Как проверить транзистор мультиметром
Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.
С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.
Необходимость наличия пробника
Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.
Устройство транзистора
Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.
Он имеет три вывода, которые формируют между собой диоды (полупроводники).
Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.
Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.
Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.
Ищем базу, эмиттер и коллектор на транзисторе
Как сразу найти коллектор.
Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.
Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.
Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.
Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.
Если коллектор определен, то определить другие выводы уже будет не сложно.
Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.
Производим нужные замеры прямого и обратного сопротивления.
Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.
Читайте также:Как же тут найти базу, эмиттер и коллектор?
Без мультиметра или просто омметра тут не обойтись.
Итак, приступаем к поиску. Сначала нам нужно найти базу.
Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.
Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.
Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.
Эти показания пока ничего нам не дают. Делаем замеры дальше.
Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.
Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.
Это тоже нам ничего не говорить. Замеряем дальше.
Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.
А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.
Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.
Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.
В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.
Значит правый вывод — это эмиттер, а средний вывод – это коллектор.
Итак, поиск базы, эмиттера и коллектора завершен.
Читайте также:Как проверить транзистор на исправность
Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.
В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.
P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.
Стрелка, которая идет от базы указывает на то, что это n-p-n переход.
P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.
Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».
Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.
Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.
Показатели мультиметра в пределах от
Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.
Настройки мультиметра менять не нужно.
Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.
Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.
Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.
Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.
В данном случае выводы нужно будет выпаять и проводить замеры снова.
Читайте также:Признаки неисправности транзистора
Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.
Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.
Как проверить транзистор мультиметром, как прозвонить транзистор
Как проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.
Как проверить транзистор мультиметром (тестером)
Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом.
Для лучшего понимания процесса на рисунке изображён “диодный аналог” npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.
- База – Эмиттер (BE): соединение должно вести себя как диод и
проводить ток только в одном направлении. - База – Коллектор (BC): соединение должно вести себя как диод и
проводить ток только в одном направлении. - Эмиттер – Коллектор (EC) : соединение не должно проводить ток ни в каком направлении.
При прозвонке pnp-транзистора “диодный аналог” будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае “Эмиттер – Коллектор” – ни в каком направлении.
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора. Это очень важно, иначе транзистор “сгорит” во время проверки.
Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть.
Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.
Таким образом, можно сказать, что проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
И помните, никто не умирает так быстро и так бесшумно, как транзистор.
Особенности проверки транзистора мультиметром без выпаивания
Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.
Типы транзисторов
Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.
Биполярные приборы
Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.
Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.
Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.
Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.
Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.
На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.
Полевые транзисторы
Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).
Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.
Проверка мультиметром
Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.
Приборы биполярного типа
Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.
Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.
Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.
При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.
Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.
Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.
Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:
- определение типа прибора и схемы его выводов;
- проверка сопротивлений его «p — n» переходов в прямом направлении;
- смена полярности щупов и определение сопротивлений переходов при таком подключении;
- проверка сопротивления «коллектор — эмиттер» в обоих направлениях.
Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.
К признакам неисправности биполярных транзисторов можно отнести следующие:
- «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
- «p — n» переход не «прозванивается» в обе стороны.
В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.
Второй случай показывает внутренний обрыв в структуре прибора.
В обоих случаях данный экземпляр не может быть использован для работы в схеме.
Полевые транзисторы
Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.
Для проверки элемента первого типа необходимо выполнить следующие действия:
- определить сопротивление участка «сток — исток» закрытого транзистора;
- произвести открытие перехода;
- определить сопротивление открытого полевика;
- произвести закрытие перехода;
- повторно сделать замер сопротивления закрытого полевого транзистора.
Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».
Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).
Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.
Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.
При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.
Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.
При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.
Проверка приборов в схеме
Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.
Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.
Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.
Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.
Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.
Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.
Как прозвонить транзистор: подробная инструкция по прозвонке
Работоспособность любой электрической схемы зависит от исправности отдельных ее элементов а также от правильности сборки. Транзистор является крайне распространенным радиоэлементом и любой радиотехник должен знать как прозвонить транзистор. Само тестирование начинается с определения его типа, модели. Проверка может отличаться от их разновидности и иметь некоторые особенности.
В данной статье будут описаны все нюансы проверки транзистора, какие приборы и оборудование для этого потребуется. В качестве дополнения материал содержит несколько видеоматериалов с подробным практическими уроками, а также одна статья, подробно описывающая весь этот процесс.
Проверка транзистора.
Почему не работает транзистор
Наиболее вероятные причины, по мнению специалистов, выхода из строя триода в схеме следующие:
- когда пропадает (обрывается) один из переходов;
- пробой перехода;
- пробой на одном из участков эмиттера или коллектора;
- потеря мощности полупроводниковым прибором в работе;
- визуальные повреждения выводов транзистора.
Признаки, по которым можно определить визуально поломку триода в схеме: потемнение или изменение первоначального цвета полупроводникового прибора, изменение его формы «выпуклость», наличие черного пятна.
Как проверить транзисторКак проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.
Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов.
Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом. Для лучшего понимания процесса на рисунке изображён “диодный аналог” npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.
- База – Эмиттер (BE): соединение должно вести себя как диод и
проводить ток только в одном направлении. - База – Коллектор (BC): соединение должно вести себя как диод и
проводить ток только в одном направлении. - Эмиттер – Коллектор (EC): соединение не должно проводить ток ни в каком направлении.
При прозвонке pnp-транзистора “диодный аналог” будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае “Эмиттер – Коллектор” – ни в каком направлении.
Классификация транзисторов.
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора.
Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.
Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
Как проверить мультиметром транзистор
Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов. Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.
Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода. Данная процедура возможна лишь для исправного транзистора.
Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.
Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом. Делая вывод из всех замеров, база располагается на правом выводе.
Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.
Как прозвонить мультиметром транзистор
Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:
- соединение «база-коллектор» должно проводить электрический ток в одном направлении;
- соединение «база-эмиттер» проводит электрический ток в одном направлении;
- соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.
Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.
Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.
Методы проверки различных транзисторов.
Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.
Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.
О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.
Материал в тему: все о переменном конденсаторе.
Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно. Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE.
Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31. Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры.
Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.
Проверка транзистора.
Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.
Как проверить мультиметром транзистор IGBT
Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный.
Первый образует канал управления, а второй – силовой канал. Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.
Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.
Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом. Теперь необходимо убедиться в функциональности транзистора.
Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору.
На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.
Как проверить мультиметром полевой транзистор
Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.
Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.
Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:
- Необходимо снять с транзистора статическое электричество.
- Переключить измерительный прибор в режим проверки полупроводников.
- Подключить красный щуп к разъему прибора «+», а черный «-».
- Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
- Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
- Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
- Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
- Изменив полярность проводов, показания напряжения должны остаться неизменными.
- Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.
Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.
Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.
Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.
Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.
Подключения транзистора к тестеру
Заключение
Рейтинг автора
Автор статьи
Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.
Написано статей
Более подробно о способах проверки транзисторов можно узнать из статьи Как проверить полевой транзистор. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.katod-anod.ru
www.morflot.su
www.karpsy.ru
www.remoo.ru
ПредыдущаяПрактикаСпособы проверки транзисторов на работоспособность
СледующаяПрактикаКак проверить полевой транзистор
Как правильно прозвонить транзистор – flagman-ug.ru
Как проверить различные типы транзисторов мультиметром?
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499
Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npn
Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827А
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистора
Обозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схема
Проверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
Как проверить транзистор?
Проверка транзистора цифровым мультиметром
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс ( + ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс ( + ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп ( красный ) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный ( + ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
Как проверить биполярный транзистор
NPN и PNP транзисторы
Биполярный транзистор состоит из двух PN-переходов. Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э – это эмиттер, Б – база, К – коллектор.
Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать в этой статье.
Проверяем исправный транзистор
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки из даташита:
Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер
Возвращаемся к нашему рисунку
Мы узнали из даташита, что наш транзистор NPN проводимости.
Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.
Проверяем неисправный транзистор
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Проверка транзистора с помощью транзисторметра
Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь иностранная микросхема.
Проверка исправности биполярного транзистора мультиметром
Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.
Необходимый минимум сведений
Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.
Виды транзисторов и принцип работы
Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.
Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.
У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.
Внешний вид биполярного транзистора средней мощности и его цоколевка
То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.
Как проверить транзистор мультиметром со встроенной функцией
Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.
Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.
Мультиметр с функцией проверки транзисторов
Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.
Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
- Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
Проверка биполярного PNP транзистора мультиметром
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Как проверить транзистор мультиметром без выпайки
Любая электронная схема состоит из полупроводниковых элементов. Наиболее распространённые из них транзисторы. Хотя в последнее время выпускаемые элементы отличаются надёжностью, но всё же нарушения в работе электронных устройств могут привести к повреждению полупроводника.
Перед тем как проверить транзистор мультиметром, необязательно выпаивать его из схемы, но для получения точных результатов лучше это сделать.
Принцип работы и виды транзисторов
Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:
- биполярные;
- полевые;
- биполярные транзисторы с изолированным затвором.
Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода.
Биполярное устройство
Разделяются по своему типу. Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером. Каждая зона имеет свой вывод.
Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока.
Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе. Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное. Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое.
Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора. При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации. Благодаря чему и возникает ток базы.
Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.
Полевой прибор
Полевые транзисторы были изобретены в 1952 году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.
Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.
Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.
Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.
Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.
Биполярный тип с изолированным затвором
Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.
К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.
Как пользоваться цифровым мультиметром
Для того чтобы провести измерения, тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом — контактный щуп. Порядок измерения электронным мультиметром в общем виде можно представить в виде следующих действий:
- Включить устройство, нажав на кнопку ON/OFF.
- Вставить штекера проводов в соответствующие гнёзда на панели. COM — общее гнездо для подключения щупа. V/Ω — положительное гнездо для подключения щупа.
- Поворотный выключатель установить в положение диодной прозвонки «o)))».
- Прижать измерительные щупы к выводам прибора.
- Снять показания с экрана.
Кроме метода прозвонки, если позволяет тестер, можно провести измерения полупроводникового элемента установив переключатель в положение hFE. В таком случае провода и щупы не понадобятся. Но этот метод подходит только для биполярных приборов.
Проверка биполярного прибора тестером
Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.
На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.
Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.
Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.
Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:
- Переключить мультиметр в режим прозвонки.
- Стать положительным щупом на базу прибора.
- Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
- Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
- Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.
Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.
Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h31. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.
Определение целостности полевого радиоэлемента
Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:
- Мультиметр переключается в режим прозвонки.
- Щуп общего провода прикасается к стоку прибора, а положительный — к истоку.
- Щуп переставляется с истока на затвор. Переход в транзисторе откроется.
- Возвращаем щуп на исток. Значение сопротивления должно быть маленьким, прибор, если у него есть звуковая прозвонка, запищит.
- Для закрытия прибора щуп общего провода соединяется с затвором, при этом положительный щуп с истока не снимается.
- Устанавливается положения щупов согласно первому пункту.
Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.
Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия. Так как прозвонить такой полевой транзистор мультиметром не удастся, понадобиться применить дополнительное питание. В таком случае в разрыв через сопротивление 1–2 кОм подаётся постоянное напряжение равное 12 вольт.
Существуют такие радиоэлементы, например, КТ117а, имеющие две базы. Их относят к однопереходным приборам. В современных устройствах они не получил широкого применения, но порой встречаются. У них нет коллектора.
Такие транзисторы тестером проверяются только на отсутствие короткого замыкания между выводами. Убедиться в его работе можно воспользовавшись схемой генератора.
Тестирование составного полупроводника
Такой элемент по своей конструкции напоминает микросхему. Так как проверить микросхему на работоспособность мультиметром практически невозможно, так нельзя и проверить составной прибор, используя только тестер. Для тестирования понадобится собрать несложную схему.
В ней применяется источник постоянного напряжения 10−14 вольт. Нагрузкой цепи служит лампочка. В качестве резистора используется элемент мощностью 0,25 Вт. Его сопротивление рассчитывается по формуле h31*U/I, где:
- h31— коэффициент усиления;
- U — напряжение источника питания;
- I — ток нагрузки.
Для проверки на базу подаётся положительный сигнал от источника питания. Лампочка светится. При смене полярности лампочка гаснет. Такое поведение говорит о работоспособности прибора.
Таким образом, узнав, как прозвонить транзистор мультиметром, можно легко вычислить неисправный элемент в схеме, даже его не выпаивая.
Как проверить транзистор мультиметром не выпаивая
Как проверить биполярный транзистор мультиметром
Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h31э.
Проверка транзистораОднако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.
Эквивалентные схемы транзисторовТак можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор – база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.
Но напряжение источника питания, приложенное к переходу эмиттер – коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.
Как проверить p-n-p транзистор мультиметром
Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.
Находим обратное сопротивление переходовМинус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 – 1200 Ом. Чтобы проверить переходы коллектор – база и эмиттер – база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.
Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.
Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.
Как найти цоколевку транзистора мультиметром
Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.
Как найти эмиттер и коллекторДопустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.
На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база – коллектор имеет меньше значение сопротивления, чем переход база – эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.
Как проверить мощный биполярный транзистор и его цоколевку!!!
Как проверить транзистор мультиметром ⋆ diodov.net
Если под рукой нет документации на биполярный транзистор, то мультиметр позволяет определить некоторые параметры и выводы транзистора. Поэтому рассмотрим, как проверить транзистор мультиметром.
Принципиально различают два вида биполярных транзисторов: n—p—n и p—n—p структуры. Принцип работы их аналогичен. Отличие заключается лишь в полярности подключения источника питания и других полярных радиодеталей: электролитических конденсаторов, диодов, светодиодов и т.п.
Упрощенно любой биполярный транзистор можно представить в виде двух последовательно и встречно соединенных диодов, поэтому рекомендую изначально ознакомиться с тем, как проверить диод. Однако следует понимать, что если взять и соединить таким образом два диода, то транзистор не получится. Но в данном случае мы можем допустить такое упрощение.
Место соединения двух условных диодов называется базой. А два оставшихся вывода, соответственно будут эмиттер и коллектор. Теперь рассмотрим, как проверить транзистор мультиметром и определить его выводы.
Проще всего определить базу. С нее и начнем. Если относительно одного вывода ток будет протекать в сторону других выводов, то это и есть база. Когда на базе находится положительный щуп, то значит, то биполярный транзистор имеет n—p—n структуру. В противоположном случае – p—n—p структуру.
Когда база определена, осталось узнать, какой из выводов является эмиттером, а какой коллектором. Для этого следует выполнить «прозвонку» выводов между базой и другими выводами и сравнить показания двух падений напряжений. Большее значение соответствует эмиттеру, а меньшее – коллектору.
Как проверить транзистор мультиметром навернякаУ современных биполярных транзисторов эта разница выражена не очень явно и бывает, что мультиметр показывает одинаковые значения. Поэтому с целью однозначного определения выводов можно воспользоваться функцией измерения коэффициента усиления биполярного транзистора по току. Для этого переключатель устанавливается на отметке hFE. Этому режиму соответствует специальный режим на передней части корпуса. Он имеет 8 отверстий: 4 для p—n—p структуры и 4 для n—p—n структуры. Отверстия для эмиттера дублируются, поскольку транзисторы могут иметь разное расположение выводов относительно корпуса. Поэтому такой подход позволяет определить коэффициент усиления по току транзистора с любой распиновкой.
Структуру транзистора ранее мы уже научились определять «прозвонкой». С базой тоже проблем нет. Осталось убедиться в правильности соответствия коллектора и эмиттера. Вставляем полупроводниковый прибор в нужные отверстия. Если на дисплее отображается число в среднем от 30 и выше, то коллектор с эмиттером определены верно, а данное число показывает коэффициент усиления по току. В противном случае нужно поменять местами два вывода.
Я надеюсь статья стала полезной и Вы нашли ответ на вопрос, как проверить транзистор мультиметром. Более подробно с работой мультиметра можно ознакомиться, перейдя по ссылке.
Еще статьи по данной теме
(PDF) Масштабируемые транзисторы с кольцевым эмиттером для силовых приложений
Аннотация – В этой работе мы представляем конструкцию устройства и характеристики
масштабируемого силового транзистора с кольцевым эмиттером.
Преимущества этого устройства заключаются в том, что оно сводит к минимуму отношение площадей коллектора к площади эмиттера
база
, обеспечивая превосходный прирост мощности и компактную единицу ячейки
. Это устройство имеет преимущества по сравнению с обычными устройствами
с прямыми пальцами с точки зрения производительности переменного тока и обеспечивает масштабируемость
, которой нет в форме буквы U или подковы.Мы также
представляем уравнения для базового сопротивления, которые проверены с использованием базовых тетродных структур
.
I. ВВЕДЕНИЕ
Геометрия РАСИСТОРА играет жизненно важную роль в рабочих характеристиках
и размере усилителей мощности (УМ) переносных телефонов. Было проведено несколько исследований геометрии транзисторов
[1-3], которые могут быть использованы для оптимизации различных показателей производительности в приложениях PA
. Двумя важными параметрами являются коэффициент усиления мощности и плотность мощности
.Традиционные геометрические формы, такие как устройства с прямым пальцем
, обеспечивают отличное масштабирование, но, как правило, имеют высокую базовую емкость коллектора
(Cbc). В качестве альтернативы, устройства
с «точечным» эмиттером, окруженные кольцевым базовым контактом, использовались практически с момента изобретения транзистора [4]. Эта геометрия
подходит для применений, в которых сопротивление основания (Rb) на
важнее, чем Cbc. Совсем недавно были реализованы подковообразные транзисторы
[1, 2], которые обеспечивают пониженный Cbc
.В этой работе мы продвигаем эту концепцию подковы еще на один шаг вперед и демонстрируем преимущества кольцевого (кольцевого) эмиттерного контактного устройства
. Некоторые из преимуществ
обсуждались ранее [5], но в этой работе мы акцентируем внимание на новой схеме транзистора
, которая имеет улучшенные характеристики масштабирования и термостойкость
. Мы также представляем уравнения для Rb
этих новых кольцевых транзисторов, которые мы проверяем, сравнивая с
сопротивление, непосредственно измеренное с тетродных структур [6, 7].
Масштабирование Rb используется для сравнения этих новых кольцевых транзисторов с
альтернативными «подковообразными» устройствами.
II. АСПЕКТЫ РАЗРАБОТКИ УСТРОЙСТВА
A. Соображения по конструкции устройства
При проектировании элементарных ячеек для PA есть много важных компромиссов
. В отличие от многих других применений, Rb часто добавляют в PA для обеспечения электрической и термической стабильности.
Следовательно, для максимального усиления мощности и простоты согласования
P.Зампарди, Дж. Ху и К. Чисмару работают в Skyworks Solutions, Inc., 2427
W. Hillcrest Drive, Newbury Park, CA 91320, телефон: 805-480-4728, (электронная почта:
peter.zampardi @ skyworksinc.com)
Низкий Cbc является предпочтительным. Это благоприятствует ячейкам с минимальной базой –
коллекторной площади (Abc) для данного размера эмиттера (AE). При постоянном давлении
для уменьшения размера кристалла PA масштабирование элементарных ячеек до
больших размеров также является важным соображением.Традиционная геометрия
(CBEBC, CBEBEBC и CBEBEBEBC) Устройства
имеют отличные свойства масштабирования (из-за симметрии и нескольких базовых контактов
) и могут быть очень большими, но с недостатком
– высоким отношением Abc / Ae. Они по-прежнему играют жизненно важную роль, но
не оптимальны для всех приложений. На рис. 1 показаны некоторые из распространенных конфигураций транзисторов
(помимо традиционных устройств с прямым пальцем
).Одной из самых популярных структур устройств для
, уменьшающих Cbc, является топология CEBEC (двойной эмиттер с одной базой).
Это устройство имеет хорошие свойства масштабирования по длине, но текущий
ограничивает ширину эмиттера и имеет сравнительно большой
Cbc. Еще одно популярное приспособление – форма «подкова». Это устройство
имеет улучшенный Cbc, но ограничено в свойствах масштабирования в
аналогично устройству CEBEC, с добавленным усложнением
неизбежно неравномерного распределения тока, поскольку
устройство становится больше.
Устройства в форме подковы широко используются в приложениях PA, но размер элементарной ячейки составляет
. Наша первая попытка облегчить проблемы масштабирования
заключалась в создании транзистора в форме Пакмана (см. Рис. 1). Это
одно из устройств, которые мы сравним в следующем разделе. Более
Недавно мы разработали полностью закрытый кольцевой эмиттер
Трехтранзисторный кольцевой генератор
Я не помню, как это произошло сегодня вечером, но каким-то образом я остановился на кулоне, который Дрю построил еще в октябре из ультрафиолетовых светодиодов и мрамора из уранового стекла.Это очень крутой проект, и я призываю вас посмотреть его фотографии и видео в действии (и схематично!).Электроника в нем образует так называемый кольцевой генератор. Кольцевой генератор – это нечетное количество инверторов, соединенных по кругу. Каждый инвертор выводит сигнал, противоположный его входу, но поскольку число нечетное, он никогда не будет стабильным и будет колебаться. Его частота зависит от того, насколько вы замедляете сигнал, используя резисторы и конденсаторы. Если бы было четное количество инверторов, обратите внимание, что он был бы стабильным, что бесполезно для генератора, но может использоваться для хранения информации и известно как SRAM.
Глядя на схему Дрю, я понял, что, немного покопавшись, у меня, вероятно, были все детали для создания одного и того же генератора, но только с тремя ступенями вместо семи. У меня также нет урановых шариков или ультрафиолетовых светодиодов, поэтому нам придется остановиться на значительно менее привлекательном ярко-красном. Я пытался построить эту схему до того, как использовать инвертор 7404 вместо дискретных компонентов, но в то время не совсем понял концепцию, чтобы заставить ее работать.
Внимательный взгляд заметит, что я использовал полевые МОП-транзисторы IRF630 вместо 2N7000, которые он использовал.Это потому, что я попытался использовать последний из моих 2N7000, чтобы построить его, но мне удалось выкурить их в процессе (впервые использовал 7000; оказалось, распиновка была не , а , как я ожидал). Более внимательный читатель заметит, что IRF630 рассчитаны на 9 ампер, а это значит, что использовать их для переключения светодиодов 15 мА – своего рода глупость. Они были всем, что у меня было в ящике для мусора; не смейся надо мной.
И да, мои нарисованные от руки схемы неудачны, но я все еще недоволен ни одной из программ САПР, с которыми я экспериментировал, так что сегодня вечером либо это, либо ничего.
Видео
Эффективное обнаружение неисправностей транзисторов в схемах КМОП с помощью несимметричных кольцевых генераторов с малыми затратами.
Джа Н.К., Кунду С.: Тестирование и надежное проектирование схем КМОП. Kluwer Academic, Массачусетс (1990)
Google Scholar
Ринита Р., Понни Р .: Тестирование в СБИС: обзор. В: Материалы Международной конференции по новым тенденциям в технике, технологиях и науке (2016)
Асвини, С., Нирмала, Ч .: Разработка тестируемости при своевременном тестировании схем СБИС. Int. J. Eng. Res. Прил. 5 (3), 10–13 (2015)
Google Scholar
Plusquellic, J .: Неисправности 2. Проверка проекта СБИС и тестовые слайды, Департамент CSEE, Университет Мэриленда, округ Балтимор (UMBC), Мэриленд (2006)
Малайя, Нью-Йорк, Су , SYH: новая модель неисправности и методика тестирования для устройств CMOS.В: Материалы Международной конференции по тестированию, стр. 25–34 (1982)
Райсуман, Р .: Тестирование Iddq для КМОП СБИС. Proc. IEEE 88 (4), 544–568 (2000)
Статья Google Scholar
Джа Н.К., Гупта С .: Тестирование цифровой системы. Издательство Кембриджского университета, Кембридж (2003)
Google Scholar
Nuernbergk, D.K., Lang, C.: Быстрый и точный датчик тока IDDQ на кристалле. В: 15-й симпозиум ITG / GMM ANALOG, стр. 33–38 (2016)
Фигерас, Дж., Ферре, А.: Возможности и ограничения тестирования IDDQ в субмикронных КМОП. IEEE Trans. Компон. Packag. Manuf. Technol. 21 (4), 352–359 (1998)
Артикул Google Scholar
Мандал, М.К., Саркар, Британская Колумбия: Кольцевые генераторы: характеристики и применение. Индийский J. Pure Appl.Phys. 48 , 136–145 (2009)
Google Scholar
Георгоулопулос, Н., Хацопулос, А .: Оценка эффективности метода обнаружения неисправностей TSV с использованием кольцевых генераторов. В: Материалы 6-й Международной конференции по современным схемам и системным технологиям (2017)
Харб, С.М.С., Эйзенштадт, В .: Схемы тестирования сквозных кремниевых переходных отверстий (TSV) в трехмерных многослойных ИС. Adv. Sci. Technol.Англ. Syst. J. 2 (3), 1260–1265 (2017)
Статья Google Scholar
Дойч, С., Чакрабарти, К .: Бесконтактный тест TSV с предварительным соединением и диагностика с использованием кольцевых генераторов и нескольких уровней напряжения. IEEE Trans. Comput. Помощь Дес. Интегр. Circuits Syst. 33 (5), 774–785 (2014)
Статья Google Scholar
Фких Ю., Вивет П., Rouzeyre, B., Flottes, M., Natale, G.D .: 3D IC BIST для испытания TSV перед склеиванием с использованием кольцевых генераторов. В: Материалы 11-й Международной конференции по новым схемам и системам IEEE (2013)
Араби, К., Ихс, Х., Дюфаза, К., Каминска, Б.: Метод цифрового тестирования колебаний для задержки и зависания -При диагностике цифровых схем. В: International Test Conference, pp. 91–100 (1998)
Mohsen, A.A.K., El-Yazeed, M.F.A .: Выбор входного стимула для диагностики неисправностей аналоговых схем с использованием модели ARMA.AEU Int. J. Electron. Commun. 58 (3), 212–217 (2004)
Статья Google Scholar
Бину, Д., Карияппа, Б.С.: Обзор по диагностике неисправностей аналоговых схем: таксономия и современное состояние. AEU Int. J. Electron. Commun. 73 , 68–83 (2017)
Статья Google Scholar
Сингх Г., Ангурана М.С.: Разработка широкого диапазона настройки и малой мощности рассеивания VCRO в технологии 50 нм CMOS.Int. J. Adv. Res. Электр. Электрон. Instrum. Англ. 3 (5), 9675–9679 (2014)
Google Scholar
Никнейад А.М .: Лекция 12: Модели МОП-транзисторов. Департамент EECS, Калифорнийский университет, Беркли (2013)
Мэйли, В., Най, П .: Встроенное текущее тестирование – технико-экономическое обоснование. В: Материалы Международной конференции по автоматизированному проектированию, стр. 340–343 (1988)
Шен, Т.Л., Дейли, Дж. К., Ло, Дж. К.: время обнаружения 2 нс, встроенная схема измерения тока КМОП 2 мкм. IEEE J. Solid State Circuits 28 (1), 72–77 (1993)
Статья Google Scholar
Бастос, Р.П., Гимарайнш, Л.А., Торрес, Ф.С.: Архитектура встроенных датчиков тока для обнаружения переходных неисправностей в интегральных схемах. Микроэлектрон. J. 71 , 70–79 (2018)
Статья Google Scholar
Варианты счетчика звонков
Введение
Бродя по Интернету в поисках экзотических часов, я наткнулся на фантастические часы, сделанные Питером-Тьерк де Бур из Голландии [1].В этих удивительных часах в качестве логических элементов используется только неоновая лампочка (рис. 1). Неоновые лампочки используются в так называемых кольцевых счетчиках. Увлечение Питера-Тьеркса неоновыми кольцевыми счетчиками было вызвано книгой Дж. Б. Дэнса «Электронные счетные схемы» [2], которая была отброшена библиотекой Технического университета Твенте. К счастью, в библиотеке Делфтского технического университета до сих пор хранится книга «Танцы». Это действительно фантастическое и исчерпывающее описание всех видов счетных схем, известных в 1967 году.Недавно я обнаружил, что полную книгу можно скачать на сайте Dieters Nixie World. Щелкните здесь, чтобы загрузить zip-архив с полной книгой с его сайта (36Мб!). Спасибо, Дитер!
Рисунок 1. Никси-часы на основе счетчиков с неоновой трубкой, изготовленные голландским радиолюбителем
Питером-Тьерком де Буром (PA3FWM). Щелкните здесь или на картинке, чтобы увидеть его фантастический проект.
Глава 3 (Счетные трубки, заполненные газом с одним катодом, и их схемы) содержит раздел, озаглавленный «Простые трубки с холодным катодом».Это объясняет работу счетчика неоновых колец, и я должен признать, что никогда не слышал о счетчиках неоновых колец. Оказывается, это очень увлекательные простые схемы. Их работа основана на том факте, что эти лампы демонстрируют гистерезис при включении и выключении. Представьте, что к неоновой трубке приложен потенциал, который находится между напряжением тушения и напряжением зажигания. Теперь трубку можно включить, подав короткий импульс, который поднимает потенциал над трубкой выше его напряжения зажигания.Точно так же трубку можно выключить коротким импульсом, который понижает потенциал ниже напряжения тушения. Таким образом, неоновая трубка эквивалентна элементу логической схемы с памятью. Поэтому в технических данных эти лампы часто называют переключающими диодами.
Рис. 2. Две иллюстрации из ноябрьского номера журнала Electronics Illustrated за 1966 г., на котором изображен десятичный компьютер космической эры
[4]. Щелкните здесь или на картинке, чтобы загрузить полную версию статьи. Взгляните на этот замечательный сайт Альберта Бредекампа, который на самом деле создал этот неоновый калькулятор!
Цифровые схемы, в которых использовались эти неоновые лампы, были популярны в течение относительно очень короткого времени, скажем, между 1950 и 1970 годами.С одной стороны, цифровые схемы стали популярными только после войны, а с другой стороны, изобретение и разработка транзистора быстро сделали эти неоновые переключающие лампы устаревшими. В 1958 г. компания Electronics опубликовала статью под названием «Элементарный компьютер», действующий как безмолвный противник человеческого противника в древнем времяпрепровождении [19]. В статье описана схема, в которой тиратроны, реле и цифровые неоновые вентили были использованы для создания машины, которая могла бы играть в Tick-Tack_Toe. Восемь лет спустя эти цифровые неоновые схемы, по-видимому, все еще были популярны, поскольку Electronics Illustrated в ноябре 1966 года представила обширный проект, в котором описывался электронный калькулятор на основе кольцевых счетчиков неоновой трубки (рис.2) [4]. Хотя это была грубая и неуклюжая машина, в которой в качестве входных данных использовался телефонный набор, она была объявлена десятичным компьютером космической эры. В общем, я обнаружил, что эти лампы и схемы достаточно увлекательны, чтобы провести небольшое исследование и посмотреть, смогу ли я сам построить часы на основе кольцевых счетчиков. Вместо того, чтобы сначала закончить весь проект, а затем написать на нем полную страницу, я решил – как и в моем проекте часов Decatron – написать эту страницу в форме веб-журнала, так что я буду добавлять главы по мере продвижения проекта.Так что проверяйте эту страницу время от времени, если вас интересуют счетчики с неоновыми кольцами.
Счетчики колец для чайников
Схема счетчика неоновых колец была первоначально предложена Джоном Мэнли и Элли Бакли из Массачусетского технологического института. В своей статье «Неоновый кольцевой счетчик в электронике», январь 1950 года, они обсуждали трехдесятилетный кольцевой счетчик, полностью состоящий из неоновых трубок и германиевых диодов, способный увеличивать, уменьшать, сбрасывать и предварительно настраивать. Счетчик будет считать до 30.000 импульсов в секунду (рис. 2а). В 1950 году надежные германиевые диоды были очень новыми и передовыми компонентами (первое сообщение прессы о германиевых диодах в Голландии было в 1946 году). Глядя на принципиальную схему на рис. 2а, мы видим, что схема кольцевого счетчика устроена несколько иначе, чем мы привыкли сегодня. Также обратите внимание, что символ схемы диода еще не превратился в символ, который мы используем сегодня, но на самом деле все еще очень напоминал конструкцию точечного диода.
Рисунок 2а. Две иллюстрации из номера «Электроника» за январь 1950 года, на которых изображен оригинальный трехдесятилетний неоновый счетчик
, предложенный Мэнли и Бакли, и принципиальная схема их основной счетной ячейки.
Щелкните здесь или на картинке, чтобы загрузить статью полностью.
Логические схемы, такие как кольцевые счетчики, сделанные из неоновых трубок, основаны на том факте, что для газоразрядной трубки, такой как неоновая трубка, напряжение зажигания может быть выше, чем напряжение тушения.Это своеобразное поведение проиллюстрировано на рис. 3, где мы находим неоновую трубку, подключенную через токоограничивающий последовательный резистор, подключенный к источнику переменного напряжения. Вымышленная неоновая трубка в этом примере имеет напряжение зажигания (Вс), равное 140 В. Напряжение зажигания также называется напряжением зажигания или напряжением зажигания . Поддерживающее напряжение (Vm), рабочее или напряжение тушения трубки предполагается равным 100 В.
Рис. 3. Простая схема неоновой трубки при различных условиях смещения, объясняющая
последствия разницы в импульсном (Vs) и поддерживающем (Vm) напряжениях газоразрядной трубки.
В этом примере Vs = 140V и Vm = 100V
На рис. 3А напряжение питания увеличено с нуля до 80 В. Поскольку оно все еще значительно ниже напряжения зажигания, трубка не загорится, и ток будет равен нулю. Поскольку при нулевом токе на последовательном резисторе нет падения напряжения, напряжение на лампе будет идентично напряжению питания.Затем напряжение питания медленно увеличивают до 120 В (рис. 3B и C). Поскольку оно все еще ниже напряжения зажигания, трубка не ударяется. Однако, когда напряжение питания теперь повышается до 140 В, трубка воспламеняется (рис. 3D). После зажигания напряжение на трубке упадет до поддерживающего напряжения 100 В, и начнет течь ток. Ток, протекающий через трубку, ограничен резистором и может быть рассчитан как напряжение питания минус поддерживающее напряжение, деленное на номинал резистора.Дальнейшее увеличение напряжения питания будет линейно увеличивать ток, поскольку напряжение на трубке в основном ограничено до Vm = 100 В. В качестве альтернативы, когда напряжение питания теперь снижается до, скажем, 120 В, что все еще выше поддерживаемого напряжения 100 В (рис. 3E), ток будет уменьшен, но трубка все равно останется зажженной. Только когда напряжение питания окончательно упадет ниже поддерживающего напряжения, трубка погаснет, и ток вернется к нулю (рис. 3F).
Рисунок 4.Двухступенчатый кольцевой счетчик на разных этапах своей работы.
Обладая этими знаниями, теперь легко понять, как работает счетчик неоновых колец. На рис. 4 изображен двухступенчатый кольцевой счетчик на разных этапах своей работы. Основной строительный блок счетчика состоит из последовательно соединенных неоновой трубки, диода и резистора, подключенных к следующему каскаду посредством конденсатора. Предположим, что неоновые трубки, используемые в этом примере, также имеют напряжение зажигания 140 В и поддерживающее напряжение 100 В.Кроме того, предположим, что в исходной ситуации неоновая трубка V1 включена, а V2 выключена (рис. 4A). Поскольку V1 включен, напряжение на V1 будет его поддерживающим напряжением 100 В. Оставшееся напряжение будет делиться между R1 и общим анодным резистором, что приведет к падению напряжения на R1 на 20 В. Поскольку V2 выключен, падение напряжения на R1 будет нулевым. В результате C2 будет заряжен до 20 В, как показано на рис. 4A. На этой странице я назову напряжение на C2 катодным переносом смещения.
Затем на вход счетчика C1 (рис.4Б). Этот отрицательный фронт на короткий момент (напряжение на конденсаторе не может измениться мгновенно) снизит анодный потенциал обеих ламп до 80 В. Поскольку это напряжение значительно ниже поддерживаемого напряжения 100 В, V1 погаснет. Обе лампы выключены. Поскольку в настоящее время ни в одной из ветвей не течет ток, падение напряжения на R1 будет равно нулю. Однако C1 был заряжен до 20 В, так что катод V2 будет иметь потенциал -20 В (смещение передачи катода) по отношению к земле.Обратите внимание, что C2 останется заряженным, потому что D2 заблокирован, а V2 выключен.
Потенциал анода не останется равным 80 В, поскольку общий анодный резистор начнет заряжать C1, вызывая повышение потенциала общих анодов (рис. 4C). Если ничего не произойдет, это приведет к увеличению анодного напряжения до 200 В. Этого никогда не произойдет, потому что, когда потенциал анода достигает 120 В, напряжение на V2 (катод которого был смещен как -20 В) достигает напряжения зажигания 140 В, и зажигается V2 (рис.4D). Свечение теперь передается счетным импульсом от трубки V1 к трубке V2.
Рисунок 5. Пример семиступенчатого неонового кольцевого счетчика.
Посредством каскадирования любого произвольного количества секций и передачи последней секции первой секции получается кольцевой счетчик (рис. 5). Отрицательный импульс на входе, который достаточно велик, чтобы снизить напряжение на светящейся трубке ниже поддерживаемого напряжения (Vm), переключит свечение на следующую трубку в кольце. Если длительность импульса короче времени деионизации, трубка снова воспламенится при повторном приложении поддерживающего напряжения.Время деионизации обычно составляет порядка нескольких миллисекунд. Это ограничивает скорость кольцевых цепей диодов с холодным катодом до прибл. 1 кГц [2, стр.41].
Подробнее о пусковом и поддерживающем напряжениях
В предыдущем разделе мы видели, как работа счетчика неоновых колец основана на том факте, что поддерживающее напряжение неоновой трубки значительно ниже, чем напряжение зажигания. В идеальном мире, где все неоновые трубки были бы совершенно одинаковыми с нулевыми допусками на технологический процесс, потребовалась бы разница всего в несколько вольт между зажигающим и поддерживающим напряжением.Однако на самом деле никакая лампа не будет такой же, что приведет к тому, что разница в напряжении включения и поддержания напряжения будет все меньше и больше. Кроме того, эти напряжения могут со временем изменяться из-за старения. Интуитивно мы чувствуем, что предпочтительно, чтобы разница между напряжением зажигания и поддержанием была как можно большей, а смещение катодного переноса должно составлять примерно половину разницы между ними. В следующих нескольких абзацах мы попытаемся прийти к более научным выводам.
Рисунок 6. Упрощенная схема базового кольцевого счетчика.
На рис. 6 показана упрощенная принципиальная схема основной секции кольцевого счетчика, изображенного на рис. 4. Для простоты диоды и конденсаторы не показаны. Мы предполагаем, что V1 загорелся, так что напряжение на V1 является поддерживающим напряжением. Ток, протекающий через V1, вызывает падение напряжения на Rcat (смещение катодного переноса для следующей секции) I * Rcat. Сумма Vm и I * Rcat, очевидно, должна быть меньше напряжения зажигания V2.
Рис. 7. Графическое представление последствий изменения процесса для смещения катодного переноса.
На рис. 7 это проиллюстрировано графически. Дополнительно были включены вариации от трубки к трубке с помощью двух полугауссовых распределений. Среднее значение поддерживающего напряжения, например обозначается как Vm, а минимальное и максимальное поддерживающие напряжения в кольце представлены как Vm, min и Vm, max соответственно. Теперь очевидно, что наихудшая ситуация возникает, когда V1 – это трубка с самым высоким поддерживающим напряжением кольца Vm, max, а V2 – это трубка с самым низким напряжением зажигания Vs, min.Для обеспечения правильной работы даже в этом случае I * Rcat должно быть меньше Vs, min Vm, max.
Рисунок 8. Схема, используемая для оценки нижнего предельного значения I * Rcat.
В то время как предыдущий анализ устанавливал значение верхней границы для I * Rcat, схему на рис. 8 можно использовать для получения значения нижней границы. Он изображает трехступенчатый кольцевой счетчик на стадии, когда V1 только что погас отрицательным импульсом на общем анодном узле, так что конденсатор был заряжен до катодного переключающего смещения I * Rcat.Напряжение на аноде снова растет, так что V2 должен ударить первым.
Рис. 9. Графическое представление вывода нижнего предельного значения катодного переходного напряжения.
В схеме на рис. 8 возникает худшая ситуация, когда неоновая трубка V2 имеет самое высокое напряжение зажигания кольца. Когда разница между напряжением зажигания этой трубки и минимальным напряжением зажигания в кольце меньше, чем I * Rcat, последняя трубка ударит вместо V2.Другими словами: Vs, max – Vs, min Если предположить, что все трубы одинаковы, без изменений процесса:
тогда наше состояние сводится к: взяв среднее значение: это именно то, что мы думали интуитивно!После всех этих размышлений правильная процедура установки значений компонентов в кольцевом счетчике теперь становится немного яснее. Если у вас достаточно трубок, рекомендуется сначала отсортировать их таким образом, чтобы в итоге получилось десять трубок с минимальными вариациями Vm и Vs.Наилучшим подходом сейчас является усреднение I * Rcat между полученными нами значениями нижней и верхней границ. В таблице данных лампы указан номинальный ток (обычно порядка 1 мА). Теперь мы можем рассчитать Rcat из:
Обратите внимание, что когда известны только средние значения поддерживающего и пускового напряжений (Vm, avg и Vs, avg), это сводится к: Значение анодного резистора теперь следует из: Выбор напряжения питания определяет входное сопротивление цепи.Чем выше напряжение питания, тем выше анодный резистор и, следовательно, выше входное сопротивление. Высокий входной импеданс означает, что предыдущей ступени легче подтянуть общий анодный узел ниже Vm, чтобы продвинуть счетчик. По той же причине может потребоваться смещение трубки при несколько меньшем токе.Подробнее о неоновых трубках
Неоновые лампы, или переключающие диоды, как их иногда называют, бывают двух видов: лампы с катодами, покрытыми барием, и лампы с металлическими катодами с напылением (см. Также раздел «Переключающие лампы серии ZA100X от Philips»).Чтобы понять, почему катоды должны быть подготовлены в любом случае, мы должны понимать, что из-за остаточных молекул кислорода в газе трубки катод всегда будет покрыт монослоем оксида. Этот слой имеет очень высокую работу выхода, а это означает, что для освобождения электрона от поверхности катода потребуется большое количество энергии. Теперь, когда небольшое количество материала с очень низкой функцией, такого как барий или цезий, осаждается на этом оксидном слое, материал с низкой работой выхода обменивается электроном с кислородом, что приводит к образованию дипольного слоя.Дипольный слой эффективно снижает рабочую функцию катода до очень низкого значения.
В подавляющем большинстве неоновых трубок используется катод, покрытый барием. Катоды, покрытые барием, имеют два преимущества. Прежде всего, металлические катоды необходимо очистить на месте – распылением. Во время распыления катода на оболочку трубки также будет осаждаться непрозрачная металлическая пленка, так что свечение будет видно только на концах трубки, где осаждено меньше материала [3].Второе преимущество состоит в том, что из-за низкой работы выхода бариевого покрытия нормальный видимый свет можно использовать для фотоэлектрической грунтовки трубки. Вероятно, это требует небольшого объяснения. Для надежного зажигания неоновой трубки необходимо присутствие определенного количества ионов. Несколько ионов в минуту образуются в трубке космическими лучами и излучением случайных радиоактивных атомов, которые присутствуют во всех материалах, но требуется больше ионов, если разряд всегда должен инициироваться быстро [2].Искусственные методы увеличения количества ионов в лампах с холодным катодом известны как грунтовка. Помимо фотоэлектрического затравки, иногда также используется дополнительный электрод затравки или в газовую смесь добавляется немного радиоактивного газообразного трития, чтобы обеспечить надежное и быстрое поражение покрытых барием трубок даже в темноте.
Подавляющее большинство неоновых трубок, особенно те, которые представлены сегодня на рынке, не предназначены для коммутации. Следовательно, при разработке этих трубок не было предпринято никаких усилий, чтобы максимизировать разницу между зажигающим и поддерживающим напряжениями.Обычно эти неоновые трубки имеют напряжение зажигания около 80 В и поддерживающее напряжение порядка 60 В. Вдобавок ко всему эти параметры имеют тенденцию к довольно большому изменению от трубы к трубе из-за механических допусков в их конструкциях и вариаций процесса покрытия барием, а также газовой смеси и давления. В целом, использование обычных неоновых трубок для коммутации приводит к возникновению критических цепей, требующих компонентов с низким допуском.
Рисунок 10.A Схема, используемая для старения неоновых трубок, B испытательная схема для измерения Vs и Vm.
Один из способов справиться с этим – собрать пробирки перед использованием. Это означает, что и Vs, и Vm измеряются для каждого отдельного устройства, а затем они разбиваются на группы с более или менее похожими характеристиками. И Питер-Тьерк де Бур с его часами с кольцевым счетчиком [1], а также авторы калькулятора счетчика с кольцевым счетчиком в Electronics Illustrated [4] придерживаются этого подхода. Поскольку характеристики пробирок имеют тенденцию изменяться при первом включении, рекомендуется выдержать пробирки перед сборкой.В «Иллюстрированной электронике» предлагается процедура старения ламп с использованием переменного напряжения [4 с.44]. Я использовал переменный трансформатор, чтобы получить напряжение изолированной сети от нуля до 180 В (рис. 10А). Многие неоновые лампы можно состаривать параллельно, каждая из которых имеет собственный последовательный резистор.
Рисунок 11. Неоновые пробирки на стойке для выдержки.
В ящике на работе я нашел несколько, как я понимаю, довольно старых газовых трубок. Я решил посмотреть, каково распределение ударных и поддерживающих напряжений для этого набора ламп и как на них повлияло старение.Сначала я измерил как Vs, так и Vm, используя простую схему, показанную на рис. 10B. Хотя эти трубки можно использовать в обоих направлениях, я предположил, что катод и анод, используя печать на трубке в качестве ориентира. Оказалось, что замена анода и катода дала почти точно такие же значения для Vs и Vm. Затем распределение значений Vs и Vm было построено на рис. 12 (вверху). Поразительные напряжения представлены красной кривой, а поддерживающие напряжения представлены черной кривой.Красная точка, например, 70 В указывает на наличие двух ламп с напряжением зажигания от 70 до 71 В. Среднее напряжение зажигания и поддержания для этих ламп составляло 68,8 В и 56,9 В соответственно, так что средняя разница составляла всего 12 В. Обратите внимание, что в этом наборе ламп были даже лампы с более низким напряжением зажигания, чем поддерживающее напряжение некоторых других ламп.
Рис. 12. Распределение напряжения зажигания и поддержания напряжения для набора из 21 неоновой трубки
до (вверху) и после (внизу) старения.
Пробирки выдерживали в течение 3 дней с использованием схемы, изображенной на рис. 10А. Напряжение переменного тока было отрегулировано на ток около 1 мА на трубку. После старения Vs и Vm каждой трубки были измерены снова, снова как в прямом, так и в обратном режиме. Распределения Vs и Vm после старения показаны на рис. 12 внизу. Относительно большие изменения Vs и Vm произошли, в результате чего произошли сдвиги как в положительном, так и в отрицательном направлении. Средние значения Vs и Vm уменьшились примерно на 1,5 В, так что средняя разница осталась 12 В.Несколько случайных тестов во время старения показывают, что наибольшее изменение параметров произошло в течение первых нескольких часов. Очень небольшая разница между Vs и Vm уже заставила меня пессимистично настроиться на создание кольцевого счетчика с этим набором ламп. И действительно, несмотря на значительные усилия, добиться надежного счета с помощью этих пробирок оказалось невозможным.
Мой первый счетчик неоновых колец
К счастью, «Radio Service Twente» все еще имеет запас старых добрых неоновых ламп в форме капли [5], и при количестве сотен ламп они стоят всего 15 евроцентов за штуку! Помимо этого, у них есть большой запас излишков и «снятых с производства компонентов», и если вы когда-нибудь окажетесь в Ден Хааг (Гаага) [6], вам обязательно стоит навестить их.Еще лучше, совместите это с посещением Stuut en Bruin, которые находятся прямо за углом (см. Следующий раздел).
Рисунок 13. Десятиступенчатая тестовая схема счетчика неоновых колец.
Быстрое измерение на десяти лампах показало, что напряжение зажигания ламп варьировалось от 93,7 В до 101,4 В со средним значением 97,5 В, в то время как поддерживающее напряжение варьировалось от 66,4 В до 72,0 В со средним значением 68,6 В, средним значением. разница 28,9В! Согласно теории, рассмотренной в предыдущем разделе, я должен был сначала состарить трубки, а затем снова измерить их.Однако на этот раз мне не хватило терпения. Идеальный катодный резистор для этих ламп, при условии, что ток 1 мА должен был быть 7 кОм. Из-за отсутствия резисторов с таким номиналом я использовал резисторы 12 кОм (рис. 13). Большинство кольцевых счетчиков имеют счетный импульс, емкостно связанный с общим анодным узлом. Я решил использовать высоковольтный транзистор, чтобы снизить анодное напряжение практически до нуля во время фактического счетного импульса. Это сработало идеально, но оказалось абсолютно необходимым включить C0, чтобы увеличить время нарастания анодного напряжения.Без C0 схема вообще не работала бы. Для подсчета входных импульсов я использовал TTL-совместимый сигнал с скважностью 10%.
Хотя характеристики компонентов не были идеальными, а лампы не подвергались старению, счетчик надежно работал при напряжениях питания от 185 В до 250 В вплоть до частоты приблизительно 500 кГц. При напряжении питания ниже 185 В счетчик начинал пропускать определенные лампы таким образом, что эта лампа пропускала один цикл, но ударяла в следующий. При напряжении питания выше 250 В счетчик начинает отсчет с удвоенной тактовой частотой.
Рисунок 14.Для определения электрических характеристик длина кольцевого счетчика была уменьшена до двух ступеней.
Чтобы включить электрические характеристики форм сигналов внутри кольцевого счетчика, количество ступеней было сокращено до двух, схема также известна как триггер с переключателем. Верхняя кривая на изображении осциллографа на рис. 14 показывает общее анодное напряжение, а нижняя кривая отображает катодное напряжение неоновой трубки V2. Оба сигнала были измерены с помощью зонда 10: 1. В точке A транзистор T1 является проводящим, так что анодное напряжение снижается практически до нуля, тем самым гася обе лампы.Когда T1 выключен, конденсатор Со заряжается через анодный резистор Ra, что приводит к логарифмическому увеличению анодного напряжения (постоянная времени τ = 82 кОм * 27 нФ = 2,2 мс). В точке B анодное напряжение достигло такого значения, что пробивает V1, что немедленно приводит к снижению анодного напряжения до поддерживающего напряжения (примерно 75 В). В цикле, предшествующем этому циклу, зажигался V2. Ток, протекающий через V2, приводил к падению напряжения на R2, который заряжал C2 примерно до 10 В. Во время счетного импульса (точка A), C2 быстро разряжается посредством R2 (точка C) с постоянной времени τ = 12k * 10nF = 120 & micro.В точке B конденсатор Со заряжается до прим. 105V. Однако, как только V1 поражает, Co выводится через R1 на Vm + I * 12k. Этот резкий переходный процесс усиливается дифференцирующим фильтром, образованным C1 и R2, что приводит к резкому пику D.
Пока V1 включен, падение напряжения на R1 заряжает C1 примерно до 1 мА * 12 кОм = 12 В. Когда в следующий раз во время следующего счетного импульса (точка E) падение напряжения на R1 уменьшится до нуля, катод V2 будет смещен до -12 В: смещение катодного переноса (точка F).Когда в следующий раз анодное напряжение снова возрастет, V2 ударит (точка G) перед V1 из-за отрицательного смещения переноса, присутствующего на его катоде. Обратите внимание, что согласно рисунку 14 напряжение зажигания в динамических условиях оказывается немного выше, чем в статических условиях (105 + 12 = 117 В против 97,5 В). Резкий пик H 30 В снова объясняется быстрым разрядом C0 от напряжения зажигания 105 В до поддерживающего напряжения 75 В.
Рисунок 15. Щелкните здесь или на картинке, чтобы просмотреть видеоролик YouTube о кольцевом счетчике.
Коммутационные лампы серии ZA100X от Philips
В разделе «Подробнее о неоновых трубках» мы уже видели, что существует два типа неоновых трубок: трубки , покрытые барием, , которые составляют, возможно, более 99,99% всех неоновых трубок, и гораздо более редкие трубки с распыленным катодом. Трубки, покрытые барием, имеют два преимущества; во-первых, колба не покрыта металлом – как это было бы в случае трубки с распыленным катодом – так что свечение хорошо видно, а во-вторых, при нормальном окружающем освещении задержка пробоя незначительна из-за фотоэлектрической затравки низкоуровневой лампы. катод с покрытием из бария.
Обычные индикаторные трубки с покрытием из бария, такие как NE2 в NT2, обычно имеют напряжение пробоя порядка 80-90 В и поддерживающее напряжение около 60 В. Таким образом, средняя разница между этими двумя параметрами составляет порядка 20–30 В. В предыдущем разделе мы видели, что этого достаточно для создания логической схемы, такой как кольцевой счетчик, но, безусловно, недостаточно большого размера, чтобы создать надежную конструкцию, которая может быть произведена. на промышленном уровне и надежно работают в течение многих лет, несмотря на старение трубок с течением времени.Поэтому для коммутационных устройств были разработаны специальные неоновые трубки. Путем оптимизации газовой смеси и давления и / или увеличения расстояния между электродами были разработаны такие трубки, как XC25 и XC26, которые давали напряжения пробоя 130–160 В и 150–175 В соответственно при одинаковом поддерживающем напряжении ок. 60В. Однако проблема старения, вызванная диффузионными процессами в слое бария, осталась.
Потребность в трубках с более жесткими допусками без явлений старения побудила Philips разработать серию неоновых переключающих трубок с катодами, очищаемыми напылением металла.Катодное распыление – это явление, которое происходит во всех газоразрядных трубках. Атомы ионизированного газа (например, неона) ускоряются к катоду электрическим полем. Попадая на катод, они иногда выбивают атом металла с поверхности катода. Затем этот атом диффундирует через оболочку трубки и, наконец, оседает на аноде или на стенке трубки. Во время очистки распылением трубка нагревается до прим. 400C, при этом лампа работает при очень высоком уровне тока.На этом заключительном этапе производства неизбежный оксидный слой на катоде удаляется распылением с катода. В то же время распыленные атомы никеля или молибдена, которые диффундируют через трубку, будут связываться с любыми оставшимися атомами кислорода, которые присутствуют в газе. Наконец, нанесенный металлический слой на стеклянную оболочку предотвратит дальнейшую диффузию загрязняющих веществ из стекла. Эта элегантная процедура была разработана Пеннингом и Мубисом в 1946 году в Philips Research. Их методика впервые позволила изготовить очень стабильные лампы сравнения напряжения, такие как 85A1 [3, стр. 197].В двух статьях Philips Research Reports 1946 года они объясняют принципы катодного распыления [10] и геттерирования металлов [11]. Документы дают очень приятное впечатление о прекрасных экспериментах, которые проводились в те дни.
Рисунок 16. Трубка переключения ZA1002 (шкала миллиметровая).
В неоновых трубках серии ZA100x используется особая структура электродов, чтобы предотвратить полное покрытие внутренней части трубки металлом, что сделало бы свечение невидимым.Трубки состоят из центрального катодного стержня из молибдена, окруженного цилиндрическим анодом в виде сетки. Когда катод распыляется, материал осаждается на стенке трубки, чтобы действовать как газопоглотитель, в форме, соответствующей отверстиям в сетке. В результате стенка трубки не полностью покрывается металлом, и свечение остается отчетливо видимым. Дополнительным преимуществом концентрического расположения является то, что небольшие отклонения от концентричности существенно не влияют на поле на катоде, что приводит к уменьшению колебаний от трубки к трубке.
ZA1000 и ZA1002 – это переключающие диоды, ZA1001 – это релаксационные диоды, подходящие для схем синхронизации, а ZA1003 и ZA1004 – индикаторные трубки, подходящие в качестве считывающих диодов для транзисторных схем [3.p227]. Статистическая поломка трубок сокращается до менее 1 мс при перенапряжении 10-20 В за счет включения небольшого количества трития. Однако задержка не уменьшается в достаточной степени для схем синхронизации, где лампа действует как релаксирующий генератор на относительно низких частотах и где важно, чтобы трубка подавала одинаковое напряжение на каждый импульс.На более высоких частотах проблем нет, поскольку у лампы недостаточно времени для полной демонстрации между импульсами, а остаточного заряда достаточно, чтобы перекрыть зазор. Для преодоления проблемы низких частот в лампе, разработанной для схем синхронизации, ZA1001, к основному газу добавлено небольшое количество тяжелого газа (Kr или Xe), который имеет длительное время деионизации. Таким образом, комбинируя быстрый и медленный процесс деионизации в одном разряде, трубка может колебаться в сравнительно подключенном частотном диапазоне.
Рисунок 17. Некоторые члены семейства ZA100x и их оригинальные коробки.
Для применений в качестве считывающей трубки для транзисторных схем наполнение газом выбирается так, чтобы обеспечить меньший разброс напряжения пробоя, чем значение сигнала, подаваемого транзистором. Исследование напряжения пробоя газовых смесей показывает, что характеристика пробоя неона плюс небольшой процент аргона (например, 0,1%) имеет плоскую характеристику на минимуме Пашена. Это означает, что неизбежно небольшие различия в давлении и расстоянии между электродами отдельных трубок практически не влияют на потенциал пробоя.Используя такую смесь, разброс напряжения зажигания был достаточно низким, чтобы ламповый тип ZA1003 мог надежно управляться транзистором 12 В, а тип ZA1004 – транзистором 6 В. Разница между пробивным и поддерживающим напряжением для этих ламп невелика. Для ламп типа ZA1000 и ZA1002, используемых в дифференциальных схемах, где требуется большая разница между Vs и Vm, используется чистый неон с давлением наполнения, превышающим давление, соответствующее минимуму кривой Пашена. При таком заполнении газом Vs-Vm составляет примерно 60 В.Для семи трубок ZA1002 у меня есть значения (Vs, Vm): (169,1,105,0), (171,0,105,2), (170,5,105,0), (170,0,104,8), (171,0,104,9), (170,0,104,9). ), (171.0,105.2). Таким образом, максимальное изменение Vs составляет 2 В и 0,5 В в Vm! Для этих трубок светоотдача значительно выше, чем для трубок, заполненных неон-аргоном.
Рис. 18. Техническое описание серии ZA100x взято из [9]
Щелкните здесь или на картинке, чтобы увеличить изображение.
Коммутационные лампы серии ZA100x предположительно были разработаны примерно в 1961/1962 годах, но вскоре устарели из-за транзисторных переключающих схем, а через несколько лет – снова из-за ИС.Они очень редки. Поиск в Google дал лишь несколько совпадений. Мне посчастливилось найти несколько ZA1002 в давно забытой коробке старых вещей в исследовательской лаборатории Philips. Я уже потерял всякую надежду когда-нибудь найти другие лампы из серии ZA100x, когда мне довелось побывать в магазине Стюут и Брюин [7] в (снова) Ден Хааг (Гаага) [6]. К сожалению, Стуут и Бруин мне совсем не мешают, так что, должно быть, я посетил их более десяти лет назад. Это старый магазин, который работает более 60 лет.Придя в магазин, я очень удивился, увидев на витрине индикатор настройки 6AL7 (волшебный глаз)! Эта лампа имеет прямоугольный флуоресцентный экран с видом сверху и встречается в Голландии довольно редко. Это был единственный 6AL7, который имелся в наличии у управляющего магазином, потому что ему приходилось брать его из витрины, которая, по его словам, не открывалась уже двадцать лет (я уверен, что он немного преувеличил). Я был так увлечен этой трубкой, что он дал ее мне бесплатно! Я решил, что это, должно быть, мой счастливый день, поэтому спросил менеджера, слышал ли он когда-нибудь о серии неоновых ламп ZA100x.Посмотрев на меня несколько секунд, как будто на него ударила молния, он поманил меня зайти за прилавок в темный угол своего магазина, где у него была стена, полная трубок NOS, большинство из которых от Philips, и все еще в их оригинальных картонных коробках, большинство из которых немного поражены плесенью в этом предположительно влажном углу. К моему удивлению, он произвел почти полную серию ZA100x из этой чудесной коллекции (рис. 17). На картинке на коробках по-прежнему стоит первоначальная цена (в гульденах) – 15 фл.00. Сегодня это около 6,50 евро, а 30 лет назад было 25 евро [8].
Срок годности
Как счастливый обладатель семи ламп ZA1002, я, очевидно, хотел создать и протестировать кольцевой счетчик на этих лампах. Я использовал схему на рис. 13 с некоторыми изменениями в значениях компонентов. Вместо того, чтобы использовать номинальный анодный ток и затем получить нестандартные значения резистора, я использовал стандартное значение 47 кОм для катодного резистора и рассчитал ток из I = (VsVm) / 2 * Rcat = (170-105) / 2 * 47к = 690 мкА.С анодным резистором 100 кОм номинальное напряжение питания тогда составляет Vsupl = I * (Ra + Rcat) + Vm = 690 мкА * (100 кОм + 47 кОм) +105 = 206 В. Поскольку уже было очень легко получить надежный счетчик с использованием дешевых неоновых трубок с бариевым катодом, я ожидал, что счетчик с ZA1002 будет работать очень надежно в широком диапазоне питания. Однако я был полностью ошеломлен и озадачен, обнаружив, что с этими лампами было абсолютно невозможно добиться чего-либо, хотя бы и почти надежного!
Рис. 19. Урезанный кольцевой счетчик ZA1002 и осциллограмма анодного напряжения.
Я пробовал разные комбинации катодных резисторов и напряжений питания, но счетчик работал почти беспорядочно, почти случайно. После того, как я некоторое время возился со схемой, причина странного поведения счетчика стала ясна, когда я сократил счетчик до одной лампы. На рисунке 19 показана схема без изоляции и форма волны анодного напряжения. Из осциллограммы выяснилось, что лампа случайным образом зажигает при напряжениях от 170 (как и должно быть) до 220В.На фотографии рис. 19 за время одной экспозиции камеры зафиксировано четыре следа. Обратите внимание, что после зажигания трубки напряжение падает до постоянного значения, определяемого поддерживающим напряжением и падением напряжения на катодном резисторе.
Рис. 20. ZA1002 во время распылительной очистки катода. На фотографии катод кажется ярче, чем был на самом деле.
Первое объяснение, которое я мог придумать для этого странного поведения, заключалось в том, что так или иначе за эти годы катод снова был загрязнен.В книге Вестона по лампам с холодным катодом объясняется, что лампы с холодным катодом обычно распыляются при токе, примерно в десять раз превышающем номинальный анодный ток, пока катод не станет докрасна [3]. На рисунке 20 показан ZA1002 при катодном токе 10 мА. Через несколько минут тюбик настолько горячий, что я буквально обжег пальцы, прикоснувшись к нему. Никакого эффекта процедура не дала.
Наконец, меня осенило, что проблема также может быть связана с заливкой трубки. Напомним, что для того, чтобы сократить время включения трубки до менее 1 мс, в газообразный неон было добавлено небольшое количество трития.Эффект радиоактивного трития заключается в том, что он ионизирует некоторые молекулы газа, так что всегда присутствует достаточно ионов, чтобы обеспечить быстрое поражение плазмы. Быстрый поиск в Интернете показал, что период полураспада трития составляет около 12,3 года! Это означает, что каждые 12,3 года половина трития распадается на гелий-3. Другими словами, через шестьдесят лет после их производства (1/2) ** (60 / 12,5) = 1/64 остается только одна 64-я часть трития. Другими словами, трубка с трудом заполняется, что приводит к переменному удару трубки.Странно то, что, хотя почти каждая трубка, независимо от ее возраста, будет оставаться более или менее функциональной, пока нить накала не повреждена, имеет некоторое излучение и нет утечки, эти трубки по своей сути имеют ограниченный срок хранения. Очевидно, сотрудники Philips не могли представить, что какой-нибудь дурак будет играть с этими лампами через шестьдесят лет после их производства, иначе они наверняка добавили бы лучшее, прежде чем предупреждать!
Разное
В новостных группах в Интернете постоянно ходят слухи о том, что можно построить счетчик никси, просто используя руку, полную диодов и резисторов.Несомненно, эти слухи берут свое начало в представлении о том, что никси-трубка – это не что иное, как десять отдельных неоновых трубок, объединенных в одну оболочку с общим анодом. Глядя на базовую схему неонового кольцевого счетчика, показанную на рис. 13, действительно возникает соблазн подумать, что можно заменить десять отдельных неоновых трубок на одну трубку с газом (рис. 21).
Рисунок 21. Замена десяти неоновых трубок одной газовой трубкой не работает.
Я должен признать, что изначально я не видел причин, по которым это не должно работать! Однако быстрая попытка не дала результата.Одно из объяснений состоит в том, что разница между напряжением зажигания и поддержанием напряжения газовых трубок оказалась очень маленькой. Для нескольких трубок nixie измеренные значения (Vs, Vm) были: ZM 1020 = (133,123), IN12 = (132,125), XN12 = (128,124), ZM1080 = (131,125), ZM1040 = (127,125), CD83P = (122,119). . Кроме того, оказалось, что как только одна из цифр зажигается, другие цифры становятся настолько полностью заполненными, что их напряжение зажигания снижается до поддерживающего напряжения уже включенной цифры. На самом деле сложно говорить о поразительном, поскольку новые цифры включаются очень постепенно, когда потенциал катода приближается к поддерживающему напряжению.Итак, на первый взгляд, напряжения всех цифр становятся более-менее равными. Это подсказало схему фиг. 22А.
Рисунок 22. Еще одна нефункциональная схема кольцевого счетчика.
В схеме на рис. 22A предполагается, что после зажигания газовой трубки падение напряжения для каждой из цифр будет одинаковым, и как таковое будет представлять только постоянное падение напряжения, так что разрядная трубка может быть включена последовательно. со стандартным неоновым кольцевым счетчиком. Увы, эта схема тоже не заработала.В трехступенчатом тестовом варианте все три цифры загорались одновременно. Простая тестовая схема на рис. 22В показывает причину. Если бы мои предположения были правильными, и действительно, зажженная газовая трубка представляла бы постоянное падение напряжения для каждой из цифр, было бы невозможно зажечь V2, нажав S1. Однако это было не так. Зажженная никси-трубка, очевидно, представляет собой очень сложную нагрузку, где неподключенная цифра принимает потенциал где-то между потенциалом анода и потенциалом уже воспламененного катода.
p.s .: Основываясь на опыте с кольцевым счетчиком на диодах Шокли (рис.30), я думаю, что сделаю последний шаг, чтобы заставить эту схему работать, связав катоды нейтрализатора с постоянным потенциалом через резистор. Факт остаётся фактом: ток в открытом состоянии для большинства ламп слишком велик для большинства неоновых индикаторных трубок.
Рисунок 23. Трубка регистра GR10A от ETL (Ericsson Telephone Limited), Англия.
Не после того, как я начал раздел о ZM1050 на этой странице, я понял, что, скорее всего, регистровые лампы будут лучшим кандидатом для идеи, изложенной на рис.21, поэтому мы решили сделать небольшое дополнение к этому разделу. Регистровые трубки относятся к Тип трубок семейства decatron. Нормальные декатроны – это настоящие счетные устройства, которые могут подсчитывать перенос тлеющего разряда от одного электрода к другому с помощью направляющих электродов. Напротив, регистровые трубки – это только устройства отображения, которые имеют один анод и десять катодов, каждый из которых индивидуально подключен к гнезду трубки. Они использовались в качестве считывающих устройств высокоскоростных электронных счетных ступеней, предшествовавших более медленным декатронным ступеням.
Рисунок 24. Российская трубка Регистра А-101.
На рисунке 23 изображена ВАХ очень распространенной регистрационной трубки GR10A от Ericsson. После того, как трубка коснется прибл. 130 В, напряжение падает примерно на 20 В, но затем напряжение на трубке быстро увеличивается по мере увеличения тока, что указывает на высокое внутреннее сопротивление. Очень необычное поведение, которого я раньше не видел. На рис. 24 представлена ВАХ российской регистрационной лампы А-101. Совершенно другое поведение! Лампы зажигают при напряжении, превышающем 350 В, и имеют поддерживающее напряжение 150 В.Теоретически это должно быть идеальным для создания кольцевого счетчика, если только плазма одной цифры не забивает другие цифры слишком сильно. Тестировать не стал по той простой причине, что у меня не было подходящего (12 пин) гнезда для этой лампы. Слабое оправдание, я признаю это, но вот оно.
Трассировщик кривых A poormans
Во время экспериментов, описанных в следующем разделе, я почувствовал потребность в трассировщике кривой. Измеритель кривой – это часть испытательного оборудования, которая отображает соотношение тока и напряжения компонента на экране ЭЛТ.Таким образом, вы можете, например, одним взглядом найти поразительное и поддерживающее напряжение неоновой лампы. У нас в работе есть прекрасный измеритель кривой Tektronix 370A, но во время написания этих страниц рождественские каникулы мне мало помогли. Однако с несколькими компонентами, которые почти у всех валяются, кажется возможным построить действительно очень полезную программу-трассировщик кривой poormans менее чем за десять минут!
Рис. 25. Принципиальная схема прибора для отслеживания кривой Пурмана.
На рисунке 25 изображена принципиальная схема измерителя кривой Пурмана. Variac (T1) и фиксированный трансформатор используются для получения переменного источника переменного напряжения 0250 В (250 = sgrt (2) * 180). Напряжение переменного тока двусторонне выпрямляется мостом B1, в результате чего получается синусоидальное напряжение с регулируемой амплитудой 0250 В. Последовательный резистор R1 измеряет ток через тестируемое устройство (DUT). Мой осциллограф позволяет отключать временную развертку таким образом, чтобы вход канала 2 был подключен к пластинам отклонения оси x.При подключении заземления осциллографа к узлу, соединяющему ИУ с R1, а Y-образные пластины (канал 1) к R1 и x-пластины (канал 2) к ИУ, становится возможным измерять ВАХ исследуемого устройства. DUT. Единственным недостатком этой схемы является то, что ось x отображается перевернутой, что означает, что положительные напряжения отображаются в отрицательном направлении оси x. Небольшое неудобство, к которому быстро привыкаешь.
Рис. 26. Три примера ВАХ, измеренных с помощью измерителя кривой Пурмана.DIAC был BR100 / 03 от Philips.
На рис. 26 в качестве примера показаны три ВАХ трех устройств: BR100 / 03 DIAC от Philips, очень распространенная неоновая трубка с покрытием из бария и переключающая трубка ZA1002. Начало сюжета было положено в один квадрат из нижнего правого угла участка. Начиная с начала координат, напряжение на ИУ увеличивается без протекания тока. При напряжении около 33 В срабатывает DIAC, в результате чего протекает ток, а напряжение падает до ок.27В. Очень небольшая разница между включение и поддержание напряжений этого ЦИАП показывает, что, к сожалению, он бесполезен в качестве активного элемента в кольцевом счетчике. Неоновая трубка имеет напряжение зажигания 115 В с поддерживающим напряжением 65 В. Лампа ZA1002 имеет напряжение зажигания 175 В с поддерживающим напряжением 105 В.
Обратите внимание, что большинство вариаков являются автотрансформаторами, что означает, что они не имеют отдельных первичной и вторичной обмоток, а имеют только одну обмотку с регулируемым отводом.В таком трансформаторе вторичная обмотка не изолирована от сети и может быть смертельно опасной даже при небольшом выходном напряжении. Несмотря на то, что вариак на рис. 25 показывает две обмотки, мой вариак также является автотрансформатором (у меня не было правильного символа). Вот почему был добавлен Т2, чтобы изолировать цепь от сети. Если вы не знакомы или не знакомы со схемами, которые подключаются напрямую к сети, пожалуйста, прочтите мое введение в эту тему на моей странице с часами Tube-in-a-Tube.Если у вас нет вариака, вы можете также использовать одиночный трансформатор с фиксированным выходным напряжением, которое достаточно велико. Высокое значение R1 ограничивает ток через ИУ и, следовательно, рассеивание. На всякий случай сделайте R1 типом 1W.
Для моего удобства вот процедура настройки прицела:
- Канал 2 и Канал 3 постоянного тока
- Ч3 выкл.
- Ch2 & Ch3 2 В / дел. Это означает, что одно деление на осциллографе соответствует 2 В на входе осциллографа или 20 В на наконечнике пробника 10: 1 или 20/100000 = 200 мкА на ИУ.
- нажмите TB-mode для меню TB, выберите источник Ch3, включите x-defl.
- позиция начала координат в правом нижнем делении, кроме одного.
Счетчики кольцевых шокли-диодов
Еще за четыре года до войны, в 1936 году, дальновидный директор по исследованиям Bell Labs – Мервин Келли – нанял молодого и блестящего физика Уильяма Шокли для исследования возможности создания прочного твердотельного устройства, которое могло бы заменить ненадежные переключатели и лампы, которые были использовались в то время в телефонных системах [12].Недавние достижения в квантовой механике и физике твердого тела подсказали Шокли несколько концепций устройства, но все эти устройства не работали так, как он надеялся. Оглядываясь назад, можно сказать, что в основном это было связано с тем, что в довоенный период не было доступных хороших и чистых полупроводниковых материалов, кроме того, было еще мало понимания физики полупроводниковых поверхностей.
Вторая мировая война прервала усилия Шокли, когда он ушел из Bell Labs, чтобы стать директором по исследованиям в Группе операций по борьбе с подводными лодками Колумбийского университета.Однако огромные исследовательские усилия во время войны с радаром привели к огромным успехам в понимании, производстве и очистке как германия, так и кремния, поскольку эти материалы были необходимы для изготовления надежных и чувствительных точечных радарных детекторов.
Сразу после войны Шокли вернулся в Bell Labs, чтобы возглавить группу по физике твердого тела, задачей которой было разработать твердотельную альтернативу электронным лампам. И снова у Шокли возникла идея полупроводникового усилителя, но она снова не сработала.Никто не мог понять почему, и обескураженный, он обратился к другим проектам, оставив головоломку Бардину и Браттейну. В ходе своих исследований они обнаружили, что причина отказа устройств Шокли была связана с наличием интерфейсных состояний на поверхности полупроводника. Впоследствии в ходе своих исследований они более или менее наткнулись на точечный транзистор! Следовательно, при оформлении патентов единственными изобретателями были Бардин и Браттейн.
Шокли был возмущен тем фактом, что, несмотря на то, что он так долго искал твердотельный усилитель, он не был одним из изобретателей точечного транзистора.Он заперся почти на месяц, пытаясь создать еще лучшее устройство. В обзорной статье 1976 года сам Шокли резюмировал процесс мышления, имевший место в то время, в разделе, озаглавленном «Воля к мысли». [17] Ближе к концу того же месяца Шокли выяснил важные детали устройства собственной конструкции – переходного транзистора. В переходном транзисторе не использовались необычные точечные контакты, а требовалась лишь небольшая полоска кремния или германия с различными легированными областями.Хотя потребовались годы, прежде чем технология достигла такого уровня, когда действительно можно было создать переходной транзистор, Шокли был полностью уверен в превосходстве своего устройства, о чем он никогда не забывал рассказывать Бардину и Браттейну. Очевидно, отношения между тремя мужчинами испортились, и в 1951 году Бардин и Браттейн ушли, чтобы преследовать другие интересы. В 1956 году Бардин, Браттейн и Шокли снова воссоединились, когда они получили Нобелевскую премию за свою работу.
Его репутация позволила Шокли собрать средства для открытия собственного бизнеса.В 1956 году Шокли арендовал здание в малоизвестной долине к югу от Сан-Франциско, затем заполненное абрикосовыми садами, и основал первую компанию в том, что сейчас называется Силиконовой долиной: Shockley Semiconductor Laboratory. Его первоначальный план состоял в разработке кремниевых транзисторов в то время, когда почти все транзисторы были сделаны из германия [13,14]. Однако через некоторое время его интерес к транзисторам угас, и Шокли стал одержим четырехслойным диодом, устройством, которое он изобрел, еще работая в Bell Labs.Вместо того, чтобы сосредоточиться на транзисторах, чтобы иметь хотя бы один продукт, приносящий доход, огромное количество усилий было потрачено на разработку четырехслойного диода, изготовление которого оказалось очень сложным.
Четырехслойный диод, также известный как диод Шокли, был переключающим устройством, которое могло заменить по крайней мере два транзистора и два резистора [15]. Таким образом, это действительно была первая интегральная схема. Это двухконтактное устройство, которое не проводит ток до тех пор, пока напряжение на диоде не превысит определенное значение.В этот момент диод резко начинает проводить, и он остается проводящим до тех пор, пока напряжение на устройстве не упадет ниже напряжения выключения. Таким образом, устройство представляет собой однобитовую память, а также оказалось полезным в кольцевых счетчиках и генераторах. Устройство имеет собственный символ схемы, напоминающий цифру 4. Однако для того времени это было слишком сложно [16]. Для этого требовались аккуратно отполированные с двух сторон кремниевые пластины с диффузными переходами с обеих сторон. Конечное меза-устройство дополнительно было чрезвычайно чувствительным к влаге.Шокли надеялся, что в конечном итоге он заменит миллионы механических точек переключения в телефонных системах. Однако разброс параметров устройства оказался слишком большим, чтобы быть приемлемым для AT&T. В конце концов выяснилось, что Шокли был гораздо лучшим ученым, чем бизнесменом. Его стиль управления был властным и все более параноидальным, что в конечном итоге привело к тому, что восемь ключевых сотрудников (восемь предателей) покинули компанию, чтобы основать свою собственную компанию: Fairchild Semiconductor.Несколько лет спустя Fairchild была одной из первых компаний, производящих интегральные схемы, сделав четырехслойные диоды Shockleys устаревшими. В апреле 1960 года Clevite Transistor Company приобрела компанию Shockley Transistor.
Рисунок 27. Обозначение A) и четырехслойная структура B) диода Шокли. Четырехслойную структуру можно рассматривать как структуру npn и pnp C) и D).
На рисунке 27A показан символ схемы, который использовался для диода Шокли. Если символ повернуть на 180 градусов, как в рекламе выше, мы увидим, что символ напоминает число 4.Лучший способ объяснить, как работает четырехслойный диод (рис. 27B), – это представить его как структуру npn и pnp, соединенную, как на рис. 27C, или транзиторы npn и pnp с базой каждого транзистора, подключенной к коллектор другой (рис. 27D).
Чтобы объяснить, как работает устройство, мы на мгновение предположим, что у нас есть внешнее соединение с базой T1. Предположим, что T1 имеет коэффициент усиления по постоянному току hFE1 (рис. 28A). Приложение небольшого внешнего тока базы Ib приведет к усилению тока коллектора Ib * hFE1.Если мы затем подключим коллектор T1 к базе pnp-транзистора T2, то ток коллектора T1 будет током базы T2 (рис. 28B). Этот базовый ток усиливается фактором hFE2 на T2, в результате чего ток коллектора T2 равен hFE1 * hFE2 * Ib. Когда, наконец, коллектор T2 снова подключен к базе T1, ток коллектора T2 будет управлять T1 и т. Д. Через эту положительную обратную связь ток будет продолжать течь через T1 и T2 – даже после удаления внешнего тока базы – при условии что выполняется условие hFE1 * hFE2> 1.
Рисунок 28. Работа диода Шокли, объясненная с использованием двухтранзисторной эквивалентной схемы.
Устройство с подключением к внешней базе, конечно, также известно как тиристор! Убрав внешний контакт базы, мы получим диод Шокли. Это устройство остается в выключенном состоянии до тех пор, пока напряжение питания не приблизится к пробою коллектор-эмиттер одного из транзисторов. Приближаясь к пробою, небольшое лавинное течение запустит течение. Этот ток немедленно усиливается, и из-за петли положительной обратной связи схема немедленно фиксируется, при этом напряжение на двух клеммах падает практически до нуля.Цепь можно сбросить, только отключив ток.
Рис. 29. Влияние различных значений резистора шунтирующего эмиттер-база.
Диоды Шокли больше не производятся, но, к счастью, мы можем эмулировать их функциональность с помощью двух транзисторов. С обычными дискретными транзисторами hFE1 * hfE2> 1 легко удовлетворяется, на самом деле коэффициент усиления обычно настолько велик, что почти невозможно предотвратить нежелательное запирание схемы. Схему можно укротить, зашунтировав переходы эмиттер-база транзисторов с помощью резисторов.Как мы увидим в следующем разделе, это уменьшит усиление транзисторов при малых токах. На рис.29 мы видим действие этого резистора при различных значениях. При R = 150k схема ведет себя как почти идеальный переключатель. Кривая начинается в начале координат (нижний правый угол) с V = 0. От начала координат мы перемещаемся влево по горизонтальной линии по мере того, как напряжение в цепи увеличивается, а ток все еще остается нулевым. Когда напряжение достигает ок. 73 В, цепь фиксируется, и кривая перескакивает из нижней левой точки в верхнюю правую точку, представляя ток, равный 1.3 мА при незначительном падении напряжения. С уменьшением напряжения питания ток пропорционально уменьшается, пока мы не вернемся в начало координат. Для R = 12k кривая почти идентична, только около самой последней части кривой, когда ток падает ниже ок. 100 мкА, петлевое усиление падает ниже единицы, так что схема выпадает из защелкивания. Чем ниже сопротивление, тем выше ток, при котором цепь отключается.
Рис. 30. Схема кольцевого счетчика с эмулированными диодами Шокли, который напрямую управляет газовой трубкой.
Наш эмулированный диод Шокли, конечно, является идеальным элементом для замены неоновой трубки в кольцевом счетчике. Огромная разница между напряжением зажигания и падением напряжения в открытом состоянии позволяет получить очень прочную конструкцию. На рисунке 30 изображена трехступенчатая схема кольцевого счетчика, которая напрямую управляет газовой трубкой. За исключением газовой трубки, схема в точности повторяет классическую схему кольцевого счетчика, в которой неоновая трубка заменена эмулированным диодом Шокли. В качестве шунта эмиттер-база в диоде Шокли использовался резистор 12 кОм, поскольку это значение давало хороший компромисс между чувствительностью и надежностью (рис.29). Значения R1, R2 и Ra определяют условия статического смещения.
Рисунок 31. Определение R1, R2 и Ra.
На рисунке 31 изображена схема кольцевого счетчика, показанная на рисунке 30, без всех компонентов, которые не имеют отношения к выбору значений для R1, R2 и Ra. Диод Шокли был заменен переключателем, который может быть разомкнутым или замкнутым, что довольно хорошо отражает реальность. Прежде чем мы сможем определить значения для R1, R2 и Ra, нам нужно указать несколько величин:
- Поскольку для большинства nixie разница между напряжением зажигания и поддерживающим напряжением составляет всего несколько вольт, мы будем использовать Vnixie для среднего значения между двумя значениями.Для лампы CD83P, которую я использовал в этом примере, Vnixie = 120V.
- Ia – рабочий ток газовой трубки. В этом примере Ia = 1 мА.
- Хотя говорить о поразительном напряжении не совсем правильно, мы будем использовать Vs в качестве напряжения, при котором наши два транзисторных диода Шокли будут включаться. Как видно из рис.29, Vs = 70V.
- Наконец, нам нужно будет выбрать ток, при котором работает диод Шокли. Хотя выбор довольно произвольный, я подумал, что лучше взять I1 того же порядка, что и Ia, поэтому I1 = 1 мА.
Рисунок 32. Динамическое поведение кольцевого счетчика с эмулированными диодами Шокли.
На рис. 32 показано переключение трехступенчатого кольцевого счетчика с эмулированными диодами Шокли. Верхний график показывает напряжение на аноде диода третьей ступени, а нижний график показывает напряжение питания кольцевого счетчика.Когда мы смотрим на напряжение питания, мы можем видеть, как он подтягивается к земле с помощью T1 каждый счетный импульс (обозначен выкл.). Когда T1 выключен, C0 заряжается от R0, что приводит к резкому увеличению напряжения питания. Поскольку C2 был заряжен во время предыдущего счета, диод попадает в B. Напряжение питания теперь немного падает, потому что диод и некоторые другие емкости заряжены (C). В течение оставшейся части цикла зарядка C0 продолжается, но более медленными темпами, поскольку часть тока через R0 теперь протекает через диод Шокли.На верхнем графике мы видим, как напряжение на эмулированном диоде Шокли второй ступени падает до нуля, когда диод зажигается (E). Удивительно, но напряжение не падает до нуля во время следующего счетного импульса (F). Предположительно это связано с переходными зарядами в Tn3 и Tp3. Когда T1 снова выключен и C0 заряжается, напряжение на диоде Шокли точно соответствует возрастающему напряжению питания (G). В определенный момент загорается диод Шокли ступени 0. Когда он воспламеняется, он дает обратный эффект, понижая напряжение ступени 2 через C3.Во время H напряжение на диоде точно соответствует напряжению питания через R3 и D3. Во время следующего счетного импульса напряжение снова не падает до нуля из-за зарядов на переходах и конденсаторах. Теперь ступень 1 включена, так что C2 заряжен, так что после следующего счетного импульса ступень 2 снова воспламеняется (J).
Рис. 33. Щелкните здесь или на изображении, чтобы просмотреть видеоролик на YouTube о кольцевом счетчике с эмулированными диодами Шокли.
Замечательная схема счетчика колец
Хотя кольцевые счетчики с эмулированными диодами Шокли работают очень удовлетворительно, у меня возник вопрос, можно ли создать схему, которая показывала бы подходящий гистерезис, используя только один транзистор вместо двух.Поразмыслив, я вспомнил явление, которое часто наблюдал при измерении высокочастотных биполярных транзисторов. В период с 1988 по 2000 год я провел большую часть своего времени в Philips Research, занимаясь разработкой и производством высокопроизводительных высокочастотных биполярных транзисторов, в основном для мобильной связи. Одним из стандартных измерений, которые мы использовали для недавно изготовленного транзистора, было измерение набора кривых Ic-Vce на кривых-трассах. Это быстрое измерение дает хорошее первое впечатление о некоторых основных параметрах транзистора постоянного тока, таких как: hFE, Veaf, BVceo, линейность, сопротивление коллектора и т. Д.
Рисунок 34. Набор кривых Ic-Vce для BF771, измеренных на 370A Tektronix.
Crve-следы.
На транзисторе наблюдается падение hFE для токов менее 1 мА.
На рисунке 34 показан набор кривых Ic-Vce высокочастотного транзистора BF771. Во время измерения напряжение коллектор-эмиттер (горизонтальная ось) изменяется от нуля до регулируемого максимального значения, в то время как ток коллектора измеряется (вертикальная ось). Базовый ток увеличивается при каждой развертке на постоянное значение (в данном случае 20 мкА), начиная с Ib = 0 для первой развертки.Поскольку приращение Ib является постоянным для каждой развертки, коэффициент усиления постоянного тока (или hFE, или бета) на вертикальное деление известен (в данном случае 50 на деление). Подсчитав количество делений по вертикальной оси между двумя последовательными линиями, можно определить hFE в этой точке смещения. Для идеального транзистора hFE должен быть постоянным от уровней тока в диапазоне пА до режима, когда последовательное сопротивление и начинают играть роль высокие эффекты инжекции (порядка 10–100 мА для обычных дискретных транзисторов).Однако для этого транзистора мы наблюдаем, что при Ic = 5 мА hFE = 80, в то время как для Ic оно падает ниже 50. Еще один важный параметр, который легко определить, – это BVceo. Это пробой коллектор-эмиттер с открытой базой (Ib = 0). На рис. 34 эта точка обозначена стрелкой с текстом BVceo snap-back. Это именно то явление, о котором я имел в виду! После пробоя транзистора примерно при 18 В напряжение пробоя снова падает до 15 В для увеличения тока коллектора. Это отрицательное сопротивление или гистерезисное поведение напоминает поведение неоновых трубок и в принципе может быть использовано для создания кольцевого счетчика.Однако разница между напряжением зажигания и напряжением поддержания слишком мала для обеспечения надежной работы.
Чтобы понять феномен BVceo snapback, важно понимать разницу между BVcbo (пробой коллекторно-базового диода с неподключенным эмиттером) и BVceo (пробой между коллектором и эмиттером с открытой базой). На одной из моих других страниц я очень подробно объяснил связь между этими двумя нарушениями.Здесь достаточно знать, что BVceo относится к BVcbo согласно:
Рис. 35. График Гаммеля и кривая hFE-Ic для BC550C (A и B),
и BC550C с разными шунтирующими резисторами эмиттер-база (C и D).
Как упоминалось ранее, эффект обычно слишком мал, чтобы использовать его для создания кольцевого счетчика.К счастью, в каждом исправном линейном транзисторе можно вызвать эффект отдачи с помощью простого резистора. На рис. 35A изображены так называемый график Гаммеля и кривая hFE-Ic (рис. 35B) обычного низковольтного BC550C общего назначения. График Гаммеля – это измерение, при котором токи коллектора и базы измеряются как функция напряжения эмиттер-база для постоянного напряжения коллектор-база. Это измерение, при котором транзистор используется в конфигурации с общей базой, дает много информации о конструкции эмиттер-база транзистора и в основном используется технологами для оценки комплекса эмиттер-база транзистора (кривые Ic-Vce дают больше информации о конструкции коллектора).Расстояние по вертикали между током коллектора и базы точно соответствует hFE, когда оба тока нанесены на график в логарифмическом масштабе. Из рисунков видно, что BC550C имеет максимальное значение hFE ок. 500, в то время как hFE все еще значительно превышает 100 для Ic = 1pA. Другими словами, совершенный высоколинейный транзистор! Линейность можно полностью нарушить, зашунтировав базу эмиттера с помощью резистора (рис. 35 C и D). Резистор имитирует ток утечки эмиттер-база, который в зависимости от значения сопротивления будет полностью доминировать над усилением тока при низких значениях тока (рис.35D).
Рисунок 36. Влияние шунтирующего резистора эмиттер-база на искусственно вызванный отклик.
Из вышеизложенного будет ясно, что обычный BC550C не демонстрирует поведения возврата в исходное положение (Рис. 37 No R). Однако, добавив шунтирующий резистор эмиттер-база большого номинала, можно вызвать обратное замыкание. Различные графики на рис. 36 показывают индуцированный эффект мгновенного отклика для разных значений шунтирующего резистора. Для R = 1M у нас есть хороший резкий откат, при котором транзистор выходит из строя при BVcbo 125 В, а затем быстро возвращается к BVceo 65 В.Разницы в 60 В более чем достаточно, чтобы сделать очень надежный счетчик звонков!
BC550C – типичный европейский транзистор. Это очень дешево, Фарнелл стоит меньше шести евроцентов! Вместо BC550C можно использовать и другие транзисторы. Наиболее важные критерии выбора – это, во-первых, не слишком высокий BVcbo (скажем, 80–130 В). Во-вторых, транзистор должен иметь как можно более высокое hFE, чтобы получить большую разницу между BVcbo и BVceo. Для транзисторов BCxxxC последняя буква указывает группу биннинга hFE.Группа C имеет самый высокий hFE (400-600). Наконец, транзистор должен иметь разумную линейность, чтобы не мешать нашему трюку.
Рисунок 37. Определение R1, R2 и Ra.
Принципиальная схема кольцевого счетчика с возвратными транзисторами очень напоминает кольцевой счетчик на диоде Шокли (рис. 38). Прежде чем подробно обсуждать схему и формы ее сигналов, мы сначала вычислим значения сопротивления, которые определят условия смещения.На рисунке 37 показана схема кольцевого счетчика без всех компонентов, не имеющих отношения к определению резисторов смещения. Обратные транзисторы были заменены переключателями S1 и S2 и двумя стабилитронами со значением Vm. Vm в дальнейшем представляет собой BVceo (65V), а Vs представляет BVcbo (125V). Подобно процедуре, использованной в предыдущем разделе, нам сначала нужно установить некоторые важные параметры:
- Поскольку для большинства nixie разница между напряжением зажигания и поддерживающим напряжением составляет всего несколько вольт, мы будем использовать Vnixie для среднего значения между двумя значениями.Для CD83P, используемого в этом примере, Vs = Vx = Vnixie = 120V
- Ia – рабочий ток газовой трубки. В этом примере Ia = 1 мА.
- Напряжение включения и поддерживающее напряжение возвратного транзистора составляют Vs = 125 В и Vm = 65 В (Рис. 36 R = 1M).
- Наконец, нам нужно будет выбрать ток, при котором работает возвратный транзистор. С одной стороны, нужно, чтобы этот ток был того же порядка или даже больше, чем ток никси. С другой стороны, ток не может быть слишком большим, иначе рассеивание в транзисторе (Vm * I1) превысит максимальное указанное значение.В этом случае I1 был установлен на 1 мА, так что рассеиваемая мощность ограничена 65 мВт, что находится в пределах максимального номинала транзисторов.
Рис. 38. Тестовая схема трехкаскадного кольцевого счетчика на транзисторах с защелкиванием.
На рисунке 38 изображена принципиальная схема трехступенчатого тестового кольцевого счетчика, использующего транзисторы с обратным замыканием (слева) и связанные с ним формы сигналов (справа). На первый взгляд, все сигналы имеют очень хорошее поведение, без особых всплесков и переходных процессов.Верхний график сигнала показывает сигнал в точке Vx (рис. 37). При каждом счетном импульсе транзистор T0 приводится в состояние насыщения, подтягивая Vx к земле. Между счетными импульсами Vx возвращается к 95V, как и должно. Стрелки над верхней кривой показывают, какая цифра nixie включается в течение трех последовательных импульсов счета. В точке A T2 включен, так что C2 будет заряжен до 30 В. Во время следующего счетного импульса (точка B) C2 остается заряженным, обеспечивая T3 предварительное смещение, так что он ударит первым, когда Vx вернется к 95 В (точка C).После срабатывания T3 напряжение снова падает до поддерживающего значения 65 В (точка D).
Рис. 39. Щелкните здесь или на картинке, чтобы просмотреть видеоролик YouTube о кольцевом счетчике.
Если вы внимательно посмотрите демо-ролик счетчика обратных звонков на YouTube, вы увидите, что у схемы есть один недостаток: во время фактического счетного импульса, когда T0 проводит, все цифры загораются. Очевидно, это вызвано тем фактом, что, когда Vx подтягивается к земле, чтобы вывести T1 T3 из лавины, также заземляются катоды никси-лампы.Лично я считаю, что это довольно очаровательный артефакт, но мне он не нравится, его легко исправить, добавив дополнительный транзистор параллельно T0, но с коллектором, подключенным к аноду газовой трубки. Обратите внимание, что в этом случае это должен быть транзистор с напряжением BVcbo не менее 185 В!
Рисунок 40. Трехкаскадная схема кольцевого счетчика на транзисторных транзисторах со схемой переноса для каскадных счетных каскадов.
Очень просто добавить к кольцевому счетчику схему переноса для каскадирования счетных каскадов (рис.40). Когда происходит переход с цифры 2 на цифру 0 (перенос в этом трехступенчатом примере), ток начинает течь через T1. Это приведет к падению напряжения на резисторе R9 примерно на 2В. Это падение напряжения настолько мало, что не повлияет на работу счетчика звонков. После дифференцирования этого импульса на C5 и R11 этот импульс на короткое время приведет к насыщению T4, который является частью следующей секции счета, тем самым продвинув следующую секцию счета.
Лично я считаю, что счетчик с защелкивающимся кольцом – это очень элегантное решение для счетчика / драйвера nixie.Он не требует устаревших энергоемких схем TTL, а также не требует специальных высоковольтных транзисторов. Диапазон счета можно легко изменить, просто уменьшив (или увеличив) количество этапов счета. Я сам не пытался построить часы на основе этих схем, но уверен, что однажды сделаю это.
Управление nixie непосредственно из ворот HEF CMOS
Удивительнее и любопытнее !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! воскликнула Алиса Для меня это своего рода хобби – находить неортодоксальные способы управлять никси-лампами.С помощью своих часов Tube-in-Tube я попытался продемонстрировать, что в некоторых случаях низковольтные транзисторы могут использоваться для управления лампой-никси, и на этой странице также были обсуждены несколько замечательных схем счетчика / драйвера-никси. Схема драйвера, обсуждаемая в этом разделе, без сомнения, также может считаться замечательной. Идея пришла ко мне, когда я работал над схемой с лампой ZM1050. Мне пришло в голову, что тот же основной принцип, что лежит в основе лампы ZM1050, также может быть использован для безопасного и надежного управления nixie от затвора HEF4xxx или CD4xxx, при условии, что они работают от напряжения питания 15 В.Хотя схема не имеет большого практического значения, она служит хорошим введением в разделы, посвященные ZM1050. В оставшейся части этой страницы, когда я пишу ZM1050, это также означает ZM550, а когда я пишу HEF4xxx, вы также можете заменить CD4xxx.
Рис. 41. Самый простой, но не самый элегантный способ подключения HEF IC к газовой лампе.
Самый простой способ привязать импульсную лампу к затвору HEF4xxx показан на рис. 41. Принцип работы схемы основан на том факте, что напряжение зажигания и поддерживающее напряжение большинства газовых трубок практически совпадают.Похоже, что размах выходного напряжения 15 В затвора HEF достаточно велик, чтобы включать и выключать цифру. Когда, например, на выходе инвертора N1 низкий уровень, а на выходе других вентилей высокий уровень, загорается только нулевая цифра. Многие люди не решатся привязать выход затвора HEF напрямую к устройству, подключенному к источнику высокого напряжения. На самом деле вреда в этом нет. Основная причина в том, что ток ограничен максимум 2 мА. В случае, если на выходе затвора низкий уровень, транзистор NMOS на выходе затвора просто отводит этот ток на землю.Когда выход высокий, диод защиты выхода будет пропускать ток на шину положительного напряжения питания HEF IC. Даже если бы в ИС не было защитного диода на выходе, диод сток-колодец выходного PMOS стал бы смещенным в прямом направлении, снова передавая ток на шину Vdd.
Рисунок 42. Управляющие неоновые лампы с приводом от затвора HEF4xxx.
Если бы мы попытались сделать это с неоновыми трубками, которые использовались в предыдущих разделах, это не сработало бы.Неоновые трубки имеют гистерезис около 40 В (рис. 26), что делает невозможным их включение и выключение. Однако есть очень умный способ заставить его работать. Хитрость заключается в использовании в качестве источника питания полуволнового или двухполупериодного выпрямленного переменного напряжения. Рисунок 42 иллюстрирует эту идею, и работа на самом деле очень проста. Запускаем в момент, когда напряжение в сети пересекает ноль вольт (точка A). Неоновые лампы теперь явно выключены. Далее напряжение питания начинает расти. Обратите внимание, что, поскольку неоновые лампы не зажигаются, ток равен нулю и, следовательно, нет падения напряжения на R3, так что напряжение на общем анодном узле (верхняя кривая) равно напряжению питания (нижняя кривая).Теперь предположим, что на выходе инвертора N1 низкий уровень, а на выходе других инверторов высокий уровень. В том случае, когда напряжение питания увеличивается, очевидно, что первой ударит неоновая трубка V1 (точка B). Напряжение на V1 сразу же падает до поддерживающего потенциала 65 В, так что ни одна из других неоновых трубок не может ударить, даже если напряжение питания возрастет еще больше. Таким образом, V1 остается включенным в течение всей этой половины фазы сетевой частоты (C), даже если один из других инверторов становится низким.При следующем переходе через ноль V1 сбрасывается (точка D), и весь цикл начинается заново.
Рис. 43. Трубка Никси, управляемая затвором HEF4xxx и пульсирующим источником высокого напряжения.
Тот же трюк можно также использовать в сочетании с газовой трубкой. Как упоминалось ранее, большинство газовых трубок не показывают какой-либо значительной разницы между напряжением зажигания и поддержанием напряжения. Однако можно добавить требуемую величину гистерезиса, разместив один из наших возвратных транзисторов последовательно с анодом нейтрализатора (рис.43). В точке перехода через нуль (точка A) импульсная лампа и возвратный транзистор гаснут. Поэтому, когда напряжение питания начинает расти, напряжение на нейтрализаторе будет равно напряжению питания. Из предыдущего раздела мы знаем, что возвратный транзистор срабатывает при Vs = 125 В и что Vnixie = 120 В. Таким образом, примерно при Vs + Vnixie = 125 + 120 = 245V зажигание зажигается (точка B). Напряжение на nixie теперь падает на ΔV = Vs-Vm, примерно на 65 В.
Рис. 44. Щелкните здесь или на изображении, чтобы просмотреть на YouTube фильм о Nixie, который управляется HEF4049 с пульсирующим постоянным напряжением.
Схема имеет небольшую практическую ценность, поскольку требует декодера HEF4xxx с активными низкими выходами. К сожалению, большинство декодеров 4-> 10 HEF4xxxx имеют выходы с активным высоким уровнем, и нет смысла добавлять инвертор к каждому выходу, как в тестовых схемах на рис. 42 и 43. Однако схемы хорошо демонстрируют принцип работы лампы ZM1050, который будет обсуждаться в следующем разделе.
Z550M / ZM1050, Десятилетняя индикаторная трубка для транзисторных скалеров
В этом разделе мы обсудим технические аспекты Z550M, в следующих разделах мы рассмотрим людей, которые изобрели его и превратили в продукт.Z550M лучше всего представить, процитировав вводный абзац раздела 10.3 из «Индикаторной трубки Z550M» Дж. Б. Дэнса [2]:
Mullard / Philips Z550M – это уникальная трубка, которая была разработана для удовлетворения потребности в декадной индикаторной трубке, которая может работать непосредственно от электрического считывающего устройства низкого напряжения, обеспечиваемого транзисторными скейлерами (счетчиками). Требуется входной сигнал около 5 В при токе около 50 мкА. Форма дисплея отличается от других индикаторных трубок.В аноде вырезаны десять фигур в виде цифр, которые будут обозначены; они расположены по кругу, высота каждой цифры 3 мм. Разряд газа происходит за одной из цифр, так что красный свет разряда светит через вырезанную часть анода в виде цифры, которая должна быть указана. Дисплей может быть довольно ярким, так как схема управления не подает питание на основной разряд. |
Рисунок 45. ZM1050 / Z550M с этикетками Philips и VALVO.
Фактически, все ZM1050 были произведены на заводе Philips
на заводе Emmasingel в Эйндховене, Нидерланды (см. Epiloque).
Работа ZM1050 напоминает работу схемы, описанной на моей странице счетчика звонков. Основная идея состоит в том, что десять трубок тлеющего разряда с очень согласованными характеристиками объединены в одну оболочку. На лампу подается полусинусоидальное напряжение таким образом, что небольшое дополнительное напряжение от транзистора предпочтительно зажигает один из десяти тлеющих разрядов.Затем общее анодное напряжение падает так, что ни один из других тлеющих разрядов не возникает. Специально предусмотрено, что зажигание каждого разряда инициируется отдельным стартерным анодом, который приводится в действие транзистором и требует очень небольшого тока. Этот вспомогательный разряд затем передается в основной разряд с гораздо более высоким уровнем тока. Более точное и полное объяснение работы можно найти в статье одного из изобретателей, Тео Ботдена, в Electronic Applications [3]:
На рисунке 6 показано расположение электродов индикаторной трубки типа Z550M (ZM1050).Десять приблизительно трапециевидных пластин k действуют как эмиссионные катоды. Они установлены на кольцеобразной проводящей опоре r, заштрихованные участки которой покрыты материалом, имеющим большую работу выхода по сравнению с катодами k, чтобы уменьшить их электронную эмиссию. На небольшом расстоянии выше и ниже катодов устанавливаются кольцевые аноды a. Десять проволочных электродов st, стартеров, проходят через отверстия в нижнем анодном кольце и в каждой из катодных секций. В верхнем анодном кольце вырезаны цифры от 0 до 9, так что при инициировании тлеющего разряда с помощью одного из стартеров четко выделяется цифра, обращенная к соответствующему катоду.На рис. 7 в разобранном виде показана электродная система. Секции излучающего катода были распылены во время производственного процесса, чтобы получить чистую поверхность катода, в то время как распыленный материал, оседающий на стеклянной оболочке, предотвращает загрязнение газа и, таким образом, обеспечивает стабильную работу. Трубка заполнена неоном, в который добавлен небольшой процент аргона.
На лампу подается несглаженное выпрямленное напряжение (см. Рис. 8), так что при полуволновом выпрямлении напряжение питания возрастает до максимума и снова падает до нуля один раз в каждом сетевом цикле. Когда напряжение питания достигает определенного значения, инициируется тлеющий разряд, который снова гаснет, как только это напряжение падает ниже поддерживаемого значения. Таким образом, очевидно, что тлеющий разряд зажигается и гаснет дважды за цикл при использовании двухполупериодного выпрямления.Как видно из рис. 8, пускатели находятся под анодным потенциалом до тех пор, пока отсутствует разряд. Однако, поскольку расстояние между каждым катодом и связанным с ним стартером намного меньше, чем расстояние между катодом и анодами, разряд между катодом и стартером будет инициирован до того, как напряжение питания повысится до значения, при котором разряд между катодом и анод установлен. Следовательно, когда напряжение питания постепенно возрастает от нуля, первым эффектом будет инициирование вспомогательного разряда между катодами и его пускателем. Работа индикаторной трубки типа Z550M (ZM1050) основана на том факте, что вспомогательный разряд между одним из катодов и его пускателями снижает необходимое напряжение зажигания анода Vaign между этим катодом и анодом до такой степени, что основной разряд также установлен на этом катоде. Таким образом, достаточно предусмотреть установку вспомогательного разряда на желаемом катоде, чтобы гарантировать, что основной разряд произойдет на соответствующей фигуре.Этот основной разряд вызывает внезапное падение анодного потенциала до поддерживающего напряжения Vm, которое ниже самого низкого напряжения зажигания на любом другом катоде, так что разряд не может быть инициирован где-либо еще. Другими словами, применяется принцип «первым пришел – первым обслужен»; во всяком случае, что касается этого конкретного цикла напряжения питания. Зависимость Vaign от пускового тока Ist показана на рис. 9 для одного из положений пускового катода. Видно, что когда стартер отключен (Ist = 0), напряжение, необходимое для инициирования основного разряда, составляет примерно 135 В, но при пусковом токе, скажем, Ist = 10 & microA, это напряжение снижается примерно до 105 В, что в основном составляет из-за диффузии положительных и отрицательных носителей заряда из вспомогательного разряда в пространство между этим катодом и анодом.Таким образом, если на конкретном катоде протекает пусковой ток этого значения, основной разряд с этого катода инициируется раньше, чем с других катодов, на величину, примерно соответствующую времени, которое требуется для повышения напряжения питания от От 105 до 135 В.
Катод, на котором инициируется вспомогательный разряд, можно выбрать, увеличив напряжение на желаемом пускателе немного выше, чем на других. Это можно сделать, приложив небольшое положительное управляющее напряжение Ve к резистору Rc. Соответствующий стартер достигает напряжения зажигания раньше других, так что разряд происходит в нужном месте.Если управляющее напряжение Vc передается на другой стартер, повторное зажигание произойдет на новой комбинации стартер-катод в следующем (полупериоде) и так далее. Причина использования несглаженного напряжения питания теперь будет ясна, а именно то, что для передачи разряда с одного катода на другой разряд должен быть сначала погашен снижением напряжения питания до уровня ниже поддерживаемого значения, после чего он должен быть погашен. снова поднимитесь постепенно, чтобы нужный стартер мог инициировать следующую разрядку. Управляющее напряжение, то есть дополнительный импульс, необходимый для инициирования вспомогательного разряда на конкретном катоде, может быть намного меньше поддерживающего напряжения, поскольку общее напряжение стартера должно быть лишь немного выше, чем напряжения на других пускателях. Управляющее напряжение всего 5 В – это все, что требуется для ZM550 при условии, что напряжение питания соответствует определенным требованиям. Сигнал всего 5В может быть подан через транзисторную схему.Если эта схема спроектирована так, что сигнал подается на стартер st1 на счет 1, на соседний стартер st2 на счет 2 и т. Д., Трубка покажет результат подсчета. Следует понимать, что не имеет значения, может ли трубка следить за операцией подсчета или нет. При условии, что после завершения счета сигнал управления подается на соответствующий пускатель, место разряда, инициированного при следующем повторном зажигании трубки, будет соответствовать окончательному результату счета.Поскольку питание для основного разряда не подается схемой управления, легко гарантировать, что этот разряд будет достаточно ярким, чтобы обеспечить четкую визуальную индикацию. Подключив анод к земле, как показано на рис. 8, можно также заземлить один из выводов транзисторной схемы управления, что значительно упрощает проектирование схемы. |
Создание Z550M / ZM1050
Я планировал написать здесь раздел об изобретении и разработке индикаторной трубки Z550M / ZM1050.Однако при исследовании трубки я наткнулся на столько интересного материала, что решил написать о нем отдельную страницу. Нажмите на картинку ниже, чтобы узнать больше об этой очаровательной трубке и людях, которые ее изобрели и разработали!
Щелкните здесь или на изображении, чтобы перейти непосредственно на страницу
The Making of Z550M / ZM1050.
В ближайшее время
ZM550 используется как счетчик звонков.
Часы с кольцевыми счетчиками ZM550.
Так что следите за обновлениями!
Я заметил, что эту страницу регулярно посещает довольно много людей.Так почему бы не оставить отзыв? Это интересно? слишком долго? слишком много деталей? Подробнее?
Все отзывы приветствуются по адресу:
Благодарности
Я хотел бы поблагодарить следующих людей за их вклад: Мистер.Филип Ленц, г-жа C.A.M.Th. ван Влодроп-Гоедмейкерс, Вил Граат, Энгель Хёфгест и Корри Панкен, а также Ад Гаст из Philips Research,
Литература и веб-ссылки
[1] http://wwwhome.cs.utwente.nl/~ptdeboer/ham/neonclock/
[2] JB Dance, Electronic Counting Circuits, London ILIFFE Books
LTD., New York American Elsevier Publishing Compagny Inc., 1967
[3 ] GF Вестон, Трубки тлеющего разряда с холодным катодом, Лондон ILIFFE Books
Ltd., 42 Russel Square, London, 1968,
[4] Моррис Гроссман, Build This ELECTRONIC COMPUTER.При быстром вращении циферблата он складывает, вычитает, умножает и делит,
Electronics Illustrated, no. 504, ноябрь 1966 г., стр. 39–49 + стр. 115
[5] http://www.radiotwenthe.nl./
[6] http://www.denhaag.com/
[7] http://www.stuutenbruin.com/
[8] http://www.iisg.nl/hpw/calculate.php
[9] Philips, Halfgeleiders, Electronenbuizen; zakboekje, 1966
[10] F.M. Пеннинг и Дж. Мубис, Явление сжатия в неоновом тлеющем разряде с молибденовым катодом, Philips Research Reports, 1, 1946, стр.119
[11] T. Jurriaanse, F.M. Пеннинг и Дж. Мубис, Нормальное катодное падение молибдена и циркония в инертных газах, Philips Research Reports, 1, 1946, стр. 225
[12] Майкл Риордан и Лилиан Ходдесон, Crystal Fire: изобретение транзистора и рождение информации age, Sloan Technology Series, ISBN 0843932856
[13] Википедия о Шокли.
[14] Википедия о компании Shockley Semiconductor.
[15] Музей транзисторов на четырехслойном диоде Шокли.
[16] Ранняя разработка полупроводников в компании Shockley Transistor Corporation Джином Веклером.
[17] У. Шокли, Путь к концепции переходного транзистора, IEEE Transactions on Electron Devices, vol. ED-23, № 7, июль 1976 г., стр. 597-620
[18] Джон Мэнли и Элли Бакли, Neon Ring Counter, Electronics, январь 1950 г., стр. 84-87
[19] CE Hendrix and RB Purcell, Neon Lamp Logic Gates Play Tick-Tack-Toe, Электронное инженерное издание, 1958, 20 июня, стр. 68-69
[20] J.Б. Танец, электронные схемы подсчета, лондонская ILIFFE Books LTD., New York American Elsevier Publishing Compagny Inc., 1967, стр 302-306.
[21] Th.P.J. Ботден, С. Фроус, Десятилетняя индикаторная трубка для транзисторных скейлеров, электронные приложения, Vol. 21, No. 3, pp. 114-123
[22] Dieters Nixie World page
[23] Википедия про электрон.
[24] Пол К. Левитт, 50 лет на пути к живым технологиям, Биография Системной лаборатории Эйндховена, Юбилейная книга 1952-2002 гг., Напечатанная ограниченным тиражом издательством Koninklijke Philips Electronics N.V., сентябрь 2002 г.
[25] Dr. Th.P.J. Ботден и Дж. Ленц, Новая декада (тлеющий разряд) индикаторная трубка, которая может работать от низкого напряжения и малой энергии, Philips Research Nat.Lab. Verslag Nr. 3541, подписано 10 июля 1959 г.
[26] История лабораторий Philips в Эйндховене, 1914-1946 гг., Частное издание.
[27] Сайт Радиомузея на 4662.
[28] http://www.agder.net/la8ak/m11.htm
[29] http://www.pa3esy.nl/Philips/meetinstrumenten/html/gm3121/html/gm3121_body.html
http: // www.electricstuff.co.uk/oldbooks.html
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Chrix Дизайн: красный от транзистора
Это первый из многих постов в блогах о моем красном косплее – наслаждайтесь.Ни одна деталь не останется незамеченной, и Ред носит кольцо на нескольких фотографиях концепт-арта, которые я хочу сделать из металла! К вашему сведению, я пробовал много разных техник для этого кольца, и все они описаны в этом руководстве. Так что это будет не просто учебник, а скорее демонстрация моих проб и ошибок.
Первым делом нужно было получить правильный масштаб дизайна.В InDesign я масштабировал фотографию руки и чешуи Рыжей так, чтобы ее безымянный палец был такой же длины, как и мой.
Сделайте это из металла
Я никогда раньше не работал с ковкой или литьем металла, поэтому я связался с кузнецом по серебру (который находится в моей мастерской Bitraf ) и попросил его научить меня ковке серебра. Потому что это звучит намного круче, если сказать, что это было выковано из серебра, чем из смолы.
Это закончилось тем, что я испробовал несколько методов
- Я опишу, как я сделал простое кольцо из серебра
- Как я пытался отлить эмблему с помощью гипсовой формы
- Как я сделал эмблему методом литья в песок.
Базовое кольцо из серебра
Сначала мне нужно было узнать окружность моего пальца. Мы использовали тестовое кольцо, измерили диаметр и применили к нему простую геометрию;)
Затем мы нарисовали мерку на серебряной пластине.
Здесь мы видим, как Хересетай распиливает свою стриптиз
Это будет кольцо!
Нагрейте (не забудьте нанести антикоррозийный материал кистью)
Охладите в растворе соли и лимонной кислоты.
Согнул плоскогубцами так, чтобы концы совпали
Еще больше тепла, когда я спаяю концы вместе серебром. (лицо согласия!)
Мой край теперь припаян
Готов сделать круговой. Я не помню название инструмента, которым можно равномерно расширить кольцо.
Моя отправная точка
Как добраться
Почти
Ага, круглая
А вот еще одна фотография, на которой Хересетай забивает свое кольцо.
Затем пора шлифовать, предварительно выровняв края наждачной бумагой.
Затем загибаем края напильником и шлифовальной губкой.
Мне нравится форма
Очистите его. Это выглядит очень модно, но это всего лишь алкоголь в банке. Кольцо находится в заварочном устройстве для чая, перемешайте его и выньте. Затем вы поджигаете его, чтобы удалить спирт.
Мое кольцо чистое, пора полировать. Внешняя поверхность была отполирована воском на турнире в мастерской. Внутренняя поверхность отполирована дремелем.
Гоша такая блестящая
Пока мне это нравится, просто подумайте, раньше он был плоским!
Орнамент
Я попробовал два способа сделать это, один тест не сработал так хорошо, но другой дал отличный результат.Я опишу оба метода.
Первое неудавшееся испытание, отливка из гипса (только отливка из алюминия).
Сделал глиняную форму орнамента
Глина покрыта гипсом. Очень важно, чтобы ваша штукатурка полностью высохла, прежде чем заливать в нее жидкий металл с температурой 8-900 градусов Цельсия. Вода и тепло расширяются и заставляют плесень взорваться.
Моя гипсовая форма очищена и готова к тестовой отливке с использованием алюминия.
Предупреждающий знак, чтобы другие в мастерской знали, что происходит серьезная жара.
Тигель плавно нагревается и расплавляется алюминий
Готовые инструменты
Мне немного помогли залить
Первый тест, небольшой перелив;)
Заключение
Это могло сработать, но если бы мне нужно было сконструировать гипсовую форму немного по-другому, мне не хватило давления, чтобы собрать все мои крошечные детали. Так что либо форма из двух частей, либо литье в песчаные формы.
Вторая попытка – литье в песчаные формы
Я снова вылепил форму из глины
На этот раз отлейте его в кремний (чтобы потом я мог провести очень быстрые тесты)
Затем я отлил свою эмблему из смолы
Теперь у меня есть хорошая форма, которая выдерживает удары
Как отливать из песка
В основном я узнал, что нужно сделать, из этого видео, а затем Торбьёрн (кузнец серебра) провел меня через сам процесс.Я сделал отливку одной детали намного проще.
Эмблема была вдавлена в песок.
Это явно не эмблема, а более ранний тест с кольцом. Пока я снимал реальный тест, я не делал никаких фотографий. Выкопайте сливную воронку и вентиляционное отверстие.
Готовый!
И залили плавленое серебро.
Эмблема вышла. Здесь вы можете увидеть все серебро из воронки, которая вдавливает серебро во всю форму.Это то, что не удалось с алюминиевым тестом, о котором я писал выше.
После того, как я выпилил кусок, начинается шлифовка. Когда самое худшее будет отшлифовано, я использовал фрезу и вырезал плоское пятно на кольце, чтобы у него была лучшая поверхность крепления для пайки.
Используя вспомогательные рычаги паяльного инструмента, я скрепил две части вместе, когда спаял их вместе.
В процессе нагрева во время пайки кольцо меняет цвет и на нем появляются пятна зеленого, синего, розового и оранжевого цветов: D
С помощью своего проверенного дремеля я отполировал грани кольца до блеска.
На кольце также есть небольшой красный камень. Это я заливал смолой. Я взял светодиод и залил его кремнием.
Моя крошечная силиконовая форма.
Один тестовый камень. У меня в этой партии было слишком много красного красителя.
Последний камень наклеен эпоксидной смолой.
Кольцо имеет желтую поверхность вокруг драгоценного камня. Возможно, это не лучший метод для обеспечения стойкости, но я использовал лак для ногтей, чтобы быть уверенным, что оттенок желтого подходит моим ногтям.
Я могу обработать его дремелем, чтобы еще немного отполировать перед соревнованиями.
Фото: Artflower Fotografie
.Высокочастотный кольцевой генератор на основе нанотранзисторов
Аннотация
Высокочастотный кольцевой генератор на основе нанотранзисторов
Сохели Фархана
Аннотация
Кольцевой осциллятор на основе полупроводника на основе углеродных нанотрубок (CNT) необходим для того, чтобы в целом уменьшить неудачи в схемах старения знаков и увеличить толщину влияния. Это делает CNT-гаджеты возможностью анимации для полупроводникового оборудования следующего поколения, для приложений в регуляторах, современных гаджетах и коммутациях с высокой повторяемостью.На данный момент устройства и графиновые, и углеродные нанотрубки демонстрируют великолепные свойства в области электрических и механических. В последнее время большое внимание уделяется полупроводниковым устройствам на основе CNT из-за возможности достижения высоких уровней напряжения и тока пробоя без увеличения размера кристалла. В частности, размер чипа измеряется нанометром. Более того, гаджеты CNT демонстрируют непревзойденно высокую повторяемость активности, чем их сторонние партнеры. В этом исследовании была предложена модель генератора на основе УНТ-полупроводников, которая является соперником обычных инноваций MOSFET из-за их более высокой способности приводить ток, баллистического транспортного средства, элемента с меньшей силой откладывания, более высокой теплоплотности и т.Принимая во внимание эти многообещающие свойства полупроводниковых УНТ, здесь в 14-нм инновационном центре представлен кольцевой генератор на основе УНТ, работающий около 6 ТГц и ранее. Предлагается генератор на базе пятипакетных инверторов на основе УНТ-полупроводников. Инверторы с увеличением постоянного тока на 32,5 дБ выполняются по соответствующему плану с задержкой без суммирования около 0,2 нс. Нормальное использование силы генератора составляет всего 0,43 мкВт с периодичностью 6 ТГц. Предлагаемая конфигурация кольцевого генератора демонстрирует лучшее исполнение при низком потреблении энергии и высокой повторяемости работы по сравнению с существующим бизнес-генератором на основе кремния.
Введение
Мы изготовили амбиполярные полевые полупроводники с верхним стробированием (полевые транзисторы) с учетом расположения сетевых фильмов на основе углеродных нанотрубок (CNT), а затем построили инверторы и кольцевые генераторы (RO), которые могут работать при гибких напряжениях до 0,2 В к высокой согласованности гаджетов. Огромные улучшения были достигнуты в представлении этих амбиполярных полевых транзисторов на основе CNT и схем, подобных КМОП, за счет уменьшения длины входа полевых транзисторов CNT и улучшения структуры устройства и формата RO.В частности, улучшенный пятиступенчатый RO обеспечивает рекордно высокую повторяемость колебаний до 17,4 МГц с периодом распространения 5,6 нс при рабочем напряжении 12 В. RO на основе пленки CNT использовались в качестве генераторов волн-переносчиков в структурах радиорецидивов, чтобы показать общую меру передачи знаков. Эти результаты свидетельствуют о том, что полевые транзисторы на основе пленки CNT и скоординированные схемы могут вскоре обнаружить свой подход к приложениям с рецидивом радиоволн с полосой повторяемости 13.56 МГц. Считается, что высокая повторяемость и пластиковая аппаратура являются одними из основных фокусов механического прохождения графена. Эти желания в основном определяются высокой подвижностью переносчиков заряда4, высокой скоростью погружения5,6 и возможностью производства графена вместе с полупроводниками по сравнению с пластиковыми подложками7,8,9. В то время как выставка отдельных графеновых полупроводников только что подтвердила эти желания, признание сложных координированных схем, включая несколько графеновых полупроводников, все еще находится в неразвитой стадии.До сих пор несколько собраний дали отчет о признании наличия встроенных схем с низкой непредсказуемостью, содержащих пару графеновых полупроводников, включая усилители напряжения, инверторы или непрямые гаджеты, такие как блендеры. Недавно был придуман кольцевой генератор, состоящий из восьми графеновых полупроводников. Там, в любом случае, раскачивание было просто осуществлено устройством, явным электрическим вознаграждением за случайное легирование графена с использованием напряжений до 200 В18.До сих пор низкая глубина микширования и явное смещение теста являются серьезными препятствиями на пути использования графена в настоящих электронных устройствах. Здесь мы сообщаем об эффективном признании практических инверторов и кольцевых генераторов, содержащих до 12 графеновых полупроводников. Используя соседнюю структуру “черного хода”, можно достичь высоких оценок увеличения напряжения и низких степеней случайного допирования, которые являются основополагающими для подтверждения наличия встроенных цепей. В отличие от обычного плана с верхним входом, есть две особенности использования близлежащей задней конструкции, касающиеся усиления напряжения и случайного допирования.Для начала уменьшено количество этапов литографии, включая графен. Кроме того, на входном аноде с помощью плазмы может образоваться небольшой и однородный оксид на дверце верхнего паза, что помогло засвидетельствовать ядерный слой.
Кольцевой генератор на основе инвертора состоит из нечетного числа скоординированных этапов преобразования, связанных в круг, который управляется постоянным напряжением. Для стабильного раскачивания разность стадий для одного потока знака, проходящего через кольцо, должна быть 2π, и добавление отдельных стадий изменения должно быть оборудовано для возмещения неудач.Чтобы удовлетворить этим требованиям, реверсивные каскады должны давать выигрыш по напряжению существенно больший, чем солидарность при согласованных напряжениях выхода информации. В инновациях в области интегральных металлооксидных полупроводников (CMOS) этап изменения включает один полупроводник p- и один n-типа, создаваемый легированием полупроводников во время производственного цикла. В любом случае использование графена в качестве материала канала открывает принципиально новые возможности для планирования согласованных схем из-за амбиполярной активности полупроводников на основе графена.Например, инвертор, основной квадрат структуры кольцевого генератора, может быть получен из двух нелегированных графеновых полупроводников вместе, избегая сложных стратегий легирования. Это замечательное свойство инновации амбиполярного оксида металла графена (AMOG) существенно уменьшает многогранность цикла создания.
Результат
Изображен схематический поперечный сегмент инвертора с близлежащим анодом заднего входа. Канал графена равен 1.8 мкм в длину и 9 мкм в ширину для каждого полупроводника, толщина диэлектрика Al2O3 составляет 6 нм по сравнению с равной толщиной оксида примерно 3 нм. На графике нанесены атрибуты препятствий двух полупроводников эталонного инвертора. В системе низкой предрасположенности оба почти неотличимы, демонстрируя естественное поведение. Переносимость при столкновении с полем в различных полупроводниках в данном примере, включая защиту контактов, находится где-то в диапазоне от 600 до 1200 см2 / В · с, а баланс препятствий для отдельных полупроводников составляет от 4 до 8.Гистерезис в биржевом товарном знаке является обычным для полупроводников на основе графена и в основном идентифицируется с ловушками заряда в оксиде20,21. Появляется гистограмма входного напряжения полупроводника в точке отсутствия заряда смещения VCNP. Нормальный VCNP на нашей микросхеме 0,3 В, относящийся к уровню легирования p-типа 1,7 * 1012 / см2, является умеренным по сравнению с используемыми здесь напряжениями активности до 4 В.