической цепи.
Амперметр – это измерительное устройство, с помощью которого мы можем измерить силу тока в электрической цепи.








Почему амперметр всегда подключается последовательно?


Мы всегда спрашиваем, почему амперметр подключается последовательно? но чья серия?
Собственно, смысл этого вопроса в том, почему амперметр подключается последовательно с нагрузкой?
Мы знаем, что ток всегда течет от источника к нагрузке, поэтому, если мы хотим измерить значение тока, потребляемого нагрузкой с помощью амперметра, нам нужно пропустить этот ток через амперметр.Это возможно только при последовательном подключении амперметра между источником и нагрузкой.


нажмите на изображение для увеличения

Когда мы подключаем амперметр между источником и нагрузкой последовательно, ток течет от источника к нагрузке через амперметр. Таким образом, через амперметр будет протекать тот же ток, что и через нагрузку, и амперметр может измерять значение протекающего тока.


Что будет, если параллельно подключить амперметр?





Теперь у вас может возникнуть вопрос: что произойдет, если мы подключим амперметр параллельно? Если мы подключили амперметр параллельно нагрузке,
  1. Ток, протекающий через нагрузку, не может протекать через амперметр, поэтому амперметр не может измерить значение тока, протекающего через нагрузку.
  2. Подключение амперметра параллельно нагрузке означает, что амперметр также подключен к источнику напряжения. Теперь амперметр действует как нагрузка. Поскольку амперметр имеет очень низкое сопротивление, через амперметр будет протекать большой ток, поэтому амперметр будет поврежден. По этой причине амперметр не следует подключать параллельно без умножителя.


Как подключить параллельно амперметр?


Амперметр может быть подключен параллельно нагрузке для измерения напряжения на нагрузке.Внешнее высокое сопротивление, которое также называется умножителем, должно быть подключено последовательно с амперметром, а затем амперметр может быть подключен параллельно нагрузке для измерения напряжения.



Почему вольтметр всегда подключается параллельно?


Если мы подаем какое-либо напряжение на вольтметр, то вольтметр измеряет приложенное к нему напряжение и показывает нам значение. Поэтому, если мы хотим измерить напряжение на нагрузке в электрической цепи, то на вольтметр должно подаваться то же напряжение, что и на нагрузку.Это возможно только тогда, когда мы подключим вольтметр параллельно нагрузке.





Когда мы подключаем вольтметр параллельно нагрузке, на вольтметре будет то же напряжение, что и на нагрузке. Поэтому вольтметр измеряет напряжение и показывает нам значение.


Что будет, если последовательно подключить вольтметр?


  1. При последовательном подключении вольтметра к нагрузке на вольтметре не будет напряжения, поэтому вольтметр не сможет измерить напряжение.
  2. Вольтметр имеет очень высокое сопротивление, поэтому, когда мы подключаем вольтметр последовательно, внутреннее сопротивление вольтметра будет препятствовать прохождению тока, поэтому ток не будет течь от источника к нагрузке.

Как подключить вольтметр последовательно?






Вольтметр можно подключить последовательно с нагрузкой для измерения тока. Внешнее низкое сопротивление, которое также называется шунтом, должно быть подключено параллельно вольтметру, а затем вольтметр может быть подключен последовательно с нагрузкой для измерения тока.

Читайте также:



Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

DROK & reg: 0,28 ” DC 0-100V 10A Цифровой вольтметр Амперметр Измеритель напряжения тока Манометр Красный Желтый Яркий светодиодный дисплей Пять проводов вольт-амперметр для монитора солнечной батареи Крепление на панели автомобильного мотора: Тестеры напряжения: Amazon.com: Industrial & Scientific

Особенности:
Размер резки: 45 мм x 26 мм
Размеры: 48 мм x 29 мм x 21 мм
Источник питания: DC 3.5-30В
Диапазон вольтметра: 0-100 В постоянного тока (разрешение 0,1 В)
Амперметр Диапазон: 0-9,99 А постоянного тока (прямое измерение, шунт не требуется)
Дисплей: Двойная трехзначная светодиодная трубка 0,28 дюйма
Цвет дисплея: красный вольтметр, желтый амперметр
Частота обновления: около 500 мс / раз
Точность: + / – 1% + 2 цифры

Подключение провода:
Тонкая красная линия (VCC): источник питания + (DC 3,5-30 В +)
(при измерении напряжения между 3,5-30 В постоянного тока тонкая желтая линия и тонкая красная линия могут соединяться вместе)
Тонкая черная линия (GND): Источник питания – (DC 3.5-30V -), измерение напряжения – (DC 0-100V -)
Тонкая желтая линия (VIN): Измерение напряжения + (DC 0-100V +)
Толстая красная линия (I +): Current Input +
Толстая черная линия (I-): Токовый вход –
Более подробную информацию см. В описании изображения.

Явления ошибки:
Из-за старения устройства и изменения температуры окружающей среды
1. погрешность увеличивается при измерении малого тока
Решение: при отсутствии нагрузки закоротите 2 контактные площадки KEY и затем включите питание, модуль автоматически выполнит калибровку нуля, после этого отключит модуль и отсечет точку короткого замыкания.
2. ошибка увеличивается во всем диапазоне измерения
Решение: При подключении нагрузки (лучше всего половина диапазона) продолжайте регулировать R7 до тех пор, пока он не покажет то же значение с более продвинутым источником калибровки.

Примечание:
, если измерять ток более 5А в течение длительного времени. Пожалуйста, приваривайте провода к порту измерителя, чтобы избежать высокого импеданса и нестабильной работы.

В пакет включено:
1x 2в1 вольтметр / амперметр постоянного тока

Как подключить цифровой вольтметр Амперметр

После экспериментов с парой синтезаторных модулей, которые я недавно собирал, стало очевидно, что мой самодельный блок питания не совсем подходит для этой работы.О том, как я его построил, вы можете прочитать здесь. Если вы хотите купить готовое устройство, у меня есть статья о том, какие сделки можно заключить в настоящий момент.

Главное, чего не хватало в моем домашнем источнике питания, – это счетчики, показывающие мне, какой ток используется. Это полезный индикатор неисправности, если недавно построенная плата потребляет слишком большой ток при включении. Если вы достаточно быстро выключите его, вы можете сэкономить немало урона.

Осмотрев Amazon, чтобы увидеть, что было в наличии, я нашел эти HeroNeo® DC 100V 10A вольтметр, амперметр, синий + красный светодиодный усилитель, двойной цифровой вольтметр.Кажется, что существует довольно много разных поставщиков, но все они кажутся очень похожими. Они казались идеальными для обновления моего источника питания. Если вы заинтересованы в покупке того же самого, я поместил несколько ссылок на Amazon ниже.

Когда я получил их, я был очень рад узнать, что они были точного размера, поскольку я заменял только измерители напряжения.

Это были заменяемые счетчики. Просто показав напряжение, было довольно легко понять, как их подключить!

Они удерживаются пластиковыми выступами по бокам корпуса счетчика, которые сжимаются, когда вы вставляете счетчик в прямоугольное отверстие, а затем пружините, удерживая его на передней панели.

На этом изображении вы можете увидеть вырез в панели и пластиковые стороны счетчика, которые удерживают ее на месте.

Это были хорошие новости. Плохая новость заключалась в том, что не было абсолютно никакой документации или каких-либо заметок. Вернитесь на веб-сайт, и не было никакого упоминания о подключении их или других ссылок или чего-либо вообще. В то время как на предыдущих счетчиках были только черные и красные провода, это было достаточно просто, но у них были тонкие черные и красные и толстые черные, красные и синие. Возможно, я говорю о толстых, потому что инстинктивно не знаю, как они должны быть связаны.Если вы похожи на меня, может быть, я помогу вам подключить ваш.

В комплект поставки счетчика входят вилки с проводами, которые можно подключать только к двум розеткам. Пока достаточно просто!

После небольших экспериментов я подумал, что получил, но не совсем. В конце концов я понял, что тонкие черный и красный провода предназначены для питания измерителя напряжения и тока. Для моего приложения я обнаружил, что синий провод предназначен для нагрузки, но отрицательной нагрузки, а не положительной, как я сначала думал.

Поскольку счетчики должны были питаться от выхода источника питания, я подключил их, как показано ниже.

  • Соединяет тонкий черный и толстый черный.
  • Соединяет вместе тонкий красный и толстый красный провода.
  • Поместите выход моего блока питания в счетчик. Красный вывод питания на два красных на счетчике. Черный вывод питания на два черных провода на счетчике.

Новый выход источника питания становится красным положительным выходом и синим (нагрузка) отрицательным выходом. Вы можете увидеть это на картинке ниже.

Как видите, я использовал клеммную колодку, чтобы связать толстый красный с тонким красным и тонкий черный с толстым черным.Красная и черная плата вывода источника питания подключаются к красному и черному счетчикам, а выход источника питания теперь красный и синий.

Теперь при подключении вы можете видеть, какой ток используется.

Выполнена разводка вольтметра амперметра с блоком питания. Здесь вы можете увидеть, что источник питания установлен на 12 В, а проект, к которому он подключен, использует 0,12 ампер.

Когда я впервые попробовал его, я подумал, что он не считывает ток, поэтому имейте в виду, что он будет читать только до.01 усилителя, поэтому, если ваша схема использует только несколько миллиампер, счетчик не будет показывать ток.

Учитывая цену, я очень доволен счетчиками, и они, безусловно, помогают мне в моем хобби. Надеюсь, эта статья покажет вам, как подключить цифровой вольтметр-амперметр.

Измерение тока и разности потенциалов – Электрический ток и разность потенциалов – KS3 Physics Revision

Вы можете измерять ток и разность потенциалов в цепях. Это разные вещи и поэтому измеряются по-разному.

Ток

Ток – это мера того, сколько электрического заряда проходит через цепь. Чем больше заряда течет, тем больше ток.

Ток измеряется в амперах. Обозначение ампера – А. Например, 20 А – это больший ток, чем 5 А. Слово «ампер» часто сокращается до «ампер», поэтому люди говорят о том, сколько ампер протекает.

Измерение тока

Для измерения тока используется устройство, называемое амперметром. У некоторых типов амперметров есть стрелка на циферблате, но у большинства есть цифровой дисплей.Чтобы измерить ток, протекающий через компонент в цепи, вы должны подключить амперметр последовательно с ним.

Цепь с амперметром, подключенным в двух разных местах, как последовательно с ячейкой, так и с лампой

Когда два компонента подключены последовательно, вы можете проследить путь через оба компонента, не отрывая пальца и не возвращаясь по пути, который вы уже проложили взятый.

Разница потенциалов

Разница потенциалов – это мера разницы в энергии между двумя частями цепи.Чем больше разница в энергии, тем больше разность потенциалов.

Разность потенциалов измеряется в вольтах. Символ для вольт – V. Например, 230 В – это большая разность потенциалов, чем 12 В. Вместо того, чтобы говорить о разности потенциалов, люди часто говорят о напряжении, поэтому вы можете услышать или увидеть «напряжение» вместо «разности потенциалов».

Измерение разности потенциалов

Разность потенциалов измеряется с помощью устройства, называемого вольтметром. Как и амперметры, у некоторых типов есть указатель на циферблате, но у большинства есть цифровой дисплей.Однако, в отличие от амперметра, вы должны подключить вольтметр параллельно, чтобы измерить разность потенциалов на компоненте в цепи.

Принципиальная схема, показывающая вольтметр параллельно с лампой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *