Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Диагностика материнской платы в домашних условиях. Способы прозвонки деталей платы мультиметром. Визуальный осмотр материнской платы

Человеку, умеющему работать с компьютером на уровне простого пользователя (включение, выбор и запуск узкого круга приложений, выключение) может показаться, что вопрос «как проверить материнскую плату на исправность» интересен исключительно работникам сервисных центров.

Отчасти это действительно так, однако в некоторых случаях без ответа на него не обойтись. Одна из особенностей электронных компонентов в том, что очень часто неисправности в них возникают без видимых причин: например, еще вчера компьютер исправно работал, а сегодня приходится изучать, как проверить материнскую плату на работоспособность. Иногда самопроизвольные перезагрузки системы или появление так называемых «синих экранов смерти» могут свидетельствовать как раз о возникновении аппаратных проблем. Для решения этого есть два пути:

  • воспользоваться услугами сервисных центров, где проведут диагностику оборудования и выявят причину сбоев в работе;
  • самостоятельно проверить ключевые комплектующие на работоспособность.

Что выбрать?

К недостаткам первого способа относится необходимость тратить свое время на транспортировку системного блока в мастерскую и обратно, что при отсутствии собственного транспорта может быть связано с приличными финансовыми затратами. Кроме того, потратиться придется также на оплату работы мастеров. С другой стороны, несомненным преимуществом является тот факт, что нет необходимости вникать в то, как проверить материнскую плату, центральный процессор и модули оперативной памяти на наличие ошибок или каких-либо внутренних поломок. Однако в сегодняшней статье речь пойдет о самостоятельной диагностике компонентов электронного друга. Ведь при аккуратном обращении риск случайно повредить что-либо практически отсутствует. Итак, рассмотрим, как проверить материнскую плату.

Отсекаем лишнее

Если начались сбои, то необходимо убедиться, что неисправность никак не связана с несовместимостью или некорректной работой других устройств с основной платой. Иногда из-за банального замыкания в логических цепях мышки зависает весь компьютер. Следовательно, прежде чем читать огромные ветки форумов, посвященных теме: “Как проверить материнскую плату”, нужно отключить всю вспомогательную периферию.

К ней относятся принтеры, сканеры, мышка, USB носители, а также внутренние комплектующие. Должны остаться материнская плата, процессор, блок питания, накопитель (шлейф полезно заменить), видеокарта и клавиатура. После включения такой упрощенной конфигурации можно какое-то время поработать с системой: если проблемы исчезли, то следует поочередно подключать отключенные компоненты (каждый раз выключая и обесточивая систему) и наблюдать, какой из них вызывает сбой. Разбираясь, как проверить материнскую плату, не стоит забывать о необходимости отключения комплектующих.

Осмотр

Хотя большинство производителей успешно решили проблему некачественного товара, брак все же иногда попадается. Таким образом, при проверке надо внимательно осмотреть плату на наличие отпаявшихся контактов, вздувшихся конденсаторов или треснутых полупроводниковых элементов. Если ничего необычного не замечено, то стоит убедиться, что системы охлаждения при работе не перегреваются – иногда сбои происходят из-за высохшей термопасты.

Питание и ключевые компоненты

Задача материнской платы состоит не только в обеспечении совместной работы всех компонентов, но и в правильном распределении электроэнергии. Поэтому при проверке нужно проверить ее работоспособность с другим блоком питания. В случае, если сбои не прекращаются, то, вполне возможно, их причина в модулях памяти или процессоре. Память можно проверить тестовой программой MemTest. Если все эти действия не дали результата, вам все-таки придется обращаться к профессионалам.

Материнская плата связывает между собой все аппаратные компоненты. И если начались проблемы с загрузкой ОС, часто появляются синие экраны и т.д., то в первую очередь необходимо провести диагностику системной платы. С этой целью можно обратиться в сервисный центр. Однако самостоятельная диагностика значительно быстрее и, что немаловажно, она абсолютно бесплатная. Но как проверить материнскую плату на работоспособность без инструментов и узкопрофильных знаний? Ответ найдете в данной статье.

Если вы купили новую материнскую плату с рук и хотите проверить ее работоспособность, то можете смело пропускать данный раздел. В этой части статьи мы поговорим о том, как выглядит материнская плата и каким образом можно ее извлечь из системного блока.

Материнская плата представляет собой большую микросхему, к которой подключены все остальные платы. Чтобы достать этот модуль для начала вскройте системный блок. После этого раскрутите систему охлаждения, достаньте ее из корпуса и отключите все системные компоненты, которые к ней подсоединены. Но будьте предельно осторожны, чтобы не повредить элементы платы.

Проверка материнской платы

Как можно проверить материнскую плату на исправность? Диагностика проводится в три этапа. Среди них:

  1. Визуальный осмотр. Наиболее важный этап, который позволяет выявить поломку еще до монтажа системной платы в корпус компьютера.
  2. Подключение блока питания. На данном этапе вы сможете протестировать материнскую плату и сделать определенные выводы о ее работоспособности.
  3. Подключение других аппаратных комплектующих. Этот этап поможет определить сломанные компоненты, из-за которых компьютер не может функционировать нормально.

Стоит подметить, что материнская плата – один из самых надежных компонентов компьютера. Данный аппаратный модуль редко ломается сам по себе. Поэтому, вероятнее всего, причиной поломки стали внешние воздействия. Возможно, вы пролили на системный блок какую-то жидкость. А может вы запускали компьютерные игры на слишком высоких настройках графики, что привело к перегоранию аппаратных компонентов. В любом случае определить причину неисправности вам поможет следующая инструкция.

Шаг первый: визуальный осмотр

Большинство проблем с материнской платой выявляются именно на этом этапе. Прежде чем переходить к осмотру, почистите аппаратный компонент от пыли и прочего мусора. Благодаря этому вам легче будет найти дефекты. Кроме этого, чистка аппаратных компонентов заметно улучшит работу компьютера. Чтобы убрать всю пыль и мусор вам понадобится мягкая кисточка и влажные салфетки для ПК. Также для чистки вы можете воспользоваться обычным бытовым пылесосом (только на минимальной мощности всасывания).

После чистки материнки можете переходить непосредственно к визуальному осмотру. Внимательно посмотрите на конденсаторы (выглядят как маленькие колбочки, которые выстроены в один ряд). На них не должно быть никаких повреждений. Сколы, трещины, гарь и т.д. – все это может повлиять на работоспособность материнки. Чаще всего пользователи сталкиваются со вздутыми конденсаторами (увидеть проблемный компонент можно на картинке). В случае если вы обнаружили поврежденный элемент, то его нужно заменить. Сделать это можно самостоятельно с помощью обычного паяльника.

Если с элементами платы все в порядке, то необходимо взглянуть непосредственно на схему. Попробуйте отыскать различные сколы, царапины и трещины.

Как правило, они сразу бросаются в глаза. Посмотрите на их расположение и убедитесь в том, что царапины не пересекают соединения схемы. Также на материнской плате частенько можно встретить признаки коррозии. Это свидетельствует о том, что на компьютер или же ноутбук проливали различные жидкости. Если плата была подвержена коррозией или же соединения схемы были повреждены, то ничего сделать нельзя. Необходимо приобретать новую материнку.

Шаг второй: подключение блока питания


Если визуальная проверка материнской платы не помогла выявить дефектов, то можете переходить к более продвинутому способу тестирования. Отключите от платы все аппаратные компоненты: провода, шлейфы и пр. Все что вам понадобиться, так это:

  • Блок питания. Вы должны заранее знать, что данный аппаратный компонент исправен. Если вы не уверены в своем блоке питания, то проверьте агрегат на других устройствах.
  • Процессор. Не отсоединяйте вычислитель от материнской платы.
  • Спикер. Это маленький динамик, который есть в каждой материнской плате. Данный компонент оповещает пользователя о том, что устройство работоспособно. Убедитесь в том, что спикер функционирует.

Важно! Прежде чем отключать аппаратные компоненты от материнки, выключите блок питания.

После того как вы оставили только нужные комплектующие, можете снова подать питание на материнку. Для этого включите блок питания. Если материнская плата исправна, то на ее поверхности должен загореться маленький диод. Кроме этого, об исправности аппаратного компонента сообщит спикер посредством писка. В случае если материнка не издает никаких звуков, то она неисправна.

Шаг третий: подключение аппаратных комплектующих

Если чистая материнка запищала, то надо протестировать, как плата работает с другими аппаратными компонентами. Для начала разберем проверку работоспособности через оперативную память.

Важно! Не забывайте, что перед подключением новых аппаратных компонентов блок питания нужно отключать.

Подключите оперативную память к системному блоку. После этого вновь активируйте питание. В результате этих манипуляций материнская плата должна издать звуковой сигнал. Он может быть прерывистым или же протяжным. Тут все зависит от производителя. Если плата после подключения оперативной памяти замолкла, то проблема тут в RAM.

Также стоит проверить графический адаптер, который частенько подвергается перегревам. Данный метод стоит применять только в том случае, если на материнке нет встроенного видеочипа. Проверка видеокарты проводится также, как тестирование оперативной памяти.

Если с оперативной памятью и графическим адаптером все в порядке, но плата все равно не работает, то в таком случае необходимо произвести сброс БИОС. Для этого внимательно осмотрите материнку и отыщите там перемычку (обычно она красного цвета). Переставьте ее в другое положение и задержите на пару секунд. Затем верните перемычку в исходное положение. Также сбросить настройки БИОС можно посредством извлечения батарейки.

Найдите на плате элемент питания и выньте его. Подождите 15-20 минут и вставьте батарейку на место.

Заключение

В статье мы рассказали о том, как провести диагностику системной платы. В сервисных центрах данная процедура стоит довольно-таки дорого. Тем не менее ничего сложного в данном процессе нет. Протестировать материнку может каждый. Для этого не нужны ни специализированные инструменты, ни узкопрофильные знания. Главное – будьте осторожны и придерживайтесь рекомендаций из данной статьи.

Диагностика материнской платы позволит вам выявить причины ее поломки. Если проблема проста, то вы сможете исправить ее самостоятельно. Если же неисправность серьезная, то придется покупать новый аппаратный компонент.

Материнская плата компьютера – это связующее звено всех его компонентов. Обычно пользователи выделяют видеокарту и процессор, как самые важные комплектующие, однако без надежной материнской платы они не будут работать либо попросту сгорят. Проверка материнской платы происходит в три этапа: визуальный осмотр комплектующего, подсоединение блока питания, включение системы и локальное последовательное отсоединение комплектующих. Согласно статистике, более 90% всех поломок материнской платы лежат на плечах самого пользователя, так как она практически не ломается сама по себе. Вспомните, возможно, вы разливали чай на системный блок, играете на слишком высоких настройках графики либо одна из ваших деталей недавно перегорела. Осмотрите свою материнскую плату, согласно инструкциям ниже.

Как проверить материнскую плату на работоспособность: визуальный осмотр

Этот этап является самым важным: вы можете выявить неисправности в материнской плате ещё до установки в системный блок, особенно если это материнская плата, купленная с рук. Не забывайте, что установка неисправного комплектующего может привести к поломке всех остальных элементов системного блока.

Весьма заметный признак поломки – это порча одного или нескольких конденсаторов на материнской плате. Они выглядят как небольшие колбочки, выстроенные в ряд. Внимательно присмотритесь к каждой из них: на их поверхности не должно быть вздутий, трещин, сколов, гари. Их нужно немедленно заменить и не включать системный блок, пока вы этого не сделаете.

Особенно часто встречаются вздутые конденсаторы. Это особый случай, так как их замена ни к чему не приведет. Такую материнскую плату нужно однозначно менять. Конечно же, в сервисном центре вам предложат заменить вздувшийся конденсатор и продлить жизнь платы на год-другой, но таким мастерам лучше не верить, так как вздутие произойдет снова и очень скоро.

Проверьте поверхность материнской платы

Некоторые изъяны заметны сразу: сколы, царапины, трещины. Вся поверхность материнской платы покрыта небольшими микросхемами, поэтому заметить огрехи будет легко. Нередко встречается коррозия – это явный признак “утонувшей” материнской платы. Особенно если говорить о ноутбуках, так как именно их заливают чаем, кофе и другими напитками чаще всего.

Если вы заметили следы гари, коррозии, механические изъяны на поверхности материнской платы, то лучше не рисковать и не ставить её в системный блок. Конечно, повреждение может повлиять только на одну из её способностей, но в равной степени может поставить под угрозу всю систему. Не рискуйте, замените материнскую плату.


Как проверить материнскую плату на работоспособность: подключение блока питания

Если вы не нашли визуальных изъянов на материнской плате, то можно приступить к следующему этапу. Для начала отключите абсолютно всё от материнской платы: все провода и шлейфы. Вам понадобятся такие комплектующие:

  • Исправный блок питания. Лучше взять не свой блок питания, а например, друга. Если вы не уверены, что поломка именно в материнской плате.
  • Оставьте подключенным процессор.
  • Практически во всех материнских платах есть спикер – маленький внутренний динамик для самой материнской платы. Он может вас оповещать о работоспособности устройства. Удостоверьтесь, что он включен.

Для данного этапа этого будет достаточно. Не забывайте, что нужно сначала отключить блок питания, только потом убирать шлейфы и провода. Аккуратно уберите все подключения. Как только вы это сделаете, включайте блок питания снова.

Что должно произойти на исправной материнской плате: загорится маленький диодный огонек на ее поверхности, вы услышите писк из спикера. При этом, звук – главный сигнал исправности. Если вы не услышали писка и над материнской платой воцарила тишина – она неисправна.


Как проверить материнскую плату на работоспособность: постепенное подключение комплектующих

Если вы услышали соответствующий звук, то можно попробовать постепенно подключать элементы. Происходит это по такому алгоритму:

  • Подключение оперативной памяти.
  • Включение видеокарты.
  • Сброс БИОС и манипуляции с батарейкой.

При этом, многие пользователи отмечают, что на этих этапах выявляется мало неисправных материнских плат. Если она сломана, вы узнаете это на предыдущих этапах. Эти пункты вам скорее помогут разобраться в том, что сломано, помимо нее. Но если плата всё-таки вредничает, вам может помочь сброс БИОС.

Подключите модули оперативной памяти

Выключите блок питания и вставьте модули оперативной памяти. Не забывайте выключать блок питания каждый раз, когда хотите что-либо вставить в плату или убрать с неё.

Снова включите его. Материнская плата должна издать один протяжный звук или несколько прерывистых. Это зависит от производителя. Если звук вдруг пропал, хотя на предыдущем этапе был, то проблема в оперативной памяти.


Включите видеокарту

Снова выключите блок питания и подключите шлейфы видеокарты к материнской плате. Подсоедините монитор. Запустите систему включением блока питания.

Если появился звук и система начала загрузку на экране монитора – то всё абсолютно нормально. Но если именно на этом этапе у вас появились проблемы, то выполните сбор БИОС на материнской плате.


Сброс БИОС

На материнской плате вы увидите небольшую перемычку или маленький выключатель. Обычно он красного цвета. Именно с помощью него выполняется сброс системы BIOS. Щёлкните перемычкой в другую сторону и задержите ее в таком положении на две секунды, теперь отпустите её. BIOS сброшен.

Многие пользователи указывают на тот факт, что иногда помогает извлечение батарейки и последующая ее установка обратно. Однако если и после этого вы не слышите звука, то проблема у вас может быть как в материнской плате, так и в видеокарте. К сожалению, вам придется протестировать видеокарту, прежде чем включать систему.


— сегодня мы рассмотрим как узнать модель материнской платы на компьютере. Обновление драйверов, проверка совместимости железа и чисто из любопытства — … использовать приведенные в заметке способы проверки модели материнской платы намного проще, чем разбирать компьютер и изучать наклейки внутри системника.

Можно смоделировать достаточно много ситуаций, в которых очень важно знать модель материнской платы: банальное обновление драйверов, покупка нового «железа» (узнать, что можно добавить в систему и есть ли для этого нужные слоты, например для расширения оперативки)…

Если у вас сохранились документы, которые выдают вместе с компьютером (или отдельные позиции по компонентам, если вы подбирали комплектующие сами) вы можете узнать ответы на свой вопрос именно там. Наверное это даже лучший способ, ведь вы можете проверить соответствие реальной ситуации с тем, что указано в ваших доках.

Я принципиально не буду рассказывать как узнать название материнской платы способом вскрытия системного блока — в современной ситуации это абсолютно не нужно, ведь программные способы дадут информации больше чем просто визуальный осмотр материнки.

Конечно же я не отрицаю что можно узнать модельку взглянув на саму плату (я не настолько упорот чтобы говорить что этого делать ни в коем случае нельзя) , а продвинутый пользователь наверняка и сам знает где и что посмотреть… ну а нам я рекомендую использовать наиболее простые и правильные методы

Способ 1. Узнаем название материнской платы через командную строку

Если вы с удовольствием пользуетесь командной строкой Windows, то вы можете с легкостью выяснить модель материнской платы при помощи мощного инструмента WMIC Microsoft.

С WMIC мы можем выполнить запрос baseboard чтобы проверить материнскую плату и несколько дополнительных параметров таких как серийный номер, ревизия и другая подробная информация о вашей материнке. Давайте с вами попробуем на примере узнать производителя нашей материнской платы, модель и серийник с помощью WMIC.

Программа на английском, но для нас это не будет проблемой, конкретно нас интересует строка Motherboard — это и есть название нашей материнской платы.

Не смотря на столь малый размер (менее 1 мегабайта в архиве) программа может рассказать многое о вашем компьютере, но я бы не стал рекомендовать ей пользоваться… выяснить что за материнка на компьютере — она отлично подходит, для всего остального есть более удобные аналоги.

Способ 3. AIDA64 — узнаем модель системной платы

Существует несколько редакций AIDA64, нам прекрасно подойдет версия Extreme Edition (приложение стоит денег, но нам подойдет 30 дневная пробная версия, обозначенная на странице загрузки как TRIAL )

После установки AIDA64 запустите программу и в левой части найдите значок «Системная плата». В открывшемся окне во второй строчке «Системная плата» будет отображаться производитель и модель материнской платы. Как вы можете видеть в моем компьютере название материнки — Asus P8H67.

Если прокрутить окно вниз до конца, то можно найти ссылку на страницу загрузки свежего BIOS (Строка «Загрузка обновлений BIOS»). Это может быть полезным, если цель определения материнской платы прошивка новой версии микропрограммы BIOS

Способ 4. Piriform Speccy — хорошая программа от разработчиков Ccleaner

Если вы хоть раз пользовались программой Ccleaner и она оставила у вас только положительные эмоции своим результатом, то на вопрос как узнать модель материнки вам ответит маленькая программа Speccy от разработчиков той самой Cclener (Piriform). Скачать как всегда можно на официальном сайте:

Запустите приложение и в левой части перейдите на вкладку «Системная плата». В правой части в строке «Модель» и будет ответ на наш вопрос — в нашем случае это P8H67 (LGA1155)…

Мало того, что программа правильно определила название материнской платы установленной в компьютере, но и показала ее сокет (1155) и еще много полезной информации (такой как напряжение, версия BIOS и температура системы)

Способ 5. CPU-Z — расскажет не только о процессоре

CPU-Z очень популярная утилита для идентификации процессора, но отлично подойдет для определения модели материнской платы на компьютере. Программа абсолютно бесплатная и не требует установки, просто загрузите актуальную версию с официального сайта

После запуска утилиты перейдите на вкладку «Mainboard» и в строке «Model» будет название установленной материнской платы. У меня на компьютере системная плата P8H67 (пока показания всех приложений совпадают)

Для многих будет полезен блок BIOS, тут отображаются версия и производитель микропрограммы…

Способ 6. HWiNFO32 — подробная информация о материнке

Для загрузки программы перейдите на официальный сайт (существует несколько версий программы — HWiNFO32 для 32 битных систем и HWiNFO для 64 разрядных). В моем случае я скачал HWiNFO64.

После установки соответствующей версии HWiNFO запустите ее (запуск может занять продолжительное время собирая информацию о комплектующих вашего компьютера). Программа автоматически отобразит экран «System Summary», где модель материнской платы будет показана в разделе «Motherboard»

Кстати, обратите внимание что HWiNFO корректно определила видеокарту… надо бы добавить ее в заметку о видеокартах

Способ 7. Sisoftware Sandra — недооцененная программа

Когда я искал информацию о том как посмотреть материнскую плату на компьютере, то ни разу не встретил в обзорах такое приложение как Sandra Lite (именно ее мы и будем использовать, так как конкретно Lite — распространяется бесплатно). Как обычно скачать можно на официальном сайте, избегайте левых источников…

После установки Sisoftware Sandra Lite запустите программу и перейдите на вкладку «Устройства». В появившемся окне дважды кликните по значку «Материнская плата» и подождите пока утилита соберет всю нужную информацию. В новом окне откроется подробная информация о вашей системной плате, в строке «Модель» и будет ответ на вопрос как узнать модель материнской платы?

В данном разделе отображается не только название вашей материнской платы, здесь вы найдете еще достаточно много другой полезной информации о вашей материнке. Например можно узнать сколько памяти и сколько всего слотов под нее… или модель чипсета на котором построена ваша система

БОНУС! Информация о материнской плате в HTML отчете

Данное приложение называется LookInMyPC и скачать его можно с сайта разработчиков (на английском, есть портативная версия не требующая установки)

http://www.lookinmypc.com/download.htm

После запуска можно выбрать о чем именно генерировать отчет, но мы оставляем все как есть и жмем кнопку «Generate Report»… останется только дождаться когда сформируется отчет — это быстро.

Файлик с отчетом откроется в любом браузере, в блоке «BIOS Information» в строке «Board Product ID» и будет название нашей материнской платы.

На самом деле в отчете достаточно много интересной и полезной информации, а что касается английского языка — Google Chrome замечательно все переводит.

В отчете генерируется достаточно много данных о программной части, а просмотреть его можно в любой момент без самой программы — это очень удобно

Что мы узнали о материнской плате? — Выводы

Друзья, мы с вами рассмотрели несколько способов узнать модель материнской платы. Как вы поняли из заметки, это вполне реально сделать не разбирая системный блок — существуют более цивилизованные методы.

Что делать с данной информацией? — даже если вам нужно визуально взглянуть на вашу материнку, то вполне возможно найти ее изображение и спецификации на официальном сайте по названию модели.

Материнская плата – это один из самых дорогостоящих компонентов компьютера. Поэтому при проблемах в ее работе не стоит сразу же выбрасывать устройство и менять на новое. Целесообразно его протестировать и убедиться в работоспособности. Неисправность материнки чаще всего проявляется в частом появлении синего экрана и самопроизвольной перезагрузке.

Исключение неполадок других элементов и LED индикатор

Перед началом работ по тестированию нужно снять с себя любое статическое электричество. Схемы на материнке чувствительны к любым формам электрических зарядов, в том числе к статическому электричеству человеческого тела.

Прежде чем приступать к тестированию работоспособности материнской платы следует исключить неисправность источника питания и процессора . Нужно убедиться в стабильности работы процессора, а блок питания на время проверки рекомендуется подключить новый. После подключения системной платы к блоку питания и ее запуска должен зажечься цветной LED индикатор, который оповещает о ее рабочем состоянии. Если этого не произошло, следует разбираться в причинах, нарушающих ее работу.

Влияние внешних устройств

Часто случается так, что из-за одного некачественно собранного внешнего устройства может не работать основная плата. Чтобы выявить эту погрешность необходимо отключить питание и отсоединить мышь, клавиатуру, колонки, шнуры, джойстики и т.д. Затем включается питание и запускается компьютер, если материнская плата заработала, значит, причина была не в ней, а в одном из внешних элементов.

Визуальный контроль

На начальном этапе тестирования нужно извлечь плату из компьютера и провести ее визуальный осмотр на наличие видимых дефектов: нагара, пятен, трещин и т.д. Необходимо внимательно осмотреть электролитические конденсаторы, они не должны быть вздутыми, так как чаще всего именно они становятся причиной неработоспособности устройства. В случае их вздутия всю материнскую плату придется заменить, так как в этом случае она уже никогда не будет функционировать стабильно. Также нужно внимательно проинспектировать все электрические элементы: резисторы, микросхемы и т.д. на предмет перегорания. В этом случае достаточно будет заменить сгоревший элемент.


Исправные и неисправные конденсаторы

Разрядившаяся батарейка и Сброс СМОS

Распространенная причина проблемы с системной платой – это севшая литиевая батарейка. Следует проверить ее напряжение , оно должна быть не менее 2,9 В. Батарею нужно менять примерно раз в 2-3 года, и если причина в ней, то для решения проблемы достаточно заменить севшую батарейку на новую.

Еще один способ проверки устройства – это сброс установки СМОS . Для сброса заводских настроек необходимо замкнуть соответствующие контакты на 20 секунд. Для этого нужно переставить джампер, после чего вернуть его в исходную позицию. Джампер расположен на системной плате возле батареек и имеет маркировку СLR_CMOS либо CCMOS . Такие действия могут привести к восстановлению работы материнки.

Проверка при помощи спикера и подключение к другому компьютеру

Блок питания следует отключить от сети, а от системной платы отсоединить все шлейфы, кроме питания материнки и процессора. В материнской плате должны остаться подключенными только процессор, вентилятор и внутренний динамик. После этого блок питания включается в сеть , и компьютер запускается путем замыкания соответствующих контактов на плате, либо нажатием кнопки на передней панели. Если в результате этого спикер издаст 1 короткий сигнал, то это означает, что устройство исправно и пригодно к эксплуатации. Если же звука не последует – системная плата подлежит замене. Существуют специальные таблицы, расшифровывающие звуки BIOS оповещающие о неисправностях различных типов объединительных плат.

Как проверить предохранитель мультиметром на плате

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото — вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Собственно что такое предохранитель мы уже поговорили, но в этом материале будет разбирать — как его проверить. Ведь в машине их может быть очень много, у меня, по-моему — больше двух десятков, а может быть и трех, все же два блока. Собственно вопрос не такой сложный — потому как сейчас, некоторые производители, корпуса стараются делать прозрачными и банально видно какой сгорел! НО не все! Поэтому чтобы не перебирать, банально не вытаскивать из гнезда каждый, будем использовать мультиметр …

СОДЕРЖАНИЕ СТАТЬИ

НУ что ребят, думаю не стоит не до оценивать установку предохранителей в сеть машины, они бесспорно нужны! Прочитайте статью по ссылке сверху. Исключать их из сети нельзя, просто я к чему веду – некоторые вместо них ставят в разъемы кусок проволоки или чего хуже подточенную монету.

Ребята – не делайте так, тут и до пожара не далеко, ведь момента выдерживает просто гигантские токи, а поэтому у вас быстрее расплавится вся проводка, а уже потом монета, и то не факт. А если плавится проводка, то у нее начинает гореть обмотка – что говорится ярким пламенем, вот вам и пожар! Потеряете машину! Ладно – думаю, это все понимают, сегодня же будем вычислять сгоревший элемент.

Есть всего два основных способа:

  • Схема
  • Это снять и физически посмотреть.
  • Прозвонить тестером или мультиметром, хоть на столе, хоть не снимая прямо в машине в щитке предохранителей.

Больше пока ничего не придумали. Давайте по порядку.

Схематичная проверка

Что это такое? Если у вас не работает какой-либо прибор, например прикуриватель — большая вероятность, что сгорел именно предохранительный элемент. Для каждого авто, есть схемы в которых указано – за что и какой отвечает. Вам нужно найти номер или расположение и проверить его, зачастую этого достаточно. Проверка может быть такой – банально ставим новый, если заработало, значит дело в нем.

Физический осмотр

НА данный момент, все предохранители делаются с прозрачным пластиковым корпусом, то есть «нить» которая располагается внутри – видна не вооруженным глазом. Если предохранитель перегорел, просто вытаскиваем его из разъема и проверяем, это «визуальный метод»!

Почему он сложный и не всегда применяется — да потому что предохранителей в современных авто, десятки (может доходить до 30 — 40), причем — чем круче авто, тем их больше. И выяснить какой сгорел, визуально нереально!

Они установлены в гнезда и видно только заднюю часть. Тут нужно сочетать схему (первый метод) и физический осмотр. Но есть гораздо более быстрый и достаточно легкий метод проверки, используем мультиметр если он есть.

Проверка мультиметром (или тестером)

Значит так, им можно тестировать как уже снятые предохранители, так и установленные в блок машины.

НА мультиметре, есть звуковой режим проверки. При его включении, если замкнуть щупы, будет слышан писк, значит есть контакт.

Так вот – можно снять предохранитель, в случае если у вас не прозрачный корпус, просто устанавливаем щупы на контакты предохранителя! Слышим писк, значит исправен, звука нет – перегорел. Но опять же вытаскивать каждый и проверить это крайне неудобно!

Поэтому производители о нас позаботились, на предохранителях сверху есть открытые «точки» от контактов, вам достаточно засунуть в них щупы от мультиметра, и можно не снимая – проверить большое количество элементов. Лично я за пару минут могу проверить почти весь блок! На видео внизу это будет видно.

Именно так тестируют на СТО, потому как зачастую книжку со схемой потеряли, и очень долго искать — где какой стоит, а мультиметр обычно всегда под рукой.

Стоит помнить перед работой

Нужно помнить — что предохранители стоят в электрической цепи, поэтому нужно соблюдать меры предосторожности:

  • Автомобиль должен быть «заглушен»
  • Зажигание нужно выключить
  • Аккумулятор должен быть установлен и клеммы должны быть накинуты, иначе не будет «питание» электрической цепи
  • Не перемыкайте контакты одного предохранителя с другим, мультиметром.

Что хочется добавить в заключении, ребята – два первых метода доступны всем, то есть банально вытащить и посмотреть, а вот третий с тестером … купите его, реально полезная вещь в автомобиле, если решили постигать его сами, просто не заменим!

Сейчас смотрим подробное, но полезное видео.

Надеюсь вам помог, искренне ваш АВТОБЛОГГЕР.

(10 голосов, средний: 4,90 из 5)

Похожие новости

Как проверить генератор на машине, не снимая. Мультиметром и без.

Обгонная муфта генератора. Что это такое и для чего нужна. Важны.

Что такое OBD2 и причем тут ELM327? Как ими пользоваться в машин.

Электрический плавкий предохранитель — это радиокомпонент, выполняющий защитную функцию. Предохранитель защищает электрическую цепь и её элементы от перегрева и возгорания при протекании сверх допустимой силы тока.

Каждый плавкий предохранитель имеет внутри себя проводок определенного диаметра. Через этот проводок течет электрический ток по всей цепи. Если каким-то образом в цепи возникает большая сила тока, то этот проводок просто-напросто сгорает. Чем тоньше провод, тем на меньшую силу тока рассчитан предохранитель.

Как проверить предохранитель мультиметром

Итак, вот наш пациент. Первым делом, мы можем уже визуально увидеть, что тонкий проводок предохранителя целый. Но в некоторых случаях это все равно ни о чем не говорит, так как проводок может сгореть прямо у самого края предохранителя.

Для точного определения работоспособности предохранителя, мы будем использовать мультиметр. Ставим его крутилку на значок прозвонки

и прикладываем щупы к предохранителю

В результате мультиметр выдает нам сопротивление 0 Ом и звуковой сигнал “пиииииииип”. Это означает, что предохранитель целый.

Сгоревший предохранитель покажет нам на мультиметре единичку

Сопротивление бесконечно большое, никакого звукового сигнала типа “пиииииииииииииип” мы не слышим. Предохранитель в обрыве. Его можно выбрасывать в мусорную корзину.

Как проверить предохранитель с помощью батарейки и лампочки

Если у вас нет мультиметра, то этот способ будет более предпочтительней. Для этого нам понадобится батарейка и маломощная лампочка накаливания. Батарейка и лампочка должны подходить к друг другу. Если у вас батарейка на 1,5 Вольта, то и лампочка тоже должна быть на 1,5 Вольта. Смотрим рисунки:

В первом случае у нас предохранитель в обрыве, следовательно, лампочка не горит. Во втором случае предохранитель оказался целым. В этом случае лампочка уже будет гореть.

Как проверить предохранитель с помощью батарейки и языка

Если у вас нет лампочки, то здесь индикатором целостности предохранителя будет служить ваш язык. Для этого достаточно собрать вот такую схему

Если предохранитель целый, то кончик языка будет пощипывать. Если же сгоревший, то вы ничего не почувствуете.

Заключение

Некоторые умельцы восстанавливают предохранители припаяв новый провод. Но… это чревато конечно же последствиями. Провод может быть и толще, и тоньше, и может выгореть в самый неподходящий момент или наоборот, когда вся аппаратура, защищаемая предохранителем, будет уже гореть ярким пламенем.

Поэтому, в таких ситуациях проще купить сразу готовый набор предохранителей и не заниматься самодеятельностью. Я находил на Алиэкспрессе вот такой неплохой набор

Как проверить конденсатор мультиметром, как определить его неисправность

Наши электросети не отличаются стабильностью параметров, что часто приводит к выходу из строя техники. Чаще всего выходят из строя диоды выпрямительного моста и конденсаторы. В этой статье поговорим о том, как проверить конденсатор мультиметром, как понять что он вышел из строя.

Содержание статьи

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В —  проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Как проверить конденсатор мультиметром без функции определения емкости

Для определения поврежденного конденсатора даже не всегда нужны приборы. Часто достаточно внешнего осмотра. Признаком того, что емкость вышла из строя, является вздутие корпуса, потеки любого цвета. Если внешние изменения есть, можно даже не измерять, а сразу менять. Это очень часто возвращает работоспособность вышедшей из строя бытовой технике и другой электрической и электронной аппаратуры.

Визуально бывает проще всего определиться с неисправностью электролитических конденсаторов импортного производства. Если конденсатор вздулся или дополнительно разгерметизировался в месте насечки, его необходимо заменить в обязательном порядке

Если внешних изменений нет, приступаем к проверке. Чаще всего у домашних радиолюбителей имеется цифровой мультиметр. Марка его не важна, но необходимо чтобы он мог мерить сопротивление и/или имел функцию проверки диодов. Можно использовать и стрелочные. Они даже удобнее — движущаяся или замершая на месте стрелка более информативна. Только помните, что это не измерения, а лишь проверки. То есть, с их помощью мы не можем измелить ёмкость конденсатора, а лишь убеждаемся в его работоспособности.

Перед тем как проверить конденсатор мультиметром, обязательно разрядите емкость. Если этого не сделать, в некоторых случаях измерительный прибор может выйти из строя.

Разрядить конденсатор можно двумя способами:

  • прикоснувшись к выводам высокоомным сопротивлением — 0,5-1 мОм;
  • при помощи лампы накаливания — центральный контакт лампы на одну ножку, корпусом прикоснуться к другой.

Безопасный и надежный способ разрядить конденсатор — замыкаем выводы при помощи обычной лампы накаливания на 220 В

Разряжать емкость при помощи обычного проводника не стоит — можно добиться выходя из строя элемента. Это может сработать без особого вреда только на емкостях, рассчитанных на невысокий вольтаж и имеющих небольшую емкость. Исправные лампы накаливания есть у всех, так что лучше используйте их.

В режиме омметра

Перед тем как проверить конденсатор мультиметром в режиме измерения сопротивлений, надо вспомнить, как изменяется его сопротивление в процессе работы. Без заряда сопротивление близко к нулю, но не ноль. По мере накопления заряда оно растет.

Еще раз: сопротивление разряженной емкости очень невелико — почти ноль. Но короткого быть не должно. То есть, если поставить мультиметр на прозвонку и прикоснуться к выводам разряженного конденсатора, звенеть не будет. Если звенит — можно дальше не тестировать, элемент не исправен.

Проверить работоспособность можно так: переводим переключатель мультиметра в режим измерения сопротивлений. Предел изменений зависит от параметров измеряемого конденсатора. Чем выше напряжение, на которое рассчитан элемент, тем выше ставим предел. Например, для 50 В выставляем 20 кОм, для 1000 В  выбираем 2 МОм. И, лучше, выставить более высокий предел, чем низкий.

Подготовив прибор, к разряженному элементу прикладываем щупы, смотрим на экран. Сначала высвечивается цифра 1, затем показания начинают расти. Это накапливается заряд. В какой-то момент рост прекращается, на экране снова цифра «1». Конденсатор зарядился.

Конденсатор заряжается, его сопротивление растет

Поменяв местами щупы, мы меняем полярность питания. На экране сразу высвечиваются цифры с «минусом» впереди, затем они уменьшаются — идет разряд. После перехода через ноль, цифры начинают расти — идет заряд, затем снова высвечивается единица. Конденсатор проверили на работоспособность и он исправен. Если «поведение испытуемого» отличается от описанного, значит элемент нерабочий. Теперь вы знаете, как проверить конденсатор мультиметром в режиме омметра.

Проверка напряжения на заряженном конденсаторе

Убедиться что заряд накоплен можно, если измерить напряжение на выводах заряженной емкости. Переводим мультиметр в режим измерения постоянного напряжения. Предел измерений выбираем в зависимости от параметров элемента. Напряжение, на которое он рассчитан указано обычно на корпусе. Для мелких деталей придется поискать в технических характеристиках. Предел измерений выставляем не меньше указанного.

Измерение напряжения на заряженном конденсаторе с помощью мультиметра

Дальше все аналогично: прикладываем щупы к выводам и следим за показаниями. Значение не меняется, но может быть как с плюсом, так и с минусом.  Это и есть напряжение на заряженной емкости. Если выводы закоротить через нагрузку, цифра начинает уменьшатся — происходит разряд. Чем закоротить? При небольшом вольтаже — до 50 В — можно одним из щупов. Для более мощных лучше использовать или все ту же лампу накаливания, или сопротивление на один мегаом. Теперь вы знаете не только как проверить конденсатор мультиметром, но и как измерить напряжение на заряженной емкости.

В режиме прозвонки диодов

Если на мультиметре есть режим прозвонки диодов, можно проверить работоспособность конденсатора с его помощью. Этот метод позволяет на слух определить пригодность элемента.

Вот такой значок обозначает прозвонку диодов

Все еще проще: ставим переключатель в положение прозвонки диодов, прикладываем щупы. Ждем некоторое время. Если емкость исправна, время от времени слышится «писк». Чем больше емкость конденсатора, тем дольше время ожидания и тем короче «писк». Если писка нет — емкость нерабочая.

Мультиметр с функцией измерения емкости

Как проверить конденсатор мультиметром, который может измерять емкости, написано в инструкции по эксплуатации к прибору. Но, обычно, сколько-нибудь значимых отличий в измерениях между разными приборами нет, так что можем описать порядок действий. Все что требуется:

  • перевести переключатель прибора в нужный сектор;
  • выбрать диапазон измерений;
  • приложить щупы к выводам конденсатора;
  • просмотреть показания на экране.

Как проверить конденсатор мультиметром

В некоторых моделях мультиметров в корпусе рядом со шкалой измерений есть специальные отверстия, в которые вставляются конденсаторы. В этом случае переключатель переводится в положение измерения емкости, выбираем предел измерений. Затем вставляется конденсатор, ждем пока на экране высветятся результаты измерений.

Со специальными гнездами для установки емкостей

Емкость конденсатора написана на корпусе, кроме слишком малых для этого видов. Показания мультиметра не всегда совпадают с тем, что указано на корпусе. Но рядом с номиналом стоит допуск точности в процентах. Если отклонения в рамках этого допуска, элемент считается исправным. Если нет — надо менять.

Как правило, обычные мультиметры не позволяют измерять конденсаторы малой емкости — меньше 100 пикофарад. Для этих целей необходим специализированный прибор, например, цифровой измеритель емкости CM7115A или Mastech MY6013A.

Как проверить конденсаторы на плате, не выпаивая

Как известно, измерить емкость конденсатора не выпаивая его невозможно. Зато узнать рабочий конденсатор или нет достаточно просто, если он не зашунтирован низкоомной цепью. Его исправность можно проверить мультиметром в режиме измерения сопротивлений или постоянного напряжения. Любым из этих способов можно найти неисправный конденсатор на плате.

Сначала осматриваем элементы визуально, вздутые и имеющие потеки проверяем в первую очередь. А порядок проверки и все, что вы должны увидеть на приборе, описано выше. Разницы никакой. Но еще раз: на плате можно только определить исправность конденсатора. Чтобы проверить его емкость, узнать не уменьшилась ли она, хотя бы один вывод конденсатора надо выпаять.

Проверить конденсатор на работоспособность мультиметром можно и не выпаивая его с платы

Вся процедура проверки работоспособности точно такая же. Если позволяет монтаж, можно прикасаться щупами к ножкам емкости с лицевой стороны. Если детали расположены так, что к ним не подлезть, определитесь где с изнаночной стороны они припаяны, прикасайтесь щупами к местам пайки «с изнаночной стороны платы».

Особенности SMD конденсаторов

Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.

SMD технологии позволяют делать миниатюрные радиоэлементы

Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.

Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета

Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).

Как замерить напряжение на плате мультиметром

Каждый человек формирует свой круг общения, так случилось и со мной, что в контакте и в реальной жизни меня преимущественно окружают люди, имеющие то или иное отношение к технике. Случается такое, что пишет Вконтакте порой человек и просит помочь отремонтировать какое-либо устройство. Отвечаешь бывает стандартно, что ты уже прозвонил на плате и слышишь в ответ, что он мол не в курсе как это делается, но направить устройство, ну очень нужно).

Проверка радиодеталей мультиметром на плате

Можно конечно, послать человека учить учебник физики, электротехники, гуглить по сайтам посвященным тематике электроники, сказав, что ты рубишь сук не по плечу, но решил попытаться раскрыть некоторые нюансы ремонтов для всех этих людей, которые, видимо, прогуливали или просиживали уроки физики и электротехники, а теперь вдруг решили наверстать упущенное. Вспомнив, что электронщиками не рождаются, а становятся.

Измерение постоянного тока тестером

Итак, у нас есть мультиметр и с его помощью можно измерять различные величины, например такие как ток, переменный и постоянный, что потребуется нам при ремонтах не так часто, как другие величины. Хотя на схемах существуют контрольные точки, в которых нужно разрывать цепь и измерять текущие токи или же напряжения. В таких случаях прямо на схеме указывается, какое напряжение или ток должно присутствовать в этой точке.

Контрольная точка измерение тока на схеме

Напряжение мы измеряем на плате намного чаще, чем токи, потому что если в схеме, например на разъеме питания отсутствует какое-то напряжение, то это явный признак, что схема функционирует не правильно. Такие измерения называются “на горячую” или без снятия питания, и должны производиться с соблюдением обычных мер безопасности при работе с электрическим током. Так как на платах, например импульсных блоков питания, в некоторых частях схемы, у нас присутствует высокое напряжение. Другие измерения, в частности измерения сопротивления или звуковая прозвонка, осуществляются только в обесточенном устройстве!

Это важное правило, достаточно один раз ошибиться, и измерить сопротивление вместо напряжения, или тоже самое на звуковой прозвонке, и в лучшем случае придется искать схему на мультиметр и менять резисторы, которые чаще всего идут в планарном корпусе и имеют маленькие размеры, например 0805 или даже 0603. В худшем случае вы попалите АЦП прибора – ту самую черную каплю, и прибор ремонту подлежать не будет, или ремонт его будет как минимум нерентабельным.

Микросхема АЦП мультиметра

Когда мы измеряем напряжение на плате в незнакомом месте не зная точно, какое именно по величине у нас оно должно быть, ставьте всегда заведомо большее значение на мультиметре. Например, если блок питания выдает 35 вольт и меряете на выходе – выбирайте 200 вольт, если 5 вольт – то 20 вольт. Тоже самое и с сопротивлением: если резистор промаркирован не цветными кольцами, а например типа МЛТ и расшифровать маркировку не получается – выбирайте на мультиметре режим 2 МегаОма, с последующим уменьшением предела измерений, для обеспечения необходимой точности.

Конденсатор фильтра БП

Всегда при ремонте импульсных блоков питания имеющих в своей схеме, например, электролитические конденсаторы на напряжение 400 – 450 вольт и номинал 100 – 150 микрофарад, разряжайте конденсатор замыкая выводы между собой отверткой с изолированной ручкой. Это же относится и к ремонту блоков питания ATX – там напряжение электролитических конденсаторов поменьше, всего 200 вольт, но щиплет надо признать все-равно неслабо.

Плата кинескопного телевизора

Иногда, например на платах кинескопных телевизоров, таких конденсаторов имеющих высокое рабочее напряжение бывает несколько, а не только один конденсатор фильтра. Обычно они имеют несколько меньшие размеры по сравнению с конденсатором фильтра. На чем основана проверка радиодеталей, с помощью омметра, и звуковой прозвонки? Вспомним закон Ома: чем меньше сопротивление при неизменном напряжении – тем больше ток.

Закон Ома – рисунок

Если вдруг сопротивление какой-то одной детали, стало вдруг очень маленьким, то по закону Ома в участке той цепи, потекут токи, сильно превышающие допустимые, резисторам например это может сильно не понравится – они перегреются, почернеют, а в особо тяжелых случаях даже сгорят. Это в полной мере относится и к любым полупроводникам.

Максимальная температура видеокарты

Все мы знаем, например, по термопрофилю видеокарт, что температура порядка 75 – 85 градусов является обычно предельной для кремния, при длительной работе, и видеокарта у нас в итоге выдает артефакты, а например чипсет на материнской плате начинает аномально греться, и в результате в лучшем случае компьютер будет работать не стабильно, а в худшем – вообще не будет включаться. Так вот, транзисторы и диоды, как и любые микросхемы, это все те-же полупроводники, которые при появлении сверх токов и увеличения температуры просто сгорят.

Сгоревший резистор обычный

Как же можно определить, что деталь сгорела с помощью мультиметра? Резисторы очень часто уходят в обрыв при сгорании, если резистор не звонится даже на пределе два МегаОма – скорее всего он сгорел. Что означает сгорел резистор с физической точки зрения? Это значит у него стало очень большое сопротивление между выводами, а раз так, то по закону Ома там условно текут микроскопические токи. Что можно считать как разрыв цепи. Любые полупроводники напротив, очень часто уходят в короткое замыкание или низкое сопротивление, но это не всегда так. Почему этот параметр, сопротивление радиодетали так важен, для работы схемы, мы разобрали.

Резистор в планарном корпусе

Теперь мы можем вообще в принципе любой предмет оценить с точки зрения его проводимости для электрического тока. Разберем например, такую ситуацию – почему телевизор принесенный из гаража с холода нельзя сразу включать в сеть, а нужно дать постоять минут 30-40 в тепле, и дать выравняться температурам.

Пыль в блоке питания

Дело в том, что на выводах радиодеталей, могут образоваться капельки воды, от инея, а вода у нас хороший проводник и сопротивление между близко расположенными выводами микросхемы, содержащей например силовой транзистор, включающий устройство, у нее оказываются замкнуты, два или даже все три вывода, транзистора или микросхемы, между собой. К чему это приводит?

Обозначение выводов транзистора

Те выводы микросхемы или например базовый вывод транзистора, они соединены с низковольтной частью данного прибора, и подача на них высокого напряжения приведет к их обязательному пробою, уменьшению сопротивления, либо даже к короткому замыканию, и при этом может прихватить с собой еще какие либо детали на схеме. С какой целью нужно регулярно счищать пыть с плат устройства? Первое – пыль, это теплоизолятор, он мешает отвести тепло от радиодеталей, которые при работе греются, их температура повышается и они выходят из строя.

Вторая причина – пыль на плате между выводами, это конечно не проводник, но и нельзя сказать, что очень хороший изолятор. В нормальных условиях по пыли может и не пробьет, а вот после внесения техники с мороза – все может быть, потому что напитавшаяся влагой пыль имеет более низкое сопротивление, чем сухая, а сохнет она, скорее всего дольше, чем просто небольшой иней на плате.

Плата блока питания импульсного

Умея анализировать схему и печатную плату, вы будете знать, какое примерно сопротивление, в сумме, всех параллельно подключенных деталей, должно быть в той или иной точке. Даже когда мы прозваниваем мультиметром на звуковой прозвонке не полупроводники – мы измеряем тоже самое сопротивление между теми или иными участками цепи.

Звуковая прозвонка мультиметра

Если у нас раздается звуковой сигнал – значит сопротивление между точками в которых мы проводим измерение, ниже чем 50 Ом, цифры конечно примерные, но принцип думаю понятен. Зная какое сопротивление имеет та или иная деталь в рабочем, и в нерабочем состоянии, мы можем проанализировать устройство на работоспособность не имея принципиальной схемы. Со схемой конечно все куда проще, но существует техника, например малоизвестные китайские бренды, на которые схем вы не найдете нигде. В таком случае нам поможет только анализ работы схемы, принцип ее действия, опыт в работе с подобными схемами, либо поиск аналога нашей схемы, пусть и с другими позиционными обозначениями на схеме.

Позиционное обозначение на схеме и номинал

В таком случае, потребуется отслеживать каждый узел по дорожкам, но это конечно лучше, чем вообще отсутствие всякой документации.

Подведём итог

Цель написания данной статьи – показать начинающим электротехникам, что знание основ ремонта техники не только интересно, но и в наше нелегкое в финансовом плане время, может помочь радиолюбителям и электронщикам, сэкономить часть средств на самостоятельном ремонте. А в перспективе, по мере прокачивания своего уровня – регулярно подрабатывать в этой сфере. Это сейчас становится особенно актуально, так как люди теперь все чаще обращаются за ремонтом, а не просто выбрасывают старую и покупают новую бытовую технику, как раньше. Всем удачных ремонтов! AKV.

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными.

Приведем правила проверки некоторых элементов, в том числе и материнской платы.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.

При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом.

Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.

На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.

При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.

Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.

Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования.

На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку.

Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться.

Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.

Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.

Как измерить напряжение на системной плате компьютера?

Для того чтобы измерить напряжение на материнской плате нам потребуется:

1. Материнская плата

2.Тестер(мультиметр или вольтметр)

3.Аккуратность

На лицевой панели мультиметра выставляем круглого вида переключатель в положение “постоянное напряжение” значок обычно выглядит приблизительно так “V-” (или DCV) значение развертки ставим на 20, так как напряжение у нас не большое до 20 вольт.

(рисунок 1 – здесь представлен стандартного вида мультиметр, переключатель стоит для измерения переменного напряжения ACV.)

(рисунок 2 – на рисунке мы видим как черный щуп воткнут в четырёхконтактный раъем в контакт черного провода,там как раз подводиться “земля”)

Идем дальше:

просто касаемся красным щупом нужных мест на материнской плате. Зная напряжения которые должны быть на соответствующей точке, мы легко можем понять где закралась проблема. Например касаясь батарейки на биосе мы сможем понять разряжена она или нет. Какие напряжения должны быть на той или иной точке можно узнать в описании или схеме к материнской плате. Здесь дело уже за вами.

Как проверить резистор на плате

Резистор — это один из наиболее часто используемых элементов в современной электронике. Его название происходит от английского «resist», что означает сопротивление. С помощью резистора можно ограничить действие электрического тока и измерять его, разделять напряжение, задавать обратную связь в электрической цепи. Смело можно сказать, что без этого элемента не обходится ни одна электросхема, ни один прибор. Именно поэтому часто появляется необходимость в измерении сопротивления резистора мультиметром и проверке его работоспособности. В этом материале будет рассказано, как проверить плату на работоспособность мультиметром.

Что такое резистор

В русской научной литературе электрорезиторы часто называют просто «сопротивление». Из этого наименования сразу же становится понятно его предназначение — сопротивляться действию электрического тока. Резистор является пассивным электроэлементом, так как под его действием ток только уменьшается, в отличие от активных элементов, которые повышают его действие.

Из закона Ома и второго закона Кирхгофа следует, что если ток протекает через резистор, то его напряжение падает. Величина его равна силе протекающего тока, умноженной на сопротивление резистора.

Важно! Условное обозначение резистора на схемах — это прямоугольник, так что это легко запомнить. В зависимости от вида резистора он изображается как прямоугольник с обозначением внутри.

Резисторы подразделяют по методу монтажа. Они бывают:

  • Выводными, то есть монтируются сквозь микросхему с радиальными или аксиальными выводами-ножками. Этот вид использовался повсеместно несколько десятков лет назад и сейчас используется для простых устройств;
  • SMD, то есть электрорезисторы без выводов. Они имеют лишь незначительно выступающие ножки, поэтому они монтируются в саму плату. В современных приборах чаще всего используют именно их, так как при автоматической сборке платы конвейером это выгодно и быстро.

Что такое мультиметр

Мультиметр — это прибор, который может производить замеры силы постоянного или переменного тока, напряжения и сопротивления. Он заменяет собой сразу три аналоговых или цифровых прибора: амперметр, вольтметр и омметр. Также он способен изменять основные показатели любой электрической сети, производить ее прозвон. Существует два вида мультиметров: цифровые и аналоговые. Первые представляют собой портативные устройства с дисплеем для отображения результатов. Большинство мультиметров на современном рынке — цифровые. Второй тип уже устарел и не пользуется былой популярностью. Он выглядит, как обычный измерительный прибор со шкалой делений и аналоговой стрелкой, показывающей значение измерений.

Прозвон резистора

Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:

  1. Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
  2. Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
  3. Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.

При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.

Полярность резистора

Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации. Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет. Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.

Номинальное сопротивление

Основной параметр любого резистора — это номинал сопротивления. Равномерностью этого сопротивления является единица измерения Ом. Номинальное значение любого приобретенного резистора маркируется на нем самом, то есть на его корпусе с помощью обозначений в виде полосочек различного цвета. Это было сделано в первую очередь для удобства конвейерного монтажа, где автоматы с машинным зрением с легкостью определяют элемент, который нужно использовать.

Важно! Узнать номинал можно несколькими способами: с помощью специальных справочников и таблиц обозначений, а также любым измерительным прибором.

Таблицы представлены в любом справочнике по электронике и электротехнике, а также идут в комплекте с купленным набором резисторов. Второй способ определения более удобный и понятный, так как все, что нужно сделать — это измерить сопротивление собственноручно. Это поможет определить, насколько сопротивление отличается от номинального, и даст характеристику элемента.

Проверка мультиметром

Для того чтобы проверить электрорезистор, следует действовать следующим образом:

  1. Взять требующий проверки радиоэлемент;
  2. Включить мультиметр и настроить его на измерение сопротивления;
  3. Задать шкалу измерения и ее границы;
  4. Любым способом подключить один щуп мультиметра к одной из сторон резистора, а второй — к оставшейся стороне;
  5. Зафиксировать измерения на экране или аналоговой шкале и закончить тестирование.

Если значение равно нулю или сильно отличается от номинального, то элемент неисправен и подлежит утилизации, так как изменение значения может вывести из строя всю схему. Если значение в норме, то электрорезистор можно использоваться для создания электронных схем. При проверке значений, не выпаивая электрорезистор, следует учитывать влияние шунтирующих цепей.

Таким образом, был разобран вопрос: как проверить резистор мультиметром или тестером. На самом деле сложного ничего нет, так как данный радиоэлемент является одним из самых простых и распространенных среди всех и имеет всего два выхода-контакта без учета полярности. Именно поэтому проверить его сможет каждый, у кого есть мультиметр, тестер или омметр.

Чаще всего встречаются неисправности резисторов, связанные с выгоранием токопроводящего слоя или нарушением контакта между ним и хомутиком. Для всех случаев дефектов существует простой тест. Разберемся, как проверить резистор мультиметром.

Типы мультиметров

Прибор бывает стрелочным или цифровым. Для первого не требуется источник питания. Он работает как микроамперметр с переключением шунтов и делителей напряжения в заданные режимы измерений.

Цифровой мультиметр показывает на экране результаты сравнения разницы между эталонными и измеряемыми параметрами. Для него нужен источник питания, влияющий на точность измерений по мере разрядки. С его помощью производится тестирование радиодеталей.

Виды неисправностей

Резистором называют электронный компонент с определенным или переменным значением электрического сопротивления. Перед тем как проверить резистор мультиметром, его осматривают, визуально проверяя исправность. Прежде всего определяется целостность корпуса по отсутствию на поверхности трещин и сколов. Выводы должны быть надежно закреплены.

Неисправный резистор часто имеет полностью обгоревшую поверхность или частично – в виде колечек. Если покрытие немного потемнело, это еще не характеризует наличие неисправности, а говорит лишь о его нагреве, когда выделяемая на элементе мощность в какой-то момент превысила величину допустимой.

Деталь может выглядеть как новая, даже если внутри оборвется контакт. У многих здесь возникают проблемы. Как проверить резистор мультиметром в данном случае? Необходимо наличие принципиальной схемы, по которой производятся замеры напряжения в определенных точках. Для облегчения поиска неисправностей в электрических цепях бытовой техники выделяются контрольные точки с указанием на них величины этого параметра.

Проверка резисторов производится в самую последнюю очередь, когда нет сомнений в следующем:

  • полупроводниковые детали и конденсаторы исправны;
  • на печатных платах нет сгоревших дорожек;
  • отсутствуют обрывы в соединительных проводах;
  • соединения разъемов надежны.

Все вышеперечисленные дефекты появляются со значительно большей вероятностью, чем выход из строя резистора.

Характеристики резисторов

Величины сопротивлений стандартизованы в ряды и не могут принимать любые значения. Для них задаются допустимые отклонения от номинала, зависимые от точности изготовления, температуры среды и других факторов. Чем дешевле резистор, тем больше допуск. Если при измерении величина сопротивления выходит за его пределы, элемент считается неисправным.

Еще одним важным параметром является мощность резистора. Одной из причин преждевременного выхода детали из строя является ее неправильный выбор по этому параметру. Мощность измеряется в ваттах. Ее выбирают такой, на которую он рассчитан. На схеме условного обозначения мощность резистора определяется по знакам:

  • 0,125 Вт – двойная косая черта;
  • 0,5 Вт – прямая продольная черта;
  • римская цифра – величина мощности, Вт.

Резистор для замены выбирается по тем же параметрам, что и неисправный.

Проверка резисторов на соответствие номиналам

Для проверки необходимо найти значения сопротивлений. Их можно увидеть по порядковому номеру элемента на схеме или в спецификации.

Измерение сопротивления является самым распространенным способом проверки резистора. В данном случае определяется соответствие номиналу и допуску.

Величина сопротивления должна быть в пределах диапазона, который на мультиметре устанавливается переключателем. Щупы подключаются к гнездам COM и VΩmA. Перед тем как проверить резистор тестером, сначала определяется исправность его проводов. Их замыкают между собой, и прибор должен показать величину сопротивления, равную нулю или немного больше. При измерениях малых сопротивлений эта величина вычитается из показаний прибора.

Если энергии элементов питания недостаточно, обычно получается сопротивление, отличное от нуля. В этом случае следует заменить батарейки, поскольку точность измерений будет низкой.

Новички, не зная, как проверить резистор на работоспособность мультиметром, часто касаются руками щупов прибора. Когда измеряются величины в килоомах, это недопустимо, поскольку получаются искаженные результаты. Здесь следует знать, что тело также имеет определенное сопротивление.

При фиксации прибором величины сопротивления, равной бесконечности, это является показателем наличия обрыва (на экране горит “1”). Редко встречается наличие пробоя резистора, когда его сопротивление равно нулю.

После измерения полученное значение сравнивается с номиналом. При этом учитывается допуск. Если данные совпадают, резистор исправен.

Когда появляются сомнения в правильности показаний прибора, следует замерить величину сопротивления исправного резистора с тем же номиналом и сравнить показания.

Как измерить сопротивление, когда номинал неизвестен?

Установка максимального порога при измерении сопротивления не обязательна. В режиме омметра можно установить любой диапазон. Мультиметр из-за этого не выйдет из строя. Если прибор покажет “1”, что означает бесконечность, порог следует увеличивать, пока на экране не появится результат.

Функция прозвонки

А еще как проверить резистор мультиметром на исправность? Распространенным способом является прозвонка. Положение переключателя для данного режима обозначается значком диода с сигналом. Знак сигнала может быть отдельно, верхняя граница срабатывания его не превышает 50-70 Ом. Поэтому резисторы, номиналы которых превышают порог, прозванивать не имеет смысла. Сигнал будет слабым, и его можно не услышать.

При значениях сопротивления цепи ниже граничного значения прибор издает писк через встроенный динамик. Прозвонка делается путем создания напряжения между точками схемы, выбранными с помощью щупов. Чтобы данный режим работал, нужны подходящие источники питания.

Проверка исправности резистора на плате

Сопротивление замеряют, когда элемент не подключен к остальным в схеме. Для этого нужно освободить одну из ножек. Как проверить резистор мультиметром, не выпаивая из схемы? Это делается только в особых случаях. Здесь необходимо проанализировать схему подключений на наличие шунтирующих цепей. Особенно на показания прибора влияют полупроводниковые детали.

Заключение

Решая вопрос, как проверить резистор мультиметром, необходимо разобраться, как измеряется электрическое сопротивление и какие пределы устанавливаются. Прибор предназначен для ручного применения и следует запомнить все приемы использования щупов и переключателя.

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Как прозванивать мультиметром

Один из самых востребованных, особенно в быту, режимов работы мультиметра – это «прозвонка». Именно с помощью этой функции можно найти, обрыв в электрической цепи или замыкание, а это, зачастую, позволяет быстро диагностировать и устранить неисправность.

Почему режим называется «прозвонка»

Проверить целостность цепи можно было и раньше, используя режим замера сопротивления – омметра. Главное же отличие прозвонки в том, что при замерах, если электрическая связь есть между тестируемыми участками то, дополнительно к показаниям на экране, раздаётся звуковой сигнал – зуммер, от сюда и возник термин прозвонка или прозвон.

Этот звуковой сигнал значительно ускоряет процесс проверки, вам не приходится отвлекаться, смотреть на экран, да и не всегда это удобно, а услышав зуммер (либо не услышав) вы уже знаете результат. Особенно это полезно при массовых замерах, например, при поиске в пучке проводов одного определенного.

Обозначение прозвонки на мультиметре

В одной из недавних статей – «Как пользоваться мультиметром», я уже рассказывал об основных режимах работы стандартного тестера, пределах измерений и способах тестирования, в частности и о функции прозвонки, которая имеет следующее обозначение:

Как видите, маркировка точно передаёт основной смысл этого режима, ведь она состоит из двух элементов – значка диода, который символизирует проверку и зуммера, обозначающего звуковой сигнал.

Принцип работы прозвонки

Для лучшего понимания, как именно мультиметр узнаёт есть ли обрыв в цепи или нет, я, общих чертах, опишу принцип работает этого режима.

Здесь всё предельно просто, принцип действия прозвонки, основан на всем известном законе Ома, главном правиле электрики и электротехники:

I = U / R , где I – Сил тока, U – Напряжение в сети, R – сопротивление

В каждом мультиметре имеется источник питания – батарейка или аккумулятор, с помощью них создаётся напряжение на проверяемом участке сети – подаётся ток и зная его характеристики – высчитывается результат.

Что показывает мультиметр при прозвонке

Мультиметр, при прозвонке, показывает вычисленную им величину падения напряжения в милливольтах в этой цепи.

Создаваемый же тестером ток, на проверяемом участке, величиной около 1 миллиампера, выбран так не случайно, так как падение напряжения в милливольтах в таком случае соответствует сопротивлению в Омах.

Другими словами, при прозвонке электрических цепей или электроматериалов нам показывается величина падения напряжения, которая равна сопротивлению этого участка в Омах.

как пользоваться прозвонкой

Вот мы подошли к самому главному вопросу, как правильно прозванивать мультиметром:

Первое и самое главное правило: Прозванивать можно только полностью обесточенные цепи, ни в коем случае не проверяйте, например, целостность провода, который находится под напряжением.

Для большей наглядности, давайте рассмотрим, как пользоваться прозвонкой на самом простом примере – проверке куска провода:

Прозвонка мультиметром провода

1. Устанавливаем щупы в разъемы мультиметра:

     – Красный щуп в гнездо VΩmA

     – Черный щуп в гнездо COM

2. Переводим колесо управления в режим прозвонки, который промаркирован соответствующим образом (значок диода и зуммера)
На экране, при этом, должна высветится единица.

3. Проверяем правильность работы мультиметра, соединяя контакты щупов, закоротив их.

Если прибор работает правильно, вы услышите звук зуммера, а на экране высветится значение близкое к нулю.

4. Прозваниваем провод. Прикладывая щупы мультиметра к его жилам с двух сторон, как показано на изображении ниже. Если проводник целый, то вы сразу же услышите звуковой сигнал зуммера, а показания на экране будут близкие к “0”, например 0,001.

Если же жила провода повреждена и один из её концов не имеет электрической связи со вторым, то показания мультиметра не изменятся, будет высвечиваться «1» и звукового сигнала не будет.

Как видите, всё довольно просто, и вы, если у вас есть под рукой мультиметр, можете сами попробывать прозвонить, что-нибудь. Только я еще раз напомню – не прозванивайте под напряжением, даже под небольшим.

 Один из наглядных, часто встречающихся в быту, примеров проверки мультиметром проводки описан в следующей нашей статье – КАК ПРОЗВОНИТЬ РОЗЕТКУ. Это подробная, пошаговая инструкция диагностики неработающей розетки, обязательно изучите её, чтобы понять, как прозванивать электропроводку. 

Что делать если у мультиметра нет режима прозвонки

 

У некоторых бюджетных электронных тестеров нет отдельного режима прозвонки со звуковым оповещением, но при этом проверить целостность цепи можно и ими, только это не так удобно.

Например, у достаточно популярной модели dt 830b, нет зуммера, но вот режим проверки диодов есть, можно воспользоваться им, наблюдая изменение показаний на экране. Щупы при этом подключаются так же, как описано выше в порты COM и VΩmA.

Если показания при замерах на экране будут отличные от единицы – то электрическая связь на проверяемом участке есть. Проверить работоспособность этого способа можно соединив щупы, если все в порядке, то на экране должны появится нули.

В моделях мультиметров, где вообще нет никаких дополнительных функций, в частности в аналоговых приборах, прозвонить можно переключив регулятор в режим измерения сопротивления – омметра.

При этом выбирать необходимо самый минимальный доступный порог – например 50 Ом или 200 Ом. После чего измерять по обычной схеме, описанной выше, и смотреть за изменением показаний на экране – если изменения есть – цепь цела. Для домашних, бытовых условий, этого вполне достаточно, чтобы найти какой провод оборван, определить сгоревшую дорожку на плате и многое другое.

На этом у меня всё, на мой взгляд этой информации вполне достаточно, чтобы любой человек смог научиться прозванивать мультимтром, даже не делая этого никогда ранее. Если же у вас остались вопросы или есть здоровая критика, дополнения – обязательно пишите в комментариях к статье, кроме того подписывайтесь на нашу группу ВКОНТАКТЕ – следите за появлением новых материалов.

В следующих статьях мы поговорим о других полезных функциях и способах использования цифрового мультиметра в быту, определим фазу и ноль в розетке, измерим напряжение в сети и многое другое, оставайтесь с нами.

Короткое замыкание на плате | Микросхема

Сегодня наткнулся на весьма практичный способ нахождения короткого замыкания на материнской плате. Но об этом в видео внизу публикации. А пока поговорим немного о другом способе, но тоже довольно действенном.

К слову, описанный способ является свободным повествованием Чиповода, радиолюбителя, недавно ведшего личный блог. У новичков …, да что греха таить, даже у матёрых радиолюбителей поиск короткого замыкания на плате из нескольких сотен радиодеталей, порой, вызывает ступор. Да, поиск КЗ – неблагодарное, скучное дело. Но, всё же, как бы нам ни хотелось, короткие замыкания случаются, и искать их нужно.

Принесли мне несколько свежесобранных плат из монтажного отдела. Платы надо было запустить и проверить в работе. Мне всегда очень нравилась фраза из журнала «Радио», которой оканчивалось описание большинства конструкций: «Правильно собранное устройство из исправных деталей работает сразу и в настройке не нуждается!». Я тоже решил придерживаться такого правила – это здорово, когда из 10 собранных плат все 10 оказываются рабочими. Однако в этот раз получился затык.

После прошивки три платы из четырёх заработали сразу без проблем, порадовав меня исполнением девиза, а вот с 4-ой платой вышла накладка. При включении питания сработала защита по току, блок питания отключился. Оказалось, что плата имеет короткое замыкание на землю по питанию. Это меня расдосадовало.

Плата размером примерно 150 x 100 мм, порядка 400 компонентов на ней, несколько BGA микросхем. Монтаж плат у нас ручной (кроме BGA, конечно). Платы наши в монтажном отделе проходят визуальный осмотр под микроскопом. Прошелся с лупой по плате – ничего криминального не обнаружил, кругом гладь припоя, никаких соплей и аномалий установки компонентов обнаружено не было. Стал я думать, как же мне найти короткое замыкание?

Сначала меня посетила мысль о том, что КЗ может быть на внутренних слоях платы, поскольку платы пришли от нового производителя печатных плат. И хотя отметка об электроконтроле присутствовала, цена заказа была очень маленькой, что вызывало сомнение о качестве плат. С другой стороны, могли быть убитые в печке компоненты, но претензий к печке за 3 года работы не было ни одной. Ещё был вариант – кривая пайка. Такое у нас, к сожалению, случалось. Коллеги мне в шутку предложили взять источник помощнее и подать на плату – мол, место КЗ до красна раскалится (в совете, кстати, есть разумное зерно – см. видео). Думал я, думал, и, наконец, мне пришла в голову мегакреативная идея.

Подал я на плату питание +3,3 вольт – как и положено, БП сработал по току и перешёл в режим стабилизации тока. Далее я выставил на источнике питания ток 3 А, и он стабильно подавался на плату. Пощупал руками микросхемы – все были холодные. Тогда я перешёл к реализации мегакреативного плана. Взял мультиметр и перевёл его в режим измерения напряжения. Далее земляной щуп мультиметра я подключил к точке подключения земли от источника питания к плате. Вторым щупом измерил напряжение в точке подключения источника питания. Мультиметр показал около 0,3 В, т.е. при токе 3 А на дорожках платы падало эти самые 0,3 В. Естественно, в точке подключения земляного щупа мультиметр показал 0 В. Таким образом, получились две точки – максимума и минимума падения напряжения.

Далее я стал измерять напряжение в различных точках платы. Оно незначительно различалось, но тенденция была очевидна – при приближении к точке КЗ напряжение падения в точках, электрически соединённых с +3,3 В, уменьшалось, а напряжение в точках, связанных с землёй, увеличивалось. Началось чётко прослеживаться прохождение тока по плате. Ток – он ведь не дурак, он движется по цепи наименьшего сопротивления.

В итоге, за считанные минуты я отыскал точку на полигоне +3,3 В и соседнюю с ней VIA на полигоне земли, напряжение в которых было практически одинаковым. От этих точек шли дорожки к выводам питания и земли микросхемы в корпусе SOIC-20. Напряжение на выводах микросхемы абсолютно совпало. Эврика! Взяв лупу и приглядевшись, я обнаружил совсем незаметную перемычку между выводами микросхемы – буквально, волосок. К тому же, она была прямо на выходе из корпуса, а не в месте пайки, куда обычно смотрят во время проверки. После ликвидации перемычки короткое замыкание устранилось, и плата заработала как надо, подтвердив, кстати, лозунг журнала «Радио».

А теперь предлагаю наглядно посмотреть довольно интересный способ поиска короткого замыкания:

Обсуждайте в социальных сетях и микроблогах

Метки: полезно знать, пробники

Радиолюбителей интересуют электрические схемы:

Печатные платы
Усилитель мощности звуковой частоты – 200 ватт

Как использовать мультиметр на печатной плате

Мультиметры

могут быть ценными инструментами для поиска и устранения неисправностей при работе с печатными платами. Даже если у вас нет электрической схемы печатной платы, которая могла бы идентифицировать компоненты и дать вам значения напряжения и резистора, которые должны присутствовать, на многих печатных платах есть контрольные точки, которые четко обозначены. Используйте мультиметр на этих контрольных точках, чтобы проверить, соответствует ли измеренное напряжение напряжению на маркированной контрольной точке.Если они совпадают, это даст вам уверенность в том, что печатная плата работает нормально.

Инструкции

1 Подключите щупы мультиметра к мультиметру, соблюдая правильную полярность. Красный зонд мультиметра является положительным зондом и имеет банановый разъем на конце провода зонда. Вставьте банановый разъем в красный штекер мультиметра. Вставьте банановый разъем черного щупа в черный штекер мультиметра.

2 Выберите функцию мультиметра для измерения напряжения или сопротивления, повернув ручку функций или нажав функциональную кнопку.Если вы собираетесь измерять напряжение, например измерять мощность, подаваемую на печатную плату, выберите напряжение переменного тока (AC) или постоянного тока (DC). Электрическая схема печатной платы подскажет, какой тип напряжения присутствует.

3 Отключите электрическое устройство, частью которого является печатная плата. Снимите с устройства любой корпус, чтобы получить доступ к печатной плате. Соблюдая осторожность, не касайтесь каких-либо электрических компонентов или проводки, подключите электрическое устройство и включите его.

4 Прикоснитесь щупами мультиметра к контрольным точкам печатной платы, если вы измеряете напряжение. Держите руки на пластиковом зелье зондов, чтобы не получить шок. Красный щуп идет к контрольной точке, а черный щуп идет на массу или общий. Если вы измеряете сопротивление резисторов, подключите по одному щупу к каждому концу резистора.

5 Считайте показания мультиметра для измерения напряжения или сопротивления.

6 После определения напряжения или сопротивления снимите щупы и запишите значение.Перейдите к следующей контрольной точке или резистору и повторите измерение. После того, как вы сделали все свои измерения, выключите электрическое устройство и мультиметр. Отключите питание от электрического устройства и снова установите корпус.

Тестирование печатной платы (PCB) с помощью мультиметра Базовая электроника

Печатная плата (PCB) – это основа электронных компонентов, на которой размещаются и припаиваются различные компоненты. Печатная плата изготавливается путем травления слоя меди на плате, как это показано на принципиальной схеме.Для этого существуют разные методы, но наиболее распространенный из них основан на использовании раствора хлорида железа. Если этот процесс травления не будет выполнен должным образом, может произойти короткое замыкание соседних дорожек. Часто короткое замыкание происходит из-за неправильного расположения на медной пластине. Обнаружение короткого замыкания на печатной плате может стать очень сложной задачей, если плата полностью протравлена ​​и имеет очень тонкие линии соединений между различными компонентами.

Печатная плата

Таким образом, проверка целостности является очень важной задачей печатной платы перед установкой различных компонентов, которые используются в схеме.

Мультиметр

Мультиметр широко используется во всех измерительных техниках. С помощью мультиметра мы можем измерять различные величины, такие как сопротивление, переменное и постоянное напряжение, ток, емкость и т. Д. Мультиметр – это вольтметр, амперметр и миллиметр, объединенные вместе. Там он также известен как ВОМ (Вольт-Ом миллиметр). Мультиметр также может иметь разные возможности, например, тестирование диодов, тест когерентности, тест транзистора, тест обоснования TTL и тест повторения.

Аналоговый мультиметр

Важные моменты для проверки целостности печатной платы –

  • Сначала проверьте следы печатной платы под микроскопом или увеличительным стеклом. Посмотрите, сможете ли вы найти какие-нибудь короткие следы. Определите все подозрительные места на доске с проведенной сортировкой и отметьте эти места маркером. Старайтесь избегать этих коротких замыканий там, где вы отметили. Вы можете наносить метки на близлежащие компоненты, на землю или самолеты снабжения.
  • Если имеется принципиальная схема, найдите следы или места короткого замыкания, отмеченные на схеме как подозрительные.Проверьте, должны ли эти точки замыкания быть отдельными или соединенными. В некоторых случаях следы соединяются намеренно. Пройдите все подозрительные точки короткого замыкания и удалите те, которые подключены на принципиальной схеме. Если принципиальной схемы там нет, пропустите этот шаг.
Изображение цифрового мультиметра
  • Вставьте красный штекер мультиметра в гнездо «V» миллиметра, а штекер черного провода – в гнездо «COM». Установите ручку мультиметра в положение проверки целостности цепи.Эта позиция обычно имеет знак с несколькими небольшими параллельными линиями и значок диода.
  • Включите мультиметр. Проверьте тестер целостности мультиметра, соприкоснув его два вывода вместе. При этом должен продолжаться звуковой сигнал. Если он не издает звуковой сигнал, значит, вы не установили ручку в положение проверки непрерывности, или при проверке, возможно, необходимо заменить батарею.
  • Подключите первый датчик мультиметра к одному концу, а второй датчик к последней точке подозрительных следов.Не имеет значения, какая полярность подключений. Вам придется сильно надавить, чтобы установить электрическое соединение между щупами мультиметра и дорожками. Если раздается звуковой сигнал, значит, короткое замыкание. Повторите этот процесс для всех подозрительных следов.
Тестирование печатной платы

Печатная плата, или печатная плата, содержит большое количество электронных компонентов, которые соединены между собой тонкими медными дорожками. Расстояние между этими следами обычно очень мало, порядка менее 1/2 миллиметра.Такое короткое расстояние делает расположенные рядом следы склонными к короткому замыканию, которые электрически соединяются друг с другом. Электрическое короткое замыкание в цепи может помешать ее правильной работе, вывести ее из строя или повредить один или несколько ее компонентов.

Как проверить короткое замыкание на печатной плате | Блог о дизайне печатных плат | Блог о проектировании печатных плат

Захария Петерсон

| & nbsp Создано: 9 февраля 2018 г. & nbsp | & nbsp Обновлено: 23 ноября 2020 г.

У каждого инженера есть история «наихудшего сценария», что они выжили.В худшую неделю моей профессиональной жизни мы получили партию просроченных печатных плат. Предполагалось, что эти печатные платы будут установлены в оборудование и развернуты на объектах клиентов более месяца назад. Мы были немного подавлены.

Само собой разумеется, что поставки этих новых печатных плат были небольшими. Как только мы включили их для тестирования, вы почувствовали запах озона, исходящий от печатных плат. Один из самых дорогих компонентов нагрелся до такой степени, что на самом деле обжег пару человек, проводивших «сенсорный тест».«У нас не было времени, – подумали мы, – получить тестовую партию печатных плат, и мы просто заказали полностью укомплектованные печатные платы.

Если оставить в стороне очевидные разочарования, объяснять боссу серьезные аппаратные отказы и сосать обожженные пальцы – одна из худших встреч, которые у вас могут быть. Лучшее, что вы можете сделать, – это предложить план на будущее. Если вы когда-либо попадали в такую ​​ситуацию, вот как стать мастером поиска короткого замыкания на печатной плате.

Как проверить короткое замыкание в печатной плате

Вот несколько важных шагов в этой статье, которые вы можете предпринять для обнаружения коротких замыканий на печатных платах:

Шаг 1: Как найти короткое замыкание в печатной плате

Визуальный осмотр

Предполагая, что вы прошли этап проектирования макета и нет встроенного автоматического выключателя, первым шагом для обнаружения короткого замыкания на печатной плате является тщательный осмотр всей поверхности печатной платы.Если он у вас есть, используйте увеличительное стекло или микроскоп с малым увеличением во время исследования печатной платы. Начиная с источника питания и двигаясь вперед, ищите усы олова между контактными площадками или паяными соединениями. Любые трещины или пятна припоя требуют особого внимания. Проверьте все свои переходные отверстия. Если вы указали переходные отверстия без покрытия, убедитесь, что это так на плате. Плохо покрытые переходные отверстия могут создать короткое замыкание между слоями и оставить все, что связано с землей, VCC или и тем, и другим.

Если короткое замыкание действительно серьезное и приводит к тому, что компоненты достигают критических температур, вы действительно увидите на печатной плате прогоревшие пятна.Они могут быть довольно маленькими, но будут резко обесцвечиваться в коричневый цвет вместо обычной зеленой паяльной маски. Если у вас несколько плат, сгоревшая печатная плата может помочь вам сузить конкретное место без источника питания до другой платы, чтобы жертвовать при поиске. К сожалению, на нашей плате не было никаких ожогов на самой печатной плате, только незадачливые пальцы, проверявшие микросхемы на предмет перегрева.

Некоторые короткие замыкания будут внутри печатной платы и не вызовут ожогов.Это также означает, что они не будут заметны с поверхностного слоя. Здесь вам понадобится другой метод для обнаружения короткого замыкания на печатной плате.

Burns определенно может помочь вам найти короткометражку, но по очень низкой цене.

Инфракрасное изображение

Если вы не работаете в стартапе, который просто потратил бюджет на оборудование, возможно, вам повезет, и у вас будет доступ к инфракрасной камере. Использование инфракрасной камеры может помочь вам определить места, где выделяется большое количество тепла.Если вы не видите горячей точки вдали от ваших активных компонентов, возможно, у вас короткое замыкание на печатной плате, даже если короткое замыкание происходит между внутренними слоями.

Короткое замыкание обычно имеет более высокое сопротивление, чем обычная дорожка или паяное соединение, поскольку оно не имело преимущества в плане оптимизации в вашей конструкции (если вы действительно плохо игнорируете проверки правил). Это сопротивление, а также естественно высокий ток из-за прямого соединения между питанием и землей означает, что проводник в коротком замыкании на печатной плате будет нагреваться.Начните с наименьшего возможного тока. В идеале вы должны увидеть короткое замыкание до того, как оно нанесет больше вреда.

Тест пальцем – это один из способов проверить, не перегревается ли конкретный компонент

Шаг 2: Как проверить цепь на короткое замыкание на электронной плате

Помимо первого шага в использовании ваших надежных глаз для проверки платы, есть несколько других способов, которыми вы можете проверить, чтобы найти потенциальную причину короткого замыкания печатной платы.

Тестирование с помощью цифрового мультиметра

Чтобы проверить печатную плату на короткое замыкание, необходимо проверить сопротивление между различными точками цепи. Если визуальный осмотр не обнаруживает никаких ключей к разгадке местоположения или причины короткого замыкания, возьмите мультиметр и попытайтесь отследить физическое местоположение на печатной плате. Подход с использованием мультиметра вызывает неоднозначные отзывы на большинстве форумов по электронике, но отслеживание точек тестирования может помочь вам выяснить, в чем проблема.

Вам понадобится очень хороший мультиметр с чувствительностью в миллиомах, и проще всего, если у него есть функция гудка, которая предупреждает вас, когда вы прощупываете короткое замыкание. Например, если вы измеряете сопротивление между соседними дорожками или контактными площадками на печатной плате, вы должны измерить высокое сопротивление.

Если вы измеряете очень низкое сопротивление между двумя проводниками, которые должны быть в отдельных цепях, возможно, что эти два проводника соединены перемычкой либо внутри, либо снаружи. Обратите внимание, что две соседние дорожки или контактные площадки, соединенные перемычкой с индуктором (например, в цепи согласования импеданса или в схеме дискретного фильтра), будут давать очень низкое сопротивление, поскольку индуктор представляет собой просто спиральный проводник.Однако, если два проводника на плате расположены очень далеко друг от друга и вы читаете очень маленькое сопротивление, значит, где-то на плате есть мост.

Тестирование относительно земли

Особое значение имеет короткое замыкание, связанное с заземленным переходным отверстием или плоскостью заземления. Многослойные печатные платы с внутренней заземляющей поверхностью будут включать обратный путь через соседние переходные отверстия, что обеспечивает удобное место для проверки всех других переходных отверстий и контактных площадок на поверхностном слое платы. Установите один щуп на заземление, а другой щуп коснитесь через другие проводники на плате.

Такое же заземление будет присутствовать в других местах на плате, а это означает, что если вы коснетесь каждым щупом двух разных заземленных переходных отверстий, вы увидите очень маленькое сопротивление. При этом обратите внимание на свою компоновку, так как вы не хотите ошибочно принять короткое замыкание за общее заземление. Все остальные открытые проводники, которые не связаны с землей, должны иметь очень высокое сопротивление между вашим общим заземлением и самим проводником. Если вы прочитали очень низкое значение и у вас нет индуктора между рассматриваемым проводником и землей, возможно, у вас неисправный компонент или короткое замыкание.

Мультиметр может помочь найти короткое замыкание, но он не всегда достаточно чувствителен, чтобы его обнаружить.

Закороченные компоненты

Проверка на короткое замыкание компонента также включает использование мультиметра для измерения сопротивления. В случае, если визуальный осмотр не выявил чрезмерного количества припоя или металлических чешуек между контактными площадками, короткое замыкание могло образоваться во внутренних слоях между двумя контактными площадками / контактами на компоненте.Также возможно короткое замыкание между контактными площадками / штифтами компонента из-за плохой сборки. Это одна из причин, по которой печатные платы должны проходить проверки DFM и правил проектирования; контактные площадки и переходные отверстия, расположенные слишком близко друг к другу, могут непреднамеренно замкнуться во время изготовления.

Здесь вам нужно измерить сопротивление между контактами на ИС или разъеме. Соседние булавки особенно подвержены короткому замыканию, но это не единственные места, где может образоваться замыкание. Убедитесь, что ваше сопротивление между контактными площадками / контактами относительно друг друга и заземлением имеет низкое сопротивление.

Проверьте сопротивление между площадкой заземления и другими контактами ваших разъемов и микросхем. Это показано здесь для разъема USB.

Сузить местоположение

Если вы считаете, что обнаружили короткое замыкание между двумя проводниками или между некоторым проводником и землей, вы можете сузить область, проверив соседние проводники. Подключив один провод мультиметра к подозрительному короткому замыканию, переместите другой провод к другим ближайшим заземляющим контактам и проверьте сопротивление.По мере того, как вы переходите к дальнейшим заземляющим соединениям, вы должны увидеть изменение сопротивления. Если сопротивление увеличивается, значит, вы перемещаете заземленный провод от места короткого замыкания. Это поможет вам сузить точное местоположение короткого замыкания, и вы даже можете сузить его до определенной пары контактных площадок / контактов на компоненте.

Шаг 3: Как найти неисправные компоненты на плате

Неисправные компоненты или неправильно установленные компоненты могут быть частью короткого замыкания, создавая любое количество проблем в вашей плате.Ваши компоненты могут быть неисправными или поддельными, что может привести к короткому замыканию или появлению короткого замыкания.

Плохие компоненты

Некоторые компоненты имеют тенденцию выходить из строя, например, электролитические конденсаторы. Если у вас есть подозрительные компоненты, сначала проверьте их. Если вы не уверены, вы обычно можете выполнить быстрый поиск в Google компонентов, которые, по вашему мнению, «не работают», чтобы выяснить, является ли это распространенной проблемой. В случае, когда вы измеряете очень низкое сопротивление между двумя контактными площадками / контактами (ни один из них не является контактом заземления или питания), у вас может быть короткое замыкание из-за сгоревшего компонента.Это явный признак того, что конденсатор вышел из строя. Конденсаторы также будут вздуться, если они выйдут из строя или если приложенное напряжение превысит порог пробоя.

Видите выпуклость наверху этого конденсатора? Это верный признак того, что конденсатор вышел из строя.

Шаг 4: Как разрушить печатную плату

Разрушительное испытание, очевидно, является крайней мерой. Если у вас есть доступ к рентгеновскому аппарату, вы можете исследовать внутреннюю часть доски, не разрушая ее.

При отсутствии рентгеновского аппарата вы можете начать извлекать компоненты и снова проводить тесты мультиметра. Это помогает двумя способами. Во-первых, это значительно упрощает доступ к прокладкам, в том числе термопрокладкам, которые могут закорачиваться. Во-вторых, это исключает вероятность того, что неисправный компонент был причиной короткого замыкания, что позволяет сосредоточиться на проводниках. Если вам удастся сузить место короткого замыкания до соединения на компоненте, например, между двумя контактными площадками, может быть неочевидно, неисправен ли компонент или есть короткое замыкание где-то внутри платы.На этом этапе вы можете удалить компоненты и проверить контактные площадки на вашей плате. Удаление компонентов позволяет проверить, неисправен ли сам компонент, или контактные площадки на плате замкнуты внутри.

Если местоположение короткого замыкания (или, возможно, нескольких коротких замыканий) все еще неуловимо, вы можете разрезать доску и попытаться сузить местоположение короткого замыкания. Если у вас есть представление об общем расположении шорт, вы можете вырезать часть платы и повторить тесты мультиметра в этом разделе.На этом этапе вы можете повторить описанные выше тесты с помощью мультиметра, чтобы проверить наличие коротких замыканий в определенных местах. Если вы дошли до этого момента, то ваша короткометражка уже особенно неуловима. Это, по крайней мере, позволит вам сузить местоположение вашего шорта до определенной области доски.

Когда мы проверили наши платы на наличие коротких замыканий, которые не включали инфракрасное тестирование, потому что мы были неудачным стартапом, все, что мы могли выяснить, это то, что короткое замыкание было на одной половине доски. Итак, мы разрезали доску на четвертинки и протестировали каждую секцию.Возвращение к мультиметру подтвердило, что у большинства секций не было VCC и заземления, связанных вместе. Но эта единственная четверть доски была маленькой черной дырой тайны, и мы никогда не приближались к ней. Мы действительно сменили производителей и получили тестовые платы на следующем этапе производства, и наши платы просто работали нормально.

Если вы хотите избежать душераздирающего беспокойства по поводу поиска коротких замыканий, убедитесь, что у вас есть надежная проверка правил внутрисхемного тестирования на наличие ошибок, проблем проектирования и допусков производителя.Надежное программное обеспечение для проектирования, такое как CircuitStudio ® от Altium Designer, может сделать большую часть этого за вас, а также предоставить единую среду проектирования, необходимую для выполнения ваших проектов с минимальной головной болью и обгоревшими пальцами.

Если вы все еще заинтересованы в поиске возможных коротких позиций или хотите обсудить, как правильное программное обеспечение для проектирования печатных плат может помочь, подумайте о том, чтобы поговорить с экспертом в Altium Designer сегодня.

Узнайте больше об Altium Designer сегодня.

Как проверить электрические и электронные компоненты с помощью мультиметра?

Как проверить электрические и электронные компоненты с помощью мультиметра?

Поиск и устранение неисправностей с помощью мультиметра

Все мы знаем правило и важность поиска неисправностей в электротехнике и электронике. Большинство компонентов и элементов EE, используемых в электрическом и электронном оборудовании, устройствах и инструментах, имеют общие функции и операции.

Чтобы быть хорошим анализатором и специалистом по устранению неполадок, вы должны знать следующие основные методы и иметь хорошие навыки в области поиска и устранения неисправностей в электрических и электронных устройствах, проектирования и анализа электрических / электронных схем. Для этой цели мы начали учебное пособие по мультиметру, в котором мы будем использовать DMM (цифровой мультиметр) и AVO Meter (измеритель сопротивления напряжения, ампер) или мультиметр (цифровой / аналоговый) для проверки различных электрических / электронных устройств, инструментов и компонентов, чтобы найти их клеммы и состояние, такие как короткие, разомкнутые, исправные или неисправные.

В этом базовом руководстве по мультиметру мы будем использовать цифровой и аналоговый мультиметр для проверки следующих электрических и электронных компонентов, устройств, инструментов и инструментов:

  • Кабель и провода
  • Переключатель / кнопки
  • Предохранитель
  • Конденсаторы и Индукторы
  • Резисторы и перегоревшие резисторы
  • Диоды и светодиоды
  • Батарея
  • Транзисторы
  • Реле

При поиске и устранении неисправностей мы используем различные виды основных инструментов для электротехники и электроники, но главным и важным инструментом является мультиметр.Теперь мы по очереди проверим с помощью этого инструмента вышеупомянутые компоненты и устройства.

Кабель и провода

Чтобы проверить, находятся ли кабель и провода в хорошем состоянии или сломаны, перед тем, как выбрать подходящий кабель и провод для установки электропроводки, мы проводим проверку целостности. Для этого возьмите измеритель AVO (или цифровой мультиметр) и выберите «Сопротивление» (в измерителе AVO… Поверните ручку на «Ω» или «Сопротивление»).

Теперь соедините обе клеммы, т.е.е. оба оголенных конца кабеля / провода с клеммами AVO или цифрового мультиметра. Если показание измерителя показывает «0 Ом», это означает, что кабель / провод находится в «хорошем состоянии». С другой стороны, если показание счетчика «Бесконечное», это означает, что кабель / провод может быть поврежден или сломан. Значит вам нужно заменить его на новый.

Переключатель / нажимные кнопки

Используйте тот же метод (упомянутый выше для проверки кабеля и проводов) … для правильного выполнения этого метода вам необходимо будет применить этот метод в обоих случаях (положения ВКЛ и ВЫКЛ) на переключателях и кнопки… Другими словами, сначала примените этот метод к переключателям / кнопкам, а затем «нажмите» кнопку и повторите тот же метод еще раз.

Если при первой попытке показание счетчика равно «нулю», а во второй попытке показание счетчика бесконечно, это означает, что кнопка переключения / нажатия находится в хорошем состоянии. Если показания мультиметра равны «нулю» или «бесконечности» в обеих попытках, это означает, что в переключателе произошло короткое замыкание или разрыв цепи, и вам следует заменить его новым.

Предохранитель

Чтобы проверить состояние предохранителя, т.е. «предохранитель» в хорошем состоянии или поврежден? … Выполняем тот же метод, т.е. проверка непрерывности, как указано выше.Короче говоря, если показание счетчика равно нулю, это означает, что предохранитель в хорошем состоянии. Если показания мультиметра бесконечны, это означает, что предохранитель может быть поврежден или перегорел. Поэтому вам следует немедленно заменить его новым.

Конденсатор

Мы уже обсуждали тему «Как проверить конденсатор с помощью цифрового (мультиметр) и аналогового (измеритель AVO) четырьмя (6) методами с графическими изображениями».

В этом руководстве вы можете проверить с помощью цифрового мультиметра или измерителя AVO, исправен ли конденсатор, короткое замыкание или обрыв?

Диод и светодиод

Мы обновили подробный пост о «Как проверить диод с помощью цифрового и аналогового мультиметра» четырьмя методами.В этом руководстве по мультиметру мы показали разные вещи о диодах, такие как использование режима диода в DMM и режима сопротивления в DMM и AMM для идентификации клемм диода, светодиода и стабилитрона. Кроме того, вы также можете проверить исправность диода, неисправность, короткое замыкание или обрыв.

Транзистор

В другом подробном руководстве по мультиметру «Как проверить транзистор с помощью мультиметра (DMM + AVO)» вы можете найти базу, коллектор и эмиттер транзистора с помощью цифрового и аналогового мультиметра.Кроме того, существует простой способ запомнить направление транзисторов NPN и PNP. Короче говоря, в этом руководстве вы сможете использовать мультиметр в режиме сопротивления (цифровой + аналоговый мультиметр) или режиме hFE / Beta (только цифровой мультиметр) для проверки транзистора, исправен ли он, неисправен, закорочен или открыт.

Аккумулятор

В учебном пособии по базовому тестированию на тему «Как проверить аккумулятор с помощью тестового счетчика?» вы сможете определить, находится ли аккумулятор в хорошем состоянии, заряжен, нуждается ли он в зарядке, низкий уровень заряда / тока, высокий заряд / ток или он неисправен и нуждается в замене новым.

Резистор и сгоревшие резисторы

Чтобы проверить, находится ли резистор в хорошем состоянии или сломан, мы используем мультиметр. Для этого возьмите измеритель AVO (или цифровой мультиметр) и выберите «Сопротивление» (в измерителе AVO… Поверните ручку на «Ω» или «Сопротивление»). Теперь подключите оба конца резистора к клеммам AVO или цифрового мультиметра. Если показания измерителя показывают точное значение сопротивления или с допуском в процентах, это означает, что резистор в «хорошем состоянии».

Например, 1 кОм = 1000 Ом с допуском 5% покажет значение примерно от 950 до 1050 Ом. С другой стороны, если показание счетчика «Бесконечное», это означает, что резистор может быть неисправен, сломан и разомкнут. Значит, вам нужно заменить его на новый (точное значение).

Полезно знать:

Вы также можете проверить номинал сгоревшего резистора с помощью цифрового или аналогового мультиметра следующими тремя удобными способами.

Связанное сообщение: Как найти значение сгоревшего резистора (тремя удобными методами)

Катушки реле и реле SSR

Чтобы проверить SSR (твердотельное реле) и катушки электромеханического реле с помощью мультиметра, вам необходимо выполнить следующие действия. подробное и пошаговое руководство «Как проверить реле? Проверка SSR и реле катушки »

Общие меры предосторожности
  • Отключите источник питания перед проверкой, обслуживанием, ремонтом или установкой электрического оборудования и устройств.
  • Всегда, выберите более высокое значение в цифровом или аналоговом мультиметре, а затем постепенно уменьшайте его до нужного клапана.
  • Никогда не пытайтесь работать с электричеством без надлежащего руководства и ухода.
  • Прочтите все инструкции и предупреждения и строго следуйте им.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения, вызванные отображением или использованием этой информации или попыткой любой схемы в неправильном формате, поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Примечание: это базовое руководство по мультиметру должно быть обновлено новым методом тестирования с использованием DMM + AMM… Оставайтесь на связи.

Связанные руководства:

Как использовать мультиметр для проверки электрических частей видео

Как использовать мультиметр для проверки электрических частей видео | Советы и уловки

Пожалуйста, включите JavaScript для просмотра веб-сайта.

Персонал Sears PartsDirect

В этом видео от Sears PartsDirect показано, как проверить целостность проводов и электрических частей с помощью мультиметра. Проверка целостности может сказать вам, проходит ли электрический ток через цепь.Это также может помочь определить, создает ли провод короткое замыкание на металлический каркас, что является потенциально опасной ситуацией.

Для получения дополнительной помощи по ремонту ознакомьтесь с нашим разделом помощи по ремонту своими руками, где есть руководства по ремонту, статьи, видео, ответы на наиболее часто задаваемые вопросы и советы по поиску и устранению неисправностей для приборов, газонного оборудования, инструментов и других продуктов.

Симптомы, общие для всех вытяжек

Выберите симптом, чтобы увидеть соответствующий ремонт вытяжки.

Основные причины: засорение воздушных фильтров, проблемы с воздуховодами, отказ двигателя вентилятора, сломанная лопасть вентилятора Основные причины: срабатывание охранной функции из-за высокой температуры варочной панели, неисправный датчик температуры, отказ электронной платы управления Основные причины: отказ электронной платы управления, плохое управление пользовательским интерфейсом, Неисправность переключателя света и вентилятора, неисправность проводки Основные причины: неисправный выключатель вентилятора, неисправность электронной платы управления, неисправное управление пользовательским интерфейсом, неисправность проводки Основные причины: нехватка электроэнергии, неисправная электронная плата управления, неисправный пользовательский интерфейс, неисправность вентилятора и выключателя освещения, проблемы с проводкой Причины: ослабленные крепежные винты, неисправный двигатель вентилятора, поврежденная лопасть вентилятора, изношенные подшипники двигателя вентилятора Основные причины: неисправная лампочка, сломанный выключатель света, плохое электронное управление, сбой управления пользовательским интерфейсом, плохая розетка, неисправность проводки

Общие для всех руководства по ремонту вытяжки

Эти пошаговые инструкции по ремонту помогут вам безопасно исправить то, что сломалось на вашей вытяжке.

1 декабря 2013 г.

Лайл Вайшвилл

Выключатель вентилятора включает двигатель вентилятора вытяжки. Если переключатель вентилятора неисправен, замените его, следуя подробным инструкциям в этом руководстве по ремонту.

1 декабря 2013 г.

Лайл Вайшвилл

Если вентилятор вытяжки не работает, вероятно, неисправен двигатель вентилятора. Следуйте инструкциям в этом руководстве, чтобы заменить двигатель вентилятора.

20 января 2013 г.

Лайл Вайшвилл

Если вы заменили лампочку, но она по-прежнему не работает, вероятно, неисправна розетка.Воспользуйтесь подробными инструкциями в этом руководстве по ремонту, которые покажут вам, как его заменить.

Статьи и видеоролики, общие для всех вытяжек

Воспользуйтесь советами и советами в этих статьях и видеороликах, чтобы максимально использовать возможности вытяжки.

1 ноября 2014 г.

Общие вопросы о вытяжках

Персонал Sears PartsDirect

Узнайте, какие вопросы у многих возникают по поводу использования, обслуживания и ремонта вытяжек.

Нижний холодильник

Газонный трактор с передним расположением двигателя

Как быстро найти и отследить дорожки печатной платы (с изображениями)

Это руководство покажет вам, как создать инструмент, который позволит вам легко и быстро найти и отследить дорожку печатной платы. Создаете ли вы печатную плату, модифицируете или ремонтируете ее – этот инструмент сэкономит вам много времени и энергии!

Не можете найти дорожку на многослойной печатной плате? Без проблем! Вот решение – быстрое, легкое и очень доступное в изготовлении.

Зачем? Если вы используете свои стандартные мультиметрические щупы и должны касаться каждого места пайки на плате, чтобы проверить, подключен ли он к элементу, который вы ищете … довольно утомительная и трудоемкая работа. Используя кусок алюминиевой фольги, вы сможете искать соединения печатной платы на большей площади, что минимизирует время и усилия, затрачиваемые на эту работу.

Необходимые инструменты:

  • Мультиметр
  • Проволока (+ проволока с зажимами типа «крокодил»)
  • Шоколад или кусок алюминиевой фольги
  • Резак и инструмент для зачистки проволоки
Подготовка

1.

Зачистите оба конца кабеля. Вам понадобится 2 см оголенного провода на одном конце и 4-5 см на другом конце.

2. Возьмите кусок алюминиевой фольги и как-нибудь оберните его вокруг провода. Вам понадобится кусок фольги размером не менее 5 x 5 см.
Оберните указательный палец алюминиевой фольгой.

Подсоедините кабель, идущий от фольги, к одному из проводов мультиметра, как показано, с помощью зажимов типа «крокодил».

Выполните тест

Коснитесь проводом второго мультиметра фольги на пальце. Он должен показать сопротивление около 0 Ом. Повторите операцию фольги, если вы видите на экране сопротивление более 15-20 Ом. Если все в порядке, вы готовы использовать только что созданный инструмент.
Используйте свободный щуп мультиметра, чтобы коснуться одной точки на доске.Затем пальцем с фольгой проведите ею по компонентам, соприкасаясь с припаянными частями.

Таким образом, вы быстрее охватите большую площадь, а когда вы слышите звуковой сигнал мультиметра, вы нашли свою дорожку на плате.

Готово

Теперь поиск дорожек, соединяющих компоненты на печатной плате, занимает считанные секунды.

Как пользоваться мультиметром

Добавлено в избранное Любимый 56

Непрерывность

Тестирование непрерывности – это проверка сопротивления между двумя точками.Если сопротивление очень низкое (менее нескольких Ом), две точки соединяются электрически, и издается звуковой сигнал. Если сопротивление превышает несколько Ом, значит, цепь разомкнута и звуковой сигнал не издается. Этот тест помогает убедиться, что соединения выполнены правильно между двумя точками. Этот тест также помогает нам определить, подключены ли две точки, которых не должно быть.

Непрерывность, возможно, самая важная функция для гуру встраиваемого оборудования. Эта функция позволяет нам проверять проводимость материалов и отслеживать, где были выполнены или не выполнены электрические соединения.

Установите мультиметр в режим «Непрерывность». Он может отличаться в зависимости от цифрового мультиметра, но ищите символ диода, вокруг которого распространяются волны (например, звук, исходящий из динамика).

Мультиметр установлен в режим проверки целостности цепи.

Теперь соедините щупы вместе. Мультиметр должен издать звуковой сигнал (Примечание: не все мультиметры имеют настройку непрерывности, но большинство должно). Это показывает, что очень небольшое количество тока может течь без сопротивления (или, по крайней мере, с очень маленьким сопротивлением) между датчиками.

Предупреждение! В общем, выключите систему перед проверкой целостности цепи.

На макетной плате, на которой не запитан от , используйте щупы, чтобы проткнуть два отдельных контакта заземления. Вы должны услышать тональный сигнал, указывающий, что они подключены. Подключите пробники от контакта VCC на микроконтроллере к VCC на источнике питания. Он должен издать звуковой сигнал, указывающий, что питание свободно течет от вывода VCC к микроконтроллеру. Если он не издает тонального сигнала, вы можете начать следовать по маршруту, по которому проходит медный провод, и определять, есть ли обрывы в линии, проводе, макете или печатной плате.

Continuity – отличный способ проверить, соприкасаются ли два контакта SMD. Если ваши глаза не видят этого, мультиметр обычно является отличным вторым ресурсом для тестирования.

Когда система не работает, непрерывность – еще одна вещь, которая помогает устранить неполадки в системе. Вот шаги, которые необходимо предпринять:

  1. Если система включена, внимательно проверьте VCC и GND с настройкой напряжения, чтобы убедиться, что напряжение соответствует уровню. Если система 5 В работает при 4,2 В, внимательно проверьте свой регулятор, он может быть очень горячим, что указывает на то, что система потребляет слишком большой ток.
  2. Выключите систему и проверьте целостность цепи между VCC и GND. Если есть непрерывность (если вы слышите звуковой сигнал), значит, у вас где-то короткое замыкание.
  3. Выключите систему. Убедитесь, что VCC и GND правильно подключены к контактам микроконтроллера и других устройств. Система может быть включена, но отдельные микросхемы могут быть подключены неправильно.
  4. Предположим, вы можете запустить микроконтроллер, отложить мультиметр в сторону и перейти к последовательной отладке или использовать логический анализатор для проверки цифровых сигналов.

Обрыв цепи и большие конденсаторы: При обычном поиске неисправностей. вы будете проверять целостность цепи между землей и шиной VCC. Это хорошая проверка работоспособности перед включением прототипа, чтобы убедиться, что в системе питания нет короткого замыкания. Но не удивляйтесь, если вы услышите короткий звуковой сигнал! при зондировании. Это связано с тем, что в системе питания часто присутствует значительная емкость. Мультиметр ищет очень низкое сопротивление, чтобы увидеть, подключены ли две точки.Конденсаторы будут действовать как короткое замыкание в течение доли секунды, пока не заполнятся энергией, а затем будут действовать как открытое соединение. Поэтому вы услышите короткий звуковой сигнал, а затем ничего. Ничего страшного, просто шапки заряжаются.



← Предыдущая страница
Измерение тока .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *