Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как изменить выходное напряжение блока питания ноутбука

При помощи этой инструкции можно изменить выходное напряжение практически любого импульсного блока питания, а не только того что от ноутбука. Все они почти работают по одному принципу и схемой не особо отличаются. К примеру, если у вас остался ненужный блок питания на 19 В, то его запросто можно переделать под 12 В, и, скажем, питать от него светодиодную ленту.

Меняем напряжение источника питания

Теперь разберемся подробнее. Всю плату импульсного источника можно условно разделить на два раздела. Центром является высокочастотный трансформатор, это самая массивная деталь на плате. Слева расположена низковольтная чать, а справа высоковольтная. Высоковольтная часть имеет обратную связь с низковольтной по средствам оптрона, которым управляет микросхема-стабилизатор «TTL431» или аналогичная. То есть, когда напряжение на выходе достигает необходимого значение, стабилизатор это отслеживает и передает сигнал через оптопару на контроллер в высоковольтной части. Так осуществляется стабилизация тока и напряжения блоком питания. Стабилизатор «TTL431» имеет регулируемые параметры, которые задаются цепочкой смещения, которая состоит из двух резисторов. Один резистор всегда идет на плюс, другой на минус. Чтобы изменить выходное напряжение, необходимо изменить соотношение этих резисторов. Тут действует правило: если напряжение на входе стабилизатора будет увеличиваться, то выходное напряжение будет уменьшаться и наоборот.
И тут есть два способка как поступить, чтобы изменить напряжение на выходе:
  • - Допаять резистор сверху.
  • - Выпаять оба резистора и впаять вместо них потенциометр.
В данном примере идем по второму пути. Выпаиваем оба резистора. Впаиваем потенциометр.

Включение и испытания

Перед включением обязательно выставьте потенциометр в среднее положение. Второе: если вы решили увеличить выходное напряжение, то обязательно нужно проверить номинал выходных конденсаторов, чтобы они были рассчитаны на новое напряжение. Производим регулировка.

Результат

Что касается конкретно компьютерного блока питания, с начальным напряжением 19 В, то его запросто можно перенастроить на любое напряжение в диапазоне 9-22 В. Теперь те, у которых дома валяются бесхозно источники питания от ноутбуков могут их переделать и использовать по своим нуждам для новых целей.

Смотрите видео

Блок питания. Блок питания Как сделать из 12 вольт 3.7 вольта

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом.

Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Или такие:

Остальные перечисленные способы рассматривать не имеет смысла, т. к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе.

Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0. 1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

способы и приборы. Блок питания Делитель напряжения на индуктивностях

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода - ноль и фаза. Это называется однофазной крайне редко используется в частном секторе и многоквартирных домах. Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования - понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики. Именно эти моменты и нужно рассмотреть.

Снижение напряжения с помощью трансформаторов

Самый простой способ - это использовать трансформатор пониженного напряжения, который совершает преобразования. Первичная обмотка содержит большее число витков, чем вторичная. Если есть необходимость снизить напряжение вдвое или втрое, вторичную обмотку можно и не использовать. Первичная обмотка трансформатора используется в качестве индуктивного делителя (если от нее имеются отводы). В бытовой технике используются трансформаторы, со вторичных обмоток которых снимается напряжение 5, 12 или 24 Вольта.

Это наиболее часто используемые значения в современной бытовой технике. 20-30 лет назад большая часть техники питалась напряжением в 9 Вольт. А ламповые телевизоры и усилители требовали наличия постоянного напряжения 150-250 В и переменного для нитей накала 6,3 (некоторые лампы питались от 12,6 В). Поэтому вторичная обмотка трансформаторов содержала такое же количество витков, как и первичная. В современной технике все чаще используются инверторные блоки питания (как на компьютерных БП), в их конструкцию входит трансформатор повышающего типа, он имеет очень маленькие габариты.

Делитель напряжения на индуктивностях

Индуктивность - это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор - это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:

  1. U(L1) = U1 * (L1 / (L1 + L2)).
  2. U(L2) = U1 * (L2 / (L1 + L2)).

В этих формулах L1 и L2 - индуктивности первой и второй катушек, U1 - напряжение питающей сети в Вольтах, U(L1) и U(L2) - падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Делитель на конденсаторах

Очень популярная схема, используется для снижения значения питающей сети переменного тока. Применять ее в цепях постоянного тока нельзя, так как конденсатор, по теореме Кирхгофа, в цепи постоянного тока - это разрыв. Другими словами, ток по нему протекать не будет. Но зато при работе в цепи переменного тока конденсатор обладает реактивным сопротивлением, которое и способно погасить напряжение. Схема делителя похожа на ту, которая была описана выше, но вместо индуктивностей используются конденсаторы. Расчет производится по следующим формулам:

  1. Реактивное сопротивление конденсатора: Х(С) = 1 / (2 * 3,14 *f * C).
  2. Падение напряжения на С1: U(C1) = (C2 * U) / (C1 + C2).
  3. Падение напряжения на С2: U(C1) = (C1 * U) / (C1 + C2).

Здесь С1 и С2 - емкости конденсаторов, U - напряжение в питающей сети, f - частота тока.

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Практическая схема блока питания: трансформатор

Для выбора питающего трансформатора вам потребуется знать несколько основных данных:

  1. Мощность потребителей, которые нужно подключать.
  2. Значение напряжения питающей сети.
  3. Значение необходимого напряжения во вторичной обмотке.

S = 1,2 * √P1.

А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение - 0,8.

Мощность во вторичной обмотке:

Р2 = U2 * I2.

Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки - переменный. Потребуется совершить еще несколько преобразований.

Схема блока питания: выпрямитель и фильтр

Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.

Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным - разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность - это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.

Стабилизация напряжения

Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы - стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).

Заключение

Совершенно другая конструкция - это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны - 50 Гц).

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Как понизить напряжение на выходе блока питания?

proba999

Есть зарядник, 3S. нужно из него "малой кровью" сделать 2S.
Соответственно с 12.6 до 8,4-8.6 вольта.
Ток на заряднике 2А.

wolfo

dc-dc понижающий преобразователь с регулировкой

Postoronnim V

А ещё можно последовательно включить штуки 4-5 выпрямительных диода на ток не ниже 2 А.
Прямое падение напряжения в районе 0,8-1 вольта на всех диодах и даст в сумме разницу в 4 вольта.

proba999

Postoronnim V
последовательно включить штуки 4-5 выпрямительных диода
Можете назвать наименование, что именно мне искать?
Например из ассортимента ЧИПиДипа?

Например Диод выпрямительный 3А 50В https://www.chipdip.ru/product/1n5400-2
Подойдёт?
Их последовательно на плюсовой выход БП?

Этот БП - зарядник для лития.

Postoronnim V

proba999
Подойдёт?
Пойдёт.
Таких нужно будет 3-4-5 штуки
Сколько последовательно соединить - это уже опытным путём и желательно при номинальной нагрузке.
Последовательно куда угодно, но для определённости ставьте первый диод анодом к +12,6, а на катоде последнего в посл. цепочке диода будет +8 с чем ни будь вольта.

proba999

Способность заряжать литий у моего зарядника случайно не пропадёт после диодов?

Postoronnim V

proba999
Способность заряжать литий у моего зарядника случайно не пропадёт после диодов?
Не знаю..
Литиевые заряжаются не напрямую, а через контроллер.
Типичному контроллеру нужно напряжение от 5 вольт.
Если далее не стоит какого ни будь делителя напряжения, который из 8 вольт сделает 3-4, то заряжать будет.
В любом случае всё это можно проверить опытным путём по цене насколько диодов.
Можете и шунтирующий диоды переключатель поставить и иметь БП на два напряжения.

Zerocross

судя по платке, никакого контроллера для лития нет. перед оптроном U2 надо уменьшить резистор, должен быть где-то в районе D3, ищите резистор в районе 1-1,2кОм , надо заменить на резистор в районе 720-740 Ом. обратную сторону платки плиз. но заряжать литий таким зарядником моветон

Zerocross

контроллер заряда есть

proba999

Так в итоге, что мне надо сделать, чтобы этот БП заряжал литий не 3S как он был создан (4.2х3=12.6 вольт) а 2S (4.2х2=8.4 вольта).
Ток у него по паспорту 2 А.

А, всё, увеличил и увидел 😊

Какие мне "волшебные" слова сказать в Чип-и-Дипе, чтобы мне дали эти детали?
А то я плоховато в этой теме разбираюсь.


Zerocross

proba999
Какие мне "волшебные" слова сказать в Чип-и-Дипе, чтобы мне дали эти детали?

сказать нужен смд резистор корпус 0805 либо 1206(https://www.chipdip. ru/product0/365312625 ),
на крайний случай выводной(https://www.chipdip.ru/product0/13189 ) резистор 0,125Вт номиналом 681 или 698 или 715 или 732 Ом (подбирать надо),
либо купить многооборотистый подстроечный резистор на 1 кОм https://www.chipdip.ru/product/3296w-1-102

что-то в чипедипе с номиналами напряженка, лучше подстроечный резистор многооборотистый как по ссылке выше

Postoronnim V

proba999
Какие мне "волшебные" слова сказать в Чип-и-Дипе, чтобы мне дали эти детали?
А то я плоховато в этой теме разбираюсь.
Вместо того резистора можно припаять на проводках переменный или подстроечный резистор на 1 кОм, предварительно выставив на нём нужное сопротивление и уже потом дорегулировать по месту.
На лично я бы за 10 минут спаял последовательную гирлянду из диодов..

Zerocross

Postoronnim V
Вместо того резистора можно припаять на проводках переменный или подстроечный резистор на 1 кОм, предварительно выставив на нём нужное сопротивление и уже потом дорегулировать по месту.
На лично я бы за 10 минут спаял последовательную гирлянду из диодов..

диоды не очень катят, так как ставятся последовательно батарейкам, а так как диоды еще имеют нелинейную ВАХ, температурные коэффициенты,в общем будет цирк с конями на выходе, да и собственно какой именно диод?

правильно чтобы не сжечь оптрон U3, лучшим решением будет последовательно включить резистор на 500 Ом и многооборотистый резистор на 500 Ом

Postoronnim V

Zerocross
диоды не очень катят, так как ставятся последовательно батарейкам, а так как диоды еще имеют нелинейную ВАХ, температурные коэффициенты,в общем будет цирк с конями на выходе, да и собственно какой именно диод?
Да практически любые кремниевые диоды на ток не ниже 2 А.
Про температуру, коней и цирк и ВАХ - было очень интересно услышать.
Но всё же хотелось бы какой то более предметной аргументации.

Мне же, в свою очередь.. не трудно пояснить свою точку зрения.
Большинство диодов (ну может за редким исключением навроде туннельных и обращённых диодов..) могут работать в режиме стабистора.
И именно по причине нелинейности ВАХ.
Судя по даташиту на те диоды, что нашел ТС (1N5400) изменение падения напряжения на диоде не более 0,1 в при изменение тока нагрузки на порядок.
Температурный уход составляет примерно те же 0.1 вольта на сотню по цельсию , но с отрицательным знаком.
Итого, при повышение тока диод нагревается и в значительной степени самокомпенсирует изменение падения напряжения на кристалле и четыре последовательно включенных диода не дадут в сумме большУю дельту, чем нужно ТС. (8.6 - 8.4 = 0.2 В)

Zerocross
лучшим решением будет последовательно включить резистор на 500 Ом и многооборотистый резистор на 500 Ом
Собственно то же самое и предлагал в своём предыдущем посте..

Zerocross

в общем ТС цу выдали пусть сам думает что ему надо

кстати кроме напряжения стабилизатора, надо же еще узнать что за контроллер стоит U3 маркировку не разобрать

Zerocross

Postoronnim V
Но всё же хотелось бы какой то более предметной аргументации.

ой фсё

Duga

Резисторы, диолы, тиристоры.
А без Чипов и Дейлов.
Смотать витки со вторичной катушки трансформатора? Пойдёт?

Postoronnim V

Duga
Смотать витки со вторичной катушки трансформатора? Пойдёт?
Стабилизатор то в БП настроен на вых. напряжение 12. 6.
Отмотав витки получим на входе стабилизатора напряжение ниже Uстаб. и , как следствие, на выходе нестабилизированное напряжение, которое будет "гулять" в зависимости от напряжения сети и тока нагрузки.
Да и витки отматывать это геморройнее во много раз диодов или резистора.

proba999

Я не пропал, я слушаю, слушаю, на усы наматываю 😊
Спасибо, товарищи, продолжайте!

mvf07

Диоды не дадут стабилизированного напряжения. В чем проблема купить КРЕН5А,(или LM317) и сделать то напряжение, какое тебе надо а выходе. И оно будет стабилизированным- то есть не зависит от скачков в сети.
Все схемы лежат в свободном доступе.
И да, падение напряжения на диоде не стабильно, зависит от входного напряжения, силы тока, температуры и ещё кучи факторов.
Из Вашего зарядного выкидывает все, кроме трансформатора, выпрямителя, ставите стабилизатор( или собираете на КРЕН5) подключаете балансир заряда АКБ LiIon- и всё.

Zerocross

mvf07
Диоды не дадут стабилизированного напряжения. В чем проблема купить КРЕН5А,(или LM317) и сделать то напряжение, какое тебе надо а выходе. И оно будет стабилизированным- то есть не зависит от скачков в сети.
Все схемы лежат в свободном доступе.
И да, падение напряжения на диоде не стабильно, зависит от входного напряжения, силы тока, температуры и ещё кучи факторов.
Из Вашего зарядного выкидывает все, кроме трансформатора, выпрямителя, ставите стабилизатор( или собираете на КРЕН5) подключаете балансир заряда АКБ LiIon- и всё.

зачем ТС выкидывать все? у него готовый зарядник для лития, надо только напряжение понизить, а как уже было сказано.
кстати ТС где буквы с корпуса микросхемы U3? чтобы все по феншую было???

Zerocross

Duga
Резисторы, диолы, тиристоры.
А без Чипов и Дейлов.
Смотать витки со вторичной катушки трансформатора? Пойдёт?

не пойдет бп импульсный

proba999

Почитал я, почитал, подумал и понял что "не по-зубам" мне эти манипуляции.

Заказал 2S 8.4В 1,5А импульсник.

Спасибо всем, товарищи, за желание помочь.

Всем удачи!

Zerocross

тоже верно

spit

Есть источники напряжения и источники тока, аккумуляторы заряжают током, изначальная задача кривая.

Zerocross

spit
Есть источники напряжения и источники тока, аккумуляторы заряжают током, изначальная задача кривая.

а есть контроллеры заряда батарей, ну это шутка была если чо

Postoronnim V

mvf07
Диоды не дадут стабилизированного напряжения. В чем проблема купить КРЕН5А,(или LM317) и сделать то напряжение, какое тебе надо а выходе. И оно будет стабилизированным- то есть не зависит от скачков в сети.
Все схемы лежат в свободном доступе.
И да, падение напряжения на диоде не стабильно, зависит от входного напряжения, силы тока, температуры и ещё кучи факторов.
Это умозрительные рассуждения.
Всё легко просчитывается даже без калькулятора.
Не поленитесь заглянуть в справочные данные по диодам 1N5400.
4 соединённых последовательно диода 1N5400 в стабисторном режиме дадут отклонение напряжения на выходе не более 0,2 вольта (что ТС и нужно) при изменение тока нагрузки на порядок.

Можно ли и до какого предела понижать выходное напряжение импульсного БП ?

Есть импульсный БП от какого то принтера, выходное напряжение 17В, ток 1А.
Обратными связями (через штатный оптрон) снижаем напряжение до 8В и хотим получить тот же ток 1А.
Собственно вопрос правильно ли так делать? Ведь как я понимаю у нас импульсы ШИМа становятся почти в 2 раза короче по времени или правильнее отмотать несколько витков со вторички? Правда делать этого не очень хочется, по причине трудноразбираемости трансформатора.
Как лучше поступить?

 

Переделывал блоки питания 9 В на 5 В заменой резисторов, идущих на 431. Пришлось доматывать обмотку питания микросхемы 3843, потому что блок старотовал и выключался из-за недостатка напряжения.

 

Да у меня то он работает, на столе, после переделки нормально. Вопрос хорошо ли так делать?

 

Пробовал блок питания старого монитора переделать на "широкую" регулировку выходного напряжения - именно этим же способом (заменой постоянных резисторов около 431 на переменный). Ничего не получилось! Точнее, "широкий" диапазон получить не удалось - ну, от силы 2...3 раза. При уменьшении просто срывалась генерация. Гораздо лучше получалось с контроллером 3842 (тем же способом).

 

Можно понижающий автотрансформатор поставить с 17В на 8В. В одном ТВ для накала такой делал с 24В на 6,3В.

 

Перемотал вторичную обмотку ИП от принтера Эпсон R270. Хотел получить вместо 42 вольт двенадцать.
ИП не запускается. Возможно, я где-то ошибся с начальными и конечными выводами, поскольку обмотки таких устройств секционированы.
ШИМ собран на NCP1308

 

Переделывал зарядку ноутбука с 18 до 12 вольт, ток порядка 2а. Подобрал сопротивления возле 431, получил срыв. Перемотать трансформатор не представлялось возможным, очень уж хорошо залит лаком. Заменил UC3842 на UC3843 все пошло. Работает около года, полет нормальный.

 

У меня ШИМ собран на FA5540A, но это тоже что и NCP1308, БП работает на 8ми В , но транзистор очень сильно греется. Поэтому и задумался....

 

Lerik: У меня ШИМ собран на FA5540A, но это тоже что и NCP1308, БП работает на 8ми В , но транзистор очень сильно греется. Поэтому и задумался....
Такое снижение напряжения почти в 2 раза , снижает на столько же и питание шима. Видимо полевику
не хватает открывающего напряжения на затворе и он не полностью открывается , из за чего и греется.
Я бы поставил повышающий в 2 раза трансформатор на колечке , в горячей части источника для
обмотки питания шима. К примеру взять кольцо стабилизатора 3.3 вольта компьютерного
блока питания (очень большая проницаемость) и сделать автотрансформатор 10+10 витков.

 

Спасибо SDD , я как то об этом не подумал совсем . Буду пробовать....
Я правильно понял как поключить трансформатор?

 

Как уменьшить амперы 🚩 потребляемый ток это 🚩 Авто 🚩 Другое

Инструкция

Чтобы уменьшить ток, потребляемый лампой накаливания, просто уменьшите напряжение на ней тем или иным способом (например, включив две лампы последовательно или применив диммер). Потребляемый ток изменится не по линейному, в случае с обычным резистором, а по более сложному закону, поскольку сопротивление нити зависит от температуры. По этой причине мощность, выделяемая на лампочке, также изменится не по квадратическому, а по более сложному закону. Помимо этого, отмечено, что снижение напряжения на лампочке вдвое способно продлить ее срок службы в 10-100 раз, однако ее коэффициент полезного действия, который у этого источника света и так очень мал, также уменьшится еще в несколько раз.

Аналогичным образом, то есть путем снижения питающего напряжения, попробуйте уменьшить потребляемый ток любой другой резистивной нагрузки, например, обогревателя, разумеется, с соответствующим снижением выделяемой мощности. То же самое можно проделать и со светодиодом увеличив номинал токоограничивающего резистора.

Помните, однако, что из всякого правила есть исключения. Не пытайтесь, например, питать слишком напряжением импульсный блок питания - у него при снижении входного напряжения потребляемый ток, наоборот, возрастает. Если оно слишком мало, такой блок даже может выйти из строя. Но не следует полагать, что для снижения потребляемого тока импульсного блока питания его следует питать повышенным напряжением. Это для него тоже опасно.

Также не пытайтесь подобным образом уменьшать потребляемый ток асинхронного электродвигателя, да и в отношении коллекторного двигателя такую операцию следует осуществлять с осторожностью. Если напряжение понизить настолько, что двигатель под нагрузкой остановится, он может сгореть. Решить эту проблему при применении коллекторного двигателя можно, применив вместо стабилизатора напряжения стабилизатор тока.

Некоторые виды осветительных приборов - люминесцентные и галогенные лампы - не выносят длительного питания пониженным током. Первые при этом выходят из строя по той причине, что ртуть не переходит из жидкого в газообразное состояние. Разряд в атмосфере инертного газа без примеси ртути губителен для электродов. Во вторых же при пониженной температуре нити не начинается так называемый галогенный цикл. К тому же, и те, и другие лампы иногда питаются от сети через импульсные блоки питания.

Как уменьшить вольтаж трансформатора

Как уменьшить вольтаж на трансформаторе.

Привет коллеги!

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.
После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора.  Вот так это выглядит:

 После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

 

 

Как снизить напряжение в 12-вольтовой системе до 4-х вольт

Два способа снизить напряжение в 12-вольтовой системе до 4 вольт - это использовать делители напряжения или стабилитроны.

Делители напряжения состоят из последовательно соединенных резисторов. Входное напряжение делится на выходное, что зависит от номинала используемых резисторов. Они подчиняются закону Ома, согласно которому напряжение пропорционально току, а сопротивление является константой пропорциональности.

Стабилитроны - это диоды, которые работают как источники постоянного тока при обратном смещении или обратном смещении в цепях.Они должны использоваться с токоограничивающим резистором, чтобы соответствовать требованиям производителя по питанию.

Делитель напряжения

    Изучите закон Ома для резисторов, включенных последовательно. Они используются как делители напряжения. Уравнение для очень простого с двумя резисторами: Vout = Vin * (R2 / (R1 + R2)), где желаемое выходное напряжение измеряется на R2.

    Создайте делитель напряжения, который даст 4 вольта. Присоедините положительный полюс 12-вольтового источника к одной стороне 660-омного резистора, то есть R1. Подключите его свободный конец к одной стороне резистора на 330 Ом, то есть R2. Подключите оставшуюся клемму R2 к отрицательной клемме источника питания.

    Установите мультиметр в режим постоянного напряжения. Измерьте выходное напряжение на R2. В качестве альтернативы, измерьте выходной сигнал между двумя резисторами, подключив провод и поместив один щуп на него, а другой - на провод на земле. На выходе должно быть примерно 4 вольта.

Стабилитрон

    Просмотрите спецификации и формулы сопротивления и мощности для диода 1N4731A.Он выдает стабильное 4,3 вольта и имеет номинальную мощность 1 ватт. Он также имеет максимальный ток Izm 1 Вт / 4,3 В = 233 мА. Максимальный ток стабилитрона при использовании резистора 330 Ом составляет (Vin - Vout) / R = 12 В - 4,3 В / 330 Ом = 23 мА. Это находится в пределах Изм, а также в пределах номинальной мощности диода, поскольку P = IV = 23 мА * 4,3 В = 100 мВт.

    Постройте цепь из последовательно соединенных стабилитроном и резистором 330 Ом. Присоедините положительный полюс 12-вольтового источника питания к одной стороне резистора. Подключите другой конец резистора к стороне с обратным смещением стабилитрона, которая обозначена меткой.Подключите оставшуюся клемму диода к отрицательной клемме 12-вольтового источника.

    Измерьте напряжение на диоде, приложив провод мультиметра к каждой клемме. Он должен показывать примерно 4,3 вольта.

    • Стабилитрон должен иметь обратное смещение, иначе он будет вести себя как обычный кремниевый диод.

      Полупроводники - чувствительные устройства. Убедитесь, что не превышаете номинальные значения мощности, тока и температуры, указанные производителем.

      Всегда соблюдайте осторожность при построении электрических цепей, чтобы не получить ожогов и не повредить оборудование.

Регулировка выходного напряжения источника питания

В технических описаниях источников питания постоянного тока могут быть спецификации, касающиеся возможности регулировки выходного напряжения. Это часто вызывает вопросы, связанные с тем, почему необходимо регулировать выходное напряжение, как внешняя цепь регулирует напряжение и почему ограничен диапазон регулировки напряжения? В этом блоге мы обсудим некоторые основы конструкции источника питания и свяжем их с работой и спецификациями подстройки выходного напряжения.

Что такое обрезка и как она используется?

Подрезка выходного напряжения источника питания означает просто небольшую регулировку напряжения. По соглашению, термин «подстройка» используется для приложений, в которых источник питания имеет заданное номинальное выходное напряжение, и пользователь может изменить выходное напряжение примерно на десять процентов или меньше. Чаще всего пользователи могут регулировать выходное напряжение источника питания, добавляя внешние компоненты, регулируя потенциометр, установленный на печатной плате, или подавая аналоговый или цифровой сигнал.

Источники питания с возможностью регулировки выходного напряжения обычно используются по двум причинам:

  1. Performance - Приложения, в которых небольшое изменение выходного напряжения может повысить производительность продукта.
  2. Нестандартные напряжения - Требуется нестандартное выходное напряжение, и изменение выходного напряжения стандартного источника питания является наиболее эффективным средством для получения требуемого выходного напряжения.

Одним из примеров повышения производительности за счет подстройки является падение напряжения вдоль силовых проводов в приложении.В этом случае выходное напряжение на клеммах источника питания может быть увеличено, чтобы компенсировать падение напряжения вдоль проводников. Применение подстройки выходного напряжения в этом приложении позволит напряжению на нагрузке быть на желаемом уровне, даже если в проводниках подачи энергии произошло падение напряжения.

Рисунок 1: Выходное напряжение источника питания подстроено так, что напряжение источника питания
= требуемое напряжение нагрузки + падение напряжения полного сопротивления проводника

Некоторые источники питания доступны с выходным напряжением, указанным в виде диапазона, а не номинального значения, и выходное напряжение может быть изменено. регулируется в соотношении 1: 100.Эти типы источников питания часто обозначаются как регулируемые, регулируемые или лабораторные источники питания. Метод управления выходным напряжением в этих источниках питания обычно представляет собой аналоговый или цифровой сигнал, ручку или клавиатуру, установленную на панели. Этот класс источников питания часто используется, когда пользователь желает иметь один источник питания, который можно использовать во многих различных приложениях, и они не являются предметом внимания этого сообщения в блоге.

Методы обрезки

В регулируемом источнике питания масштабированное значение выходного напряжения приводится в соответствие с опорным напряжением с помощью контура обратной связи.Выходное напряжение источника питания может быть изменено либо путем изменения коэффициента масштабирования напряжения обратной связи, вводя подрезки сигнала в узел обратной связи, или изменения опорного напряжения. Наиболее распространенные методы подстройки выходного напряжения источников питания - это подача тока (источник напряжения с высоким выходным сопротивлением) в узел обратной связи или изменение значения элемента импеданса в цепи обратной связи. Ниже приведены методы регулировки выходного напряжения в источниках питания.

Прикладное внешнее сопротивление

Группа разработчиков источника питания предоставляет контакт для внутреннего узла обратной связи. Источник напряжения с высоким выходным импедансом может быть сконструирован пользователем, если между выходным напряжением источника питания и землей будет размещена сеть резисторов с высоким импедансом. Затем узел этой сети внешних резисторов подключается к выводу внутреннего узла обратной связи и, таким образом, вводит соответствующий ток для подстройки выходного напряжения источника питания

.

Потенциометр

Команда разработчиков источников питания размещает потенциометр, установленный на печатной плате, в цепи обратной связи.«Горшок» доступен пользователю для регулировки выходного напряжения источника питания

Прикладное внешнее напряжение

Группа разработчиков источника питания предоставляет контакт, подключенный к внутренней схеме формирования сигнала, которая управляет внутренним узлом обратной связи. Пользователь подает напряжение подстройки на внешний вывод, и схема преобразования сигнала подает требуемый ток в узел обратной связи для подстройки выходного напряжения.

Цифровой интерфейс

Группа разработчиков источников питания предоставляет пользователю цифровой интерфейс для регулировки выходного напряжения.Внутренний ЦАП и преобразователь сигнала преобразуют код цифровой подстройки в соответствующее аналоговое напряжение или ток для подстройки выходного напряжения.

Рисунок 2: Блок-схема топологии источника питания

Ограничения обрезки

Существует множество возможных причин, по которым диапазон подстройки выходного напряжения может быть ограничен. Некоторые общие причины для ограничения диапазона подстройки включают ограничения выходной мощности, стабильность контура обратной связи и пределы рабочего цикла. Регулировка выходного напряжения также может повлиять на ограничение тока на выходе блока питания, в зависимости от топологии конструкции блока питания.Изменения выходного напряжения и выходного тока могут повлиять на требуемые характеристики входного конденсатора большой емкости, переключателя первичной стороны, изолирующих магнитов, вторичных выпрямительных полупроводников и компонентов выходного фильтра. Стоимость, размер и сложность этих компонентов в конструкции источника питания могут быть увеличены, если диапазон подстройки выходного сигнала будет больше.

Рисунок 3: Элементы преобразователя, на которые может повлиять изменение выходного напряжения или тока.

Как упоминалось ранее, источники питания имеют внутренний контур обратной связи.Изменение выходного напряжения источника питания может повлиять на стабильность контура источника питания. Нестабильный контур источника питания может колебаться или защелкиваться, а чрезмерно стабильный контур может иметь медленное время отклика и, таким образом, обеспечивать плохое регулирование выходного напряжения при наличии переходных процессов нагрузки. Почти во всех современных конструкциях источников питания используется топология переключения для снижения стоимости и размера, а также повышения производительности. Во многих архитектурах импульсных источников питания изменение выходного напряжения влияет на рабочий цикл формы сигнала переключения.Как минимальные, так и максимальные пределы рабочего цикла формы сигнала переключения могут быть обнаружены, если выходное напряжение настроено слишком сильно.

Заключение

Выходное напряжение источника питания можно регулировать, чтобы обеспечить преимущества во многих приложениях. В большинстве случаев правильная подстройка выходного напряжения источника питания не является проблемой. Однако, если есть сомнения или вопросы, команда технической поддержки CUI готова помочь нашим клиентам.

Категории: Основы , Выбор продукта

Дополнительные ресурсы


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Руководство по источникам питания

- B&K Precision

Введение

Источники питания - одни из самых популярных электронных испытательных устройств. Это неудивительно, поскольку контролируемая электрическая энергия используется множеством способов. В этом руководстве мы рассмотрим различные типы источников питания, их элементы управления, способы их работы и некоторые примеры их применения.

Источником питания в широком смысле можно назвать все, что снабжает энергией, например плотину гидроэлектростанции, двигатель внутреннего сгорания или гидравлический насос. Однако мы ограничимся обсуждением типов источников питания, которые преимущественно используются для испытаний и измерений, технического обслуживания и разработки продуктов.

Этот документ предназначен для пользователей или потенциальных пользователей источников питания. Его цель - дать определение используемых терминов, познакомить с различными типами источников питания и лежащими в их основе технологиями, объяснить элементы управления типичными источниками питания и рассмотреть некоторые примеры их использования.

Вот таблица некоторых различных типов источников питания. Мы сосредоточимся на выделенных типах.

Выход = DC Выход = AC
Ввод = AC
  • «Бородавка стенка»
  • Настольные источники питания
  • Зарядное устройство
  • Разделительный трансформатор
  • Источник переменного тока
  • Преобразователь частоты
Ввод = DC

Термин «настольный источник питания» здесь используется несколько мягко, так как некоторые из обсуждаемых нами источников питания могут быть слишком тяжелыми, чтобы их можно было поставить на скамейку.Тем не менее, номенклатура полезна, поскольку даже тяжелые источники питания с высокой выходной мощностью имеют много общего со своими меньшими собратьями. Но термин «верстак» является описательным для многих людей, поскольку он вызывает в воображении образ источника питания постоянного тока, который используется на скамейке инженера или техника для множества энергетических задач.

В оставшейся части этого документа стендовый источник питания будет рассмотрен более подробно после краткого обзора источников питания переменного тока.

Источник переменного тока

При тестировании электрического оборудования, которое питается от сети переменного тока, часто важно оценить оборудование, когда оно подвергается воздействию повышенного или пониженного напряжения.Нормальные колебания напряжения в сети переменного тока составляют порядка ± 10%, но могут быть больше, когда линия одновременно используется множеством тяжелых нагрузок. Разработчик может также захотеть провести испытания, выходящие за рамки нормальных изменений напряжения сети переменного тока, для целей нагрузочного тестирования (чтобы выяснить, в чем заключаются недостатки конструкции). Для этого типа тестирования требуется переменный источник переменного тока. Регулируемый источник переменного тока также может быть полезен во время «пониженного напряжения» (условия низкого напряжения в сети), чтобы поднять напряжение в сети до нормального уровня. Другое использование - повышение напряжения, когда нагрузка подключена через длинный удлинитель и падение напряжения на шнуре является значительным.

Различные напряжения переменного тока генерируются с помощью трансформатора (или автотрансформатора). Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных напряжений. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для (почти) непрерывного изменения напряжения 1 . Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.

Некоторые продукты, такие как блок питания переменного тока с регулируемой изоляцией B & K Precision модели 1655A, показанный ниже, объединяют в себе изолирующий трансформатор и регулируемый трансформатор.Этот продукт также включает в себя возможность выполнять испытания на утечку переменного тока и имеет удобный регулируемый источник питания для паяльников. Это практичный и полезный инструмент для стенда устранения неполадок.

Типы источников питания постоянного тока

Снятие батареи

Эти типы расходных материалов, как правило, наименее дорогие. Название описывает их основное предназначение - действовать вместо батареи. Эти устройства недороги и удобны, когда нужно работать с оборудованием, работающим от батарей, поскольку они позволяют работать с оборудованием без необходимости искать необходимые батареи.

Один из популярных типов выдает 13,8 В постоянного тока и предназначен для подачи постоянного тока на устройства, обычно питаемые от автомобильного аккумулятора. Типичное использование - обслуживание радиоприемников CB и автомобильного стереооборудования. Их характеристики линейного регулирования обычно шире, чем у лабораторных расходных материалов, но это нормально, поскольку напряжения в автомобилях существенно различаются.

Другой популярный тип (показан справа) заменяет различные схемы батарей на 1,5 вольта и батарей на 9 и 12 вольт. Единственными элементами управления являются двухпозиционный переключатель и поворотный переключатель, позволяющие выбрать желаемое выходное напряжение.

Поскольку это настоящие источники питания, они предназначены для безопасной непрерывной работы в условиях короткого замыкания.

Расстояние между банановыми разъемами составляет 0,75 дюйма (19 мм), чтобы можно было использовать переходники с двумя банановыми вилками, используемые с коаксиальными кабелями.

Источник постоянного напряжения

Чуть более сложный источник питания, чем разрядник батарей, обеспечивает постоянное регулируемое напряжение. Поскольку они регулируются, они обычно поставляются с измерителем, чтобы показать вам напряжение, на которое установлено напряжение.В некоторых также есть измерители, позволяющие контролировать ток. Типичная модель - B&K 1686A, показанная справа.

Основное поведение источника питания - поддержание установленного вами напряжения независимо от сопротивления нагрузки.

Эти модели имеют ручку для регулировки выходного напряжения. Некоторые модели не могут быть полностью настроены до нуля вольт, и их максимальный выходной ток может быть пропорционален выходному напряжению, а не обеспечивать номинальный ток при любом выходном напряжении.

В модели справа предусмотрены "связующие" точки, позволяющие контролировать выходное напряжение с помощью более точного цифрового измерителя или для подключения к другим цепям (обратите внимание, что связующие точки имеют предел 2 А).

Эти типы источников питания хорошо работают в качестве разрядников батарей, а также покажут вам ток, потребляемый нагрузкой.

Источник постоянного напряжения / постоянного тока

Вероятно, самый популярный тип лабораторных источников питания - это источники постоянного напряжения / постоянного тока.В дополнение к подаче постоянного напряжения эти источники также могут подавать постоянный ток. В режиме постоянного тока источник питания будет поддерживать установленный ток независимо от изменений сопротивления нагрузки. Типичным примером этого типа источника питания является B&K 1621A, показанный:

Этот источник питания выдает одно регулируемое напряжение, которое обозначается одним набором клемм типа «банановый джек». Вышеупомянутое расположение выходных клемм с клеммой заземления между клеммами + и - является наиболее распространенным и делает подключение любой клеммы к земле с помощью металлической перемычки очень удобно.Это полезно, если вы хотите, чтобы одна из клемм была заземлена. Конечно, то же самое можно сделать с помощью куска проволоки или перемычки со штабелируемыми банановыми вилками.

Указанный выше источник питания имеет грубую и точную регулировку как тока, так и напряжения. В некоторых источниках питания для регулировки используются 10-оборотные потенциометры. В других используются дисковые переключатели или кнопочные переключатели. Дисковые и кнопочные переключатели полезны (если их настройки точны), потому что они могут устранить необходимость в измерителе.

У этих типов источников питания часто есть другие полезные функции:

  • Дистанционное измерение: вход с высоким сопротивлением, позволяющий измерять напряжение на нагрузке. Затем источник питания корректирует падение напряжения на выводах, соединяющих источник питания с нагрузкой.
  • Соединения ведущий / ведомый: существуют различные методы, позволяющие подключать источники питания одного семейства параллельно или последовательно для получения более высоких напряжений или более высоких токов.
  • Терминал дистанционного программирования: у некоторых источников питания есть входные терминалы для напряжения или сопротивления, которые можно использовать для управления выходным напряжением или током.Примечание: это называется аналоговым программированием, а не цифровым программированием с помощью компьютера.

Источник питания с несколькими выходами

Источники питания с несколькими выходами имеют более одного выхода постоянного тока, часто два или три. Они полезны и экономичны для систем, требующих нескольких напряжений. Часто используемый источник питания для разработки схем - это источник с тройным выходом. Один выход подает от 0 до 6 вольт, предназначенный для цифровой логики. Два других питают (обычно) от 0 до 20 вольт, которые могут использоваться с биполярной аналоговой схемой.Иногда для двух источников питания на 20 вольт предоставляется регулировка слежения, так что источники + и - 20 вольт можно регулировать вместе, поворачивая одну ручку.

Популярной моделью является модель 9130:

.

Три выхода можно настроить независимо с помощью ручки или клавиатуры. Выходы каналов 1 и 2 - 31 вольт при 3,1 ампера, а третий канал выдает 6 вольт при 3,1 ампера. Таким образом, источник питания может непрерывно выдавать более 200 Вт. Выходы можно включать и выключать независимо или все сразу (полезно для питания всей печатной платы).

Блок питания имеет ряд полезных функций. Выходы могут быть настроены на работу по таймеру: по прошествии определенного временного интервала выход отключается. Пределы напряжения устанавливаются для всех каналов, поэтому ваш прототип электрической конструкции может быть защищен от случайного перенапряжения. Два канала на 30 В могут быть подключены последовательно или параллельно для получения более высокого напряжения или тока соответственно. Существуют также регистры хранения для сохранения до 50 состояний прибора для последующего вызова (полезно для повторяющихся испытаний).

Приятной особенностью для автоматической работы является то, что источник питания может быть настроен так, чтобы его выход был включен при последних настройках включения. Таким образом, если он работает в цепи и отсутствует питание переменного тока, источник питания снова начнет подавать питание при возобновлении подачи питания переменного тока.

Этот конкретный блок питания также программируется с помощью компьютера, что подводит нас к следующему типу блока питания.

Программируемое питание

Программируемые источники питания иногда называют «системными» источниками питания, поскольку они часто используются как часть компьютерной системы для тестирования или производства.Мы исключим из этого обсуждения «программирование» с помощью внешних напряжений или сопротивлений, которое использовалось в основном до того, как цифровое управление стало популярным.

На протяжении многих лет существовало множество типов компьютерных интерфейсов с контрольно-измерительными приборами. Двумя наиболее популярными из них были IEEE-488, также известный как GPIB (интерфейсная шина общего назначения), и последовательная связь RS-232. Также использовались сетевые интерфейсы (например, Ethernet) и USB-интерфейсы. Мы не будем здесь обсуждать достоинства различных типов интерфейсов, поскольку они выходят за рамки этого документа.

Командный язык для источника питания находится на несколько более высоком уровне, чем тип интерфейса. Это означает набор инструкций, отправляемых прибору по цифровому интерфейсу, и информацию, полученную компьютером от прибора. Вы увидите три категории:

Собственный

Собственные языки команд обычно специфичны для одного производителя, а иногда даже специфичны для определенного набора инструментов.Недостатком проприетарных командных языков является то, что пользователю необходимо написать программное обеспечение, специально предназначенное для этого инструмента. Переход на другой блок питания от другого производителя означает переписывание программного обеспечения.

SCPI

означает «Стандартные команды для программируемых инструментов», часто произносится как «скиппи» или «скуппи». Поскольку необходимость переписывать программное обеспечение при смене поставщика является болезненным, индустрия тестирования / измерения разработала SCPI для стандартизации команд для контрольно-измерительных приборов, чтобы упростить смену поставщиков приборов без необходимости переписывать большое количество программного обеспечения.

SCPI-подобный

SCPI очень помог, но не является полным решением, потому что добавляются новые функции, требующие новых команд. Несмотря на это, многие производители пытаются сделать свои языки командных инструментов SCPI-подобными, то есть они используют как можно больше стандартов. Синтаксис также выглядит знакомым разработчикам программного обеспечения, поэтому время разработки сокращается.

Здесь приводится типичный набор команд SCPI, общих для источников питания:

[SOURce:]
MODE {}
MODE?
НАПРЯЖЕНИЕ
[: LEVel] {}
[: LEVel]?
: ЗАЩИТА
: СОСТОЯНИЕ {}
: СОСТОЯНИЕ?
[: LEVel] {}
[: LEVel]?
ТОК
[: LEVel] {}
[: LEVel]?

Отправляя любую из приведенного выше списка команд через интерфейс, поддерживаемый прибором, можно управлять подачей с помощью компьютера, а не нажимать клавиши на передней панели.Это очень полезно, особенно при выполнении более сложных настроек, таких как создание динамических ступеней напряжения с использованием режима списка.

Многодиапазонная поставка

Большинство обычных источников питания работают с фиксированными номинальными значениями напряжения и тока, например 30В / 3А. В этом примере максимальная выходная мощность 90 Вт может быть реализована только при напряжении питания 30 В / 3 А. Для всех других комбинаций напряжения / тока выходная мощность будет меньше. Многодиапазонные источники питания отличаются тем, что они пересчитывают пределы напряжения / тока для каждой настройки, образуя границу гиперболической формы с постоянной мощностью, как показано на диаграмме ниже.Модель B & K 9110, рассчитанная на 100 Вт / 60 В / 5 А, является примером этого типа источника питания. Возможны любые комбинации напряжения / тока, которые лежат на гиперболической кривой, например 20В / 5А или 60В / 1,66А, и в каждом случае источник питания работает на максимальной мощности. Преимущества этой архитектуры очевидны: источник питания с несколькими диапазонами обеспечивает большую гибкость в выборе выходных характеристик и позволяет пользователям заменять несколько фиксированных номиналов одним источником с несколькими диапазонами, что позволяет сэкономить средства и место на столе.

Технические характеристики источника питания

Режим постоянного тока и постоянного напряжения

Категория источников питания постоянного тока, обсуждаемая в этом разделе, изменяет напряжение сети переменного тока на напряжение постоянного тока.Наиболее распространенным и универсальным регулируемым источником питания постоянного тока является источник постоянного тока (CC) или постоянного напряжения (CV), который, как следует из названия, может обеспечивать либо постоянный ток, либо постоянное напряжение в определенном диапазоне, см. Изображение ниже.

Рабочая характеристика этого источника питания называется автоматическим кроссовером постоянного напряжения / постоянного тока. Это позволяет непрерывно переходить от режима постоянного тока к режиму постоянного напряжения в ответ на изменение нагрузки.Пересечение режимов постоянного напряжения и постоянного тока называется точкой кроссовера. На рисунке ниже показано соотношение между этой точкой кроссовера и нагрузкой.

Например, если нагрузка такова, что подключенный к ней источник питания работает в режиме постоянного напряжения, обеспечивается регулируемое выходное напряжение. Выходное напряжение остается постоянным по мере увеличения нагрузки до момента, когда будет достигнут заданный предел тока. В этот момент выходной ток становится постоянным, а выходное напряжение падает пропорционально дальнейшему увеличению нагрузки.На некоторых моделях блоков питания точка кроссовера обозначается светодиодными индикаторами на передней панели. Точка пересечения достигается, когда индикатор CV гаснет, а индикатор CC загорается.

Аналогично, переход из режима постоянного тока в режим постоянного напряжения автоматически происходит при уменьшении нагрузки. Хороший пример этого можно увидеть при зарядке 12-вольтовой батареи. Первоначально напряжение холостого хода источника питания может быть установлено равным 13,8 вольт. Низкий заряд батареи приведет к большой нагрузке на источник питания, и он будет работать в режиме постоянного тока, который можно отрегулировать для скорости зарядки 1 ампер.Когда аккумулятор заряжается, и его напряжение приближается к 13,8 вольт, его нагрузка уменьшается до точки, при которой она больше не требует полной зарядки в 1 ампер. Это точка кроссовера, когда источник питания переходит в режим постоянного напряжения.

В следующем списке спецификаций мы перечислим советы и вопросы, которые вы, возможно, захотите учесть при изучении характеристик источника питания. Внимательно читайте спецификации и всегда смотрите на мелкий шрифт.

Выход

Выходное напряжение и ток (или напряжения и токи для нескольких выходов), конечно, имеют фундаментальное значение.Если вы ищете источник питания для конкретного приложения, подумайте о том, чтобы быть консервативным и покупать больше возможностей, чем вам нужно - в проекты часто добавляются новые функции на поздних этапах цикла проектирования.

Советы и вопросы:

  • Убедитесь, что выходной сигнал указан в допустимом диапазоне входного линейного напряжения (пример: некоторые импульсные источники питания должны быть снижены, например, до 90 В переменного тока).
  • Некоторые блоки питания (обычно импульсные блоки питания) не рассчитаны на выходное напряжение до 0 В.
  • Насколько припас может плавать над или под землей?
  • Насколько выходной дрейф с течением времени? Типичное значение может составлять от 5 до 10 мВ в течение 10 часов при постоянной нагрузке и входном напряжении.
  • Если на выходе фиксированное напряжение, можно ли его немного отрегулировать до желаемого значения?
  • Проверьте, есть ли в источнике питания дистанционное зондирование. Дистанционное измерение использует две входные клеммы с высоким импедансом для измерения выходного напряжения источника питания. При подключении к нагрузке эта функция может корректировать падение напряжения в соединительных проводах питания и нагрузки.
  • Некоторые блоки питания имеют защиту на выходе. Иногда это называют «лом», «защитой от перенапряжения» или «защитой от предельного напряжения». Эта функция либо ограничивает выходное напряжение до значения, установленного пользователем, либо отключает выход, если выходное напряжение достигает установленного предела. Цель состоит в том, чтобы обеспечить защиту цепей, чувствительных к напряжению. Пример: вы запитываете логическую схему на 5 В с источником питания, способным обеспечить выходное напряжение 40 В. Вы устанавливаете защиту источника питания от перенапряжения на 5.5 вольт. Тогда выходное напряжение никогда не будет превышать 5,5 вольт, независимо от того, на сколько вы поворачиваете ручку регулировки напряжения. Примечание: «лом» обозначает устройство (обычно SCR), которое закорачивает выход при превышении установленного предела напряжения. Поведение лома может быть нежелательным - хотя отключение цепи защитит ее, это также может вызвать проблему из-за отсутствия питания цепи!

Постановление

Регулировка нагрузки - это степень изменения выходного напряжения при изменении нагрузки, обычно от 0 до 100% номинального значения.Это удобно и легко можно измерить с помощью современных нагрузок постоянного тока. Типичные характеристики составляют от 0,1% до 0,01%. Если подумать, это отличное поведение - изменение до 1 части из 10 000 (это делается с помощью схем управления с отрицательной обратной связью).

Линейное регулирование - это степень изменения выхода при изменении входного переменного напряжения. Обычно он указывается как мВ на данное изменение входного сигнала или как процентное изменение во всем допустимом диапазоне входного сигнала. Типичные значения снова находятся в диапазоне 0.От 1% до 0,01%.

Для очень требовательных проектов можно узнать, как изменяется выход при изменении трех основных факторов: входного напряжения, нагрузки и температуры. Это редко указывается и, вероятно, придется измерить.

Вышеуказанные нормативные характеристики относятся к установившемуся режиму работы. Переходное поведение важно для некоторых приложений. Можно указать время переходного процесса, и оно связано с тем, сколько времени требуется источнику питания для восстановления заданного значения после внезапного изменения нагрузки или выхода.Это может быть важной спецификацией, когда источник питания используется с цифровой схемой, которая потребляет энергию импульсами. Например, радиопередатчик быстро перейдет из состояния бездействия в состояние полной мощности, что приведет к скачкообразным изменениям спроса на источник питания. Источник питания с плохой переходной характеристикой (или нестабильной реакцией, вызывающей колебания) будет вредным для приложения, потому что он может быть не в состоянии обеспечить достаточную мощность, а его выходные переходные процессы могут быть связаны с цепью, которую он поставляет, что приведет к аномальное поведение.

Пульсация и шум

Не существует общепринятого метода измерения пульсаций и шума. Некоторые поставщики включают внешние схемы при проведении измерений, поэтому, чтобы дублировать их результаты, вам нужно будет связаться с ними, как они проводят свои измерения. Самым простым способом измерения является подключение осциллографа со связью по переменному току к выходу источника питания. Измерение может быть выполнено для синфазного шума (шум на обоих выходах + и - источника питания по отношению к заземлению источника питания переменного тока) или нормального (также называемого дифференциальным режимом) шума, который представляет собой шум, наблюдаемый между + и - клеммы источника питания.Примечание: поскольку внешняя сторона разъема BNC на многих прицелах подключена к заземлению, вам придется использовать изолирующий трансформатор для питания осциллографа или использовать дифференциальный усилитель для измерения шума в нормальном режиме.

Пульсации для линейных источников питания обычно измеряются при удвоенной частоте сети. Что касается импульсных источников питания, вам нужно проверить более высокие частоты, и вы можете увидеть скачки напряжения. Пульсация может быть определена как часть нефильтрованного переменного напряжения и шума, присутствующих на выходе фильтрованного источника питания при работе с полной нагрузкой, и обычно указывается в вольтах (среднеквадратичное значение).С другой стороны, шум обычно определяется как размах переменного напряжения и может быть определен как часть нефильтрованного и неэкранированного шума электромагнитных помех, присутствующего на выходе отфильтрованного источника питания при работе с полной нагрузкой.

Может быть важно знать, в какой полосе частот указан шум. Часто это 20 МГц, так как для его измерения используется осциллограф. Примечание: иногда рябь и шум обозначаются как PARD, что является аббревиатурой от «периодических и случайных отклонений».

Большинство линейных источников питания должны иметь пульсации менее 3 мВ (среднеквадратичное значение) и менее 50 мВ пикового значения для импульсных источников питания

* Практический пример : Вот несколько примеров измерений пульсации и шума.Выход блока питания B&K Precision 9130, установленного на 9 В, был подключен через коаксиальный кабель 50 Ом (с использованием переходника с двумя банановыми вилками) к цифровому запоминающему осциллографу B&K Precision 2534 (полоса пропускания 60 МГц). Вход осциллографа был связан по переменному току (канал был проверен, чтобы убедиться, что связь по переменному току не оказывала заметного влияния на амплитуду входного сигнала до 30 Гц). Прицел питался от изоляционного трансформатора медицинского назначения, поэтому измерение шума было дифференциальным, а не синфазным.Не было измеримых пульсаций в линии электропередач, и шум был в основном широкополосным с некоторыми всплесками с основной частотой 40 МГц. Эти шипы не от этого источника питания, потому что i) они присутствовали при выключенном источнике питания и ii) они присутствовали на других приборах на скамейке автора, также выключенных. Вероятно, это цифровые помехи от компьютера автора, проходящие через линию электропередачи. 9130 должен иметь уровень шума менее 3 мВ (среднеквадратичное значение); эта конкретная поставка соответствовала спецификации.Обратите внимание, что это примерные измерения и не предназначены для определения каких-либо конкретных характеристик источников питания 9130 в целом. Тем не менее, мы надеемся, что это показывает, что такая «простая» вещь, как подключение одного кабеля к источнику питания и выполнение измерения, включает в себя ряд вещей, о которых следует подумать. Если бы автор использовал на входе фильтр нижних частот 20 МГц, он бы не тратил время на отслеживание этого паразитного шума.


Рисунок 2: (A) Типичный тепловой шум (B) Более медленный захват (A), показывающий всплеск (~ 15 мВ) (C&D) Подробности всплеска

Температура

Поскольку компоненты, из которых состоят блоки питания, чувствительны к температуре, неудивительно, что блоки питания в целом также могут быть чувствительными к температуре.Это верно даже тогда, когда дизайнеры стараются минимизировать влияние температуры. Современные источники питания лабораторного качества должны иметь температурный коэффициент ниже 0,05% на C. Обычно это указывается в диапазоне рабочих температур, который часто составляет от 0 до 40 ˚C. Обычно подразумевается или предполагается, что источник питания испытывается при постоянной нагрузке без колебаний линии переменного тока.

Вход переменного тока

Источники питания большей мощности могут использовать трехфазное питание. Они могут быть более экономичными и немного более эффективными, чем однофазные источники питания, хотя частота пульсаций будет выше.

Изоляция: определяется как напряжение постоянного или переменного тока, которое может быть приложено между входом и выходом без нарушения питания. Типичные значения - от 500 до 1500 В. Изоляция источника питания между входом и выходом или шасси обеспечивается изоляцией, обеспечиваемой трансформатором источника питания.

Некоторые источники питания содержат фильтрующие конденсаторы большой емкости, которые, по сути, вызывают короткое замыкание на выпрямитель при первом включении источника питания. В некоторых источниках питания есть схемы, позволяющие минимизировать пусковой ток или распределить его по времени («плавный пуск»).

Спецификация удержания определяет, как долго вход переменного тока может отключиться, а источник питания будет оставаться в режиме регулирования. Заряд, накопленный на конденсаторах фильтра, используется для подачи питания при отключенном входе переменного тока.

По мере увеличения стоимости энергии эффективность энергоснабжения становится все более важной. Эффективность - это выходная мощность, деленная на входную, и, конечно же, всегда будет меньше 100% (обычно она преобразуется в проценты). Лучшие расходные материалы могут быть эффективными на 90% или лучше.Линейные источники питания обычно намного менее эффективны, чем импульсные источники питания.

Точность отслеживания

Некоторые блоки питания с двумя или более выходами могут иметь функцию отслеживания. Здесь один выход будет отслеживать выходное напряжение другого выхода. Это полезно при подаче питания на цепи, которым нужна положительная и отрицательная шина. Спецификация точности отслеживания определяет, насколько точно второй вывод отслеживает вывод первого вывода.

Изоляция постоянного тока

Изоляция означает, насколько клеммы + или - могут быть «плавающими» над или под землей линии питания.Эта спецификация часто включает выходное напряжение источника питания. Важно не превышать спецификацию, так как это может вызвать пробой диэлектрика внутреннего компонента и / или воздействие опасного напряжения. Довольно часто два блока питания подключаются последовательно, чтобы получить более высокое напряжение, чем может обеспечить любой из них. Например, рассмотрим следующую схему:

В, из будет суммой напряжений, установленных на источнике питания 1 и источнике питания 2. Обратите внимание, что эта последовательная работа должна быть такой, чтобы ток не превышал ток источника питания с минимальным номинальным током.

Чтобы быть уверенным, что вы соблюдаете технические требования производителя по изоляции постоянного тока, убедитесь, что ни одно из напряжений на любом из внешних проводов относительно земли не превышает спецификации изоляции постоянного тока.

Теория работы

Есть два основных способа работы источников питания: линейное регулирование и режим переключения.

Линейный регламент

Принцип действия источника питания с линейным регулированием показан на следующей схеме:

Входное напряжение обычно поступает от трансформатора, двухполупериодного выпрямителя и конденсаторного каскада фильтра.Выходное напряжение сравнивается с опорным напряжением (полученным, например, из настроек передней панели источника питания), и разница подается на транзистор, чтобы пропускать через него больший или меньший ток. Транзистор обычно биполярный или MOSFET (иногда как часть управляющей ИС для небольших источников питания) и работает в своей линейной области (отсюда и название «линейное» регулирование). Стратегия линейного регулирования имеет преимущества простоты, низкого уровня шума, быстрого времени отклика и отличного регулирования.Недостатком является то, что они неэффективны, так как всегда рассеивают мощность. В приведенной выше схеме вы можете видеть, что транзистор имеет V на - V на выходе . Умножьте эту разницу на ток, чтобы получить рассеиваемую мощность. При большой разнице напряжений (т. Е. При низком выходном напряжении источника питания) и большом токе общий КПД может упасть почти до 10%. Максимальный КПД для линейного источника питания обычно составляет около 60%. Типичный средний КПД находится в диапазоне 30-40%.

Режим переключения

Примечание. В этом разделе мы будем называть импульсный источник питания сокращенно SMPS.

Проблемой типичного линейного источника питания является размер и вес трансформатора. Размер нужен из-за низкой частоты (от 50 до 60 Гц). При той же выходной мощности размер трансформатора уменьшается (сильно) с увеличением частоты (до определенного значения). SMPS использует это преимущество, разделяя форму волны переменного тока на множество мелких частей и изменяя их до желаемого уровня напряжения с помощью трансформатора гораздо меньшего размера.Ключевым фактом является то, что переключающий элемент (транзистор) либо выключен, либо полностью включен (насыщен). Падение напряжения на транзисторе невелико (как для биполярного транзистора, так и для полевого МОП-транзистора), что означает, что в нем тратится мало энергии. Когда он выключен, мощность не рассеивается. Это одно из преимуществ эффективности ИИП.

Конденсаторы фильтра также могут быть меньше на этих более высоких частотах, и дроссели более эффективны. Нижний предел частоты составляет 25 кГц (чтобы оставаться выше диапазона человеческого слуха), а современный верхний предел в настоящее время составляет около 3 МГц.Большинство импульсных источников питания используют частоты в диапазоне от 50 кГц до 1 МГц.

Паразитное поведение и скин-эффект в проводимости становятся важными на более высоких частотах переключения, особенно потому, что формы волны представляют собой прямоугольные волны и богаты гармониками. В пассивных элементах, таких как конденсаторы и катушки индуктивности, ESR (эквивалентное последовательное сопротивление) становится важным и приводит к неэффективности. Резисторы должны быть неиндуктивными. Тщательно продуманные, оптимизированные схемы переключения режимов могут обеспечить эффективность 95%, но типичный SMPS имеет КПД около 75%, что все же намного лучше, чем у типичного линейного источника питания.Это одна из причин, по которой они повсеместно используются в персональных компьютерах.

Еще одним преимуществом SMPS является то, что переключение может модулироваться различными способами в зависимости от условий нагрузки. Выход источника питания регулируется с помощью цепи обратной связи, которая регулирует время (рабочий цикл), с которым MOSFETs включаются или выключаются.

Преимущества импульсных источников питания не связаны с некоторыми затратами. Более высокие частоты и переключение означают более высокие уровни электромагнитных помех (EMI), как излучаемых, так и кондуктивных.Это может вернуть коммутационный шум в линию электропередачи. Управляющая электроника также стала более сложной (особенно в последнее время из-за желания иметь более высокие коэффициенты мощности).

Импульсные источники питания могут с трудом вырабатывать низкое напряжение. Это связано с тем, что транзистор должен переключать ток, то есть SMPS не может работать, пока не будет протекать достаточный ток. Из-за этого импульсные источники питания часто имеют минимальное выходное напряжение.

Применение источника питания

http: // www.amtex.com.au/ApplicationNotesPower.htm

Использование источника питания для создания смещения постоянного тока с помощью функционального генератора

Если источник сигнала, такой как функциональный генератор, не имеет возможности смещения постоянного тока, вы можете эффективно добавить эту функцию, используя источник питания постоянного тока. Как и в спецификации на изоляцию постоянного тока источника постоянного тока, важно, чтобы такой режим работы источника сигнала был разрешен производителем и чтобы вы не превышали спецификации. Вам также понадобится источник сигнала, выходные клеммы которого (обычно разъем BNC) изолированы от земли.Если разъем не изолирован от земли, прибор можно изолировать от земли линии питания с помощью изолирующего трансформатора. Однако металлическое шасси инструмента может быть выше или ниже потенциала земли при смещении постоянного тока, поэтому примите соответствующие меры против поражения электрическим током. Способ подключения показан на следующей схеме.

Причина, по которой это может быть полезно, заключается в том, что сигнал функционального генератора затем может быть вставлен в схему, которая смещена выше или ниже земли (или источник питания постоянного тока может подавать смещение, например, для транзистора).Вы должны быть осторожны, чтобы не превысить текущие возможности функционального генератора.

Источники питания: вопросы и советы

Как измерить эффективность источника питания?

Если для вас важна эффективность, вы должны тщательно ее измерить. Для типичного источника постоянного тока, работающего от сети переменного тока, вам необходимо измерить входную мощность переменного тока и мощность постоянного тока, выдаваемую источником, как показано на следующей диаграмме:

Наверное, лучший инструмент для измерения мощности переменного тока, используемой источником постоянного тока, - это осциллограф.Вам нужно будет измерить переменное напряжение и переменный ток, поступающие в блок питания. Лучшим подходом, вероятно, является использование неиндуктивного токового шунта для измерения тока и двух независимых дифференциальных усилителей для измерения входного переменного напряжения источника питания и переменного напряжения на шунте. Форма волны мощности может быть получена путем умножения формы волны тока и напряжения с помощью осциллографа. При подходящей полосе пропускания осциллографа и усилителей это будет точное измерение, покажет вам коэффициент мощности и расскажет о любых гармониках / переходных процессах линии питания, связанных с работой источника питания постоянного тока.Если ваш осциллограф не может выполнить умножение, вы все равно можете измерить среднеквадратичные значения напряжения и тока, измерить коэффициент мощности и умножить эти три вместе.

Для измерения мощности, потребляемой нагрузкой, вы можете использовать измерители напряжения и тока источника постоянного тока, если вы знаете, что они точны. Для подтверждения вы можете вместо этого использовать нагрузку постоянного тока с такими же характеристиками нагрузки.

Тогда измеренный КПД в процентах будет

.

, где P в - это измеренная входная мощность переменного тока, а P out - измеренная выходная мощность постоянного тока, оба в одних и тех же блоках питания.

Почему существует такая большая разница в ценах на блоки питания?

Аналогичный вопрос можно задать об автомобилях. Оба вопроса имеют один и тот же ответ: существует множество факторов, и простой ответ, вероятно, невозможен. Некоторые из факторов:

  • Имя и репутация продавца

  • Насколько консервативен дизайн

  • Количество и тип конкурирующих единиц

  • Сертификаты (e.г., безопасность, EMI и др.)

  • Надежность конструкции (и усилия, затраченные на ее проверку)

  • Качество используемых компонентов и конструкции

  • Количество функций

При оценке источника питания (или любого другого оборудования) следует учитывать общую стоимость владения. Включите стоимость ежегодных калибровок и любые предполагаемые потери из-за недоступности или необходимости ремонта или замены устройства в случае его выхода из строя.Через десять или более лет эти затраты могут легко превысить первоначальную стоимость источника питания.

Что лучше: режим переключения или линейный?

Это зависит от того, что вы подразумеваете под словом «лучший». Вы можете получить некоторые рекомендации из следующей таблицы:

Тип

Сильные стороны

Слабые стороны

Линейная

  • Низкий уровень шума и электромагнитных помех
  • Хорошая регулировка линии и нагрузки
  • Быстрая переходная характеристика
  • Может производить очень низкий выходной ток
  • Низкий КПД (в среднем 30-40%)
  • Масса (трансформатор)
  • Радиаторы большего размера
  • Дороже для большей мощности

Режим переключения

  • Высокая эффективность (в среднем 75%, в некоторых случаях около 95%)
  • Более доступный для большей мощности
  • Более легкий
  • Невозможно подавать низкое напряжение, требуется минимальный ток
  • Больше шума (включая импульсный шум и нарушения ЭМС)
  • Намного более медленный переходной отклик по сравнению с линейным

Дополнительные комментарии по этим двум типам см. В разделе «Теория работы».

Все большую популярность приобретают гибридные технологии, использующие как линейные, так и переключающие схемы. Целью этого подхода является создание источников питания, характеристики которых сочетают в себе преимущества технологий линейного и импульсного режимов.

Что такое лом?

Это защитное устройство, используемое на выходе источников питания (обычно SCR) для короткого замыкания выхода, если выходное напряжение превышает установленный уровень. См. Раздел «Выход» в разделе «Характеристики источника питания».

Как лучше всего проверить блок питания под нагрузкой?

Безусловно, отличный способ - протестировать его с реальной нагрузкой, которую он предназначен, если это возможно. Однако это может не повлиять на поставку настолько, чтобы много рассказать о ее пригодности и надежности для вашего приложения. Отличным инструментом для проверки блоков питания является нагрузка постоянного тока. Их можно запрограммировать на применение самых разных нагрузок к источнику питания, и они могут делать это безостановочно. После того, как определенная поставка квалифицирована, они становятся хорошими инструментами для текущей или входящей проверки.

Как измерить пульсацию и шум?

Это можно сделать с помощью осциллографа или широкополосного среднеквадратичного вольтметра переменного тока. Но есть нюансы, о которых следует знать - см. Раздел «Пульсация и шум» в разделе «Характеристики источника питания».

Сопротивление провода и контакта

Контактное сопротивление в плохих соединениях или плохо выполненных механических соединениях может добавить значительные нагрузки, особенно в сильноточных устройствах. Плохое или корродированное гофрированное соединение может иметь сопротивление в сотни миллиомов или даже выше ома.Это снижает эффективность и создает горячие точки. Если вам когда-либо приходилось чистить клеммы аккумулятора на вашем автомобиле, чтобы он завелся, вы видели проблему.

Медный провод 10 калибра имеет сопротивление немногим более 3 Ом / м. Для цепи с проводом длиной 10 м это 30 мОм. Таким образом, соединение 100 мОм будет обеспечивать 75% сопротивления проводки (а также терять 75% мощности, потерянной в проводке).

Плохие соединения относительно легко найти, если вы можете получить доступ к проводу под нагрузкой. Цифровой мультиметр можно использовать для измерения падения напряжения на соединениях (будьте осторожны, когда по проводам передаются значительные напряжения).Зная ток (измерьте его с помощью накладного амперметра постоянного тока, если измеритель источника питания не подходит), вы можете рассчитать сопротивление соединения. Если провод изолирован, доступны специальные пробивающие изоляцию щупы, такие как CalTest Electronics CT3044 или Pomona 5913. Если вы используете пробивные щупы, сначала отключите питание - случайная дуга может повредить острые наконечники (кроме потенциальная угроза безопасности).

Могу ли я подключиться параллельно?

Нагрузке для работы требуется n источников питания, поэтому используется n + 1 источник питания, что позволяет одному из них выйти из строя.Диоды должны изолировать источники питания друг от друга (они могут понадобиться, а могут и не понадобиться; опять же, спросите своего поставщика). Для источников питания может потребоваться соединение линий управления, чтобы они могли разумно распределять нагрузку. Требование состоит в том, чтобы каждый источник питания имел одинаковое напряжение на выходе, чтобы они поровну распределяли нагрузку. Проводка должна быть короткой, и каждая ветвь должна быть одинаковой для каждого источника питания.

М. Шварц, Передача информации, модуляция и шум, 2-е изд., McGraw-Hill, 1970, ISBN 07-055761-6.

http://www.abbottelectronics.com/engineer/glossary.htm

http://www.currentsolutions.com/knowledge/glossary.htm

Регулировка линии
Насколько изменяется напряжение или ток нагрузки, когда источник питания работает при различных линейных напряжениях в заданном диапазоне. Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
Регулировка нагрузки
Насколько изменяется напряжение или ток нагрузки при работе источника питания без нагрузки и при полной нагрузке.Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
КПД
Измеренный в процентах, он указывает количество выходной мощности по сравнению с мощностью, потребляемой в системе.
EMI
Электромагнитные помехи
Пусковой ток
Начальная величина тока, потребляемого источником питания при запуске.Иногда его называют пусковым током, и обычно он на несколько значений превышает установившееся значение источника питания.
Инвертор
Электрическое устройство, используемое для преобразования постоянного тока в переменный ток.
Дистанционное зондирование
Предоставляется в некоторых приборах, которые можно использовать для измерения напряжения тестируемого устройства на его клеммах, чтобы обеспечить точные показания для компенсации падений напряжения на выводах, подключенных к прибору и тестируемому устройству.
Постоянное напряжение
Стабилизированный источник питания, который подает постоянное напряжение на нагрузку, даже когда сопротивление нагрузки изменяется до значения, не превышающего предельный ток источника питания.
Постоянный ток
Регулируемый источник питания, который подает постоянный ток на нагрузку даже при изменении сопротивления нагрузки. Обратите внимание, что источник питания должен соответствовать закону Ома.
Ограничение тока
Значение, заданное как ограничение тока, который может выдавать источник питания.Когда ток достигает предела, типичный источник питания CV / CC переключается из режима CV в режим CC. Это также известно как точка пересечения.
Защита от перегрузки
Функция защиты в большинстве источников питания постоянного тока, предотвращающая потребление каким-либо устройством большей мощности, чем предназначены для выработки.
Защита от перенапряжения
Защита, используемая во многих источниках питания, ограничивает величину выходного напряжения.
Параллельная работа
Этот режим работы, применяемый во многих источниках питания с двойным и тройным выходом, позволяет подключать два или более независимых выхода параллельно для увеличения токового выхода.
Последовательная работа
Режим работы многих источников питания с двойным и тройным выходом, в котором два или более независимых выхода соединяются последовательно для увеличения выходного напряжения.
PARD
Периодические (пульсации) и случайные (шум) отклонения выходного напряжения от заданного значения.
ШИМ
Широтно-импульсная модуляция
Разрешение
Наименьшее изменение напряжения или тока, которое может быть выполнено регулировкой органов управления.
Тепловая защита
Защита от повреждения источника питания из-за чрезмерной температуры.
Переходное время восстановления
Время, необходимое источнику питания для восстановления своей выходной мощности после ступенчатого изменения.
AC
Переменный ток. Описывает напряжение и ток, которые меняются по амплитуде, обычно синусоидальной формы по времени. Электропитание переменного тока почти повсеместно используется для распределения электроэнергии.
Blackout
Потеря мощности переменного тока.
Понижение напряжения
Запланированное снижение напряжения переменного тока энергокомпанией для противодействия чрезмерному спросу.
Емкостная связь
Два отдельных проводника всегда образуют конденсатор. Чем они ближе, тем больше вероятность того, что колебания напряжения на одном проводе будут электростатически индуцированы на другом проводе (в отличие от индуктивной связи).
Индуктивная связь
Когда в одном проводе протекает изменяющийся ток, в соседнем проводе индуцируется напряжение из-за магнитного поля, вызванного током (в отличие от емкостной связи).
Пик-фактор
В сигнале переменного тока пик-фактор - это отношение пикового значения к среднеквадратичному значению.
DC
Постоянный ток. Используется для описания неизменного напряжения, тока или электрической мощности.
Drift
Изменение во времени выходного напряжения или тока.
Электронная нагрузка
Тип прибора, который служит нагрузкой, обычно динамической, и может использоваться для тестирования источников питания и источников питания.
ESR
Эквивалентное последовательное сопротивление. Простая «последовательная» модель конденсатора или катушки индуктивности помещает чистое реактивное сопротивление последовательно с чистым резистором, величина которого обычно называется ESR. Часто измеряется на электролитических конденсаторах большего размера, и высокое значение ESR обычно указывает на неисправный конденсатор.
Земля
Электрическое заземление в системе переменного тока - это провод, который соединен с землей, отсюда и название «земля». Причина такого подключения кроется в необходимости защиты пользователей электрического оборудования от поражения электрическим током.Электроэнергия доставляется к месту использования с помощью трансформатора, установленного на опоре или другого типа. Выход такого трансформатора состоит, по существу, из двух выводных проводов, между которыми имеется напряжение использования. По ряду сложных причин, связанных с безопасностью, один из этих выводных проводов трансформатора подключается к земле с помощью медной шины, вбитой в землю.
Минимальная нагрузка
Если указан для источника питания, это минимальный ток нагрузки, который должен быть получен от источника питания, чтобы он соответствовал его рабочим характеристикам.
Скачок
Кратковременное повышение напряжения сети переменного тока.
Выходное сопротивление
Отношение изменения выходного напряжения к изменению тока нагрузки.
Коэффициент мощности
Отношение активной и полной мощности. Это определяет, сколько тока требуется для выработки определенного количества энергии. Всегда желательно, чтобы отношение было как можно ближе к 1. Система с более низким коэффициентом мощности означала бы большую потерю мощности для выполнения того же объема работы по сравнению с системой с более высоким коэффициентом мощности.
Пульсации напряжения
Часть нефильтрованного переменного напряжения и шума на выходе фильтрованного источника питания, работающего при полной нагрузке. Обычно указывается в среднеквадратичных значениях напряжения переменного тока (с нулевыми пульсациями напряжения, представляющими идеально фильтрованный источник питания).
Ток пульсации
Часть нефильтрованного переменного тока на выходе фильтрованного источника питания.
RMS
Среднеквадратичное значение. Для любой формы сигнала среднеквадратичное значение представляет собой квадратный корень из среднего значения суммы квадратов выбранных значений.Для непрерывной функции применима аналогичная интегральная формула.
Защитное заземление
Цепь, предназначенная для отвода опасного напряжения (из-за дефекта или аварии), тем самым защищая людей от случайных ударов. Металлические крышки инструментов и приборов заземлены (и, следовательно, называются защитным заземлением). Таким образом, если электрически «горячий» провод внутри устройства случайно касается металлического корпуса, подключение к защитному заземлению означает, что металл будет оставаться рядом с потенциалом земли.Обычным результатом такого состояния является срабатывание автоматического выключателя.
Температурный диапазон
Диапазон, в котором блок питания должен работать. Он также может определять диапазон температур, в котором может храниться источник питания.
Истинная мощность
Также называемая реальной мощностью, обычно измеряется в ваттах.
Полная мощность
Произведение среднеквадратичного значения тока и среднеквадратичного напряжения, обычно измеряемое в единицах ВА (вольт-амперы).

Линия питания переменного тока при более низком напряжении

В = -N (dΦ / dt)

Электричество и магнетизм

Линия питания переменного тока при пониженном напряжении

Практическая деятельность для 14-16

Практический класс

Показывает основной принцип работы любого трансформатора: изменение тока в первичной обмотке вызывает эл.м.ф. (напряжение) во вторичной обмотке.

Аппаратура и материалы

  • 2 В перем. Тока источник питания (фиксированная мощность) («Вестминстерский образец»)
  • 1,5 В 0,3 А лампочки в держателях, 2
  • Трансформаторы с соотношением витков 20: 1 (каждый из катушек на 120 и 2400 витков, С-образных сердечников и зажима), 2
  • Мультиметр (используется как вольтметр переменного тока), 2
  • Длина 2,0 м провода сопротивления Эврика 28 swg, 2
  • Деревянная планка с двумя выводами 4 мм, 2
  • соединительных проводов с вилками 4 мм, 10

Примечания по технике безопасности и охране труда

Использование источника питания с фиксированным низковольтным выходом и трансформаторов с малым числом оборотов гарантирует отсутствие опасно высокого напряжения.Убедитесь, что максимальное напряжение, которое может выдавать ваше оборудование, составляет менее 40 В, умножив выходное напряжение источника питания на коэффициент трансформации трансформатора.

Убедитесь, что второй (понижающий) трансформатор правильно подключен, чтобы напряжение не повышалось.

Прочтите наше стандартное руководство по охране труда

Процедура

  1. В этом методе используется низкое напряжение (1.5 В) лампочки и трансформаторы, изготовленные с использованием стандартных лабораторных катушек.
  2. Покажите, что без трансформаторов «дальняя» лампа тусклая.
  3. Покажите, что, когда включены повышающий и понижающий трансформаторы, две лампы имеют примерно одинаковую яркость.

Учебные заметки

  • В этом видео показано, как настроить и продемонстрировать модельную линию электропередачи, в которой напряжение поддерживается ниже 40 В:
Прерыватель КПД

в цепи преобразователя постоянного тока в постоянный ток

Аннотация: Преобразователи постоянного тока в постоянный, распространенные в аккумуляторных, портативных и других высокоэффективных системах, могут обеспечивать КПД более 95% при повышении, снижении или инвертировании питающих напряжений.Сопротивление источника питания - один из наиболее важных факторов, ограничивающих эффективность. В этом примечании к применению описываются эффекты сопротивления источника, способы расчета эффективности, практические соображения, соображения по проектированию и показан реальный пример. Преобразователи постоянного тока

обычно используются в оборудовании с батарейным питанием и в других энергосберегающих приложениях. Как и линейный регулятор, преобразователь постоянного тока в постоянный может регулировать более низкое напряжение. Однако, в отличие от линейных регуляторов, преобразователь постоянного тока в постоянный может повышать входное напряжение или инвертировать его для создания отрицательного напряжения.В качестве дополнительного бонуса преобразователь постоянного тока в постоянный может иметь КПД более 95% при оптимальных условиях. Однако эта эффективность ограничена диссипативными компонентами. Основная причина - сопротивление в источнике питания.

Потери из-за сопротивления источника могут снизить КПД на 10% или более, не считая потерь в преобразователе постоянного тока в постоянный! Если преобразователь имеет соответствующее входное напряжение, его выход будет нормальным, и может не быть очевидных признаков того, что энергия расходуется впустую.

К счастью, проверить эффективность ввода несложно (см. Раздел «Источник»).

Большое сопротивление источника может вызвать другие, менее очевидные эффекты. В крайних случаях вход преобразователя может стать бистабильным или его выход может уменьшиться в условиях максимальной нагрузки. Бистабильность означает, что преобразователь демонстрирует два стабильных входных состояния, каждое со своим КПД. Выходной сигнал преобразователя в норме, но эффективность системы может резко снизиться (см. Как избежать бистабильности).

Следует ли решить эту проблему просто за счет минимизации сопротивления источника? Нет, потому что практические ограничения и компромисс между стоимостью и выгодой, создаваемый системой, могут предложить другие решения.Например, разумный выбор входного напряжения источника питания может значительно снизить потребность в низком сопротивлении источника. Более высокое входное напряжение для преобразователя постоянного тока ограничивает требования к входному току, что, в свою очередь, снижает потребность в низком сопротивлении источника. С точки зрения системы преобразование 5 В в 2,5 В может быть намного более эффективным, чем преобразование 3,3 В в 2,5 В. Каждый вариант должен быть оценен. Цель этой статьи - предоставить аналитические и интуитивно понятные инструменты для упрощения задачи оценки.

Системный обзор

Как показано на рис. 1 , любую регулируемую систему распределения мощности можно разделить на три основных раздела: источник, регулятор (и) (в данном случае преобразователь постоянного тока в постоянный) и нагрузку (и). Источником может быть батарея или источник постоянного тока, регулируемый или нерегулируемый. К сожалению, источник также включает в себя все рассеивающие элементы между напряжением постоянного тока и нагрузкой: выходное сопротивление источника напряжения; сопротивление проводки; и сопротивление контактов, земель печатной платы, последовательных фильтров, последовательных переключателей, цепей горячей замены и т. д.Эти элементы могут серьезно снизить эффективность системы.


Рис. 1. Регулируемая система распределения электроэнергии имеет три основных разделы.

Расчет и измерение эффективности источника очень просты. EFF ИСТОЧНИК равен (мощность, подаваемая на регулятор) / (мощность, обеспечиваемая V PS ), умноженная на 100%:

Предполагая, что регулятор потребляет незначительное количество тока в ненагруженном состоянии, вы можете измерить эффективность источника как соотношение V IN с регулятором при полной нагрузке к V IN с ненагруженным регулятором.

Регулятор (преобразователь постоянного тока в постоянный) состоит из микросхемы контроллера и связанных дискретных компонентов. Его характеристики описаны в паспорте производителя. КПД преобразователя постоянного тока в постоянный (EFF DCDC ) равен (мощность, передаваемая преобразователем) / (мощность, подаваемая преобразователю), умноженная на 100%:

Как указано производителем, этот КПД зависит от входное напряжение, выходное напряжение и выходной ток нагрузки. Нет ничего необычного в том, что КПД изменяется не более чем на несколько процентов в диапазоне тока нагрузки, превышающем два порядка величины.Поскольку выходное напряжение фиксировано, мы можем сказать, что КПД изменяется всего на несколько процентов в «диапазоне выходной мощности», превышающем два порядка величины.

Преобразователи

DC-DC наиболее эффективны, когда входное напряжение максимально близко к выходному. Однако, если отклонение входного сигнала не является экстремальным по сравнению с техническими характеристиками, КПД преобразователя обычно можно приблизительно оценить как константу от 75% до 95%:

В этом обсуждении преобразователь DC-DC рассматривается как двухпортовый черный коробка.Для тех, кто интересуется нюансами конструкции преобразователя постоянного тока, см. Ссылки 1-3. Нагрузка включает в себя приводимое устройство и все последовательно соединенные с ним рассеивающие элементы, такие как сопротивление ПК, контактное сопротивление, сопротивление кабеля и т. Д. Поскольку выходное сопротивление преобразователя постоянного тока указано в паспорте производителя, это количество специально исключено. Эффективность нагрузки (EFF НАГРУЗКА ) равна (мощность, передаваемая на нагрузку) / (мощность, передаваемая преобразователем постоянного тока), умноженная на 100%:

Ключ к оптимальной конструкции системы заключается в анализе и понимании взаимодействия между преобразователь постоянного тока в постоянный и его источник.Для этого мы сначала определяем идеальный преобразователь, затем рассчитываем КПД источника, а затем проверяем наши предположения на основе данных измерений типичного преобразователя постоянного тока, в данном случае понижающего стабилизатора MAX1626.

Идеальный преобразователь постоянного тока в постоянный

Идеальный преобразователь постоянного тока в постоянный должен иметь 100% КПД, работать в произвольных диапазонах входного и выходного напряжения и подавать произвольные токи на нагрузку. Он также был бы сколь угодно маленьким и доступным бесплатно! Однако для этого анализа мы предполагаем только то, что КПД преобразователя постоянен, так что входная мощность пропорциональна выходной мощности:

Для данной нагрузки это условие означает, что кривая входного тока-напряжения (IV) является гиперболической и демонстрирует отрицательную характеристику дифференциального сопротивления во всем диапазоне ( Рисунок 2 ).На этом графике представлены кривые ВАХ для преобразователя постоянного тока в функцию увеличения входной мощности. Для реальных систем с динамическими нагрузками эти кривые также являются динамическими. То есть кривая мощности смещается дальше от начала координат, поскольку нагрузка требует большего тока. Рассмотрение регулятора от входного порта вместо выходного порта - необычная точка зрения. В конце концов, регуляторы предназначены для обеспечения постоянного напряжения (иногда постоянного тока) на выходе. Их спецификации преимущественно описывают выходные характеристики (диапазон выходного напряжения, диапазон выходного тока, пульсации на выходе, переходные характеристики и т. Д.).). Однако вход демонстрирует любопытное свойство: в пределах своего рабочего диапазона он действует как нагрузка постоянной мощности (ссылка 4). Нагрузки постоянной мощности полезны, среди прочего, при разработке тестеров батарей.


Рисунок 2. Эти гиперболы представляют входные характеристики постоянной мощности для преобразователя постоянного тока в постоянный.

Расчет эффективности источника

Теперь у нас достаточно информации для расчета рассеиваемой мощности источника и, следовательно, его эффективности. Поскольку задано значение напряжения холостого хода источника (V PS ), нам нужно только найти входное напряжение DC-DC преобразователя (V IN ).Из уравнения [5] решение для I IN :

I IN также может быть решено в терминах V PS , V IN и R S :

Приравняйте выражения из уравнений [6] и [7] и решить для V IN :

Чтобы понять их значение, очень поучительно визуализировать уравнения [6] и [7] графически ( Рисунок 3 ). Линия нагрузки резистора представляет собой график всех возможных решений уравнения [7], а кривая постоянного и переменного тока представляет собой график всех возможных решений уравнения [6].Пересечения этих кривых, представляющие решения пары одновременных уравнений, определяют стабильные напряжения и токи на входе преобразователя постоянного тока в постоянный. Поскольку кривая DC-DC представляет постоянную входную мощность, (V IN +) (I IN +) = (V IN -) (I IN -). (Суффиксы + и - относятся к двум решениям, предсказываемым уравнением [8], и соответствуют знакам ± в числителе.)


Рисунок 3. Этот график накладывает линию нагрузки для сопротивления источника на DC-DC. ВАХ преобразователя.

Оптимальная рабочая точка - V IN + / I IN +, что минимизирует потери I IN 2R S за счет минимального потребления тока от источника питания. Другая рабочая точка вызывает большое рассеивание мощности в любых рассеивающих компонентах между V PS и V IN . Эффективность системы резко падает. Но вы можете избежать таких проблем, если установите достаточно низкий R S . Эффективность источника [(V IN / V PS ) x 100%] - это просто уравнение [8], деленное на V PS :

. графика анализа линии нагрузки, показанного на Рисунке 3.Обратите внимание, например, что если последовательное сопротивление (R S ) равно нулю, наклон линии нагрузки резистора становится бесконечным. Линия нагрузки тогда будет вертикальной линией, проходящей через V PS . В этот момент V IN + = V PS , и эффективность будет 100%. По мере увеличения сопротивления R S от 0 Ом линия нагрузки продолжает проходить через V PS , но все больше и больше наклоняется влево. Одновременно V IN + и V IN- сходятся в V PS /2, что также является точкой 50% эффективности.Когда линия нагрузки касается кривой ВА, уравнение [8] имеет только одно решение. Для более крупных R S уравнение не имеет реального решения, и преобразователь постоянного тока больше не работает должным образом.

Преобразователи постоянного тока в постоянный - теория и практика

Как эти кривые идеального входа соотносятся с кривыми реального преобразователя постоянного тока в постоянный? Чтобы изучить этот вопрос, стандартный оценочный комплект MAX1626 (, рис. 4, ) был настроен на выходное напряжение 3,3 В и нагрузочный резистор 6,6 Ом. Затем мы измерили кривую I-V входа (, рис. 5, ).Сразу бросились в глаза несколько неидеальных характеристик. Обратите внимание, например, что для очень низких входных напряжений входной ток равен нулю. Встроенная блокировка минимального напряжения (обозначенная как V L ) обеспечивает отключение преобразователя постоянного тока в постоянный для всех входных напряжений ниже V L . В противном случае при запуске от источника питания могут потребоваться большие входные токи.


Рис. 4. Стандартная схема преобразователя постоянного тока в постоянный иллюстрирует идеи на рис. 3.


Рис.Выше V MIN входная ВАХ MAX1626 близко соответствует характеристике идеального устройства с КПД 90%.

Когда V IN превышает V L , входной ток возрастает до максимума, который возникает, когда V OUT впервые достигает предварительно установленного выходного напряжения (3,3 В). Соответствующее входное напряжение (В МИН ) является минимумом, необходимым преобразователю постоянного тока в постоянный для создания предварительно установленного выходного напряжения. Для V IN > V MIN кривая постоянной мощности для КПД 90% близко соответствует входной кривой MAX1626.Отклонения от идеала вызваны в первую очередь небольшими отклонениями в КПД преобразователя постоянного тока в зависимости от его входного напряжения.

Как избежать бистабильности

Разработчик источника питания должен также гарантировать, что преобразователь постоянного тока в постоянный никогда не станет бистабильным. Бистабильность возможна в системах, в которых линия нагрузки пересекает кривую преобразователя постоянного тока в постоянный ток при напряжении V MIN / I MAX ( Рисунок 6 ) или ниже.


Рис. 6. Более пристальный взгляд на точки пересечения указывает на возможность бистабильной и даже тристабильной работы.

В зависимости от наклона и положения грузовой марки система может быть бистабильной или даже трехсторонней. Обратите внимание, что меньшее значение V PS может позволить линии нагрузки пересекаться в одной точке между V L и V MIN , в результате чего система будет стабильной, но нефункциональной! Поэтому, как правило, линия нагрузки не должна касаться вершины кривой преобразователя постоянного тока в постоянный и не должна опускаться ниже нее.

На рисунке 6 сопротивление линии нагрузки (R S , которое имеет значение -1 / наклон) имеет верхний предел, называемый R BISTABLE :

Сопротивление источника (R S ) всегда должно быть меньше, чем R BISTABLE .Если это правило нарушается, вы рискуете крайне неэффективной работой или полным отключением преобразователя постоянного тока в постоянный.

Фактический случай

Было бы полезно построить для реальной системы зависимость, показанную в уравнении [9] между эффективностью источника и сопротивлением источника (, рис. 7, ). Предположим следующие условия:


Рис. 7. Этот график зависимости эффективности источника от сопротивления источника показывает несколько значений эффективности для данного R S .

В PS = 10 В Напряжение питания холостого хода
В МИН. = 2 В Минимальное входное напряжение, обеспечивающее правильную работу
P IN = 50 Вт Мощность на входе DC-DC преобразователя (P OUT / EFF DCDC ).

Используя уравнение [12], R BISTABLE можно рассчитать как 0,320 Ом. Затем график уравнения [9] показывает, что эффективность источника падает по мере увеличения R S , теряя 20% при R S = R BISTABLE . Примечание: этот результат нельзя обобщать. Вы должны выполнить расчеты для каждого приложения. Одним из компонентов R S является конечное выходное сопротивление всех источников питания, определяемое регулированием нагрузки и обычно определяемое как:

Регулировка нагрузки =

Следовательно,

Источник питания 5 В / 10 А с 1 % регулирования нагрузки, например, будет только 5.Выходное сопротивление 0 мОм - немного для нагрузки 10 А.

Эффективность источника для общих приложений

Полезно знать, какое сопротивление источника (R S ) допустимо и как этот параметр влияет на эффективность системы. R S должен быть меньше, чем R BISTABLE , как указывалось ранее, но насколько он должен быть ниже? Чтобы ответить на этот вопрос, решите уравнение [9] для R S в терминах EFF SOURCE , для значений EFF SOURCE 95%, 90% и 85%.R S 95 - это значение R S , которое дает эффективность источника 95% для данных условий входа и выхода. Рассмотрим следующие четыре примера приложений, использующих обычные системы преобразователей постоянного тока в постоянный.

Пример 1 получает 3,3 В от 5 В при токе нагрузки 2 А. Для обеспечения эффективности источника 95% соблюдайте осторожность, чтобы сопротивление между источником 5 В и входом преобразователя постоянного тока не превышало 162 м². Обратите внимание, что R S 90 = R BISTABLE , случайно. Это значение R S 90 также подразумевает, что эффективность может быть как 10%, так и 90%! Обратите внимание, что КПД системы (в отличие от КПД источника) является продуктом КПД источника, КПД преобразователя постоянного тока и КПД нагрузки.

Пример 1. Применение с использованием преобразователя постоянного тока MAX797 или MAX1653 (I OUT = 2A)

V PS В ВЫХ I ВЫХ В МИН EFF DCDC P ВЫХ R БИСТАБИЛЬНЫЙ R S 95 R S 90 R S 85
5 В 3.3В 4,5 В 90% 6,6 Вт 0,307 Ом 0,162 Ом 0,307 Ом 0,435 Ом

Пример 2 аналогичен примеру 1, за исключением допустимого выходного тока (20 А против 2 А). Обратите внимание, что требование последовательного сопротивления для 95% эффективности источника в 10 раз ниже (16 мОм против 162 мОм). Чтобы добиться этого низкого сопротивления, используйте 2 унции. медные следы ПК.

Пример 2. Применение с использованием преобразователя постоянного тока MAX797 или MAX1653 (I OUT = 20A)

V PS В ВЫХ I ВЫХ В МИН EFF DCDC P ВЫХ R БИСТАБИЛЬНЫЙ R S 95 R S 90 R S 85
5 В 3.3В 20A 4,5 В 90% 66 Вт 0,031 Ом 0,016 Ом 0,031 Ом 0,043 Ом

В примере 3 получается 1,6 В при 5 А при напряжении источника 4,5 В (т. Е. 5–10%). Системное требование 111 мОм для R S 95 может быть выполнено, но нелегко.

Пример 3. Применение с использованием преобразователя постоянного тока MAX1710 с отдельным источником питания +5 В (В PS = 4,5 В)

V PS В ВЫХ I ВЫХ В МИН EFF DCDC P ВЫХ R БИСТАБИЛЬНЫЙ R S 95 R S 90 R S 85
4.5 В 1,6 В 5A 2,5 В 92% 8 Вт 0,575 Ом 0,111 Ом 0,210 Ом 0,297 Ом

Пример 4 аналогичен примеру 3, но с более высоким напряжением питания (V PS = 15 В вместо 4,5 В). Обратите внимание на полезный компромисс: существенное увеличение разницы между входным и выходным напряжениями привело к падению эффективности только преобразователя постоянного тока в постоянный, но общая эффективность системы повысилась.R S больше не является проблемой, потому что большое значение R S 95 (> 1 Ом) легко достигается. Система с входным фильтром и длинными входными линиями, например, может поддерживать эффективность источника 95% или более без особого внимания к ширине линии и сопротивлению разъемов.

Пример 4. Применение с использованием преобразователя постоянного тока MAX1710 с отдельным источником питания +5 В (В PS = 15 В)

V PS В ВЫХ I ВЫХ В МИН EFF DCDC P ВЫХ R БИСТАБИЛЬНЫЙ R S 95 R S 90 R S 85
15 В 1.6В 5A 2,5 В 86% 8 Вт 3,359 Ом 1,149 Ом 2,177 Ом 3,084 Ом

Заключение

При рассмотрении технических характеристик преобразователя постоянного тока возникает соблазн максимизировать эффективность, задав напряжение питания как можно ближе к выходному напряжению. Однако эта стратегия может увеличить затраты из-за наложения ненужных ограничений на такие элементы, как проводка, разъемы и разводка трассы.Может даже пострадать эффективность системы. Аналитические инструменты, представленные в этой статье, должны сделать такие компромиссы энергосистемы более интуитивно понятными и очевидными.

Ссылки

  1. Эриксон, Роберт В. Основы силовой электроники. Чепмен и Холл, 1997.
  2. Ленк, Рон. Практическое проектирование источников питания. IEEE Press и McGraw Hill, 1998.
  3. Готтлиб, Ирвинг М. Источники питания, импульсные регуляторы, инверторы и преобразователи. Второе издание, TAB Books, 1994.
  4. Веттрот, Джон.«Контроллер обеспечивает постоянную нагрузку». EDN, 14 марта 1997 г.

Как уменьшить пульсации напряжения?

Введение

Пульсация напряжения означает величину переменного напряжения, которое появляется на постоянном напряжении. Основная причина пульсаций напряжения заключается в том, что преобразователь преобразует переменное напряжение в постоянное, но переменное напряжение невозможно полностью устранить. Например, на рис. 1 представлена ​​принципиальная схема полного мостового выпрямителя с конденсатором, подключенным к выходной стороне.Пунктирная линия - это форма волны напряжения до полного мостового выпрямителя, сплошная линия - форма волны напряжения после конденсаторной фильтрации, а пульсирующее напряжение относится к размаху сплошной линии.

Пульсации напряжения, показанные на рисунке 1, представляют собой низкочастотные пульсации напряжения. В более высокочастотных приложениях, таких как преобразователи переменного тока в постоянный или постоянного тока в постоянный, частота пульсаций напряжения может быть выше. На рисунке 2 представлена ​​принципиальная схема преобразователя постоянного тока в постоянный. Шумы напряжения генерируются во время переключения MOSFET и передаются на выходную сторону через трансформатор.И, наконец, пульсация, измеренная на выходном конденсаторе, представляет собой пульсацию напряжения, содержащую шумовые составляющие.

Общий метод измерения напряжения заключается в использовании пробника напряжения для измерения выходной или нагрузочной стороны, как показано на рисунке 3. И отображение объема выходного напряжения с помощью осциллографа. Однако, если использовать те же методы для измерения пульсаций напряжения, форма волны будет восприимчива к помехам.

На рисунке 4 показано напряжение пульсаций, измеренное с помощью обычного метода измерения.Видно, что шумовая часть значительно выше. В основном это связано с длинным заземляющим проводом зонда. Путь измерения для пробника эквивалентен увеличению паразитной индуктивности, которая вызывает шум в форме волны выходного напряжения. Это не вызвано конвертером, и здесь легко ошибиться. Итак, правильный метод измерения очень важен.

На рис. 5 показан правильный метод измерения пульсаций. Из рисунка видно, что к выходу преобразователя подключен конденсатор фильтра.Цель состоит в том, чтобы подавить шум, поэтому емкость конденсатора обычно не слишком велика, в основном от 0,1 мкФ до 1 мкФ. И зонд должен использовать метод короткого заземления для измерения. Точка измерения должна измениться от нагрузки к выходному конденсатору. Цель состоит в том, чтобы избежать измерения шума. На рисунке 6 показана разница между рябью короткого заземления и отсутствием короткого заземления. Пульсации напряжения преобразователя можно правильно измерить, если использовать правильные методы.

Большинство измерений пульсаций напряжения выполняются, когда осциллограф находится близко к преобразователю.Если расстояние относительно велико, использование пробника напряжения для измерения может оказаться неприемлемым. Более подходящим методом является использование разъема BNC 50 Ом и коаксиального кабеля для измерения на больших расстояниях, как показано на рисунке 7. Следует отметить, что чем короче длина кабеля от выходного конца коаксиального кабеля до конденсатора и осциллографа, тем меньше вероятность получения помех.

В этой статье используется пробник напряжения и метод короткого заземления, а для измерения пульсаций напряжения используется полоса пропускания 20 МГц.

Внешний контур для уменьшения пульсации и шума

Ниже перечислены четыре внешних цепи и объяснена теория схемы.

Как показано на рисунке 8, подключение конденсатора к выходу преобразователя - простой способ уменьшить пульсации выходного напряжения.

В качестве примера возьмем полный мостовой преобразователь.

Vpp - это размах пульсаций напряжения.

I - выходной ток.

f - рабочая частота.

C - емкость.

Как показано в формуле (1), пульсации напряжения обратно пропорциональны емкости. То есть, чем больше емкость, тем меньше пульсации напряжения. Это показывает, что внешний конденсатор помогает подавить пульсации напряжения.

Фильтр нижних частот может быть хорошим выбором для уменьшения пульсации напряжения больше, чем конденсатор, как показано на рисунке 9.

Может использовать частотную характеристику для расчета параметров L и C.

f 0 - частота среза.

Q - коэффициент качества.

R L - Выходная нагрузка.

Возьмите формулу (3) в формулу (2), и она может вычислить L и C соответственно, как показано в формулах (4) и (5).

Коэффициент качества связан с импедансом нагрузки и LC-фильтром, который можно разделить на три кривые: избыточное демпфирование, критическое демпфирование и недостаточное демпфирование, как показано на рисунке 10.В идеале использование критического демпфирования в качестве параметров LC-фильтра является наиболее подходящим.

Из-за того, что внутри преобразователя есть переключающие компоненты, он будет генерировать переключающий шум. Эти шумы также могут передаваться на выходную сторону. А дроссельный фильтр синфазного режима может ограничить этот вид шума, как показано на рисунке 11.

Дроссельный фильтр синфазного сигнала обычно используется в качестве фильтра электромагнитных помех. Однако внутри синфазного фильтра все еще есть индуктивность рассеяния.Индуктивность рассеяния действует как индуктор дифференциального режима, и он аналогичен фильтру скорости LC. Таким образом, катушка индуктивности синфазного фильтра все еще может оказывать некоторое влияние на подавление пульсаций напряжения.

На рисунке 12 показана схема умножителя емкости, которая может уменьшить пульсации на выходе транзистора и R, C. Для выходной стороны это имеет эффект усиления C1, аналогично добавлению большой емкости на выходной стороне. Он подходит для уменьшения пульсаций напряжения и применения с ограничениями по размеру.

Как показано на рисунке 13 (a), это RC-фильтр нижних частот в схеме. Если вы хотите подавить пульсации напряжения, емкость C1 должна быть очень большой. Если к нему добавить транзистор, как показано на рисунке 13 (b), ток, подаваемый C1 на выход, будет примерно в β раз меньше. Другими словами, емкость C1 увеличивается на выходе примерно в β раз.

Схема умножителя емкости также имеет недостатки, потому что напряжение транзистора Vce будет изменяться в зависимости от выходного тока, что вызовет некоторое падение напряжения на выходе, диапазон может быть от 0.65 В до 3 В. Следовательно, это подходит для приложений с малым током и невысокой точностью напряжения, например, для усилителя OP или источника питания DAC.

Заявка

Далее будет использоваться специальный преобразователь постоянного тока в постоянный для измерения разницы пульсаций напряжения до и после с помощью различных схем уменьшения пульсаций напряжения.

Преобразователь представляет собой широкий диапазон входного напряжения от 9 до 36 В на входе, регулируемый преобразователь на выходе 5 В, выходная мощность 30 Вт, выходной ток 6 А, технические характеристики приведены в таблице 1.

Таблица 1 Технические характеристики преобразователя постоянного / постоянного тока
Преобразователь постоянного тока в постоянный PF30WR4-2405
Входное напряжение 24 В постоянного тока
Выход 5 В постоянного тока / 6 А
Рабочая частота 400 кГц
Пульсация и шум 75 мВ (макс.)

На рисунке 14 показана форма волны пульсаций напряжения на выходе при использовании метода короткого заземления.В связи с отсутствием дополнительной схемы шумоподавления. Видно, что размах пульсаций выходного напряжения и шума составляет около 445,9 мВ при отсутствии внешнего конденсатора.

Для подавления пульсаций выходного напряжения и шума наиболее распространенным и простым способом является добавление конденсатора.

На рисунке 15 показаны пульсации выходного напряжения, измеренные внешним MLCC емкостью 22 мкФ. Из рисунка видно, что пульсирующее напряжение уменьшилось с 445,9 мВ до примерно 30 мВ.

Кроме того, на Рисунке 16 показана форма сигнала для удвоенного выходного конденсатора.Пульсации выходного напряжения становятся ниже, а значение размаха составляет 19,5 мВ. Следовательно, внешний конденсатор на выходе преобразователя может эффективно подавлять пульсации выходного напряжения.

Рис. 17 представляет собой принципиальную схему фильтра нижних частот. Из таблицы технических характеристик преобразователя рабочая частота преобразователя составляет 400 кГц. Сначала установите частоту среза на 40 кГц, а коэффициент качества на 0,707. С помощью уравнений 4 и 5 можно получить индуктивность 4.69 мкГн, а емкость - 3,376 мкФ. Наконец, выберите индуктивность 4,7 мкГн и два MLCC по 2,2 мкФ в качестве выходного фильтра нижних частот.

На рисунке 18 представлена ​​форма волны пульсаций выходного напряжения. Есть сравнение до и после фильтра. Фильтр нижних частот, пульсации и шум эффективно подавляются.

На рисунке 19 схематично показан дроссель синфазного сигнала в качестве выходного фильтра. В этом эксперименте в качестве железного сердечника использовался ферритовый сердечник Mn-Zn из A151, T16x12x8C.Количество обмоток - 10. Основная индуктивность составляет 0,35 мГн, а индуктивность рассеяния - 3,18 мкГн. C1 и C2 составляют 0,22 мкФ MLCC.

На рисунке 20 схематически показан фильтр синфазных помех. Можно видеть, что индуктивность рассеяния используется в качестве индуктивности дифференциального режима, которая такая же, как у двух фильтров нижних частот, поэтому эффект подавления пульсаций выходного напряжения должен быть лучше, чем у одиночного фильтра нижних частот.

Рисунок 21 - это форма сигнала измерения. Это правда, что пульсации напряжения ниже, чем у одиночного фильтра нижних частот, но недостатком является то, что он занимает больше места.

На рисунке 22 показана схема этого эксперимента со следующими параметрами.

Q1 - это 2SCR552PT100, это транзистор ROHM.

R1 составляет 1 кОм.

C1 составляет 4,7 мкФ.

Так как емкостной умножитель подходит для низкого уровня мощности или сигнала. Поскольку это приведет к падению напряжения, он не подходит для сильноточных приложений. Таким образом, выходной ток этого эксперимента ограничен 0,2 А.

Рисунок 23 - это тестовый сигнал.Он может видеть разницу между фильтром до и после. Пульсации до подавления составляют около 97 мВ, а после подавления - 12,8 мВ, что может уменьшить пульсации напряжения. Недостатком является то, что его можно использовать только при уровне сигнала, в момент более высокой выходной мощности.

Заключение

В этой статье рассказывается о формировании пульсации и шума, а также о методе измерения. Также предоставляет четыре вида методов снижения пульсации и шума и проводит эксперимент для каждого типа фильтра.

Таблица 2 показывает сравнительную таблицу для четырех методов, чем ниже оценка, тем лучше.

Судя по общей оценке, только добавление конденсаторов является наиболее подходящим методом подавления пульсаций, который не только имеет наименьшую громкость, но и дает определенный эффект.

Второй и третий - это фильтр нижних частот и фильтр синфазного режима. Поскольку он имеет внешние катушки индуктивности и синфазный дроссель, пространство для разводки больше, чем у конденсатора, но эффект лучше. Поэтому во многих приложениях с низким уровнем пульсации используются эти два метода.

Четвертый - это схема умножителя емкости, которая хорошо влияет на подавление пульсаций напряжения, но ее можно использовать только для низкого уровня тока или сигнала, что ограничивает область применения.

Таблица 2 Сравнительная таблица фильтров
С LC фильтр Фильтр CMC Умножитель C
Кол-во деталей 1 2 3 3
Пространство листа 1 2 3 3
Подавление пульсаций и шума 2 1 1 1
Выходной ток 1 1 1 3

1 → Хорошо, 2 → Среднее, 3 → Плохо

CTC является профессиональным поставщиком услуг для высокопроизводительных модулей питания (преобразователь переменного тока в постоянный и преобразователь постоянного тока в постоянный) для критически важных приложений по всему миру уже 30 лет.Наша основная компетенция заключается в разработке и поставке продуктов с использованием передовых технологий, конкурентоспособных цен, чрезвычайно гибких сроков поставки, глобального технического обслуживания и высококачественного производства (Сделано в Тайване).

CTC - единственная корпорация, имеющая сертификаты ISO-9001, IATF-16949, ISO22613 (IRIS) и ESD / ANSI-2020. Мы можем на 100% гарантировать, что не только продукт, но и наши рабочие процессы и услуги будут соответствовать системе управления качеством для каждого высокотехнологичного приложения с самого начала. От проектирования до производства и технической поддержки, каждая деталь эксплуатируется в соответствии с высочайшими стандартами.

Повышение энергоэффективности серверов за счет использования высоковольтных источников питания

% PDF-1.4 % 38 0 объект > эндобдж 55 0 объект > поток 11.08.572018-06-26T16: 04: 10.051-04: 00Acrobat Distiller 6.0 (Windows) e0067743145efd59f792af4852ade33be1a0522366472ba0122755PScript5.dll Версия 5.2.22009-04-20T17: 34: 12.000-04: 002009-04-20T17: 34: 12.000-04: 002009-04-20T17: 34: 12.000-04 00application / pdf

  • en
  • 2018-06-26T16: 11: 17.652-04: 00
  • e0067743
  • Повышение энергоэффективности серверов за счет использования источников питания высокого напряжения
  • uuid: 3e7a041d-024a-4547-af0f-59391f58d2fcuuid: 65f5952d-a3ab-49a6-91ee-6ae7f0d1498f Acrobat Distiller 6.0 (Windows)
  • eaton: вкладки поиска / тип-содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: систематика продуктов / backup-power, -ups, -surge - & - it-power-distribution / backup-power- (ups) / eaton-bladeups
  • eaton: язык / ru
  • eaton: ресурсы / маркетинговые ресурсы / официальные документы
  • конечный поток эндобдж 32 0 объект > эндобдж 34 0 объект > эндобдж 40 0 объект > эндобдж 1 0 объект > эндобдж 8 0 объект > эндобдж 11 0 объект > эндобдж 14 0 объект > эндобдж 21 0 объект > эндобдж 25 0 объект > эндобдж 27 0 объект > поток HW] o6} ׯ {ein ("C \ lCFcvRR]] ^ J @ $ s9d.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *