Понизить ток в цепи
Все источники питания рассчитаны на предельную нагрузку на определенную мощность. По сути любой источник энергии имеет определенное напряжение на выходе, а так же определенную допустимую силу тока. При превышении максимальной силы тока мощности источник питания может сгореть. Подключив еще одно сопротивление параллельно к источнику питания через цепь будет протекать ток в 1,5 раза больше допустимого.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Уменьшить силу тока
- Совет 1: Как понизить силу тока
- Урок 8. Делим ток и роняем напряжение
Бестрансформаторное электропитание.Конденсатор вместо резистора - Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) 📹
- Чем понизить напряжение
- Как понизить постоянное и переменное напряжение — обзор способов
- RM35JA31MW
- Как понизить ток?
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ
Уменьшить силу тока
Онлайн калькулятор закона Ома позволяет определять связь между силой тока, электрическим напряжением и сопротивлением проводника в электрических цепях.
Для расчета, вам понадобится воспользоваться отдельными графами: – сила тока вычисляется в Ампер, исходя из данных напряжения Вольт и сопротивления Ом ; – напряжение вычисляется в Вольт, исходя из данных силы тока Ампер и электрического сопротивления Ом ; – электрическое сопротивление вычисляется в Ом, исходя из данных силы тока Ампер и напряжения Вольт.Все калькуляторы. Конвертеры Обратная связь Приложения. Учеба и наука — Математика — Красота и здоровье — Внешность — Компьютерная техника — Железо — Транспорт — Автомобили — Строительство — Возведение конструкций — Быт — Дата и время — Учеба и наука Физика. Сила тока Формула Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Напряжение Формула Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
Электрическое сопротивление Формула Электрическое сопротивление определяет силу тока, текущего по цепи при заданном напряжении. Select rating 1 2 3 4 5 Рейтинг: 4 Голосов Калькуляторы Каталог калькуляторов Конвертеры Поиск калькуляторов.
Информация о сайте О нашем сайте Обратная связь Приложения для Android. Компьютерная техника — 84 Железо — 45 Игры — 7 Радиосвязь — 21 Фото — Транспорт — 33 Автомобили — 25 Велосипеды — 4 Прочее — 4. Строительство — Возведение конструкций — 22 Отделочные работы — 29 Трубопровод — 11 Отопление — 10 Электрика — 25 Прочее — Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
Электрическое сопротивление определяет силу тока, текущего по цепи при заданном напряжении.
Совет 1: Как понизить силу тока
Правила форума. RU :: Правила :: Голосовой чат :: eHam. Форум Off-Topic Беседка. Для любителей поговорить. Как понизить силу тока сохраняя напряжение? Страница 1 из 6 1 2 3 4 5 6 Последняя К странице: Показано с 1 по 15 из
Расчет параметров понижающего конденсатора – понизить напряжение до Ёмкость, включенная в цепь переменного тока обладает (в.
Урок 8. Делим ток и роняем напряжение
Регистрация Вход. Ответы Mail. Вопросы – лидеры Магнитный воин -какие силы стоят за эффектом Джанибекова? Решите задачу по физике 1 ставка. Какая польза народному хозяйству от астрономии и теории эволюции? Независимые ученые узнали, что Человечество не вызвало Глобального Потепления. А Кто вызвал? Бес или Бог? По какой такой причине материя стремится занять все доступное пустое пространство собой? Лидеры категории Антон Владимирович Искусственный Интеллект.
Бестрансформаторное электропитание.Конденсатор вместо резистора
В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть вольт. Если радиоприбор переносной мобильный , то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети вольт существуют различные виды и типы преобразователей напряжения бытовой сети вольт в пониженное. Как правило, это схемы трансформаторного преобразования.
Работа резистора заключается в ограничении тока , протекающего по цепи.
Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) 📹
Подбор оборудования. Купить онлайн. Где купить? Задать вопрос. Добавить в “Мои продукты” Удалить из “Мои продукты”.
Чем понизить напряжение
Содержание: Понижаем переменное напряжение Подключение бытовой техники из США на В к сети В Понижаем напряжение для питания низковольтных светильников Понижение напряжения в доме Балластный конденсатор для питания маломощных устройств Понижаем постоянное напряжение. Рассмотрим типовые ситуации, когда нужно опустить напряжение, чтобы подключить прибор, который работает от переменного тока, но напряжение его питания не соответствует привычным Вольтам. Это может быть, как различная бытовая техника, инструмент, так и упомянутые выше светильники. Пожалуй, самая частая ситуация возникает, когда человек покупает из зарубежных интернет-магазинов какой-то прибор, а по его получении определяет, что он рассчитан на питание от Вольт. Первый вариант — это перемотать трансформатор питающий устройство, но большинство приборов работают от импульсного источника питания, а для подключения электроинструмента — лучше вообще обойтись без перемотки.
расчет Закона Ома, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи.
Как понизить постоянное и переменное напряжение — обзор способов
Поиск новых сообщений в разделах Все новые сообщения Компьютерный форум Электроника и самоделки Софт и программы Общетематический. Как уменьшить силу тока в цепи? Сообщение от Turalyon.
RM35JA31MW
Включите JavaScript для лучшей работы сайта. Согласно закону Ома, для того чтобы понизить силу тока в цепи, нужно уменьшить разность потенциалов напряжение на нем или увеличить сопротивление. Зависимость при этом соблюдается пропорциональная – во сколько раз уменьшилось напряжение, во столько раз понизился ток; по сопротивлению зависимость обратная. Вам понадобится. Для уменьшения силы тока на участке цепи поменяйте величины, от которых она зависит.
Сегодня мы поговорим о нескольких видах простейших электрических цепей и узнаем, как же можно уронить напряжение и разделить ток на несколько частей. Урок будет длиииииинный, но содержательный, с разбором задачи в конце.
Как понизить ток?
В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ. Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома.
Тема в разделе ” Электрика и электрооборудование “, создана пользователем segor , Войти или зарегистрироваться. Строительный форум ВашДом.
Как понизить силу тока не меняя напряжение
Здраствуйте, кто знает как уменьшить силу тока без увеличения напряжения? Хочу приобрести светодиодную ленту на 12 v 2A. Нашел блок питания на 12 v 4A И вот хочу узнать, как нибудь можно подключить блок к ленте? А может такой ток будет нормальным для ленты?
Похожие статьи
Сергей, точно?Не сгорит? Я читал что для светодиодов обязательно ограничение силы тока
Никита, в ленте для этого резисторы стоят. Но если уж так сильно сцышь втыкай через амперметр первый раз.
Да ты хоть на 100 ампер блок питания используй все равно лента будет потреблять 2а Потому, что ток это величина относящаяся к нагрузке. Короче можно и учи закон ома.
Сделай ограничение тока
Вася, закон ома знаю(для участка цепи)
Никита, знатокмля)))) если знал не задавал бы такой вопрос. Включай и не парься.
Сергей, ну I=U/R кажись,только в этом случае он не помогает
Никита, почему не помогает? Что такое R?
Никита, если возьмёшь метр ленты, то сопротивление r, если 2 метра то сопротивление уменьшится и стане 2/r. При постоянном напряжении U меняется будет только сила тока I. Следовательно сила тока зависит только от сопротивления. В твоем случае от количества метров в ленте. Значит на блок питания в 4а можно повесить до двух твоих лет, или вообще один светодиод. Главное не превышать заданых 4а.
Сергей, спасибо,все понял:))
Сергей, * будет r/2
Никита, если бы источник был стабилизатором тока 4 ампера, то да, лента довольно быстро сгорела бы.
Но ваш источник это стабилизатор напряжения 12 вольт максимальным выходным током 4 ампера. Т.е. в цепи будет всегда 12 вольт, а ток зависит от нагрузки.
Егор, ну да очепятался)
А самое прикольно что ТС все понял
Егор, а то что блок выдает 12.25 вольт это норма? (померил мультиметром) на корпусе указано 12 ровно
Никита, не обращать внимания. Тем более под нагрузкой просядет скорее всего.
Здесь Вячеслав ответил. В ленте стоят токо ограничивающие резисторы. Посмотри на каждые три светика идет один резистор.. Отсюда вывод больше это не менше. Т.е работать от твоего 4х амперного все будет. Главное что он стабилизирован.
Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.
Определение физической величины
Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.
Потенциал обозначается буквой “Ф”, а напряжение буквой “U”. Если выразить через разность потенциалов, напряжение равно:
Если выразить через работу, тогда:
где A — работа, q — заряд.
Измерение напряжения
Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.
Вывод:
Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.
На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.
Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.
Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак “–”.
А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.
Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.
Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.
Что делать если напряжение не подходит для питания нагрузки
Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.
Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.
Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.
Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.
Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.
Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.
Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:
где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.
Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:
Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.
А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Как понизить и стабилизировать напряжение постоянного тока
Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.
Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.
Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.
Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:
Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.
Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.
Как повысить постоянное напряжение?
Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:
1. Плата на базе микросхемы XL6009
2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.
3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.
4. Плата на базе MT3608
Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.
Как повысить переменное напряжение?
Для корректировки переменного напряжения используют два основных способа:
Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.
Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.
Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.
Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.
Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:
Зарядное устройство вашего смартфона;
Блок питания ноутбука;
Блок питания компьютера.
За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).
В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.
Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.
Достоинства – простота схемы, гальваническая развязка и малые размеры.
Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.
Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.
Заключение
Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.
Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.
Определение физической величины
Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.
Потенциал обозначается буквой “Ф”, а напряжение буквой “U”. Если выразить через разность потенциалов, напряжение равно:
Если выразить через работу, тогда:
где A — работа, q — заряд.
Измерение напряжения
Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.
Вывод:
Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.
На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.
Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.
Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак “–”.
А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.
Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.
Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.
Что делать если напряжение не подходит для питания нагрузки
Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.
Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.
Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т. к. мощности одного не хватит и ее можно распределить между несколькими.
Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.
Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.
Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.
Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:
где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.
Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:
Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.
А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Как понизить и стабилизировать напряжение постоянного тока
Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.
Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.
Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.
Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:
Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.
Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.
Как повысить постоянное напряжение?
Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:
1. Плата на базе микросхемы XL6009
2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.
3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.
4. Плата на базе MT3608
Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.
Как повысить переменное напряжение?
Для корректировки переменного напряжения используют два основных способа:
Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.
Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.
Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.
Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.
Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:
Зарядное устройство вашего смартфона;
Блок питания ноутбука;
Блок питания компьютера.
За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).
В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.
Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.
Достоинства – простота схемы, гальваническая развязка и малые размеры.
Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.
Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.
Заключение
Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.
Предельный ток БЕЗ падения напряжения
\$\начало группы\$
Я пытаюсь ограничить ток источника питания 5 В до 100 мкА. Сначала думал поставить резистор на 50к. Что никогда не позволит выше порога.
Однако нагрузка требует не менее 4,5 В и зависит от требуемой величины тока. Так что это, очевидно, слишком простой подход к проблеме.
Как расширить эту схему, чтобы ограничить ток и обеспечить независимость тока нагрузки от напряжения?
- напряжение
- ограничение тока
\$\конечная группа\$
2
\$\начало группы\$
Предположительно у вас все в порядке с небольшим падением, если оно меньше 0,5В.
Вот схема, которая ограничивает 100 мкА и падает менее чем на 100 мВ до ограничения.
имитация этой схемы – Схема создана с помощью CircuitLab
MCP6001 — это недорогой операционный усилитель с рельсовым входом/выходом, работающий от источника питания 5 В. Операционный усилитель будет насыщаться на земле до тех пор, пока ток нагрузки не достигнет номинального значения около 98 мкА (с указанными значениями). Таким образом, питание «выглядит как» 5 В при последовательном подключении ~ 1 кОм (полевой МОП-транзистор дает менее 10 Ом при Vgs = -5 В), поэтому оно будет падать от 0 до 100 мВ для бесконечного сопротивления нагрузки до 50 кОм.
Для более низких сопротивлений нагрузки схема регулирует выходной ток до ~98 мкА.
Схема потребляет около 200 мкА от источника питания 5 В в дополнение к току нагрузки 0~100 мкА.
\$\конечная группа\$
6
\$\начало группы\$
Полиция Закона Ома придет за вами, если вы попытаетесь отрегулировать и напряжение, и ток в фиксированной нагрузке.
Если у вас не очень необычная нагрузка, нагрузка будет потреблять любой ток, который ей нужен, если вы поставите правильное напряжение. Любая попытка уменьшить текущий уменьшит подаваемое напряжение.
\$\конечная группа\$
4
\$\начало группы\$
Как правило, ваша схема ограничения тока требует небольшого «запаса» по напряжению для работы. Это означает, что вам понадобится нерегулируемый блок питания > 5 В и регулируйте его до 5 В, контролируя ток.
Давненько я не читал о старых стабилизаторах напряжения LM723, но они предлагают ограничение напряжения и тока. Когда-то они были очень популярны, поэтому вы должны найти множество примеров конфигураций в веб-поиске.
Рис. 1. Базовый регулятор низкого напряжения (VOUT = от 2 до 7 Вольт). (Рисунок 4 таблицы данных).
\$\конечная группа\$
\$\начало группы\$
Самое простое решение – NCh JFET с затвором, закороченным на исток.
Спецификация называется IDSS с Vgs=0
Вот некоторые варианты, требующие защиты от электростатического разряда и отсутствия обратного напряжения.
http://www.digikey.com/product-search/en/discrete-semiconductor-products/transistors-jfets/1377093?k=&pkeyword=&pv609=99&pv609=59&FV=fff40015%2Cfff80345&mnonly=0&newproducts=0&ColumnSort=609&page=1&quantity=0&ptm=0&fid=0&pageSize=500
Я вижу, что их нет в наличии, они устарели или куплены в последний раз
Plan 9003 Б
быстрое и грязное решение
LM317 куб. для 0,1 мА R1 = 1,25 В/0,1 мА = 12,5 кОм
\$\конечная группа\$
5
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почтаТребуется, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Как уменьшить ток, не влияя на напряжение?
Источник
Ток — это поток электрических зарядов через определенную область в определенное время; напряжение и ток могут быть прямо пропорциональны, когда мощность постоянна.
Однако ток может быть уменьшен для определенных целей без изменения напряжения; например, вы можете использовать несколько методов, таких как предохранители, резисторы, автоматические выключатели, термисторы, транзисторы или диоды. Вы можете уменьшить или ограничить ток в электрических цепях.
Как уменьшить ток, не влияя на напряжение?
Чтобы уменьшить ток или ограничить его в электрической цепи, не влияя на напряжение , вы можете использовать несколько методов, таких как предохранители, резисторы, автоматические выключатели , термисторы , транзисторы или диоды.
Вы можете уменьшить или ограничить ток в электрических цепях, чтобы защитить компоненты цепи от перегрузки , или вы можете уменьшить ток до определенного предела, где, если ток превышает этот предел, активируется метод защиты.
Компоненты снижения тока могут различаться в зависимости от нескольких факторов , например, времени отклика, величины тока, чувствительности цепи или причин перегрузки по току.
Например, перегрузка по току может произойти из-за случаев короткого замыкания в некоторых компонентах, подключенных к электрической цепи , таких как транзисторы, диоды, трансформаторы или конденсаторы. Кроме того, внешние компоненты вызывают перегрузку цепи, что приводит к возникновению чрезмерного тока в цепи.
Компоненты для снижения тока
1). Резисторы и предохранители
- Резисторы
Они обычно находятся в любой электрической цепи; они подключены к цепям многими способами , такими как параллельные и последовательные соединения. Резисторы всегда подчиняются закону - Предохранители
Используются для ограничения тока, проходящего через цепь; каждый предохранитель имеет определенный предел тока ; если ток превышает этот предел, предохранитель перегорает, вызывая разрыв в цепи; в результате течение тока прекращается. Вы можете использовать предохранители для ограничения проходящего тока, поэтому, если вы хотите, чтобы в цепи всегда сохранялось значение тока ниже 5 ампер , вы можете использовать предохранитель, который перегорает, если ток превышает 5 ампер. Таким образом, вы можете контролировать ток, не влияя на напряжение, и защитить компоненты схемы от перегрузки.
2). Автоматические выключатели
Автоматические выключатели защищают электрическую цепь от перегрузок по току и больших нагрузок, вызванных чрезмерными токами . Вы можете использовать прерыватели, чтобы ограничить ток до определенного значения; если ток превышает этот предел, выключатель сработает и отключит питание цепи. Недостатком прерывателей является их время отклика; они действуют медленно и не слишком чувствительны.
3). Термисторы
Не все термисторы уменьшают ток, проходящий через электрическую цепь; для этой задачи используются единицы с отрицательным температурным коэффициентом . NTC уменьшает начальное количество тока, генерируемого в цепи, когда она подключена к источнику питания. При высокой температуре термисторы с отрицательным температурным коэффициентом имеют низкое сопротивление; Между тем, они имеют высокое сопротивление при низкой температуре . Поэтому, когда начинает течь ток, температура начинает увеличиваться, что снижает сопротивление NTC до определенного значения, которое позволяет проходить только определенному количеству тока.
4). Диоды и трансформаторы
Когда в схеме используется регулируемый источник питания, в них используются активные компоненты для уменьшения или ограничения проходящего тока. Активные компоненты бывают разных типов, например, диоды, транзисторы или интегральные схемы; они используются, особенно для чувствительных цепей. Они либо отключают питание цепи, либо уменьшают ток ; это может быть применено ко всей цепи или только к короткозамкнутой части.
5). Диоды ограничения тока
Диоды постоянного тока или токоограничивающие диоды CLD используются для уменьшения или ограничения тока в электрических цепях в широком диапазоне напряжений . Они состоят из JFET , двух выводов и затвора, закороченного на исток. Ток ограничен, не влияя на напряжение, даже если напряжение меняется ; этот метод можно использовать в диодах Зенера при ограничении напряжения.
Источник
Почему напряжение не изменяется при уменьшении тока с помощью резистора?
Поскольку напряжение представляет собой мощность или давление, прикладываемое к электрическим зарядам для прохождения по определенному пути, давление остается неизменным, даже если электрические заряды уменьшаются.
Таким образом, их количество уменьшилось, но их давление остается постоянным, в то время как на электрические заряды или ток влияет сопротивление резистора, поскольку сопротивление представляет собой физическое препятствие для электрических зарядов.
Следовательно, на их движение влияет и их количество. Потерянные заряды преобразуются в тепловую энергию из-за сопротивления, с которым они сталкиваются в резисторе. Сопротивление имеет обратно пропорциональную зависимость от тока, поэтому, если вы увеличиваете величину сопротивления, ток уменьшается, но напряжение остается постоянным.
Следует ли уменьшить ток источника питания, если он больше, чем вам нужно?
Нет, вас не должен волновать ток, подаваемый источником напряжения, если он превышает то, что вам нужно . Однако перед подключением компонента к источнику напряжения следует учитывать напряжение.
Например, если вы используете компонент, требующий определенного количества вольт, и подключаете его к источнику с более высоким напряжением , компонент будет вынужден потреблять больше тока, чем он должен потреблять, в результате компонент будет уничтожен.
Поэтому при подключении компонента к источнику питания всегда следует учитывать напряжение, а не ток . Если напряжение подходит, компонент будет потреблять только тот ток, который ему нужен, даже если подаваемый ток больше.
Заключение
Подводя итог, можно уменьшить ток в электрической цепи с помощью многих методов , например:
- Резисторы и предохранители.
- Автоматические выключатели.
- Термисторы.
- Диоды и трансформаторы.
- Токоограничивающие диоды.
Вы можете уменьшить или ограничить ток в электрических цепях, чтобы защитить компоненты цепи от перегрузки , или можно уменьшить ток до определенного предела, где, если ток превышает этот предел, срабатывает метод защиты.
Компоненты снижения тока могут различаться в зависимости от нескольких факторов , например, времени отклика, величины тока, чувствительности цепи или причин перегрузки по току.
Например, перегрузка по току может произойти из-за случаев короткого замыкания в некоторых компонентах, подключенных к электрической цепи , таких как транзисторы, диоды, трансформаторы или конденсаторы. Кроме того, внешние компоненты вызывают перегрузку цепи, что приводит к возникновению чрезмерного тока в цепи.
Резисторы не влияют на напряжение при уменьшении тока, поскольку напряжение представляет собой мощность или давление, приложенное к электрическим зарядам для прохождения по определенному пути . Следовательно, давление остается прежним, даже если электрические заряды уменьшились, их количество уменьшилось, но их давление остается постоянным.
Похожие чтения:
Как определить транзистор SMD? И как это проверить? Решено
Напряжение обратно пропорционально току? Ответил!
Как определить предохранитель на печатной плате? (Типы…
Почему напряжение уменьшается при увеличении тока?
Почему напряжение в параллельной цепи постоянно, но не…
Как уменьшить напряжение с помощью резистора? Шаг за шагом 90 Yas 90ser 900
Я амбициозный и миролюбивый человек, который всегда стремится стать лучше и узнать больше.