Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как проверить тиристор | Практическая электроника

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

А вот и  схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy отпирающее постоянное напряжение управления  – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео про проверку тиристора и ток удержания:

 

Как проверить тиристор мультиметром на примере прозвона ку202н

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом.

Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Как проверить тиристор мультиметром: виды, тестирование, инструкция, питание

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

    Схема проверки тиристора

  3. Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород. Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания. Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
  4. Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Как проверять тиристоры исправность не выпаивая

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Проверка тимистора с помощью омметра

    Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Как проверить тиристор мультиметром на работоспособность не выпаивая

Любое электронное устройство содержит в себе достаточно внушительный перечень электрокомпонентов, которые позволяют ему управлять электрическим током, напряжением и сопротивлением внутри себя. Они нужны в первую очередь для регулирования отдельных электрических параметров, необходимых для нормальной работы того или иного электроприбора. Например, резисторы преобразовывают силу тока в напряжение и наоборот, а транзистор — для увиливания и генерации электроколебаний. Среди таких радиоэлементов есть и тиристор. В этой статье будет рассказано, что такое тиристор и как проверить тринистор мультиметром не выпаивая его из платы или схемы.

Что это такое

Тиристор — это полупроводниковый электрический элемент или прибор. Он нужен для того, чтобы регулировать и коммуницировать токи больших значений. Эти элементы управляют электрической цепью с точки зрения приема электрических токов и их регулирования. С этой точки зрения они напоминают работу транзисторов.

Условные обозначения некоторых элементов на схеме

Как правило, такие элементы обладают тремя выходами: управляющим и двумя, образующими путь для протекания электрических токов. Как известно, транзистор начинает открываться пропорционально величине тока управления цепи. Чем больше ток, тем больше открыт транзистор. Работает это и в обратном направлении. Тиристор же устроен немного иначе: он открывается полностью, но интервалами, задающимися скачками тока. Самое интересное то, что он не закрывается даже тогда, когда не получает управляющего сигнала.

Условные обозначения некоторых элементов на схеме

Характеристики и принцип работы

Согласно схеме, которая будет представлена ниже, можно рассмотреть принцип работу элемента. К аноду этого радиоэлемента подключена лампочка, с которой соединяется вывод плюса источника питания с помощью выключателя K2. Катод же радиоэлемента подключают, соответственно, к минусу питания. Когда цепь включается, на элемент поступает напряжение, но лампочка все равно не горит. Нажав на переключатель K2, электроток пройдет через резистор и направится на электрод управления и лампочка начнет светиться.

Схема подключения тиристора на 1 КОм

Важно! В этом и есть суть тиристора. На схеме его зачастую обозначают латинской буквой G, что означает английское слово Gate (в переводе на русский — ворота или затвор).

Резистор работает таким образом, что ограничивает поступление тока от вывода управления. Минимальный ток срабатывания такого элемента — 1 мА, а допустимый для работы — 15 мА. Именно из-за этого подбирается резистор с сопротивлением 1 кОм. Если нажать на переключатель снова, то ничего не изменится. Закрыть его можно отключением питания. Таким образом, тиристор — это своего рода электронный ключ с фиксацией.

Тиристор с подсоединенными проводами

Что качается технических характеристик, то все зависит от модели конкретного элемента. В общем случае этот элемент характеризуют:

  • Обратное напряжение;
  • Закрытое напряжение;
  • Импульс;
  • Повторяющийся импульс;
  • Среднее напряжение;
  • Обратный ток;
  • Время включения и выключения;
  • Постоянное напряжение;
  • Ток в открытом напряжении.
Подключение лампочки к тиристору

Схема проверки

Чтобы проверить элемент и узнать, рабочий ли он, нужна лампочка, три провода (проводника) и питающий элемент постоянного тока. Если это блок питания, то на нем необходимо выставить напряжение, достаточное для загорания светодиода. Далее необходимо привязать и припаять провода к каждому выводу радиоэлемента.

Важно! На анод подается «плюс» питания, а на катод — «минус», который будет проходить через лампочку.

Подключение питания цепи с помощью обычной пальчиковой батарейки

После этого необходимо подать напряжение на электрод управления. Для обычного тиристора это больше 0.2 Вольт, поэтому хватит и батарейки на полтора Вольта. Когда напряжение будет подано, лампочка зажжется. Для проверки можно использовать щупы мультитестера ( на их концах напряжение также больше 0.2 Вольт), но об этом в следующем разделе. Если убрать питание, то лампочка будет продолжать гореть, так как подан импульс управляющего электрода. Закрыть тиристор можно, отключив лампочку или убрав щупы мультиметра.

Если питания нет, то мультиметр будет показывать бесконечное напряжение, то есть единицу

Чем можно проверить тиристор на исправность

Чтобы проверить тиристор на работоспособность не выпаивая его, можно пользоваться специальными приборами:

  • Мультиметром. На концах щупов прибора имеется напряжение, которое можно подать на электрод. Для этого замыкается анод и электрод. В результате сопротивление резко падает: на мультиметре это видно. Это свидетельствует о том, что тиристор отрылся. Если отпустить мультиметр, то он снова будет показывать бесконечное сопротивление.
  • Тестером. Для проверки понадобится не только тестер, но и источник питания от 6 до 10 Вольт, а также провода. Необходимо включить тестер между катодом и анодом, а после этого подключить батарейку между электродом управления и катодом. Если подача питание не осуществляется, то тиристор работает некорректно. Также если питание постоянное при любом напряжении, то элемент также работает неверно.
Вот как описанная схема тиристорного элемента выглядит на практике

Таким образом, было рассмотрено, как проверить тринистор на работоспособность и основные способы ее проверки. Проверять правильность работы и прозвонить состояние тринистора можно, используя несколько способов: мультиметровый и тестерный. Оба отлично справляются с поставленной задачей.

Как проверить тиристор и симистор мультиметром

Устройство, принцип действия и параметры тиристоров

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа – тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:

  1. Iоткр.max – максимально допустимый ток тиристора.
  2. Uу – напряжение открывания.
  3. Uобр.max – наибольшее обратное напряжение элемента.
  4. Iуд – ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ – катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ – катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод – анод должно быть большим, на дисплее отображается 1.

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод – катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:

R = (0,9 – 1)Uпит/Iу.откр, где Iу.откр – ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

Тестирование SCR – силовая электроника от А до Я

Тестирование SCR с помощью мультиметра:

Как проверить кремниевый управляемый выпрямитель [SCR] с помощью мультиметра?
В этом посте речь пойдет о тестировании SCR – кремниевого выпрямителя с помощью мультиметра или омметра.
Настоятельно рекомендуется прочитать основы тиристоров (SCR), прежде чем продолжить.
Щелкните здесь, чтобы узнать больше о SCR – Введение, структура, характеристики

Схема расположения выводов тиристора в корпусе TO-220 дана для ознакомления.

Если вы используете омметр Прочтите следующий абзац, иначе пропустите его и переходите к следующему абзацу.

Определите клеммы омметра:
  • Используя соединительный диод, мы можем определить, какой вывод омметра положительный, а какой – отрицательный.
  • Подключите диод PN-перехода общего назначения к положительной и отрицательной клеммам омметра.
  • Омметр покажет целостность цепи только тогда, когда положительный провод подключен к аноду диода, а отрицательный провод подключен к катоду.
  • SCR можно проверить с помощью омметра на основе этой концепции.

Процедура проверки тринистора с помощью мультиметра:

  • Для проверки тринистора переведите мультиметр в режим омметра.
  • Подключите положительный вывод мультиметра к аноду, а отрицательный вывод к катоду.
  • Мультиметр должен показывать отсутствие обрыва.
  • Прикоснитесь затвором SCR к аноду.
  • Мультиметр должен показывать непрерывность через SCR.
  • Когда вывод затвора удаляется из анода, проводимость может прекратиться или продолжаться в зависимости от того, подает ли мультиметр достаточный ток, чтобы поддерживать устройство выше его уровня удерживающего тока.
  • Если мультиметр показывает непрерывность через SCR до того, как затвор коснется анода, это означает, что SCR закорочен.
  • Если мультиметр не покажет непрерывность через SCR после прикосновения затвора к аноду, это означает, что SCR открыт.

Вы также можете прочитать:
Методы срабатывания (включения) тиристора
Характеристики переключения тиристора
Защита тиристора

Пожалуйста, оставляйте свои комментарии ниже … ваши комментарии высоко ценятся … Пожалуйста, подпишитесь, чтобы получать новые сообщения на свой mail id…

Неудачный тест SCR / диода с помощью стандартного мультиметра – Fastron Electronics Store

Есть несколько простых способов проверить неисправность SCR или диода с помощью мультиметра и выявить 95% типичных отказов устройств.В нашем примере мы рассматриваем оригинальный силовой модуль MCC162-16io1 на 160 А с двойной изоляцией от IXYS. Тот же метод может быть применен к любому типу тиристоров / диодов внутри или вне моста, цепи переключателя переменного тока или по отдельности. Что касается затвора, катода и анода как соответствующих выводов, к которым мы будем подключаться для тестирования, выводы одинаковы для всех уважаемых брендов.

Диод и SCR

SCR просто действует как диод, когда подается напряжение затвора, как в названии Controlled Rectifer .Чтобы проверить SCR или диод, нам необходимо проверить наличие короткого замыкания или разрыва цепи между анодом и катодом и проверить наличие высокого импеданса между анодом и катодом и между затвором и катодом (только для SCR), которые являются основными режимами отказа.

1) Испытание анода и катода как для диодов, так и для тиристоров (SCR)

Установите мультиметр на проверку диодов / короткого замыкания и убедитесь, что щупы подключены для проверки напряжения. Затем вы проверяете оба направления диода / SCR, надежно соединив положительный (красный) и отрицательный (черный) датчики с контактом 2 и контактом 1, а контакт 3 – с контактом 1

Если мультиметр издает звуковой сигнал, это означает короткое замыкание и отказ SCR.Если нет звукового сигнала, соедините два щупа мультиметра вместе, чтобы убедиться, что мультиметр работает правильно. Затем еще раз проверьте штифты сверху.

Для диода вы ожидаете получить звуковой сигнал при проверке прямого направления. Т.е. Анод (положительный красный зонд), к катоду (отрицательный черный зонд).

Тест обратного смещения с катодом (положительный красный зонд) на анод (отрицательный черный зонд) не должен издавать звуковой сигнал. Если мультиметр издает звуковой сигнал, можно сказать, что диод неисправен.

Для SCR вы не получите ни одного теста прямого и обратного смещения.

Если нет звукового сигнала, мы можем подтвердить, что SCR не вышел из строя короткое замыкание

2) Тест сопротивления для проверки обрыва / короткого замыкания

В качестве вторичного теста мы теперь переключаем мультиметр в режим измерения сопротивления (Ом). Затем мы измеряем расстояние между анодом и катодом на обоих устройствах. Вы должны увидеть значение от сотен кОм до МОм. Если импеданс низкий, порядка нескольких тысяч кОм или Ом, то это частичное замыкание.Это может подтвердить приведенные выше результаты или, в некоторых случаях, указать на частичный отказ или «подозрительное» устройство, как мы их называем в отрасли.

3) Испытание сопротивления катода затвора SCR

Последний тест предназначен только для SCR и предназначен для тестирования затвора к катоду на каждом SCR. Снова воспользуйтесь тестом на сопротивление и проверьте контакт 5 с контактом 2 и контакт 6 с контактом 3. Полное сопротивление должно быть ниже 10 Ом или около 10-50 Ом. Если он очень высокий, то ворота не работают. Этот режим отказа является наиболее вероятным отказом, когда плата управления / запуска SCR имеет испытанный сбой платы.Это может произойти из-за ударов молнии или кратковременных скачков напряжения.

Если эти тесты прошли успешно, а проблемы по-прежнему возникают, пожалуйста, свяжитесь с нами и узнайте о нашем тестировании устройства. Мы можем сделать еще один шаг вперед, используя специальное испытательное оборудование, которое мы используем в производстве.

Мы также продаем следующее подходящее испытательное оборудование.

Если вы обнаружите, что ваше устройство оказалось неисправным, у нас есть полный ассортимент диодных / SCR-модулей, капсул (PUK) и устройств для крепления на шпильках, которые подходят практически для любого применения.

Не стесняйтесь обращаться к нам за дополнительной информацией.

Как проверить тиристор с помощью омметра

Выпрямитель – это устройство, которое позволяет электрическому току течь только в одном направлении. Выпрямитель с кремниевым управлением, также известный как SCR, представляет собой выпрямитель, в котором можно управлять прямым сопротивлением. Обычно SCR не позволяет току течь в любом направлении, но если вы подаете сигнал на затвор SCR, он позволит некоторому количеству тока (на основе сигнала на затворе) течь в одном направлении.Омметр – это прибор, измеряющий электрическое сопротивление. Омметр можно использовать для проверки правильности работы тиристора.

    Установите для омметра значение R x 10 000.

    Подключите отрицательный вывод омметра к аноду SCR, а положительный вывод – к катоду SCR.

    Считайте значение сопротивления, отображаемое на омметре. Он должен показывать очень высокое значение сопротивления. Если он показывает очень низкое значение, то SCR закорочен и его следует заменить.

    Поменяйте местами выводы омметра так, чтобы положительный вывод был подключен к аноду, а отрицательный вывод – к катоду SCR.

    Считайте значение сопротивления, отображаемое на омметре. Он должен показывать очень высокое значение сопротивления. Если он считывает очень низкое значение, то SCR закорочен и неисправен.

    Прикоснитесь одним концом короткой перемычки к аноду SCR и одновременно коснитесь другим концом перемычки к затвору SCR.Если SCR работает правильно, показание будет очень низким значением сопротивления. Значение останется низким, даже если вы отсоедините перемычку. Однако в правильно работающем тиристоре, если вы отключите любой из проводов омметра, сопротивление вернется к очень высокому значению, даже если провод снова подключен, если вы снова не закоротите анод на затвор. Если ваш SCR ведет себя, как описано в случае, когда вы закорачиваете затвор на анод, и в случае, когда вы снимаете и заменяете провод омметра, ваш SCR работает правильно.

Быстрые испытания тиристорных устройств управления



By Wayne Lemons

Тиристоры стали популярными в качестве средств управления как для потребителей, так и для промышленных предприятий. электронный механизм. Тиристор – это твердотельный эквивалент газонаполненного тиратронная трубка. Он даже работает так же. Небольшое стробирующее напряжение поворачивает на тиристоре, и он продолжает проводить до тех пор, пока анодный ток не упадет ниже определенного значения.

Среди тиристорных устройств в цепях управления наиболее известны кремниевые выпрямитель (SCR) и TRIAC.Последний действует как (и изображен на диаграмме а) два тиристора, подключенных параллельно, но обращенных в противоположных направлениях.


Рисунок 1 — SCR можно сравнить с реле блокировки тока, которое остается горит после активации, затем размыкается при коротком замыкании удерживающей катушки вне.

Внутри цепи SCR

Внутри SCR состоит из четырех чередующихся слоев кремния; два Н-типа и два П-типа. SCR действует как обычный кремниевый диод, за исключением того, что он вообще не будет проводить, пока не будет установлено небольшое напряжение включения. применяется к его элементу ворот.

Положительное напряжение триггера (затвора) позволяет диоду проводить в своем прямое направление. Он продолжает проводить, даже когда напряжение на затворе устранен. Это действие можно сравнить с дверью с защелкой; защелка, после того, как отпущен, больше не контролирует открытие и закрытие двери пока дверь не защелкнется. Чтобы отключить тиристор, направьте ток через он должен быть уменьшен до низкого значения или до нуля. В то время диод SCR снова становится разомкнутой цепью, и только ворота имеют контроль.

Действие

SCR можно в некотором роде сравнить с реле блокировки по току. Рис. 1. Замыкающий переключатель PB1 подает питание на реле через катушку L1. При замкнутых контактах реле ток течет как через нагрузку, так и через катушка L2. Магнетизм от L2 удерживает реле под напряжением, независимо от того, PB1 остается закрытым или открытым. Чтобы выключить реле, можно уменьшить ток нагрузки. на низкое значение, или можно на мгновение нажать PB2, чтобы замкнуть L2.

На рисунке 2 показан тиристор в цепи постоянного тока.В этом приложении его функция похоже на то, что изображено на рисунке 1. Ток затвора настолько мал, что может управлять даже сильноточным переключателем SCR через небольшую слаботочную проводку.

При первой подаче постоянного напряжения SCR выглядит как разомкнутая цепь. между анодом и катодом. Эффект такой же, как у открытого переключателя. Предполагая его прямое напряжение переключения (VBpp) и пиковое обратное напряжение (PRV) номиналы достаточно высоки, SCR остается разомкнутой цепью.

Однако на клемму затвора подается небольшой ток (из-за закрытого PB1) включает SCR. Сопротивление между анодом и катодом становится очень низким. Другими словами, SCR реагирует почти так же, как и обычный кремний. диод. Поскольку переход катод-анод смещен в прямом направлении мощностью постоянного тока источник, ток течет через тиристор к нагрузке. Как только это произойдет, ток нагрузки «держит» SCR в проводимость. Любое изменение напряжения или тока затвора теперь не имеет никакого эффекта.

Чтобы остановить поток, ток через тиристор нужно как-то уменьшить до точка, в которой не хватает анодного тока, чтобы удерживать тиристор включенным. А временное короткое замыкание анода на катод, например, с помощью кнопки, приведет к разблокировать SCR. Он снова становится открытым переключателем.

Транзисторный регенеративный переключатель

Функция фиксации SCR является результатом внутреннего структурирования Слои кремния N и P. В некоторых промышленных системах управления транзисторы подключены как защелки или рекуперативные переключатели.Внутренняя работа таких схемы напоминают переключатели SCR.

На рисунке 3 показан один простой регенеративный переключатель. Q1 – транзистор NPN; Q2, PNP. Этот каскад может контролировать значительную мощность при наличии подходящего сильноточного транзистор выбран для Q2. Q1 должен быть достаточно большим, чтобы рассеять ток, потребляемый R3 и R4.

Сначала считайте, что ворота открыты. Ток не течет, несмотря на положительное напряжение применяется к Vcc.Это потому, что смещение для Q1 исходит от коллектора. от Q2 до R2. Напротив, смещение для Q2 развивается в цепи коллектора. Q1. Ни один из проводящих транзисторов не имеет смещения.

Однако положительное напряжение, приложенное к выводу затвора, даже на мгновение, инициирует прохождение тока в Q1. Ток эмиттер-коллектор в Q1 протекает через эмиттерно-базовый переход Q2. Это смещение запускает ток в Q2. Когда Q2 смещен, ток начинает течь через нагрузку.Положительный напряжение на коллекторе Q2 подается через R2 на базу Q1. Q1 ведет еще больше. Таким образом, почти мгновенно и Q1, и Q2 насыщаются, и полное напряжение Vcc достигает нагрузки.

Затвор больше не имеет управления, потому что положительное смещение через R2 удерживает оба транзистора в насыщении. Этап защелкивается. Чтобы разблокировать каскад, как и в случае с тиристором, ток через цепи смещения должен быть уменьшен до точки, где напряжение на нагрузке (на коллекторе Q2) равно недостаточно, чтобы поддерживать Q1 смещенным (через R2).

Как только Q1 перестает проводить, смещение для Q2 исчезает и останавливает проводимость. там тоже. Сцена открывается. Действие разблокировки может быть выполнено удалив или резко уменьшив Vcc, или заставив любой транзистор к нулевому смещению – например, с помощью кнопки мгновенного действия между базой и эмиттер.

В отличие от SCR, этот регенеративный переключатель также может быть отключен отрицательный импульс затвора, достаточный для кратковременного отключения Q1.Этот негативный импульс, однако, должен иметь значительно большую амплитуду, чем положительный импульс на затворе, необходимый для запирания.

Еще одна интересная особенность этого переключателя заключается в том, что он может быть включен кратковременным коротким замыканием на Q1 или Q2 (коллектор-эмиттер). Также, из-за своего усиления сцена легко запускается даже простым прикосновением у выхода на посадку. Для предотвращения беспорядочного запуска необходимо, чтобы сопротивление затвора. быть как можно ниже.Некоторые разработчики шунтируют резистор (RS) между ворота и общие; и, если ожидается только управление постоянным током, разработчик может добавить конденсатор к общему от базы Q1.


Рисунок 2 SCR в цепи постоянного тока не проводит до тех пор, пока напряжение на затворе не изменится. он включен, несмотря на прямое смещение катод-анод.


Рисунок 3 Транзисторный регенеративный переключатель имеет много общего с SCR.

Номиналы резисторов

типичны для Vcc от 6 В до 12 В.

Как SCR обрабатывает переменный ток

Падение постоянного напряжения на проводящем тиристоре обычно меньше 1В. Но SCR ведет себя как диод с переменным током, даже когда он полностью включен. Он проводит только прямые полупериоды, как и обычный кремний. диод (рисунок 4). Если контролируемое устройство или нагрузка работает удовлетворительно от импульсного постоянного тока может быть изменено регулирование (скорость двигателя, яркость лампы) выполненное, а также двухпозиционное действие.

Рассмотрим, например, регулирование скорости двигателя постоянного тока. Когда применяется переменный ток к SCR, он автоматически отключается 60 раз в секунду из-за обратная полярность. Если импульс затвора также получен из переменного тока линии, тиристор может срабатывать только во время части каждого цикл. Это снижает эффективную мощность, подаваемую на нагрузку. в В случае двигателя ограничение средней мощности снижает скорость. Если лампа это нагрузка, при понижении мощности лампа затемняется.

На рисунке 5A показан простой метод защиты управления воротами от сети переменного тока. линия электропередачи. При малых значениях R затвор полностью включает SCR и SCR работает как простой выпрямитель (форма волны 1). Когда R увеличивается, затвор получает меньше тока, поэтому SCR не включается вначале цикла, но позже. Следовательно, SCR проводит ток только во время часть полупериода (осциллограмма 2). Менее половины применяемых мощность переменного тока достигает нагрузки.


Рисунок 4 — Постоянно включенный SCR дает одинаковый выходной сигнал. форма волны от переменного тока как обычный кремниевый диод.


Рисунок 5 — (A) SCR, управляемый переменным током, управляет мощностью нагрузки. Форма волны 1 – полупериод, 2 – меньше полупериода, 3 – четверть цикла подачи Текущий. Эта схема ограничена диапазоном регулирования от 1/2 до 1/4. (90 °) цикла. В B добавление конденсатора позволяет контролировать весь полупериод (180 град).

При дальнейшем увеличении R возникает точка, в которой ворота включаются только на самом пике (точка 90 °) каждого цикла переменного тока, и только оставшиеся четверть цикла достигает нагрузки (кривая 3). Повышение сопротивления после этого момента SCR остается выключенным. Если ворота не получат достаточный ток для включения на пике, он просто остается выключенным во время нисходящий наклон синусоидальной волны. Таким образом, ток вообще не идет к нагрузка.

В некоторых схемах может быть полезно или даже желательно регулирование под углом 90 °.

Но для большинства операций лучше работает управление на 180 °. К счастью, Достаточно хорошее управление на 180 ° может быть получено с помощью довольно простой схемы.

На рисунке 5B показан добавленный единственный конденсатор. По сути, конденсатор требуется определенное время для зарядки через R. Ток затвора задерживается на постоянная времени R и C.

Срабатывание происходит позже в полупериоде, так как при определенном при установке R конденсатор затвора не будет заряжен в достаточной степени, чтобы запускать гейт до тех пор, пока не наступит нисходящий наклон синуса волна достигла анода SCR (кривая 4).Таким образом, SCR может включаться только в течение крошечной части цикла.

Это обеспечивает плавное управление от полного полупериода до практически ноль. Отсюда термин , поворот на 180 °, .

Диод в цепи стробирования предотвращает попадание отрицательных импульсов ворота. Достаточно высокий отрицательный импульс может вызвать обрыв структура затвор-катод, приводящая к повреждению или неустойчивой работе. В некоторых Вместо управления SCR используется DIAC (обсуждается позже).

Иногда нагрузка помещается на катод SCR, а не на анод, как на рисунке 6. Это обеспечивает некоторую обратную связь для управления скоростью двигателя. Поскольку вращающийся двигатель развивает определенную противоэдс, скорость вращения двигатель создает на катоде SCR пропорциональное смещение, которое необходимо преодолеть. напряжением триггера затвора. Это изменяет точку цикла переменного тока на который срабатывает SCR. Если мотор тормозит, противо-ЭДС меньше и SCR срабатывает раньше.Обратное происходит, если двигатель разгоняется. Таким образом, создаваемое двигателем смещение имеет тенденцию поддерживать стабильную скорость при изменении механические нагрузки на вал двигателя.

Резистор R1 и конденсатор C2 могут быть найдены в цепях SCR или TRIAC, управляющих индуктивная нагрузка. Их цель – интегрировать любое напряжение отдачи. от индуктивности и предотвратить беспорядочное срабатывание SCR. SCR может также случайным образом запускаются переходными процессами, особенно если сопротивление затвора высокий или если шипы помех могут достигать ворот.DIAC или неоновые лампы часто помещают в цепи затворов, чтобы предотвратить сигналы напряжение ниже, чем у триггерного импульса от достижения затвора.

Многие мощные тиристоры имеют внутренний омический тракт между затвор и катод, конструкция, которую иногда называют закороченным эмиттером. В достигнутый таким образом низкий импеданс сводит к минимуму любую склонность к самовоспроизведению в цепи большой мощности.


Рисунок 6 — В некоторых регуляторах скорости двигатель может быть подключен к катодная цепь тринистора.R1 и C1 предотвращают автоматическое срабатывание SCR из-за отдачи от индуктивной нагрузки.

Рисунок 7 Используйте диод, чтобы определить полярность напряжения, поступающего с выводов. вашего омметра.

Испытания SCR

Омметр может помочь вам найти наиболее дефектные тиристоры как внутри, так и вне схема. Распространенные проблемы – короткое замыкание между анодом и катодом, разрывы и т. Д. часто – сбой срабатывания или отказ удерживать один раз срабатывание. Когда Для тестирования SCR используйте диапазон Rx1 вашего VOM.

Следует помнить о смещении проводов омметра. Красный ведет омметра подключите к положительному напряжению внутри прибора, или к отрицательному? На рисунке 7 показано, как проверить ваш глюкометр. Если основной или красный зонд вызывает проводимость при подключении к аноду, омметр считается, что он имеет прямую полярность. Если черный или общий провод на анод диода вызывает проводимость, как на рисунке 7B, омметр обратный полярность.

Вам также необходимо знать, является ли ваш омметр одним из самых чувствительные, которые используют только 1,5 В для шкалы омметра Rx1. Это не хватает “мощности” омметра для проверки некоторых тиристоров.

Небольшой тиристор малой мощности обычно демонстрирует характеристики диода между вентиль и катод. То есть омметр измеряет высокое сопротивление в в одном направлении и низкий, когда провода омметра перепутаны. Тем не мение, это не относится ко многим большим SCR.Почти все они видны между затвор и катод имеют внутреннее сопротивление, достаточно низкое, чтобы погасить любое сопротивление метр, кроме самого сопротивления – обычно менее 15 Ом.

Никакой нормальный SCR не должен приводить к показаниям между анодом и катодом меньше бесконечности. по шкале Rx1. Полярность омметра не должна влиять на анодно-катодное считывание.

То есть SCR должен читать открыто, если он не заблокирован.

Вот как проверить SCR на стробирование (запуск) и его способность держать.Подключите положительный провод омметра к анодной клемме SCR, а отрицательный вывод к катоду, как на рисунке 8. На мгновение закрепите перемычка между анодом и затвором SCR. Омметр (Rx1) должен затем укажите прямую проводимость. После начала прямая проводимость должна продолжить, даже после того, как перемычка будет отключена. Чтобы остановить проводимость, отсоедините один провод омметра от вывода SCR. Повторите тест.

На рисунке 8 показана процедура для прямой и обратной поляризации. омметры.Если SCR срабатывает, но не удерживается при открытии ворот, не делайте вывод, что SCR неисправен. Счетчик тока может недостаточно, чтобы удерживать SCR в проводящем состоянии. Для некоторых больших SCR может потребоваться более 50 мА удерживающего тока, хотя большинство из них выдерживает 25 мА или менее. Малым тиристорам требуется ток всего 1 мА или даже меньше.


Рисунок 8 — Проверка тиристора омметром любой полярности. Подсказка: Всегда затвор SCR от анодного напряжения.


Рисунок 9 — Любое напряжение от 6 до 28 В может использоваться в качестве испытательного напряжения. для более мощных тиристоров, при условии, что лампа имеет тот же номинал и потребляет около 100мА.

Простая схема на Рисунке 9 иллюстрирует испытания на годность / непроходность более крупных Для тиристоров, требующих большего тока удержания, чем для стандартных омметров. Любой удобный постоянный ток выше 6В подойдет, если у вас есть подходящая лампа. В лампа должна загореться до полной яркости при токе 100 мА или около того.Резистор не нужен в цепи затвора, поскольку анодное напряжение падает до менее 1 В, когда SCR срабатывает. Хороший тиристор должен сработать при кратковременном контакте с переключателем защелки. Кнопка разблокировки на мгновение замыкает SCR, сбрасывая ток удержания. до нуля, что отключает SCR. Последовательность испытаний следует повторить. Пару раз.

Нечасто SCR тестирует нормально при низком напряжении постоянного тока, но работает нестабильно. при штатном напряжении цепи.

Это может даже вызвать перегорание предохранителей или автоматических выключателей.

Это может быть связано с превышением напряжения прямого переключения (VBOO), либо из-за неисправности SCR, либо из-за неправильной замены был выбран. При некотором критическом прямом напряжении любой SCR срабатывает автоматически, даже при нулевом напряжении затвора. Любой импульс или переходный процесс, который на мгновение превышение этого напряжения может привести к срабатыванию тринистора.

SCR можно проверить на прямое напряжение отключения с помощью метода на рисунке 10 (или аналогичном).Для тестовых напряжений до 400 В или около того, резистор серии 10 кОм (5 Вт) ограничивает ток, достаточный для короткого цикла тестирование. Медленно увеличивайте напряжение источника постоянного тока, наблюдая за вольтметр. Когда будет достигнуто фактическое значение VBOO, SCR должен сработать и вольтметр показания должны упасть почти до нуля.

Кроме того, вы можете определить пиковое обратное напряжение (PRV) SCR с помощью поменять местами выводы SCR и повторить предыдущую последовательность.

Если питание отключено и путь между анодом и катодом открыт (возможно, сняв предохранитель или отключив один конец нагрузки), омметр и испытания низковольтных ламп становятся действительными во многих цепях SCR.Для большего безопасности, однако, отключите любые два вывода SCR перед проведением испытаний. сделано – или после внутрисхемных испытаний не дает окончательных результатов. Испытания на отрыв желательно сделать с отключенными всеми тремя выводами SCR. (другими словами, вне цепи).

TRIAC По сути, TRIAC состоит из двух параллельных тиристоров, но с крючком. в противоположной полярности. На рисунке 11 показан эквивалент схемы и Символ ТРИАК. Фактически, если бы схемы затвора были должным образом изолированы с помощью резисторы или диоды, два SCR могут быть подключены для переключения переменного тока то же, что и TRIAC.

TRIAC имеет три контакта, как и SCR. Но, в отличие от SCR, TRIAC не выводит наружу катодный вывод. Вместо этого TRIAC раскрывает два анодных вывода и вывод затвора. Аноды обозначены как Анод. 1 и 2 или Главный терминал (MT) 1 или 2.

Поначалу может показаться, что с помощью омметра TRIAC тестирует то же самое, что и SCR. Вы обнаружите низкое сопротивление (но отсутствие действия диода) между анодом 1 и ворота. Вы должны измерить высокое сопротивление между анодом 2 и затвором, и высокое сопротивление между двумя анодами.

Но есть существенная эксплуатационная разница. ТРИАК, потому что предназначен для двухполупериодной коммутации переменного тока, может быть запущен (стробирован) положительным или отрицательным импульсом. SCR может быть запущен только положительным напряжением.

На Рисунке 12 показано, как проверить симметричный резистор с помощью омметра. Обратите внимание, что независимо от полярности измерительного вывода, триггер для затвора должен быть снят с анода 2 или главный вывод 2. Это доказывает, что TRIAC-вентиль может срабатывать. с любой полярностью напряжения.


Рисунок 10 — Проверка напряжения отключения тиристора. Для проверки обратного переключения, подключите положительный провод питания к катоду SCR и отрицательный провод к аноду.


Рисунок 11 — TRIAC работает как два тиристора, включенных параллельно-противоположно.

Как и в случае с SCR, более крупные TRIAC могут не «держаться» при тестировании с омметр. Схема на рисунке 9 может быть изменена для проверки этих симисторов. Просто добавьте реверсивный переключатель, как на рисунке 13.Опять же, любой разумный постоянный ток напряжение (6 В и более) можно использовать с соответствующей лампой.

TRIAC, как и SCR, иногда выходят из строя из-за сдвига в размыкании. характеристика напряжения (или из-за неправильной замены). Такой отказы не будут обнаружены при низковольтных испытаниях. Испытания на разрыв Рисунок 10 работает как для TRIAC, так и для SCR. Но с TRIAC тесты следует проводить в обоих направлениях; обменять полярности между МТ1 и МТ2, просто чтобы убедиться, что устройство срабатывает в обоих направлениях.

TRIAC используются в многочисленных схемах управления нагревателями, лампами, двигателями, и даже трехфазные моторы большой мощности. Они подходят для любых других нагрузка, требующая включения / выключения или регулируемого управления мощностью с удаленной точки. На рисунке 14 показана простая схема управления двигателем с использованием TRIAC. Различный регулятор скорости включает переключатель TRIAC для всех или некоторых часть цикла таким же образом, как описано для SCR. Но где SCR управляет только полупериодом, TRIAC управляет обоими полупериодами, обеспечивает управление на 360 ° от нуля до полной мощности.

DIAC в схеме затвора на Рисунке 14 представляет собой тип тиристора, который не имеет собственных ворот. Он предназначен для разрушения и проведения приложение либо положительного, либо отрицательного напряжения определенного указанного амплитуда. Доступны коммерческие DIAC с номинальными характеристиками отключения от от 7 до 30 В. Как только происходит переключение, напряжение должно немного упасть. количество до того, как ток перестанет течь.

Это можно сравнить с неоновой лампой, которая обычно горит при напряжении 60 В, но затем остается включенным, пока подаваемое напряжение не упадет примерно до 50 В.

Иногда в цепи затвора вставляют неоновые лампы, а не DIAC. TRIACs. В любом случае улучшается равномерность срабатывания.

A DIAC можно проверить с помощью постоянного напряжения и ограничительного резистора, как в Рисунок 10. Затем измените напряжение на противоположное, чтобы увидеть, что размыкание происходит примерно при одинаковое напряжение для обеих полярностей. Или можно подать переменное напряжение. и точка переключения, отслеживаемая на осциллографе, как показано на Рисунке 15. Независимо от того, проверено ли оно постоянным или переменным током, точка переключения положительна и отрицательные направления должны находиться в пределах 5% друг от друга.


Рисунок 12 — После тестирования TRIAC с помощью процедуры, описанной выше, выполните обратное омметра и проведите те же испытания снова, чтобы проверить работоспособность. в обеих полярностях. Необходимо использовать шкалу омметра Rx1, чтобы обеспечить достаточное удерживающий ток.


Рисунок 13 — Для проверки как TRIAC, так и SCR добавьте переключатель DPDT. Контрольная работа все триаки на обеих позициях.


Рисунок 14 — Практическое управление скоростью двигателя типа TRIAC должно иметь дроссель и конденсаторы для подавления радиопомех.


Рисунок 15 — Тестирование DIAC с переменным током и осциллографом может не выявить дисбалансы, если не используется муфта для постоянного тока.

Короткое замыкание DIAC можно обнаружить с помощью омметра. Но для подозреваемого откройте DIAC, необходим более высокий тест постоянного или переменного тока. В редких случаях преждевременное переключение DIAC происходит либо в положительном, либо в отрицательном направлении. Иногда это может иметь незначительное влияние на работу схемы или совсем не влиять на нее. В другом цепей, это может вызвать пограничные проблемы, которые трудно диагностировать.DIAC попадает под подозрение, когда подаваемая мощность неравномерно изменяется на настройки низкого энергопотребления, или если калибровка шкалы контроллера изменилась, или когда есть какие-либо доказательства срабатывания нелинейного управления.

QUADRAC

В некоторых конструкциях контроллеров вы можете найти устройство под названием QUADRAC. Это TRIAC со встроенным вентилем DIAC. Для тестирования QUADRAC требуется достаточное напряжение затвора для преодоления внутреннего барьера DIAC от От 7 до 28 В или около того.В остальном тестирование сравнимо с тестированием TRIAC.

Советы по тестированию В целом, периодическая утечка или отключение вызывают лишь небольшой процент отказов в SCR, DIAC или TRIAC. Этот удачно, потому что он делает простые процедуры устранения неисправностей эффективными и обычно надежный.

Если эти устройства прямого управления проверяют нормально, то проблема в скорее всего, в каскадах транзистора или ИС, которые управляют схемой стробирования. Вина также может присутствовать в нагрузке или в цепи питания.Иногда дефект не сложнее грязного потенциометра или реостата который вводит разрывы, создает переходные процессы и вызывает неустойчивые срабатывание; новый горшок – лекарство.

Измененные значения резистора могут уменьшить точку срабатывания или импульс. до некоторой предельной стоимости.

Обычно амплитуды запускающих импульсов на вентили SCR или TRIAC более чем достаточно. Это обеспечивает надежное срабатывание и снижает задержка переключения.Когда происходит предельная или нестабильная работа, проверка измерения амплитуды стробирующего импульса является одним из первых тестов, которые необходимо выполнить.

Радиопомехи

Одним из побочных эффектов твердотельной коммутации является создание радиочастотного радиация. ВЧ-дроссель, часто с тороидальной обмоткой, и байпасный конденсатор. помочь свести к минимуму это вмешательство. Обычно они подключаются как в Рис. 14. Также помогают экранирование и заземление корпуса.

См. Также: Отчеты из испытательной лаборатории

Микропроцессор математика


Разница между испытательными тиристорами и симисторами

Тиристор представляет собой двух- или трехконтактное устройство, состоящее из четырех чередующихся P- и N-слоев.Он также известен как выпрямитель с кремниевым управлением и часто используется в переключателях диммера, регуляторах скорости для электродвигателей и переключателях для систем передачи электроэнергии постоянного тока высокого напряжения.

Тиристор не работает как усилитель – его выход либо включен, либо выключен. По сути, это выпрямительный диод с внешним управлением. В отличие от двухслойного PN-диода или трехслойного биполярного транзистора NPN или PNP, тиристор имеет четыре слоя (PNPN). Самый распространенный тиристор имеет три вывода: анод, катод и затвор.В трехконтактной версии тиристора четыре слоя состоят из чередующихся материалов N- и P-типа. Анод соединен с P-слоем одним концом, а катод соединен с N-слоем другим концом. Эта конфигурация делает возможным любое из трех возможных состояний:

Когда на анод подается отрицательное напряжение, а на катод – положительное напряжение, тиристор работает просто как диод с обратным смещением и не проводит ток. Это называется режимом обратной блокировки.
Когда на анод подается положительное напряжение, а на катод – отрицательное напряжение, но на затворе нет смещения, устройство не проводит ток. Это называется режимом прямой блокировки.
Когда положительное напряжение приложено к аноду, а отрицательное напряжение приложено к катоду и устройство перешло в режим проводимости, оно будет продолжать проводить до тех пор, пока прямой ток не упадет ниже удерживающего тока. (Таким образом, тиристор считается устройством фиксации.)
Если положительное (по отношению к катоду) напряжение, приложенное к аноду, превышает уровень пробоя, как у стабилитрона, возникает лавина и начинается проводимость.Это действие происходит на более низком уровне, когда на затвор подается положительное напряжение. Скорость включения тиристора зависит от величины напряжения, приложенного к затвору. Соответственно, для срабатывания тиристора требуется минимальное напряжение затвора.

После того, как вывод затвора включил тиристор, тиристор продолжает проводить, пока пропускает достаточный ток. Ток фиксации – это наименьшая величина анодного тока, необходимая для удержания тиристора во включенном состоянии в момент включения устройства стробирующим сигналом.Ток фиксации обычно в два-три раза превышает ток удержания. Ток удержания – это наименьший ток, при котором анодный ток должен упасть, чтобы перейти в выключенное состояние. Таким образом, если ток удержания составляет 5 мА, тиристор должен пройти менее 5 мА, чтобы прервать проводимость.

Есть несколько других связанных устройств, работа которых близка к тиристорам. Тиристоры можно включить, только подав сигнал на вывод затвора, но нельзя выключить с помощью провода затвора.Напротив, GTO (тиристор выключения затвора) может быть включен стробирующим сигналом и выключен стробирующим сигналом отрицательной полярности. Включение осуществляется положительным импульсом тока между клеммами затвора и катода. Тиристор со статической индукцией (SITH) похож на GTO, но обычно включен (проводит). Для поддержания выключенного состояния вентиль должен иметь отрицательное смещение.

MOS-управляемые тиристоры (MCT)

работают как тиристоры GTO и имеют два полевых МОП-транзистора с противоположными типами проводимости в эквивалентных схемах.Один занимается включением, другой – выключением. Положительное напряжение на затворе относительно катода включает тиристор. Отрицательное напряжение на затворе относительно анода отключает тиристор. Трудно найти MCT. Они были коммерциализированы лишь ненадолго.

Переключатель с кремниевым управлением (SCS) или выпрямитель с кремниевым управлением, вариант тиристора. По сути, это тиристор с анодным и катодным затвором. Эта дополнительная клемма позволяет лучше контролировать устройство, в основном для отключения тиристора, когда основной ток через него превышает значение тока удержания.

Триодные тиристоры (симисторы) работают как тиристоры, но являются двунаправленными, пропуская ток в любом направлении. Симисторы могут срабатывать как положительным, так и отрицательным током, подаваемым на электрод затвора. Симисторы можно представить как два тиристора с соединенными вентилями. Как и тиристоры, симисторы продолжают проводить ток, когда ток затвора прерывается. Это состояние сохраняется до тех пор, пока основной ток не станет меньше тока удержания.

Цифровой вольтметр может быть полезен для проверки того, работает ли тиристор.Когда DVM находится в режиме высокого сопротивления, подключите отрицательный вывод к аноду тиристора, а положительный вывод к катоду. Значение сопротивления должно быть высоким. Низкое значение означает, что тиристор закорочен. Переключение выводов и повторное считывание сопротивления должны дать еще одно высокое значение. Низкое значение снова означает закороченный тиристор.

При подключении цифрового вольтметра к аноду и катоду тиристора, прикоснитесь одним концом короткой перемычки к аноду и одновременно коснитесь другим концом перемычки к затвору тиристора.Если тиристор исправен, показание будет низким. Значение останется низким даже при отсоединении перемычки. В правильно работающем тиристоре, если вы отсоедините любой из выводов омметра, сопротивление вернется к высокому значению, даже когда вывод будет повторно подключен, если вы снова не закоротите анод на затвор.

Следует отметить, что некоторые тиристоры работают только с током, подаваемым DVM, установленным на настройку высокого сопротивления. Если тиристор может выдерживать больший ток, попробуйте установить R x 1000 или R x 100.

Затвор-катод идеального тиристора – это PN переход. Во многих тиристорах также существует параллельный путь короткого замыкания между затвором и анодом, предназначенный для пропускания большого начального тока, чтобы помочь тиристору сработать. Поскольку этот путь сделан из однородного кремния, легированного p-примесью, обычно измеряемое сопротивление между затвором и катодом составляет 10 ~ 50 Ом. Однако производители обычно не характеризуют это значение сопротивления. Он дается только для того, чтобы проинформировать пользователя о том, что низкое сопротивление затвор-катод не указывает на повреждение устройства.При измерении с помощью функции проверки диодов цифрового мультиметра соединение затвор-катод будет отображаться как небольшое (но ненулевое) падение напряжения (например, 0,01 ~ 0,05 В) в обоих направлениях.

Следует также отметить, что тиристоры могут давать хорошие показания DVM и все же быть дефектными. В конечном счете, единственный способ проверить SCR – это подвергнуть его току нагрузки.

Цифровой мультиметр также можно использовать для проверки исправности симистора. Переведите цифровой мультиметр в режим высокого сопротивления, затем подключите положительный провод к выводу MT1 симистора, а отрицательный вывод – к выводу MT2.Цифровой мультиметр покажет высокое сопротивление. Теперь выберите режим с низким сопротивлением, подключите MT1 и затвор к положительному выводу, а MT2 – к отрицательному выводу. Цифровой мультиметр должен теперь показывать низкое сопротивление (это означает, что симистор включен).

Подводя итог, для SCR, затвор-катод должен тестироваться как диод (которым он является) на цифровом мультиметре. Переходы анод-катод и затвор-анод должны открываться. Для симисторов соединение затвора с MT2 должно тестироваться как диодный переход в обоих направлениях.Соединения MT1-to-MT2 и gate-to-MT1 должны считываться открытыми.

Тиристор – Все производители – eTesters.com

Отображение недавних результатов 1 – 15 из 22 найденных продуктов.

  • Тиристорные регуляторы

    КИТАЙ

    Маленькие и легкие тиристорные регуляторы для однофазных нагрузок отличаются высокой плотностью монтажа на панели.

  • Тиристорные переключатели

    Серия SC – Entes Elektronik

    Тиристорные переключатели серии

    SC используются в системах, содержащих индуктивные нагрузки с быстрым переключением.Конденсаторы, которые будут использоваться для подачи емкостной энергии в систему, могут включаться и выключаться с временем переключения менее 20 мс (1 период) с помощью статических контакторов серии SC, что обеспечивает более эффективную компенсацию быстрого переключения. такие грузы, как аппараты для прихваточной сварки, краны и дуговые печи.

  • Источник питания с тиристорным регулированием

    HYN – FuG Elektronik GmbH

    Простая конструкция Чрезвычайно прочная Высокая эффективность Защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания Регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулировочная ручка может быть заблокирована Трехзначный цифровой вольтметр для напряжения и тока Ограничение пускового тока при включении Подходит для индуктивных и емкостных нагрузок Контур блокировки для контроля внешней нагрузки и внутреннего контура в качестве стандартного счетчика прошедшего времени в стандартной комплектации

  • Источник питания с тиристорным регулированием

    MYN – FuG Elektronik GmbH

    Простая конструкция Чрезвычайно прочная Высокая эффективность Защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания Регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулировочная ручка может быть заблокирована Трехзначный цифровой вольтметр для напряжения и тока Ограничение пускового тока при включении Подходит для индуктивных и емкостных нагрузок Контур блокировки для контроля внешней нагрузки и внутреннего контура в качестве стандартного счетчика прошедшего времени в стандартной комплектации

  • Системы ИБП постоянного тока с тиристорной технологией

    JOVYATLAS

    JOVYATLAS разработал новый цифровой тиристорный выпрямитель, отвечающий современным требованиям к современным и безопасным источникам питания.Выпрямители с тиристорной зарядкой – это наиболее часто используемая серия для высоких выходных мощностей и надежных приложений. В этих устройствах обычно используются выпрямительные мосты в схемах B6C. Для специальных применений также доступны выпрямительные устройства с полностью управляемыми 12-импульсными выпрямительными мостами. Устройства можно адаптировать к соответствующему приложению с помощью различных опций. Значения производительности варьируются в зависимости от требований заказчика. За счет адаптации батарей можно добиться более короткого или более длительного времени автономной работы.Входной трансформатор адаптирован к соответствующему сетевому напряжению,

  • Анализатор тиристоров и симисторов Atlas SCR

    SCR100 – Peak Electronic Design Ltd.

    Для эффективного анализа тиристорам и симисторам

    требуются особые условия испытаний – вот тут-то и появляется новый SCR Atlas. SCR100 может подавать испытательные токи затвора от 100 мкА до 90 мА (с токами испытательной нагрузки до 100 мА), поэтому он не ограничивается чувствительными частями. .Он автоматически определяет тип детали (тиристор или симистор), идентифицирует все три вывода, а также классифицирует чувствительность затвора. Эта новая версия использует стандартную щелочную батарею AAA.

  • 6-ти импульсный / 12-ти импульсный тиристорный выпрямитель

    JOVYATLAS

    Тиристорные выпрямители типа JOVYREC THYRIDIN – это оптимальное решение для питания потребителей постоянным током с высокими характеристиками.Встроенное цифровое управление тиристорным выпрямителем отвечает самым высоким требованиям к современному и безопасному источнику питания. Устройства можно адаптировать к соответствующему приложению с помощью различных опций. Значения производительности могут быть разработаны в соответствии с требованиями заказчика. Параллельно можно использовать максимум три устройства для повышения производительности.

  • Линейно-регулируемый источник питания с тиристорным предварительным регулированием

    NTN – FuG Elektronik GmbH

    Высокоэффективная защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания, регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулирующую ручку можно заблокировать. 4-значный цифровой мультиметр для напряжения и тока (для настольных моделей) Сенсорные клеммы для компенсации падения напряжения на линиях нагрузки.Номинальное напряжение всегда относится к выходным клеммам Возможно параллельное и последовательное соединение Подходит для индуктивных и емкостных нагрузок с номинальной мощностью 700 Вт и выше, ограничение пускового тока при включении петли блокировки для контроля внешней нагрузки и внутренней петли в стандартной комплектации для трех фазовые блоки Счетчик отработанного времени в стандартной комплектации для трехфазных блоков

  • Линейно-регулируемый источник питания с тиристорным предварительным регулированием / активным отключением питания

    NTS – FuG Elektronik GmbH

    Высокая эффективность Защита от короткого замыкания и неограниченная работа при полном токе в условиях короткого замыкания Клеммы датчика для компенсации падения напряжения в линиях электропередач.Путем предварительной настройки напряжения может быть сгенерировано линейное нарастание тока. Напряжение включения и выключения может быть предварительно установлено с помощью одного потенциометра. Работа с постоянным напряжением для линейного управления повышением и понижением. выходного напряжения (2-квадрантный режим)

  • Тест SOA

    FTI 5000 – Focused Test, Inc.

    FTI 5000 выполняет тесты безопасной рабочей зоны (SOA) на силовых устройствах, таких как MOSFET, биполярный транзистор (BJT), тиристор и IGBT. Тест SOA определяется как условия напряжения и тока, при которых устройство должно работать без повреждений.

  • Управляемый программируемый источник постоянного тока с нагрузкой

    LAB / SL – ET System Electronic GmbH

    * Линейный лабораторный источник питания * Встроенная электронная нагрузка * Линейно-регулируемый лабораторный источник питания постоянного тока * Без предварительной регулировки тиристора, очень небольшая пульсация * Различные интерфейсы · Встроенная электронная нагрузка * Защита от короткого замыкания, перегрузки и перегрева * Постоянный и постоянный ток напряжение * Быстрое время регулирования прибл.250 мкСм

Как проверить SCR цифровым мультиметром?

SCR – выпрямитель с кремниевым управлением , тиристор ( THYR atron и trans ISTOR )
Название THYRISTOR образовано из заглавных букв THYRatron и transISTOR. Тиристор представляет собой твердотельное устройство, подобное транзистору, и имеет характеристики, аналогичные характеристикам версии с тиратронной лампой.Типы тиристоров типа


A. TRIAC – Двунаправленный триод
B. DIAC – Двунаправленный диод
C. SUS – Кремниевый односторонний переключатель.
D. SCS – Переключатель с кремниевым управлением.
F. LASCR – Световая активация SCR.
G. LASCS – СКС с активированным светом.
H. PUT – Программируемый однопереходный транзистор.
I. GTO – Затворный тиристор с отключенным затвором.
(SCR) Кремниевый выпрямитель.
SCR – это 4-слойное полупроводниковое переключающее устройство с 3 переходами.Он имеет 3 клеммы, а именно:
1. АНОД (A)
2. КАТОД (C)
3. ВОРОТА (G)
ТЕОРИЯ:
Через прямое смещение (анод: + ve, катод: -ve) не будет проводите до тех пор, пока V ak не превысит значение, называемое прямым разрывом по напряжению V brf, когда SCR включен. Величиной V brf можно управлять с помощью уровня тока затвора.
SCR действует как переключатель;
Нижнее перенапряжение прямого прерывания V brf выключено.
Когда V brf включен, пока ток затвора выше «тока удержания».
Когда SCR включен, затвор теряет управление, то есть уменьшение тока затвора не отключает SCR.

SCR-TYN612-Технический паспорт


SCR НЕ РАБОТАЕТ ВО ВРЕМЯ ОБРАТНЫХ УСЛОВИЙ – ОТ ИМЕНИ ВЫПРЯМИТЕЛЯ.
ПЕРВОЕ ИСПОЛЬЗОВАНИЕ ЦИФРОВОГО МУЛЬТИМЕТРА
Цифровой мультиметр означает цифровой мультиметр – ТЕСТИРОВАНИЕ С помощью цифрового мультиметра – (диодный режим)

  • Никогда не превышайте предельные значения защиты, указанные в технических характеристиках для каждого диапазона измерения.
  • Если шкала измеряемых значений заранее неизвестна, установите переключатель диапазонов в крайнее верхнее положение.
  • Когда счетчик подключен к измерительной цепи, не прикасайтесь к неиспользуемым клеммам.
  • Перед поворотом переключателя диапазонов для изменения функций отключите все провода от тестируемой цепи.
  • Никогда не проводите измерения сопротивления в цепи под напряжением.
  • Всегда будьте осторожны при работе с напряжением выше 60 В постоянного тока или 30 В переменного тока RMS.
  • ПРИ ИЗМЕРЕНИИ УПРАВЛЯЙТЕ ПАЛЬЦАМИ ЗА БАРЬЕРАМИ ЗОНДА.
  • ПЕРЕД ВСТАВКОЙ ТРАНЗИСТОРОВ ДЛЯ ИСПЫТАНИЯ ВСЕГДА УБЕДИТЕСЬ, ЧТО ИСПЫТАТЕЛЬНЫЕ ПРОВОДНИКИ ОТКЛЮЧЕНЫ ОТ ЛЮБОЙ ЦЕПИ ИЗМЕРЕНИЯ.
  • КОМПОНЕНТЫ
  • НЕ ДОЛЖНЫ ПОДКЛЮЧАТЬСЯ К ВЧ-РОЗЕТКЕ ПРИ ИЗМЕРЕНИИ НАПРЯЖЕНИЯ С ПОМОЩЬЮ ТЕСТОВЫХ ПРОВОДОВ.

ВАЖНО:

  • Если измеряемое сопротивление превышает максимальное значение выбранного диапазона или вход не подключен, появляется индикация выхода за пределы диапазона «!» будет отображаться.
  • При проверке внутрисхемного сопротивления убедитесь, что в проверяемой цепи отключено все питание и что все конденсаторы полностью разряжены.
  • Для измерения сопротивления выше 1 МОм измерителю может потребоваться несколько секунд для получения стабильных показаний., это нормально для измерений высокого сопротивления.


КАК ПРОВЕРИТЬ SCR с помощью цифрового мультиметра? – ВЫБОР ДИОДНОГО РЕЖИМА ЦИФРОВОГО МУЛЬТИМЕТРА.
ШАГ-1.

  • Подсоедините положительный измерительный провод к катоду
  • Отрицательный измерительный провод к аноду = СЧИТЫВАНИЕ DMM Показывает OL или 1 или обрыв.


ШАГ-2.

  • Подключите Отрицательный измерительный провод к катоду
  • положительный тестовый провод к аноду = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 или обрыв
  • положительный измерительный провод к Gate =.235В СЧИТЫВАНИЕ DDM = 235 мВ. (Это напряжение затвора очень важно) в противном случае короткое замыкание.


ШАГ-3.

  • Подсоедините положительный измерительный провод к катоду
  • Отрицательный измерительный провод к аноду = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 или обрыв

ШАГ-4.

  • Подключите Отрицательный измерительный провод t o катод
  • положительный тестовый провод к аноду = СЧИТЫВАНИЕ DMM ВЫИГРЫВАЕТ OL или «1» или разомкнут (ЗНАЧИТ ПЕРЕГРУЗКУ), состояние ХОРОШО.

Проверка: Если вы получаете показания в прямом смещении как 0000 или OL или 1 или в разомкнутом и обратном смещении как 0000 (или) низкие значения, это может быть неисправность устройства и его необходимо заменить.
SCR Testing с источником питания.
Цепи SCR.



Проверьте свой SCR с помощью низковольтного источника питания (9 В), указанного выше модели подключенной цепи. Подключите R = значение 560E Ом к положительной клемме 9В батареи затвора SCR. Нажмите выключатель-1, лампа, связанная с анодом, загорится постоянно.При нажатии переключателя 2 лампа 6 В выключается вручную.

Результат: SCR – это ХОРОШЕЕ состояние.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *