Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Проверка трансформаторов тока с использованием комплекса РЕТОМ-21

Построение ВАХ трансформаторов тока

Построение вольт-амперной характеристики (ВАХ) является одним из важных этапов проверки трансформаторов тока (ТТ). Вольт-амперная характеристика представляет собой зависимость напряжения одной из вторичных обмоток от намагничивающего тока со стороны этой же или другой обмотки при XX на первичной обмотке ТТ (рисунок 1). Снятие ВАХ производится в пределах от нуля до нескольких кратностей тока начала насыщения магнитопровода трансформатора, при этом напряжение  на вторичной обмотке не должно превышать  1800 В во избежание повреждений её изоляции. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения.

Основная задача построения ВАХ – определение передаточной характеристики ТТ, которая позволяет вычислить максимально допустимую нагрузку, подключаемую к вторичной обмотке трансформатора. При насыщении магнитопровода ТТ происходит значительное изменение формы сигнала, что может привести к большим погрешностям коэффициента передачи, при этом, чем выше ток, тем больше погрешность. Поэтому при расчете уставок устройств РЗиА, подключаемых к ТТ, необходимо знать, когда трансформатор работает на линейном участке ВАХ (участок a-b Рисунок 1), а когда – на участке, отклонение которого от линейного превышает 10%  (участок b-c на рисунке 1) в момент наступления насыщения магнитопровода. На последнем участке ВАХ работа трансформатора не рекомендуется. Таким образом, максимальная нагрузка, подключаемая к вторичной обмотке ТТ, рассчитывается исходя из того, что трансформатор должен работать на линейном участке ВАХ.

Рис. 1. Типовая вольт-амперная характеристика ТТ

При снятии вольт-амперной характеристики  может быть выявлено наличие короткозамкнутых витков – одного из наиболее распространенных повреждений ТТ. Данный тип повреждения можно выявить по резкому снижению ВАХ и изменению ее крутизны. Необходимо отметить, что при проведении других проверок, например проверки коэффициента трансформации, это не обнаруживается.

Следует выделить ряд требований, предъявляемых к испытательному оборудованию, применяемому для построения ВАХ трансформаторов:

1. Источник напряжения должен обладать высокой мощностью.

Очевидно, что чем мощнее источник напряжения при снятии характеристики, тем  стабильнее синусоидальность напряжения и достовернее результаты.

В приборе РЕТОМ-21 применяется мощный источник напряжения U3, способный выдавать напряжение до 500 В мощностью до 3 кВА. При помощи данного источника можно проверять ТТ на напряжения от 0.4 до 35 кВ с напряжением насыщения магнитопровода до 500 В. Регулирование источника осуществляется при помощи ЛАТРа, выполненного из высококачественных материалов, что позволяет получать минимально возможные искажения формы сигнала.

В 2010 году научно-производственное предприятие «Динамика» начало серийный выпуск блока РЕТ-ВАХ-2000, который пришел на смену ранее производимому блоку РЕТ-ВАХ. Новый блок значительно расширил возможности прибора РЕТОМ-21. С его помощью можно получать напряжения до 2000 В. Мощность, которую способен передавать блок составляет 2 кВА, что позволяет выдавать синусоидальный сигнал на трансформаторы тока на напряжение до 750 кВ. При этом необходимо учитывать, что собственное насыщение внутреннего трансформатора блока РЕТ-ВАХ-2000 происходит при напряжении 2100 В. Это означает, что на всем рабочем диапазоне напряжений блока не происходит искажения выходного сигнала. Данная особенность РЕТ-ВАХ-2000 исключает возникновение дополнительных погрешностей при построении ВАХ.

Пример схемы подключения трансформатора тока к блоку РЕТ-ВАХ-2000 показан на рисунке 2.  

Рис. 2. Схема подключения трансформатора тока к комплексу РЕТОМ-21

2. Измеритель должен реагировать на среднеквадратичные значения тока и напряжения.

При снятии ВАХ в области насыщения магнитопровода трансформатора форма сигнала напряжения и тока искажается. Если в таких условиях в качестве измерителя использовать прибор, реагирующий на средневыпрямленное значение входных параметров, вольт-амперная характеристика оказывается завышенной из-за влияния формы сигнала на точность показаний. Приборы, реагирующие на среднеквадратичные значения (True RMS) лишены подобных недостатков.

В приборе РЕТОМ-21 имеется возможность измерения среднеквадратичного (True RMS), средневыпрямленного и амплитудного значений токов и напряжений. Это позволяет строить ВАХ трансформаторов без дополнительных погрешностей, которые могут возникнуть из-за несинусоидальности измеряемого параметра.

В приборе предусмотрена  возможность пересчета токов и напряжений с учетом коэффициента трансформации блока РЕТ-ВАХ-2000, что позволяет отображать на экране измерителя реальные напряжение и ток, подаваемые на обмотку трансформатора.

3. Снятие ВАХ не должно влиять на дальнейшую работу ТТ.

Если при снятии ВАХ ТТ прекратить подачу напряжения в точке синусоиды, отличной от нуля (рисунок 3), то на магнитопроводе трансформатора может появиться остаточное намагничивание.

Рис. 3. Некорректное отключение источника напряжения

Наличие остаточного намагничивания (точка 1 на рисунке 4) может привести к некорректной работе трансформатора при последующей подаче тока. 

Рис. 4. Петля гистерезиса магнитопровода ТТ

Выдача сигналов в приборе РЕТОМ-21 построена таким образом, что источник напряжения прибора РЕТОМ-21 отключается при переходе через ноль синусоиды входного напряжения (рисунок 5), что в свою очередь исключает возможность появления остаточного намагничивания.

Рис. 5. Корректное отключение источника

 

Определение однополярных выводов первичной и вторичной обмоток

Прибор РЕТОМ-21  можно использовать для определения полярности обмоток трансформатора. В начале проверки необходимо собрать схему, изображенную на рисунке 6.

Рис. 6. Схема подключения ТТ к прибору РЕТОМ-21 для определения полярности обмоток.

На первичную обмотку трансформатора подается ток с источника I5, вторичная обмотка подключается к встроенному в прибор внешнему амперметру. С помощью фазометра определяется угол между токами первичной и вторичной обмоток. Если угол между двумя этими токами близок к нулю, то выбраны однополярные обмотки, если угол близок к 180 градусам – разнополярные. Для проверки полярности обмоток небольших ТТ также можно использовать  вольтамперфазометр  РЕТОМЕТР-М2.

 

Проверка коэффициента трансформации ТТ

В зависимости от класса трансформатора измерение коэффициента трансформации может проводиться либо с использованием выхода U5 (максимальный ток до 750 А) прибора РЕТОМ-21 (рисунок 8)

Рис. 8. Схема подключения ТТ к выходу U5 для проверки коэффициента трансформации

либо с помощью трансформатора тока РЕТ-3000, подключенного к источнику U6 (рисунок 9). В этом случае для измерения первичного тока используется блок РЕТ-ДТ, способный измерять токи до 30 кА.

Рис. 9. Схема подключения ТТ  для проверки коэффициента трансформации

 

Испытание электрической прочности и сопротивления изоляции

Испытание электрической прочности и сопротивления изоляции можно проводить при помощи прибора РЕТОМ-6000, который выдает постоянное и переменное напряжение до 6 кВ.

В данном приборе предусмотрена возможность измерения токов утечки, омического сопротивления изоляции, а также построения ВАХ трансформаторов тока.

Таким образом, комплекс РЕТОМ-21 позволяет проводить полноценную проверку трансформаторов тока, предоставляя ряд преимуществ: 

– сокращаются трудозатраты и время проведения проверок;

– возможность проверки любых ТТ;

– возможность проверки ТТ без использования дополнительных вспомогательных приборов;

– достоверность получаемых результатов.

Список литературы

1. РД 153-34.0-35.301-2002 Инструкция по проверке трансформаторов тока, используемых в схемах релейной защиты и измерения / Под общей ред. B.C. Буртакова, К.С. Дмитриева.— М.: СПО ОРГРЭС 2002

В.В. Никитин
ООО «НПП «Динамика»
май 2011

Испытание и проверка измерительных трансформаторов тока и напряжения

Перед началом испытаний проводят визуальный осмотр проверяя технический паспорт, состояние фарфора изоляторов, число и место установки заземлений вторичных обмоток. Проверка заземления вторичных обмоток выполняется там, где оно может безопасно отсоединяться без снятия высокого напряжения, на панели защиты.

Также проверяется резьба в ламелях зажимов трансформаторов тока. Трансформаторы класса токов Д и З проверяют на комплектность, номер комплекта должен совпадать.

Встроенные трансформаторы проверяют на сухость и устанавливают в соответствиями с надписями “верх”/”низ”. У выключателей с встроенными трансформаторами тока проверяют наличие уплотнения труб и сборных коробок, через которые проходят цепи трансформаторов тока.

При осмотре масляных трансформаторов удаляют резиновую шайбу из-под заливной пробки.

Проверка сопротивления изоляции обмоток

Мегаомметром на напряжение 1-2,5 кВ проверяют сопротивление первичной изоляции, каждой из вторичных обмоток и сопротивление между обмотками.

Испытание прочности изоляции обмоток производится напряжением 2 кВ на протяжении  одной минуты.

Изоляцию вторичных обмоток разрешается испытывать одновременно с цепями вторичной коммутации переменным током напряжением 1 кВ в течение 1 мин.

Все испытания проводятся в соответствии с нормами.

Проверка полярности вторичных обмоток трансформаторов тока

Данная проверка проводится методом импульсов постоянного тока при помощи гальванометра.

Замыкая цепь контролируют направление отклонения стрелки прибора, при отклонении вправо, однополярные зажимы те, что присоединены к “плюсам” батареи и прибора. Для испытаний, в качестве источника тока, используются аккумуляторы или сухие батареи.

Проверка коэффициента трансформации трансформаторов тока

Нагрузочным трансформатором НТ в первичную обмотку подается ток, близкий к номинальному, не менее 20% номинального. Коэффициент трансформации проверяется на всех ответвлениях для всех вторичных обмоток.

Если на встроенных трансформаторах отсутствует маркировка, она восстанавливается следующим образом:

Подается напряжение Х автотрансформатора AT или потенциометра на два произвольно выбранных ответвления трансформатора тока. Вольтметром V измеряют напряжение между всеми ответвлениями. Максимальное значение напряжения будет на крайних выводах А и Д, между которыми заключено полное число витков вторичной обмотки трансформатора тока. На определенные таким образом начало и конец обмотки подают от автотрансформатора напряжение из расчета 1 В на виток (число витков определяют по данным каталога). После этого, измеряя напряжение по всем ответвлениям, которое будет пропорционально числу витков, определяют их маркировку.

Снятие характеристик намагничивания трансформаторов тока

Витковое замыкание во вторичной обмотке — самый распространенный дефект трансформаторов. Обнаруживается он во время проверки характеристик намагничивания, основных при оценке неисправностей, определении погрешностей. Выявляется дефект по снижению намагничивания и уменьшению крутизны.

При замыкании даже нескольких витков, характеристики резко снижаются.

Полученные характеристики оцениваются сравнением с типовыми значениями, либо с данными полученными при проверке других однотипных трансформаторов с теми же коэффициентов и классом точности.

Не рекомендуется снимать характеристики реостатом, из-за возможности появления остаточного намагничивания стали сердечника трансформатора тока при отключении тока.

В протокол проверки  обязательно записывают по какой схеме проводилась проверка, для того чтобы полученные значения можно было использовать при следующих проверках.

Для трансформаторов высокого класса точности и с большим коэффициентом трансформации достаточно снимать характеристику до 220 В. При снятии характеристик намагничивания вольтметр включают в схему до амперметра, чтобы проходящий через него ток не входил в значение тока намагничивания. Амперметр и вольтметр, применяемые при измерениях, должны быть электромагнитной или электродинамической системы.

Пользоваться приборами детекторными, электронными и другими, реагирующими на среднее или амплитудное значение измеряемых величин, не рекомендуется во избежание возможных искажений характеристики.

Проверка трансформаторов напряжения

Проверка трансформаторов напряжения не отличается от проверки силовых трансформаторов. Отличается методы проверки дополнительной обмотки 5-стержневых трансформаторов напряжения типа НТМИ, так как обмотка соединена в разомкнутый треугольник.

Полярность проверяется поочередным подключением “плюса” батареи ко всем выводам обмотки, а “минус” остается нулевым. При верном подключении наблюдают отклонение стрелок гальванометра в одну сторону.

После включения трансформатора в сеть необходимо измерить напряжение небаланса.

Испытание измерительных трансформаторов тока и напряжения

Испытания измерительных трансформаторов

Наружный осмотр

При наружном осмотре измерительных трансформаторов проверяют наличие паспорта, состояние фарфора изоляторов, а также число и место установки заземлений вторичных обмоток. Заземление вторичных обмоток Измерительных трансформаторов надлежит выполнять в одном месте — на панели защиты или на клеммной сборке, т. е. там, где заземление может быть безопасно отсоединено без снятия высокого напряжения.

Кроме того, проверяют исправность резьбы в ламелях зажимов трансформаторов тока. У трансформаторов тока классов Д и 3, предназначенных для работы в цепях дифференциальной и земляной защит, проверяют также их комплектность. Все трансформаторы данного комплекта должны иметь один и тот же номер комплекта.

Встроенные трансформаторы тока перед установкой должны быть высушены, а при монтаже необходимо следить, чтобы они были установлены в соответствии с заводскими надписями «верх» и «низ». У выключателей с встроенными трансформаторами тока проверяют наличие уплотнения труб и сборных коробок, через которые проходят цепи трансформаторов тока.

При осмотре измерительных трансформаторов напряжения необходимо убедиться в отсутствии проворачивания проходных штырей.

Перед включением в эксплуатацию трансформаторов напряжения, залитых маслом, необходимо удалить резиновую шайбу из-под пробки для заливки масла.

проверка сопротивления изоляции обмоток

Сопротивление изоляции обмоток измерительных трансформаторов проверяют мегомметром на напряжение 1000—2500 в. При этом измеряют сопротивление изоляции первичной и каждой из вторичных обмоток по отношению к корпусу, а также сопротивление изоляции между всеми обмотками.

Электрическую прочность изоляции вторичных обмоток испытывают напряжением 2000 в переменного тока в течение 1 мин.

Изоляцию вторичных обмоток трансформаторов тока допускается испытывать совместно с цепями вторичной коммутации переменным током напряжением 1000 В в течение 1 мин.

Электрическую прочность изоляции первичных обмоток испытывают по нормам, приведенным в п. 4 настоящего раздела.

Проверка полярности вторичных обмоток трансформаторов тока

Проверка полярности производится методом импульсов постоянного тока при помощи гальванометра: по схеме, приведенной на рис. 10.

Рис. 10. Схема проверки полярности вторичных обмоток трансформаторов тока
 Б — батарея или аккумулятор; К — кнопка; R доб — ограничительное сопротивление 1сш; Г—гальванометр.

При замыкании цепи тока следят за направлением отклонения стрелки прибора. Если при замыкании цепи стрелка отклоняется вправо, то однополярными зажимами будут те, к которым присоединены «плюс» батареи и «плюс» прибора.

В качестве источника постоянного тока используют сухие батареи или аккумуляторы

напряжением 2—6 В. При использовании аккумуляторов необходимо применять ограничительное сопротивление.

проверка коэффициента трансформации трансформаторов тока

Коэффициент трансформации проверяют по схеме, приведенной на рис. 11. При помощи нагрузочного трансформатора НТ в первичную обмотку подают ток, равный или близкий к номинальному, но не менее 20% номинального. Коэффициент трансформации проверяют для всех вторичных обмоток и на всех ответвлениях.

Рис. 11. Схема проверки коэффициента трансформации трансформаторов тока а — выносных; б — встроенных

При проверке встроенных трансформаторов, у которых отсутствует маркировка, ее необходимо восстановить, что наиболее просто сделать следующим образом.

По схеме, приведенной на рис. 12, подают напряжение Х автотрансформатора AT или потенциометра на два произвольно выбранных ответвления трансформатора тока. Вольтметром V измеряют напряжение между всеми ответвлениями. Максимальное значение напряжения будет на крайних выводах А и Д, между которыми заключено полное число витков вторичной обмотки трансформатора тока. На определенные таким образом начало и конец обмотки подают от автотрансформатора напряжение из расчета 1 В на виток (число витков определяют по данным каталога). После этого, измеряя напряжение по всем ответвлениям, которое будет пропорционально числу витков, определяют их маркировку.

Рис. 12. Схема определения отпаек встроенных трансформаторов тока при отсутствии маркировки

Снятие характеристик намагничивания трансформаторов тока

Наиболее распространенный дефект трансформаторов тока — витковое замыкание во вторичной обмотке. Этот дефект лучше всего выявляется при проверке характеристики намагничивания, которая является основной для оценки исправности и определения погрешностей или тождественности трансформаторов, предназначенных для дифференциальных и земляных защит. Витковое замыкание выявляется по снижению характеристики намагничивания и уменьшению ее крутизны.

На рис. 13 видно, что даже при закорачивании всего 1—2 витков происходит резкое снижение характеристики, определяемой при этом испытании.

При проверке же коэффициента трансформации замыкания небольшого числа витков практически не обнаруживается.

Рис. 13. Характеристики намагничивания при витковых замыканиях во вторичных обмотках (трансформатор тока типа ТВ-35 300/5 а) 
1 — исправный трансформатор тока; 2 — закорочены два витка; 3 — закорочены восемь витков

Оценка полученной характеристики намагничивания производится путем сопоставления ее с типовой или с характеристиками, полученными на других однотипных трансформаторах тока того же коэффициента трансформации и класса точности.

Кривые намагничивания рекомендуется снимать по схеме с автотрансформатором (рис. 14,а). При пользовании потенциометром (схема на рис. 14,6) характеристика для того же трансформатора получится несколько выше, а при пользовании реостатом (схема на рис. 14,в) — еще выше (рис. 15).

Снимать характеристику при помощи реостата не рекомендуется, так как возможно появление остаточного намагничивания стали сердечника трансформатора тока при отключении тока.

Рис. 14. Схемы снятия характеристик намагничивания
а — с автотрансформатором; б — с потенциометром; в — с реостатом

Рис. 15. Характеристики намагничивания трансформаторов тока, снятые различными способами (трансформатор тока типа TB-35 150/5 А)
1 — с реостатом; 2 — с потенциометром; 3 — с автотрансформатором

Для того чтобы при последующих эксплуатационных проверках можно было сравнивать характеристики намагничивания с ранее снятыми, в протоколе проверки надо отмечать по какой схеме снималась характеристика. Для построения характеристики намагничивания достаточно снять ее до начала насыщения (при токе 5—10 А).

Для трансформаторов высокого класса точности и с большим коэффициентом трансформации достаточно снимать характеристику до 220 В. При снятии характеристик намагничивания вольтметр следует включать в схему до амперметра, чтобы проходящий через него ток не входил в значение тока намагничивания. Амперметр и вольтметр, применяемые при измерениях, должны быть электромагнитной или электродинамической системы.

Пользоваться приборами детекторными, электронными и другими, реагирующими на среднее или амплитудное значение измеряемых величин, не рекомендуется во избежание возможных искажений характеристики.

Проверка трансформаторов напряжения

Методы проверки трансформаторов напряжения не отличаются от методов проверки и испытания силовых трансформаторов, описанных выше.

Некоторую особенность составляет проверка дополнительной обмотки 5-стержневых трансформаторов напряжения типа НТМИ. Эта обмотка соединена в разомкнутый треугольник. Проверка полярности ее производится по схеме, приведенной на рис. 16, путем поочередного подключения «плюса» батареи на все три вывода обмотки высшего напряжения в то время, как «минус» батареи, остается постоянно включенным на нулевой вывод. При правильном соединении обмоток отклонение гальванометра во всех случаях будет в одну сторону.

Рис. 16. Схема проверки полярности дополнительной обмотки 5- стержневого трехфазного трансформатора

Рис. 17. Имитация однофазного замыкания на землю путем исключения одной фазы 5-стержневого трансформатора напряжения на этой обмотке, которое при симметричном первичном напряжении не должно превышать 2—3 В. Полное отсутствие напряжения небаланса   свидетельствует об обрыве цепи дополнительной обмотки трансформатора напряжения типа НТМИ должно быть напряжение 100 В.

После включения трансформатора в сеть необходимо измерить напряжение небаланса.

Программа для проверки трансформаторов тока 0,4кВ

Чтобы не получать замечания от энергосбыта нужно правильно выбирать трансформаторы тока для счетчика трансформаторного включения. В одной из статей я уже приводил пример проверки ТТ. Сегодня представлю свою программу для проверки трансформаторов тока 0,4кВ.


В конце статьи представлены нормативные документы, на основании которых была выполнена программа по проверке трансформаторов тока 0,4кВ.

Необходимо иметь ввиду, что при токах до 100А необходимо предусматривать счетчики прямого включения. Получается минимальный трансформатор тока, который мы можем использовать на стороне 0,4кВ – 150/5.

Для подключения расчетных счетчиков необходимо использовать трансформаторы тока и напряжения класса точности не более 0,5.

Коэффициент трансформации (отношение первичной обмотки ТТ к вторичной обмотке) трансформаторов тока выбирается по расчетному току. Значение расчетного тока не должно превышать номинальный ток трансформатора тока.

Если коэффициент трансформации  ТТ будет завышен, то счетчик будет считать электроэнергию с классом точности не гарантированным заводом-изготовителем. Согласно ГОСТ 7746—2001 трансформаторы тока допускают перегрузку в 20%, но не более двух часов в неделю.  Об этом следует помнить при организации учета электроэнергии на двухтрансформаторной подстанции с возможностью подключения всей нагрузки на один трансформатор, т.к. трансформаторы тока выбираются по аварийному режиму.

Завышение коэффициента трансформации трансформаторов тока недопустимо.

Поскольку белорусские нормы немного отличаются от российских, я сделал отдельно 2 отдельных файла по проверке ТТ. На самом деле программы практически ничем не отличаются. Основное отличие в трактовке п.1.5.17 ПУЭ и п.4.2.4.4 ТКП39-2011. Слова разные, а суть одна и та же

Внешний вид программы:

Внешний вид программы для проверки трансформаторов тока

В отличие от других моих программ внешний вид немного изменился. Теперь весь расчет прозрачен и при необходимости может быть предоставлен для обоснования своего выбора.

Для расчета достаточно ввести расчетный ток, минимальный потребляемый ток и выбрать номинальный ток первичной обмотки трансформатора. Ток вторичной обмотки, как правило, равен 5А.

Чтобы получить программу, зайдите на страницу МОИ ПРОГРАММЫ.

В программе производится проверка согласно ПУЭ (ТКП), т.к. там представлены более жесткие требования, чем в РМ-2559. В РМ-2559 сказано, что минимальный ток вторичной обмотки для электронных счетчиков должен быть 0,1А или 2%. В ПУЭ (ТКП) про электронные счетчики ничего не сказано, значит  требования распространяются на все счетчики и минимальный ток вторичной обмотки нужно принимать не менее 0,25А или 5%.

Нормативные документы по выбору трансформаторов тока 0,4кВ:

1 ТКП 339-2011. Электроустановки на напряжение до 750 кВ…

2 ПУЭ 7. Правила устройства электроустановок.

3 РМ-2559. Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

4 ГОСТ 7746—2001. Трансформаторы тока. Общие технические условия.
Советую почитать:

Как проверить трансформатор при помощи мультиметра

Чтобы узнать, как проверить состояние трансформатора мультиметром, предлагаем изучить материал от экспертов  electroinfo.net. Проверить трансформатор на наличие обрыва или замыкания катушки с помощью обычного тестера довольно просто. Проверить межвитковые замыкания, не имея генератора и осциллографа, трудно или даже вовсе невозможно. Провести подобную проверку можно только осциллографом с выходами калибровки. Для этого подаются сигналы и отслеживаются прибором.

Но существуют также специальные приборы для проведения теста на исправность трансформатора и его отдельных элементов – мультиметры. С их помощью установить, исправен ли прибор, можно даже в домашних условиях. В данной статье будут рассмотрены основные моменты проверки трансформаторов с помощью мультиметра. К статье бонусом добавлен видеоролик с наглядным примером проверки трансформатора и файл с подробной инструкцией о том, как пользоваться мультиметром.

Проверка трансформатора мультиметром.

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка на межвитковое замыкание

Начать нужно с внешнего осмотра, особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Дело в том, что межвитковое замыкание приводит к сильному нагреву трансформатора. Далее проверяем сопротивление изоляции между обмотками, оно должно составлять не менее 10 Мом. Если есть аналогичный трансформатор, можно сравнить их значение индуктивности. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи.

От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке.

Для импульсного блока питания он составляет — 8-40 кГц, для ТДКС — 13-17 кГц. Импульсные трансформаторы обычно содержат малое число витков. Возможен вариант убедиться в работоспособности трансформатора путем контроля   коэффициента трансформации обмоток.

Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах).

Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации. Этот метод вполне реален для тех кто дружит с математикой. По результатам пробных измерений составлена таблица, в которой сопротивлению, указанному в левой колонке, соответствует определенное показание цифрового индикатора.

Замер тока и напряжения мультиметром.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.

Как проверить тороидальный трансформатор.

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Порядок проверки трансформатора мультиметром.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Как проверить импульсный трансформатор мультиметром

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования.

Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

  • Методика проверки аналоговым (стрелочным) измерительным прибором:
  • Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  • После в гнёзда тестера вставляются два провода и перемыкаются накоротко.

Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация.

Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Заключение

Более подробно о работе мультиметра и проверке с его помощью трансформаторов можно почитать в файле “Как пользоваться мультиметром”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

телемастерская.рф
www.texnic.ru
www.norma-stab.ru
www.yato-tools.ru

Предыдущая

ПрактикаКатушка тесла (Трансформатор) самостоятельная сборка собственными силами

Следующая

ПрактикаКак проверить конденсатор при помощи мультиметра

Испытание трансформаторов тока, встроенных во вводы | Испытания масляных выключателей 6-35 кВ | Архивы

Страница 8 из 30

При внешнем осмотре необходимо проверить соответствие установленного трансформатора тока проекту, отсутствие внешних механических повреждений его и проследить монтаж проводов от трансформаторов тока до наборов зажимов, а также подтянуть все контактные винты и болты.

Измерение сопротивления изоляции обмоток производится мегомметром 2500 В. При этом измеряется сопротивление вторичной обмотки относительно корпуса (фланца) ввода и вторичной обмотки относительно первичной обмотки (высоковольтного вывода). Величина сопротивления изоляции не нормируется, но практически при величине изоляции менее 10 МОм необходима ее сушка. Обычно для сушки трансформаторы тока снимают с вводов и помещают в сушильный шкаф на 10— 12 ч. Иногда сушку производят электролампами большой мощности (200—300 Вт), утеплив предварительно часть ввода со встроенными трансформаторами тока.

Испытание повышенным напряжением изоляции обмоток производится по методике, изложенной в § 7. Изоляция вторичных обмоток трансформаторов тока испытывается переменным напряжением 1000 В в течение 1 мин. По результатам испытаний окончательно судят о состоянии изоляции встроенных трансформаторов тока.

Проверка маркировки всех отпаек трансформаторов тока. Необходимо проверить правильность маркировки отпаек трансформаторов тока и произвести эту маркировку заново при ее отсутствии. Проверку маркировки можно производить двумя способами: распределением напряжения по отпайкам и методом поляромера.
Проверка распределением напряжения по отпайкам производится следующим образом: от источника переменного тока через потенциометр подают напряжение 100 В на любые две отпайки и измеряют напряжение между всеми отпайками. Наибольшее напряжение соответствует отпайке А-Д (крайние отпайки). Затем подают напряжение (из расчета 1 В на виток) на отпайку А-Д и измеряют напряжение между всеми отпайками, которое будет пропорционально числу витков их (коэффициенту трансформации). Таким путем определяются все отпайки. Затем необходимо проверить полярность обмоток трансформатора тока, т. е. А должно соответствовать началу обмотки, а Д — концу ее. Полярность обмоток проверяется так: на вывод высокого напряжения, соответствующий по схеме началу первичной обмотки, подается кратковременно «плюс» от батарейки 2—4 В, а на нижний вывод — «минус». Ко вторичной обмотке трансформатора тока подключается гальванометр со шкалой, имеющей нуль посредине. К выводу трансформатора тока, обозначенному А, подсоединяется «плюс» гальванометра, а к выводам Б, В, Г, Д—поочередно «минус» гальванометра. По отклонению стрелки (вправо — правильная, влево— неправильная маркировка) устанавливают правильность предварительного определения маркировки отпаек; при увеличении коэффициента трансформации отклонение стрелки гальванометра будет увеличиваться.
Метод поляромера заключается в следующем: все ответвления условно получают цифровую маркировку от 1 до 5; аналогично проверке полярности обмоток (см. выше) проверяют полярность каждого ответвления относительно всех других, например: отпайки 1 относительно 2, 3, 4, 5, второй отпайки относительно 1, 3, 4, 5 и т. д.; по числу отклонений стрелки гальванометра в ту или другую сторону можно определить действительную маркировку на каждой отпайке. Отпайка, дающая со всеми другими отпайками «минус», является концом вторичной обмотки, а отпайка, дающая со всеми другими «плюс», является ее началом; ответвление, дающее с остальными отпайками три «плюса» и «минус», является второй отпайкой от начала и т. д.


Рис. 16. Проверка коэффициента трансформации отпаек трансформатора тока.

Проверка коэффициента трансформации отпаек трансформаторов тока производится по схеме на рис. 16. От нагрузочного трансформатора НТ в первичную обмотку трансформатора тока (на выводы ввода) подается ток, составляющий не менее 20% Iном. Подсоединяя поочередно амперметр к отпайкам А-Б, А-В и т.д., определяют коэффициент трансформации отпаек транс-
форматора тока как отношение токов I1\ I2. Отклонения величины коэффициента трансформации трансформаторов тока не нормируются. У встроенных трансформаторов коэффициент трансформации проверяется на всех ответвлениях.

Проверка характеристики намагничивания трансформатора тока необходима для выявления повреждений в стали пли наличия замкнутых витков и возможности определения пригодности трансформаторов тока по их погрешностям для использования в данной схеме релейной защиты при данной нагрузке. Характеристика намагничивания снимается по схеме на рис. 17 на рабочей отпайке трансформатора тока.

Рис. 17. Схема для снятия характеристики намагничивания трансформаторов тока.
а — при напряжении до 250 В; б — при напряжении до 100—450 В.

Медленно поднимая напряжение, снимают зависимость U2=f(l2). Обычно задаются определенными значениями токов (например, 0,25; 0,5; 1; 2; 3; 5; 7; 10 А) и измеряют значения напряжений при этих токах. Снимают характеристику обычно до номинального тока или до начала насыщения. При снятии характеристики намагничивания необходимо избегать подачи напряжения на трансформатор тока толчком, а поднимать ток плавно, так как при толчке намагничивающего тока может выйти из строя амперметр. Снятая характеристика сравнивается с типовой характеристикой намагничивания. В случае если снятая характеристика намагничивания находится выше или ниже (не менее 20%) типовой, трансформатор исправен и может быть включен в работу. Если снятая характеристика идет выше (ниже) 20% типовой, то действительная 10%-ная погрешность трансформатора тока ниже паспортной и такой трансформатор тока рекомендуется браковать. При отсутствии типовых характеристик необходимо сравнивать характеристики, снятые с однотипных трансформаторов тока. В случае если трансформатор тока имеет витковое замыкание, характеристика его имеет значительно меньшую крутизну, чем у исправного транс форматора. Результаты испытаний трансформаторов тока заносятся в протокол испытаний.
Остальные испытания трансформаторов тока — измерение и определение нагрузок вторичных обмоток, расчетная проварка пригодности трансформатора по погрешностям, проверка схемы соединения вторичных токовых цепей — производятся совместно с проверкой релейной защиты [Л. 2].

Трансформатор тока - устройство, принцип работы и виды

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений. 

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.  

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

Поддерживайте точность вашего трансформатора тока: 3 теста

Несколько инструментов, обычно используемых для мониторинга систем электроснабжения, - это трансформатор тока, или CT, и трансформатор напряжения, или PT. ПТ используется для обеспечения правильного напряжения в энергосистеме, например, напряжения в линиях электропередач - нет ничего необычного в том, что линия электропередачи имеет номинальное напряжение от 400 000 до 700 000 вольт! Имея это в виду, легко понять, почему чрезвычайно важно поддерживать точность вашего трансформатора тока

.

ТТ используется для преобразования первичного тока в пониженный вторичный ток для точного измерения тока энергосистемы, к которой подключен ТТ.Это важно для многих предприятий, особенно для электроэнергетических компаний, поскольку обеспечивает точность счетов за электроэнергию. Чтобы поддерживать трансформатор тока в рабочем состоянии и обеспечивать точное измерение тока, необходимо регулярно проводить тестирование трансформатора тока.

Вот несколько тестов ТТ, которые вы выполняете с помощью испытательного оборудования трансформаторов тока, чтобы определить эффективность вашего ТТ.

1. Тест соотношения

Этот тест выполняется для определения отношения первичного входного тока к вторичному выходному току при полной нагрузке.Поскольку первичный ток изменяется, вторичный ток изменяется с той же скоростью. Например, если первичный ток уменьшается вдвое, то вторичный ток также уменьшается вдвое. Этот тест проводится для подтверждения соотношения ТТ, указанного производителем, и этот тест может быть проведен большинством измерителей ТТ.

2. Проверка полярности

Полярность ТТ - это направление, в котором ток течет через ТТ. Полярность указывает, где первичный ток поступает на первичный вывод, а где вторичный ток выходит на вторичный вывод.Полярность ТТ считается правильной, если направления первичного и вторичного тока противоположны друг другу. Соблюдение правильной полярности важно при первой установке ТТ, а проверка полярности часто проводится одновременно с проверкой соотношения с использованием большинства приборов с трансформатором тока.

3. Испытание на нагрузку

Проведение испытания на нагрузку важно для проверки того, что ТТ подает ток в цепь, не превышающую номинальную нагрузку производителя. Если нагрузка слишком велика, это может привести к снижению вторичного тока ТТ и снижению точности ТТ.Испытания под нагрузкой часто занимают больше времени, чем другие испытания трансформатора тока, но все же необходимы для обслуживания трансформатора тока.

Поддерживайте точность трансформатора тока

Поддержание точного трансформатора тока важно для мониторинга энергопотребления на любом предприятии. Регулярное тестирование вашего CT позволит убедиться, что ваш CT продолжает работать, и поможет снизить затраты на электроэнергию из-за неточных счетов. Для получения дополнительной информации позвоните нам в Powermetrix сегодня!

Основы трансформатора тока

- коэффициент передачи и полярность

Главная »Новости» Коэффициент передачи и полярность трансформатора тока

Отправлено: автор: Weschler Instruments

Измерительный трансформатор тока (CT) используется для понижения переменного тока до уровня, который легче измерить панельным измерителем или испытательным прибором.Величина понижения определяется соотношением ТТ (например, 300: 5).

Формула для коэффициента ТТ:

Где
Ap = ток первичной обмотки
As = вторичный ток
Np = количество витков первичной обмотки
Ns = число витков вторичной обмотки

Используя эту формулу, трансформатор тока 300: 5 с одним витком первичной обмотки имеет 60 вторичных витков. Обычно они наматываются тонкой проволокой и спрятаны внутри корпуса трансформатора тока.

Коэффициент ТТ на паспортной табличке предполагает, что первичный проводник один раз проходит через центральное окно. Каждый проход первичного проводника через окно считается одним первичным витком. Значительных изменений соотношения можно добиться, пропустив провод через окно более одного раза. КТ 300: 5 с двумя проходами (поворотами) становится КТ 150: 5. Три прохода дают КТ 100: 5.

Одна из причин для этого заключается в том, что ТТ с более высоким коэффициентом передачи обычно имеет лучшие характеристики, чем ТТ с низким коэффициентом.Характеристики точности и нагрузки ТТ не изменяются при использовании нескольких витков первичной обмотки. Однако окно должно быть достаточно большим, чтобы вместить дополнительные витки первичного провода большого сечения.

Меньшие изменения передаточного числа могут быть сделаны путем добавления или вычитания витков на вторичной обмотке. На трансформаторе тока с одним витком первичной обмотки и вторичной обмоткой на 5 ампер каждый вторичный виток изменяет соотношение на 5 ампер. Добавка за один оборот на ТТ 100: 5 становится ТТ 105: 5. Вычитание за один ход превращается в КТ 95: 5.Дополнительный виток наматывают, пропуская провод X1 через окно от h3 к направлению h2 (со стороны, противоположной отметке полярности). Вычитающий виток проходит в противоположном направлении (со стороны знака полярности).

Регулировка как первичной, так и вторичной обмоток обеспечивает дополнительные коэффициенты для конкретного трансформатора тока. Несколько примеров для трансформатора 100: 5:

Соблюдение полярности трансформатора тока важно при добавлении или вычитании вторичных витков.ТТ производятся для выработки вторичного тока, который находится в фазе с первичным током, если они установлены с правильной ориентацией. Относительные полярности первичных и вторичных выводов ТТ обозначаются либо окрашенными метками полярности, либо символами «h2» и «h3» для первичных выводов и «X1» и «X2» для вторичных выводов. По соглашению, когда первичный ток поступает на вывод h2, вторичный ток покидает вывод X1.

Правильная полярность ТТ также требуется при использовании нескольких трансформаторов тока для выполнения трехфазных измерений.По соглашению сторона h2 (или точка полярности) каждого ТТ ориентирована к источнику, а сторона h3 - к нагрузке. Неправильная ориентация первичной или вторичной обмотки на одном или нескольких ТТ может дать неверные показания тока и / или мощности.

Предупреждение: трансформаторы тока понижают ток, но повышают напряжение. Открытый вторичный контур на трансформаторе тока 1 А или 5 А может создавать опасное высокое напряжение.

Для получения дополнительной информации о трансформаторе тока посетите наш блог «Как выбрать трансформатор тока».


Трансформаторы тока для измерения | Подсказка Energy Sentry Tech

Есть два типа электросчетчиков: автономные (с прямым приводом) и трансформатор номинальный.

Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик. Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.

При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом.Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения тока или общей потребляемой мощности. Информация регистрируется счетчиком.

В ТТ кольцевого типа имеется два проводника или обмотки. Первичная обмотка - это линейный проводник, проходящий через центр трансформатора тока. Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.

Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается на измеритель, который прямо пропорционален первичному току.Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.

Для ТТ на 200: 5А коэффициент трансформации составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А коэффициент трансформации составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.

Номинальная нагрузка (B) - это полное сопротивление цепи, подключенной ко вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока.Рейтинг нагрузки - это максимальное значение импеданса перед превышением минимальных пределов точности.

Разница в коэффициенте тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент - это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.

Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?
У нас есть решение!

Измерительные трансформаторы тока высокого качества

Если ваша программа расчета теплового коэффициента требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.

Наши измерительные трансформаторы тока изготовлены из сердечников из многослойной кремнеземной стали высшего качества и соответствуют стандарту IEEE C57.13. стандарты.

Доступные передаточные числа Точность при BO.1 / 60 Гц Номинальный коэффициент Частота Класс изоляции
100: 5A 1,2 1,5 при 30 ° C 50-400 Гц 600 В
200: 5A .03 1,5 при 30 ° C 50-400 Гц 600 В
Следующий технический совет: трансформаторы тока для контроллеров нагрузки Система тестирования трансформаторов тока

- TESCO

СИСТЕМА ИСПЫТАНИЯ ТРАНСФОРМАТОРА ТОКА KC-1500

Система проверки трансформаторов тока Knopp типа KC-1500 предназначена для измерения точности измерительных трансформаторов, имеющих вторичные обмотки 1 и 5 ампер и первичные обмотки до 1500 ампер.KC-1500 может проверять трансформаторы с вторичными обмотками 1 или 5 ампер. В качестве эталона в системе используется высокоточный многодиапазонный трансформатор тока.

Читать далее

Система хорошо подходит для коммунальных предприятий, в которых испытания трансформаторов тока включают первичные токи до 1500 ампер включительно. Погрешности фазового угла и соотношения проверяемого трансформатора (TUT) измеряются встроенным автоматическим компаратором трансформаторов Кноппа.

Читать меньше
Характеристики
  • Компаратор с трансформатором тока типа KATC-C1 с автоматическим переключением и автоматическим переключением обеспечивает минимальное время измерения (обычно в течение трех секунд после регулировки испытательного тока).
  • ЦИФРОВОЕ ОТОБРАЖЕНИЕ испытательного тока, погрешности отношения (в процентах или коэффициенте поправки), погрешности фазового угла (в минутах или миллирадианах).
  • КЛАСС ТОЧНОСТИ, которому соответствует TUT, рассчитывается и отображается в цифровом виде.
  • Функция САМОПРОВЕРКИ позволяет легко проверить точность системы KC-1500 без использования внешнего эталона.
  • ЗАЩИТНАЯ ЦЕПЬ определяет условия ошибки, такие как неправильное соотношение или неправильная полярность, и отключает питание от схемы нагрузки KC-1500.
  • Функция ZERO START требует, чтобы контроль испытательного тока был равным нулю перед подачей питания на схему нагрузки (и, следовательно, на TUT).
  • СТАНДАРТНЫЕ БОРЬБЫ ANSI включают B-0,1, B-0,2, B-0,5, B-0,9, B-1 и B-1.8.
  • ПОРТАТИВНОСТЬ означает, что систему можно легко транспортировать к месту проведения полевых испытаний.
  • Порт вывода ПОСЛЕДОВАТЕЛЬНЫЙ (RS-232C) для передачи результатов теста на принтер или компьютер.
  • РАБОТА НА 120 Вольт позволяет использовать легкодоступные источники питания в лаборатории или магазине.
  • КОМПЛЕКТ ПОДКЛЮЧЕНИЯ, который включает кабели для облегчения подключения большинства измерительных трансформаторов к клеммам KC-1500.
Технические характеристики

Системная точность

в пределах ± 0,025% по коэффициенту и ± 2 минуты по фазовому углу при классе точности 1,2 или меньше.

Диапазоны испытательного тока

5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 800, 1000, 1200 и 1500 ампер.

Включено ANSI Burdens

Б-0.1, Б-0.2, Б-0.5, Б-0.9, Б-1, Б-1.8.

Входная мощность

120 В переменного тока, однофазный, 60 Гц, максимум 15 ампер.

Испытания трансформаторов тока | Калибровка

Что такое трансформаторы тока?

Трансформаторы тока (ТТ) - это устройства, которые преобразуют существующий электрический ток в уменьшенный ток, который безопасен для использования со счетчиками, реле, контрольным оборудованием и другими электрическими устройствами.Эти устройства необходимы для мониторинга и защиты энергосистем.

Почему требуется тестирование CT?

Есть несколько конкретных причин для проверки трансформаторов тока.

  • Одной из важных причин завершения тестирования CT является защита чувствительного вторичного устройства. Иногда коэффициент уменьшения тока может в 30 раз превышать нормальный ток.
  • Еще одна не менее важная причина - обеспечить точность вашего счета за электроэнергию.Вы должны ожидать, что показания будут точными до 0,1.
  • Как и в случае с любым другим устройством, очень важно улавливать незначительные изменения в показаниях, чтобы избежать серьезной поломки. Регулярное тестирование этих устройств обеспечивает состояние вашей системы.
  • Не менее важно завершить тестирование трансформатора тока перед любой новой установкой, чтобы убедиться, что он работает правильно. При использовании электрического тока безопасность имеет первостепенное значение. Обычно ТТ используются в течение 30 лет.

Типы процедур тестирования Испытания трансформатора тока

проводятся во время разработки, производства, монтажа и в рамках регулярного технического обслуживания электропитания.Это осуществляется разными способами в зависимости от конкретного устройства. Среди процедур, которые вы можете выполнить, - испытания соотношения сторон, испытания полярности, испытания возбуждения, испытания сопротивления изоляции, испытания сопротивления обмотки и испытания на нагрузку.

  • Ratio Test: Этот тест сравнивает соотношение первичного тока и вторичного тока. Соотношение должно оставаться постоянным, если не изменятся какие-либо факторы.
  • Тест полярности: Этот тест подтверждает правильность направления вторичного тока в зависимости от направления первичного тока.Он основан на направлении обмоток катушки по часовой стрелке или против часовой стрелки.
  • Испытание на возбуждение: В этом случае испытание состоит из подачи определенного напряжения на вторичной стороне при снятии показаний на первичной стороне. Однако этот тип тестирования имеет физические ограничения и не воспроизводит все возможные условия реального обслуживания. Другие важные факторы, которые не могут быть протестированы этим методом, включают уменьшение транзита, точность, безопасность, множественные ошибки и постоянство во времени.
  • Проверка сопротивления изоляции: Проверка сопротивления изоляции определяет, остаются ли значения сопротивления постоянными. Если наблюдается значительное падение, значит, проблема.
  • Тест сопротивления обмотки: В этом тесте падение напряжения на обмотке делится на значения постоянного тока, проходящего через обмотки. Последовательная цифра указывает на отсутствие проблем.
  • Тест нагрузки: В этом методе к первичной стороне прикладывается большой ток, и считывается сигнал на вторичной стороне.В процедуре тестирования используются различные значения силы тока для моделирования различных состояний первичной обмотки за пределами нормальных рабочих условий. Этот метод требует много времени и оборудования. Иногда невозможно проверить условия очень сильного тока.

Устройство для проверки анализатора ТТ

Это устройство представляет собой модель вашего трансформатора тока с заданными характеристиками на основе спецификаций производителя. После ввода данных это испытательное устройство может рассчитывать различные параметры, такие как стандартные характеристики, коэффициент ограничения точности и коэффициент безопасности.Программное обеспечение устройства также может моделировать различные нагрузки или различные первичные токи. Путем анализа потерь в меди и в стали это устройство моделирует работу трансформатора тока, а затем может рассчитать ошибку соотношения тока. Доступны все международные стандарты трансформаторов тока.

Также устройство может использоваться в моделировании энергосистемы для групп тестирования ТТ. Эта способность позволяет инженеру энергосистемы лучше моделировать неисправности, что в целом обеспечивает большую точность.

Анализатор также может измерять остаточный магнетизм, предоставляя вашей компании новую возможность измерения для обнаружения неисправностей.

Преимущество этого небольшого и легкого устройства заключается в том, что оно легко адаптируется, полностью автоматизировано и обеспечивает быстрое получение результатов. Точность анализатора проверяют метрологические компании в Австралии.

Как найти авторитетную метрологическую компанию

Есть много важных индикаторов для уважаемых фирм, выполняющих калибровку инструментов.Следующие критерии определяют основные моменты:

  • Опыт: Часто опыт является хорошим показателем компетентности. Где-то на веб-сайте компании будет документация о годах работы компании в этой области. Кроме того, поищите отзывы или примеры из практики, чтобы определить, как относятся к клиентам, и насколько тщательно они подходят и проводят КТ-тестирование.
  • Аккредитация: Поскольку вам может потребоваться сертификация на соответствие государственным требованиям, убедитесь, что выбранная вами фирма может предоставить вам необходимую документацию для выполнения этой задачи.
  • Ценности компании: Компании, которые публикуют свои ценности, часто являются предприятиями, которые понимают, как относиться к своим клиентам справедливо и уважительно. Их стремление продемонстрировать свои основные убеждения демонстрирует, что у них есть политика, направленная на поддержку благоприятной деловой среды.
  • Приспосабливаемость: Вам нужен институт, который готов работать в соответствии с вашим графиком в соответствии с потребностями вашего бизнеса, даже если это означает работу в традиционные праздничные дни или необходимость быстрого восстановления.Иногда может быть полезно, чтобы команда приезжала к вам на объект, чтобы завершить калибровку ваших устройств.

Требуется ли вашей компании проведение испытаний трансформаторов тока или других специализированных испытаний оборудования высокого и низкого напряжения, а также услуги по вводу в эксплуатацию в проектных или ремонтных средах? Свяжитесь с нами, чтобы узнать больше о наших услугах.

Основные сведения о трансформаторе тока - Peak Demand Inc

Основные сведения о трансформаторе тока

Размещено в h в инструментальных трансформаторах от

Основные сведения о трансформаторе тока

Джон Ренни

Рисунок с сайта www.electronics-tutorials.ws

Трансформаторы тока

(ТТ) широко используются в электрических распределительных системах для измерения, измерения и защиты. Это простые устройства, предназначенные для создания переменного тока во вторичной обмотке, который прямо пропорционален току в первичном проводе.

Самый распространенный тип ТТ - это тороидальный ТТ. Тороидальные трансформаторы тока характеризуются тем, что первичный токопроводящий провод проходит непосредственно через центральную жилу.Тороидальные трансформаторы тока всегда подключаются последовательно, поэтому их часто называют «последовательными трансформаторами».

Конструкция ТТ проста. Вторичные обмотки из медной магнитной проволоки намотаны вокруг полого сердечника из электротехнической стали, а первичный проводник проходит через центр сердечника. Магнитный поток первичного проводника улавливается сердечником и индуцирует ток во вторичных обмотках, пропорциональный количеству вторичных обмоток. ТТ бывают разных конфигураций, но все имеют эту базовую конструкцию.

CT обычно имеют стандартный вторичный выходной ток 1 или 5 ампер. Коэффициент CT - это просто первичный и вторичный токи, выраженные как соотношение, где вторичный ток равен 1 или 5 ампер. ТТ с коэффициентом 100/5 означает, что первичный ток в 20 раз больше вторичного тока. Когда по первичному проводнику течет 100 ампер, во вторичной обмотке протекает ток 5 ампер.

Увеличивая количество вторичных обмоток, вторичный ток может быть намного меньше, чем ток в первичной цепи.По мере увеличения количества витков вторичный ток пропорционально уменьшается. В ТТ количество витков вторичной обмотки и ток во вторичной обмотке обратно пропорциональны. Например, трансформатор тока с коэффициентом 100/5 имеет 20 витков, тогда как трансформатор тока с коэффициентом 100/1 имеет 100 витков. Увеличение числа оборотов снижает вторичный ток на выходе.

Сопутствующие товары

Трансформаторы тока

Этот трансформатор тока является важной частью энергосистемы.Основы трансформатора тока, включая конструкцию, применение, принципы работы, будут рассмотрены в этой статье. Кроме того, будут всесторонне рассмотрены некоторые практические аспекты, такие как заземление и подключение трансформатора тока, а также связанные с этим ошибки.

Что такое трансформатор тока и W , где он используется?

Трансформатор тока

- это измерительный трансформатор, который понижает высокие значения токов до более низких значений.

Как видно из названия, измерительные трансформаторы используются для изоляции измерительных устройств от высоких напряжений и токов, чтобы облегчить измерение электрических величин.

Трансформаторы тока

широко используются для измерения тока и контроля работы электросети. Необходимость в трансформаторе тока оправдана двумя причинами:

  1. Изолирует систему защиты от высоких напряжений и токов, что приводит к уменьшению размера и стоимости защитного оборудования.
  2. Выход трансформатора тока стандартный (т. Е. 1 А или 5 А), что устраняет необходимость в защитном оборудовании, например. реле с разнообразными рабочими значениями.

Конструкция ТТ (трансформатор тока):

Конструкция трансформатора тока очень похожа на обычный трансформатор. Сердечник трансформатора тока изготовлен из слоистой кремнистой стали.

Трансформатор тока (ТТ) в основном имеет первичную обмотку из одного или нескольких витков с большим поперечным сечением.В некоторых случаях перемычка, по которой проходит большой ток, может действовать как первичная обмотка. Он включен последовательно с линией, по которой проходит большой ток.

Вторичная обмотка трансформатора тока состоит из большого количества витков тонкой проволоки с малой площадью поперечного сечения. Обычно он рассчитан на 1А или 5А.

Принцип работы:

Трансформатор тока не только по конструкции похож на обычный трансформатор, но и принцип работы такой же.

Переменный ток в первичных обмотках индуцирует магнитный поток в сердечнике, который передается вторичным обмоткам и индуцирует там переменный ток.

Эти трансформаторы в основном представляют собой повышающие трансформаторы, то есть повышающие напряжение от первичной до вторичной. Таким образом, ток снижается от первичного к вторичному.

Классификации:

На основе функции:

Измерение CT:

Трансформатор тока

, используемый для схем измерения и индикации, обычно называют измерительным CT . У них низкая точка насыщения. В случае неисправности сердечник станет насыщенным, и вторичный ток не повредит подключенные к нему измерительные устройства.

Защита CT:

Трансформатор тока

, используемый вместе с защитными устройствами, называется Protection CT . Назначение - обнаружение токов короткого замыкания в системе и передача сигнала на реле. Поскольку он работает при значениях тока, превышающих его номинальное значение, его сердечник имеет высокую точку насыщения.

На основе конструкции:

Трансформатор тока стержневого типа:

В трансформаторе тока этого типа в качестве первичной обмотки используется фактический кабель или шина главной цепи, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения.

Трансформатор тока с обмоткой:

Первичная обмотка трансформатора физически соединена последовательно с проводником, по которому проходит измеряемый ток, протекающий в цепи.

Тороидальный / оконный трансформатор тока:

Не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разъемный сердечник», который позволяет открывать, устанавливать и закрывать его без отключения цепи, к которой они подключены.

Подключение ТТ:

ТТ довольно просто подключить к однофазной системе, но для трехфазной системы есть 3 ТТ, которые можно подключить двумя способами:

Звезда (звезда) Подключено:

В случае соединения звездой полярная сторона трансформаторов тока подключается к оборудованию i.е. реле и неполярные стороны закорочены, а затем заземлены. Нейтральная сторона может присутствовать или отсутствовать в трехфазной системе.

Дельта подключено:

При соединении по схеме треугольник ТТ подключаются друг к другу по схеме треугольник, но при подключении учитывается полярность ТТ.

Обычно ТТ подключают по схеме треугольник, если трансформатор подключен по схеме звезды, и наоборот.

Полярность CT:

Как и любой другой трансформатор, ТТ также имеет полярность.Полярность относится к мгновенному направлению первичного тока по отношению к вторичному току и определяется тем, как выводы трансформатора выведены из корпуса.

Все трансформаторы тока имеют вычитающую полярность. Полярность ТТ иногда указывается стрелкой, эти ТТ следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.

Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.

Заземление ТТ:

Заземление трансформатора тока очень важно для безопасности и правильной работы реле защиты.

В соответствии со стандартом заземления трансформатора тока вторичная цепь трансформатора тока должна быть подключена к заземлению станции только в одной точке. Это справедливо независимо от количества вторичных обмоток трансформатора тока, подключенных к цепи.

Нагрузка CT:

Нагрузка трансформатора тока определяется как нагрузка, подключенная к его вторичной обмотке.Обычно выражается в ВА (вольт-ампер).

Короче говоря, соединительные провода и подключенный счетчик образуют нагрузку трансформатора тока. Технически это называется нагрузкой в ​​ВА. Эта нагрузка влияет на точность трансформатора тока. В конструкции трансформатора тока учтены внутренние потери и внешняя нагрузка трансформатора тока.

Нагрузка выражается в ВА путем умножения вторичного тока на падение напряжения на нагрузке (нагрузке) ТТ.Трансформаторы тока делятся на классы на основе точности, которая, в свою очередь, зависит от нагрузки ТТ.

Коэффициент CT:

Коэффициент CT - это отношение первичного входного тока к вторичному выходному току при полной нагрузке. Например, трансформатор тока с соотношением 100: 5 рассчитан на 100 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока, когда 100 ампер проходят через первичную обмотку.

Коэффициент трансформации =

Первичный ток Вторичный ток

Ошибки в CT:

Трансформатор тока имеет две ошибки - ошибку соотношения и ошибку угла сдвига фаз.

Ошибки коэффициента тока

Это в основном связано с энергетической составляющей тока возбуждения и определяется как

. Ошибка соотношения =

K t I s - I p I p

Где I p - первичный ток, K t - коэффициент трансформации, а I s - вторичный ток.

Ошибка угла фазы

В идеальном трансформаторе тока векторный угол между первичным и обратным вторичным током равен нулю.Но в реальном трансформаторе тока существует разница фаз между первичным и вторичным токами, потому что первичный ток также обеспечивает составляющую тока возбуждения. Таким образом, разница между двумя фазами называется ошибкой фазового угла.

Фазорные диаграммы идеального и реального КТ:

Можно определить идеальный трансформатор тока, в котором любое первичное состояние воспроизводится во вторичной цепи с точным соотношением фаз и соотношением фаз.Векторная диаграмма идеального трансформатора тока показана на рисунке 1.

В реальном трансформаторе обмотки имеют сопротивление и реактивное сопротивление, а трансформатор также имеет намагничивающую и потерянную составляющую тока для поддержания магнитного потока (см. Рисунок 2). Следовательно, в реальном трансформаторе соотношение тока не равно соотношению витков, и также существует разность фаз между током первичной обмотки и токами вторичной обмотки, отраженными обратно на первичной стороне. Следовательно, у нас есть ошибка отношения и ошибка угла фазы.

Где:

Kn = соотношение витков = число витков вторичной обмотки / число витков первичной обмотки,

Rs, Xs = сопротивление и реактивное сопротивление вторичной обмотки соответственно,

Rp, Xp = сопротивление и реактивное сопротивление первичной обмотки соответственно,

Ep, Es = первичное и вторичное индуцированные напряжения соответственно,

Tp, Ts = количество витков первичной и вторичной обмоток соответственно,

Ip, Is = токи первичной и вторичной обмоток соответственно,

θ = фазовый угол трансформатора

Φm = рабочий поток трансформатора

δ = угол между вторичным наведенным напряжением и вторичным током,

Io = ток возбуждения,

Im = намагничивающая составляющая возбуждающего тока

Il = составляющая потерь возбуждающего тока,

α = угол между Io и Φm

Вы получите знания о принципах, работе, применении и определении размеров трансформатора тока, которые позволят вам прочно разобраться в основах трансформатора тока.Ознакомьтесь с курсом "Основы трансформатора тока" , в котором мы кратко обсудили "Режим эквивалентной схемы трансформатора тока".

Модель ТТ:

Трансформатор тока моделируется так же, как и любой другой трансформатор. Модель CT как показано ниже:

X 1 = Первичное реактивное сопротивление утечки

R 1 = Сопротивление первичной обмотки

X 2 = Вторичное реактивное сопротивление утечки

Z 0 = намагничивающее сопротивление

R 2 = Сопротивление вторичной обмотки

Z b = Вторичная нагрузка

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *