Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Устройство, схема и подключение промежуточного реле

Здравствуйте, уважаемые читатели сайта sesaga.ru. Промежуточные электромагнитные реле применяются во многих электронных и электрических схемах и предназначены для коммутации электрических цепей. Они используются для усиления и преобразования электрических сигналов; запоминания информации и программирования; распределения электрической энергии и управления работой отдельных элементов, устройств и блоков аппаратуры; сопряжения элементов и устройств радиоэлектронной аппаратуры, работающих на различных уровнях напряжений и принципах действия; в схемах сигнализации, автоматики, защиты и т.п.

Промежуточное электромагнитное реле представляет собой электромеханическое устройство, которое может коммутировать электрические цепи, а также управлять другим электрическим устройством. Электромагнитные реле делятся на реле постоянного и переменного тока.

Работа электромагнитного реле основана на взаимодействии магнитного потока обмотки и подвижного стального якоря, который намагничивается этим потоком.

На рисунке показан внешний вид промежуточного реле типа РП-21.

1. Устройство реле.

Реле представляет собой катушку, обмотка которой содержит большое количество витков медного изолированного провода. Внутри катушки находится металлический стержень (сердечник), закрепленный на Г-образной пластине, называемой ярмом. Катушка и сердечник образуют электромагнит, а сердечник, ярмо и якорь образуют магнитопровод реле.

Над сердечником и катушкой расположен якорь, выполненный в виде пластины из металла и удерживаемый при помощи возвратной пружины. На якоре жестко закреплены подвижные контакты, напротив которых расположены соответствующие пары неподвижных контактов. Контакты реле предназначены для замыкания и размыкания электрической цепи.

2. Как работает реле.

В исходном состоянии, пока на обмотку реле не подано напряжение, якорь под воздействием возвратной пружины находится на некотором расстоянии от сердечника.

При подаче напряжения в обмотке реле сразу начинает течь ток и его магнитное поле намагничивает сердечник, который преодолевая усилие возвратной пружины, притягивает якорь. В этот момент контакты, закрепленные на якоре, перемещаясь, замыкаются или размыкаются с неподвижными контактами.

После отключения напряжения ток в обмотке исчезает, сердечник размагничивается, и пружина возвращает якорь и контакты реле в исходное положение.

3. Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда

разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому

общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

4. Электрическая схема реле.

На принципиальных схемах катушка электромагнитного реле изображается прямоугольником и буквой «К» с цифрой порядкового номера реле в схеме. Контакты реле обозначаются этой же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает на порядковый номер реле, а вторая на порядковый номер контактной группы этого реле. Если же на схеме контакты реле расположены рядом с катушкой, то их соединяют штриховой линией.

Запомните. На схемах контакты реле изображают в состоянии, когда на него напряжение еще не подано.

Электрическую схему и нумерацию выводов реле производитель указывает на крышке, закрывающей рабочую часть реле.

На рисунке видно, что выводы катушки обозначены цифрами 10 и 11, и что реле имеет три группы контактов:
7 — 1 — 4
8 — 2 — 5
9 — 3 — 6

Здесь же под электрической схемой указаны электрические параметры контактов, показывающие, какой максимальный ток они могут пропустить (коммутировать) через себя.

Контакты данного реле коммутируют переменный ток не более 5 А при напряжении 230 В, и постоянный ток не более 5 А при напряжении 24 В. Если же через контакты пропускать ток больше указанного, то они очень скоро выйдут из строя.

На некоторых типах реле производитель дополнительно нумерует выводы со стороны присоединений, что очень удобно.

Для удобства эксплуатации, замены и монтажа реле применяют специальные колодки, которые устанавливаются на стандартную DIN-рейку. В колодках предусмотрены отверстия для контактов реле и винтовые контакты для подключения внешних проводников. Винтовые контакты имеют нумерацию контактов, которая соответствует нумерации контактов реле.

Также на катушках реле указывают род тока и рабочее напряжение обмотки реле.

На этом пока закончим, а во второй части рассмотрим основные параметры и подключение электромагнитных реле, где на примерах простых схем разберем работу реле.

До встречи на страницах сайта.
Удачи!

Литература:

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Что такое реле, устройство, принцип действия, виды, производители

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройство

Содержание статьи

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

  • контактные;
  • бесконтактные.
На фото (обведено красным) показано, где находится одно из реле в стиральной машине

В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое электрооборудование, мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

Подробнее, с символическим обозначением реле и других элементов электронных и электрических схем, можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

Где приобрести реле и их стоимость

Реле в зависимости от типа КУ, производителя, сферы применения и продавца могут стоить от 15$ до нескольких сотен. Приобрести необходимое коммутационное устройство можно непосредственно у производителя в традиционных специализированных магазинах или интернете. В настоящее время купить нужное реле любого типа и назначения не составит труда. Существуют специальные каталоги, в которых указывается маркировка, компания-производитель, параметры и стоимость изделия.

Заключение

Как следует из этого обзора, реле является неотъемлемой частью практически любой электрической и электронной схемы промышленного оборудования и бытовой техники. Полную информацию об этом виде коммутационного устройства сложно втиснуть в рамки одной статьи. Если у вас возникнут какие-либо вопросы по этой теме, то задавайте и будем вместе разбираться.

 

Предыдущая

ИнженерияНасосная станция для частного дома: критерии выбора и особенности эксплуатации

Следующая

ИнженерияПодбираем с умом сифон для раковины на кухню

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Как подключить 4 контактное реле на сигнал

Всем привет, вот сижу попиваю пивко, читаю ленту и в очередной раз вижу “Собрал по схеме, не работает помогите”.

Попытаюсь объяснить, как оно работает, зачем оно нужно и как его подключить.

1. Вот самое обычное 4 контактное реле

2. На нем на крышке есть схема ножек

Контакты 85 и 86 — это катушка.
Контакт 30 — общий контакт
Контакт 87 — нормально-разомкнутый контакт
Внизу сами ножки имеют такие же маркировки.

3. Как его правильно подключить

Из расшифровки контактов понятно, что пока на реле не подан управляющий сигнал (+), То контакт 30 и 87 разомкнут.

4. Принцип действия

В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 разомкнут. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что, если на реле нет маркировки диода) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 соединяется с контактом 87.

5.Зачем оно нужно

Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.
Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом.ем более все это есть на той же википедии. Отметим лишь, что наибольшее распростран
:
Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).

НАПРИМЕР: Для того чтобы с маленькой кнопочки завести двигатель, необходимо, чтобы включился стартер, который потребляет от 80 до 300 ампер. Если не использовать реле, тогда кнопка не выдержит большого тока и расплавится, также как и не предназначенная для больших токов проводка. Поэтому, делают подключение через реле (между кнопочкой и стартером устанавливают реле), которое по импульсу малого тока кнопки внутри себя замыкает мощные контакты, тем самым включая стартер.

Надеюсь кому нибудь написанное будет полезно.
Если где ошибся пишите исправлю.

Смотрите видео

Подключение сигнала через реле решает сразу же множество проблем, главная из которых – электролиз проводов по причине неблагоприятных условий эксплуатации автомобиля (грязь, влага).

Что понадобится?

Разбираясь, как подключить сигнал через реле, в самом начале надо запастись всем необходимым. В таком случае понадобится:

  1. Провод (максимальная длина – полтора метра).
  2. Набор клемм: 4 шт. «мама»; 1 шт. «папа».
  3. Набор для паяния.
  4. Реле.
  5. Звуковой сигнал.

Порядок подключения звукового сигнала

Собрав все необходимые элементы, только теперь можно переходить к самому главному действия – подключению.

  1. Первый ход, как подсоединить сигнал через реле: снять клемму «-» с аккумулятора.
  2. Далее надо снять звуковой сигнал, а на его место установить реле.
  3. Варианты соединения проводов
  4. На «+» провод, который подключал звуковой сигнал, устанавливается так называемая «пиявка». К ней подсоединяется провод длиной примерно 15 см с клеммами «папа»-«мама»;
  5. Если нет возможности установить «пиявку», можно зачистить плюсовой провод, далее припаять к нему кусочек провода с клеммой «мама». Место спайки надо герметизировать изоляционной лентой или предварительно одетой термоусадкой.
  6. Далее провод «+» надо подключить к реле. Для этого к 86-му и 30-му контактам подключается провод с новообразовавшимся отростком.
  7. Идем далее, разбираясь, как подключить сигнал на ВАЗ или любой другой автомобиль. Теперь нужно подключить к реле оставшийся минусовый провод. Для этого надо использовать 85-й контакт.
  8. На оставшийся 87-й контакт реле подключается звуковой сигнал.
  9. Последний шаг: надевается «-» на аккумулятор.

Подключение воздушного сигнала

Если нужно подключить не электрический, а воздушный звуковой сигнал, порядок подключения будет практически такой же, как и описано выше. Отличие состоит в том, что провод от реле идет не на сам звуковой сигнал, а на компрессор (двигатель, который подает воздух в сигнал). А уже к компрессору через трубочки подключаются дудки пневмосигнала.

При нажатии на клаксон воздух от компрессора подается в дудки. С помощью мембраны, установленной в них, и получается звуковой сигнал.

О том, как самому подключить фары, вы сможете прочитать в нашей статье Как подключить фары.

По моему, и так всё понятно, и много раз уже об этом писали, но может быть кому-то пригодиться. Вот например недавно отдал человеку сделанный автомобиль, и со временем у него перестал работать сигнал. Не ездить же по мелочам через всю Москву, вот он меня и попросил ему изобразить схему, сделал, но не пропадать же. Решил выложить на общий доступ.

Описание, постараюсь простым понятным языком:

Два противоположных контакта на реле, под номерами №86 №85, это так называемые управляющие контакты. Если на них подать напряжение, реле замкнется, и тогда через контакты №30-№87 пойдет прямое напряжение. Ну допустим контакта который вам нужно разорвать, и кратковременно замыкать, допустим сигнал.
Почему через реле? Ну возьмем к примеру кнопку салона, контакты на кнопках слабые и не рассчитаны на прямую нагрузку, и если подать плюс от АКБ через кнопку, предположим, на стартер, то после первого же использования кнопка расплавиться. По этому, через кнопку салона подключаем управляющие провода на реле, а прямой плюс к потребителю, в нашем случае сигналу. Таким образом, через реле от АКБ на вход (контакт №87) и на выход (контакт №30) к потребителю (Сигналу).

Что такое управляющий минус? Обычно, на реле на прямую к контакту №86 подходит минус, а ключом (кнопкой) размыкают управляющий плюс. В нашем случае ключ (кнопка) уже есть, это кнопка сигнала на руле. Как она устроена, рулевой вал через подшипники качения соединен с рулевой колонкой и кузовом, и на нём всегда постоянный минус. Далее минус от рулевого вала подаётся на сердцевину рулевого колеса, в самом руле установлен замыкатель, к которому с одной стороны подходит минус от руля, а с другой стороны контакт идет на контактную у круглую пластину (чаще всего медь или латунь) по которой со стороны рулевого вала скользит стационарный контакт, он то и снимает минус с кнопки руля, и отправляет его дальше на сигнал, в нашем случае на реле, на контакт №86. Так что не всё так сложно и покрыто тайной, если вы ни разу не имели дела с электрикой, то не вдавайтесь в подробности, просто подключайте по схеме, которая на мой взгляд довольна проста. Надеюсь моя статья, кому-нибудь поможет.

4 Х контактное реле распиновка

Очень прошу — объясните НА ПАЛЬЦАХ или пошлите на какой-нибудь сайт, где очень доходчиво и для новичков показано или рассказано, КАК работает автомобильное реле. Т.е. на примере: «питание 12В мы подключаем к такому то контакту на реле, массу мы подключаем к такому и реле делает то то. ». Уже весь инет перерыл, но везде описания заумные, никак не могу понять принцип работы. Ну то есть принцип работы я понимаю, это либо разгрузить цепь, либо наоборот, повысить напряжение в цепи, но я НЕ МОГУ РАЗОБРАТЬСЯ какие контакты куда подключаются. На реле есть обозначения 87, 86 и т.п. и схемка нарисована, а я не могу в ней разобраться никак.

Артикул: 75.3777-10/90.3747-10 , артикулы доп.: 75.3777-10, 90.3747-10

Код для заказа: 002827

Кто не знает, то реле устанавливаются в автомобилях как правило на всех потребителях (устройствах) с большим током. Зачем так делают, а это для того, чтобы развести силовую проводку, и молоточную, так как, иначе, пришлось бы в кабине вместо элегантных кнопочек, ставить промышленные рубильники.

Мне понадобилось реле для подключения противотуманных фар, пытаясь найти схему включения, я нашел множество, но все они имели отличия в номерах контактов, а описания на реле нет, кроме технических характеристик, чтобы разобраться и понять.

Для этого я вскрыл корпус, чтобы узнать из чего состоит реле и как оно работает, простым языком- это электромагнит с подпружиненным контактом в данном случае реле имеет 4-е контакта.

Пропуская малый ток через контакты 85,86 неважно в каком направлении, мы слышим щелчёк, срабатывает электромагнит и замыкает силовую часть контакты 87,30.

Эти контакты можно найти опытным путем, имея два провода и аккумулятор, подключив один провод к плюсу, а другой к минусу, подаем питание на разные выводы пока не услышим щелчёк – знак, что реле сработало. Подсоединив тестер к оставшимся выводам, с включенной прозвонкой или омметром можем проверить замкнулся ли при этом контакт или реле бракованное – вышедшее из строя.

Выше описанным способом, я проверил реле, собрав макетную схему подключения своих ПТФ, заодно убедился в её работоспособности, замечу, что эта схема универсальная и вместо фары может быль любой потребитель (устройство), главное, чтобы стоял соответствующий предохранитель, реле имело необходимую пропускную способность тока, а провода соответствующее сечение.

тумблер в исходном положении.

Надеюсь, что этот небольшой обзор помог вам узнать больше об этом изделии, способах проверки и подключении.

Начинающим автоэлектрикам и людям, дорабатывающим свой автомобиль, зачастую сложно понять фразу «подключить через реле». Что означает подключение через реле и как это сделать? Разберемся в этом.

Прежде чем изучать схему подключения какого-либо автомобильного устройства через реле, нужно знать, что такое реле вообще и как оно работает. Об этом подробно написано здесь. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче.

Общий смысл подключения через реле – нагрузка на выключатель, который управляет устанавливаемым оборудованием. Все мощные потребители электричества в автомобиле (например, лампы фар, стартер, бензонасос, подогрев заднего стекла, электроусилитель руля) подключены через реле. Благодаря этому, данными устройствами можно управлять маленькими красивыми кнопочками вместо грубых и больших рубильников. Кроме этого, в отдельных случаях, реле позволяет экономить на проводах.

Реле подключают в «разрыв» электрической цепи. Рассмотрим установку реле на примере бензонасоса. Питание на него подается блоком управления двигателем (дальше – компьютером) и, чтобы дорожки платы компьютера выдержали ток, потребляемый насосом, их пришлось бы делать чересчур мощными. Прохождение сильного тока рядом с чувствительными электронными компонентами компьютера, может влиять на их работу. Чтобы избежать подобных проблем, между компьютером и бензонасосом устанавливается реле и компьютер подключается не к насосу, а к этому маленькому «помощнику».

Реле как бы разделяет провод, идущий от блока предохранителей к насосу на две части, которые могут замыкаться внутри реле при подаче напряжения на управляющие контакты магнита. Как уже было сказано в статье про устройство реле, управляющий ток очень мал и никак не сможет повредить компьютеру. Компьютер подает напряжение на управляющие контакты реле, а уже оно «соединяет» внутри себя силовую цепь и подключает бензонасос.

По такому же принципу реле устанавливается и на любые другие потребители электричества в автомобиле. Рассмотрим подключение противотуманок.

Провода на противотуманные фары идут от блока предохранителей, но по пути они проходят через реле. Управляет процессом включения/выключения фар кнопка на торпеде. При ее нажатии напряжение подается на один из управляющих контактов реле, и оно замыкает силовую цепь – лампы в фарах зажигаются. Второй управляющий контакт реле – «массовый», то есть по нему напряжение уходит на кузов автомобиля, создавая электрическую цепь.

Используя данную схему можно подключить практически любое мощное устройство и управлять им небольшой красивой клавишей. В некоторых случаях реле может стать спасением от заводских недоработок. Так, например, в ВАЗ-2106 ток, идущий на втягивающее реле стартера через замок зажигания, достаточно быстро приводит к неисправности контактной группы замка. Избавляются от данной неприятности установкой промежуточного реле и изменением питания втягивающего реле. После доработки, через контактную группу замка начинает проходить слабый управляющий ток, а уже реле подключает мощное питание стартера.

Подключение через реле 4 контактное схема подключения

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам

Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Где используются?

Твердотельные реле — уникальные устройства, которые после монтажа не требуют особого обслуживания. Здесь работает принцип «установил и забыл». К примеру, в простых моделях очистка контактной группы осуществляется с определенной периодичностью — как правило, через определенное число циклов. Если изделие работает редко, это не вызывает проблем.

Но как быть с аппаратурой, для работы которой требуется частое срабатывание — один раз в секунду или даже чаще? Пример такой техники — станок с клапанами соленоидного типа.

Подача напряжения происходит через реле, которому приходится разрывать до десяти ампер индуктивного I. Если поставить контактное устройство, его замену придется осуществляться раз в 1-2 месяца. Если поставить твердотельный аналог, об этом можно забыть на долгие годы.

Несмотря на надежность работы, ТТР требуют периодического осмотра. Базовые рекомендации в этом вопросе дает производитель изделия. Как правило, речь идет о проверке факта замыкания контактов, целостности корпуса и изоляции.

В чем особенности?

При создании твердотельного реле удалось исключить появление дуги или искр в процессе замыкания/размыкания контактной группы. В результате срок службы прибора увеличился в несколько раз. Для сравнения лучшие варианты стандартных (контактных) изделий выдерживают до 500 000 коммутаций. В рассматриваемых ТТР такие ограничения отсутствуют.

Стоимость твердотельных реле выше, но простейший расчет показывает выгоду их применения. Это обусловлено следующими факторами — экономией электроэнергии, продолжительным ресурсом работы (надежностью) и наличием управления с помощью микросхем.

Выбор достаточно широк, чтобы подобрать устройство с учетом поставленных задач и текущей стоимости. В продаже имеются как небольшие приборы для установки в бытовых цепях, так и мощные устройства, используемые для управления двигателями.

Как отмечалось ранее, ТТР отличаются по типу коммутируемого напряжения — они могут быть рассчитаны на постоянный или переменный I. Этот нюанс требуется учесть при выборе.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Скрытая проводка в деревянном доме своими руками, пошаговая инструкция

К особенностям твердотельных моделей стоит отнести чувствительность прибора к нагрузочным токам. В случае превышения этого параметра выше допустимой нормы в 2-3 и более раз, изделие ломается.

Чтобы избежать такой проблемы в процессе эксплуатации, важно внимательно подойти к процессу монтажа и установить в цепи ключа защитные устройства. Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку

Но и это не все

Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку. Но и это не все

Для дополнительной защиты рекомендуется предусмотреть в схеме предохранители или автоматические выключатели (подойдет класс «В»).

Принцип работы твердотельного реле

Рис. №3. Схема работы с использованием твердотельного реле. В положении выключено, когда на входе наблюдается 0 В, твердотельное реле не дает пройти току через нагрузку. В положение включено, на входе есть напряжение, ток идет через нагрузку.

Основные элементы регулируемой входной цепи переменного напряжения.

  1. Регулятор тока служит для поддержки неизменного значения тока.
  2. Двухполупериодный мост и конденсаторы на входе в устройство служат для преобразования сигнала переменного тока в постоянный.
  3. Встроенный оптрон оптической развязки, на него подается питающее напряжение и через него протекает входной ток.
  4. Тригерная цепь служит для управления эмиссией света встроенного оптрона, в случае прекращения подачи входного сигнала ток прекратит свое протекание через выход.
  5. Резисторы, расположенные в схеме последовательно.

В твердотельных реле используется два распространенных типа оптических развязок – семистор и транзистор.

Симистор обладает следующими преимуществами: включение в состав развязки тригерной цепи и ее защищенность от помех. К недостаткам следует отнести дороговизну и необходимость больших величин тока на входе в устройство, необходимого для переключения выхода.

Рис. №4.  Схема реле с семистором.

Тиристор  — не нуждается в наличии большого значения тока для переключения выхода. Недостаток – нахождение триггерной цепи вне развязки, а значит большее число элементов и слабая защита от помех.

Рис. №5. Схема реле с тиристором.

Рис. №6. Внешний вид и расположение элементов в конструкции твердотельного реле с транзисторным управлением.

Принцип работы твердотельного реле типа SCR полупериодного управления


При прохождении тока через реле исключительно в одном направлении величина мощности снижается почти на 50%. Для предотвращения этого явления используют  два параллельно подключенных  SCR, расположенные на выходе (катод соединяется анодом другого).

Рис. №7. Схема принципа работы полупериодного управления SCR

Типы коммутирования твердотельных реле

  1. Управление коммутационными действиями при переходе тока через ноль.

Рис. №8. Коммутация реле при переходе тока через ноль.

Используется для резистивной нагрузки в системах управления и контролирования нагревательных устройств. Использование в слабоиндуктивных и емкостных нагрузках.

  1. Фазовое управление твердотельным реле

Рис.№9. Схема фазного управления.

Основные показатели для выбора твердотельных реле

  • Ток: нагрузки, пусковой, номинальный.
  • Тип нагрузки: индуктивность, емкость или резистивная нагрузка.
  • Тип напряжения цепи: переменное или постоянное.
  • Тип сигнала управления.
Рекомендации по подбору реле и эксплуатационные нюансы

Токовая нагрузка и ее характер служат главным фактором, определяющим выбор. Реле выбирается с запасом по току, в который входит учет пускового тока (он должен выдержать 10-кратное превышение тока и перегруз на 10 мс). При работе с обогревателем номинальный ток превышает номинальный ток нагрузки не менее чем на 40%. При работе с электродвигателем запас по току рекомендован быть больше номинала не менее чем в 10 раз.

Ориентировочные примеры выбора реле при превышении тока
  1. Нагрузка активной мощности, например, ТЭН – запас 30-40%.
  2. Электродвигатель асинхронного типа, 10 кратный запас по току.
  3. Освещение с лампами накаливания – 12 кратный запас.
  4. Электромагнитные реле, катушки – от 4 до 10 кратного запаса.

Рис. №10. Примеры выбора реле при активной нагрузке по току.

Такой электронный компонент электрических цепей как твердотельное реле становиться обязательным интерфейсом в современных схемах и обеспечивает надежную электрическую изоляцию между всеми задействованными электроцепями.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Выбор твердотельного реле

При покупке ТТР стоит учесть ряд особенностей устройства, что поможет сделать правильный выбор.  Для сравнения классические устройства способны выдерживать перегрузки, возникающие на небольшое время и не превышающие полутора или двукратного номинального тока.

Если правильно подойти к вопросу эксплуатации, хватит обычной чистки контактов.

В случае с твердотельными реле ситуация обстоит хуже. Если номинальный параметр тока превышен в 1,5 и более раз, прибор можно выбросить. Вот почему при выборе ТТР для питания активной нагрузки стоит брать запас по току в два-четыре крата.

Если изделие планируется применять в цепи пуска АД, этот показатель стоит увеличить в шесть-десять раз. При таком подходе придется переплатить, но зато повышается срок службы подключенного прибора и надежность его работы.

Подключение

Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена)

Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии)

После включения запрещено прикасаться к корпусу, который может быть горячим.

Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок

Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше). Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.

Электрическая цепь в твердотельным реле.

Недостатки

Кроме положительных качеств твердотельных реле, стоит выделить и ряд недостатков:

  • В открытом виде происходит нагрев изделия из-за высокого сопротивления в цепи p-n перехода. Чтобы избежать негативных последствий в приборах, пропускающих через себя повышенные токи, требуется предусмотреть охлаждение.
  • В закрытом виде сопротивление увеличивается, и появляется обратный ток утечки (измеряется в мА).
  • При съеме вольтамперной характеристики заметен ее нелинейный характер.
  • Некоторые виды твердотельных реле требуют строго соблюдения полярности при подключении выходных цепей. Это касается тех приборов, которые рассчитаны на работу в условиях постоянного тока.
  • В случае поломки высок риск перекрытия контактов на входе. Причиной может стать пробой силового ключа. Для сравнения контакты классических реле (при выходе из строя) остаются в разомкнутом виде.
  • Требуется защита от ошибочных срабатываний, вызванных бросками напряжения. Это обусловлено высокой скоростью срабатывания.
  • Твердотельные реле пропускают ток по обратному пути с небольшой задержкой, что обусловлено применением полупроводниковых элементов в схеме.

А это собственно и сама схема подключения стандартного 4-х контактного реле:

Реле может быть 1-канальным, то есть содержать 1 коммутационную пару. Если на корпусе реле изображен значок диода, значит при его включении необходимо соблюдать полярность на контактах управления.

Набор контактов может быть разным, например: Реле с одной парой контактов; С двумя парами контактов нормально-замкнутые — NC, и нормально-разомкнутые — NO ; С несколькими группами для управления нагрузкой в независимых друг от друга цепях.

Хотя реле от вольтовой грузовой машины в вольтовой сети не заработает — тут уж разница слишком велика… Коммутируемый ток Второй главный параметр реле после рабочего напряжения обмотки — максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. В этом случае, вы имеете право установить ДХО без каких-либо согласований с сертифицирующими органами. При управлении кнопкой или герконом, диод D2 не нужен.

На помощь опять приходит реле. Включаем габариты или ближний свет, ДХО тухнут. Другой конец провода подцепляем к контакту 87А.

На помощь опять приходит реле. Так что сомнительный момент недостаток. Токи базы это часть тока коммутируемой через эмиттер-коллектор цепи, в тиристоре, в принципе, ситуация подобна. Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях.

А чем больше деталей — тем меньше надежность. Даже самое миниатюрное коммутирует ампер, реле стандартных размеров — ампер.

Как правильно подключить 4 контактное реле. Как правильно подключить. Kak-PravilnoDelat

На каждое изменение конструкции транспортного средства должен быть получен сертификат, что само по себе дело не быстрое и не дешевое. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле — оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины. Для того чтобы ДХО гасли при остановке двигателя, вы можете подать сигнал на кнопку от бензонасоса, или от того же датчика давления масла. Лучше пропаять все места соединений и защитить их термоусадочной трубкой.

Плохой контакт выделяет на себе тепло. Реле используют в тех случаях когда исполнительное устройство потребляет больший ток до ампер , чем способен выдать управляющий выход потребление катушек реле как правило не превышает миллиампер. Примеры использования реле для коммутации различных устройств приведены в конце статьи.
Как работает и устроено 5 — ти контактное реле

Определение

Твердотельное реле — устройство электронного типа, один из видов реле, в котором нет движущихся элементов. Изделие применяется для подачи тока или разрыва цепи путем внешнего управления (действием небольшого напряжения).

Твердотельное реле (сокращено — ТТР) имеет внутри датчик, реагирующий на подачу управляющего сигнала. Кроме того, в составе изделия имеется твердотельная электроника, в том числе включающая цепочка, способная коммутировать большие I.

Устройство может устанавливаться в цепях переменного и постоянного тока, часто применяется как обычное реле. Главная разница в том, что в ТТР нет механических контактов.

Описание

В отличие от электромеханических реле (EMR), которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода.

Как и обычные электромеханические реле, твердотельные реле обеспечивают полную электрическую изоляцию между их входными и выходными контактами, а его выход действует как обычный электрический переключатель в том смысле, что он имеет очень высокое, почти бесконечное сопротивление в непроводящем (разомкнутом) и очень низком сопротивлении при проведении. Твердотельные реле могут быть предназначены для переключения как переменного, так и постоянного тока с помощью SCR, триак или переключающего транзисторного выхода вместо обычных механических нормально разомкнутых контактов. Купить твердотельное реле на Алиэкспресс:

В то время как твердотельное реле и электромеханическое реле в основном схожи в том, что их низковольтный вход электрически изолирован от выхода, который переключает и контролирует нагрузку, электромеханические реле имеют ограниченный жизненный цикл контакта, могут занимать много места и имеют более низкие скорости переключения, особенно большие силовые реле и контакторы. Твердотельные реле не имеют таких ограничений.

Таким образом, основные преимущества твердотельных реле по сравнению с обычными электромеханическими реле состоят в том, что у них нет движущихся частей, изнашиваемых, и, следовательно, нет проблем с отскоком контактов, они могут переключать «ВКЛ» и «ВЫКЛ» гораздо быстрее, чем механические реле может двигаться, а также включаться при нулевом напряжении и отключаться при нулевом токе, что устраняет электрические помехи и переходные процессы.

Полупроводниковые реле можно купить в стандартных готовых комплектах, от нескольких вольт или ампер до многих сотен вольт и ампер выходной коммутационной способности. Однако твердотельные реле с очень высоким номинальным током (плюс 150 А) все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.

Подобно электромеханическому реле, небольшое входное напряжение, обычно от 3 до 32 вольт постоянного тока, может использоваться для управления очень большим выходным напряжением или током, например 240В, 10А. Это делает их идеальными для взаимодействия микроконтроллеров, PIC и Arduino, так как слаботочный 5-вольтный сигнал, скажем, от микроконтроллера или логического вентиля, может использоваться для управления конкретной нагрузкой цепи, и это достигается с помощью опто-изолятора.

Открытие багажника с брелока автосигнализации

Вобщем как-то так!


Переключающий контакт отогнут для наглядности. Иногда при выборе аналога необходимо учитывать некоторые параметры. Если не использовать пайку, то что лучше скрутка или соединение папа-мама? На заглушенном автомобиле и ДХО и фары отключаются.

Напряжение срабатывания Напряжение, которое обозначено на корпусе реле, — это усредненное оптимальное напряжение. А чисто противотуманки можешь подключить через обычное реле.

Кроме полупроводникового ключа в электронном реле установлена обвязка для обеспечения возможности управления ключом нужным управляющим напряжением. А чисто противотуманки можешь подключить через обычное реле. Типовые схемы реле. Подскажите какая схема с правильным подключение или все верные?
Подключение доп.фар через реле

Отличия и плюсы твердотельных реле (в сравнении с электромеханическими)

При выборе ТТР у покупателя возникает ряд вопросов — зачем переплачивать за твердотельное реле, в чем его преимущества перед стандартными электромеханическими устройствами. Выделим главные плюсы:

Небольшие габариты, что исключает проблемы с поиском места для монтажа.
Отсутствие шума и вибрации

Это важно, если устройство устанавливается в помещениях, где находятся люди.
Высокая скорость коммутации.
Продолжительный ресурс, обусловленный отсутствием износа механической и электрической части.
Постоянное выходное сопротивление, которое не меняется в течение срока эксплуатации. Кроме того, контактные группы не подвержены окислительным процессам.
Нет резких изменений напряжения в процессе переключения.
Нет искр, что расширяет сферу применения

Его установка допускается на объектах, где имеются повышенные риски взрывов и появления пожара.
Низкая чувствительность к внешним факторам, к примеру, появлению магнитных полей, вибрациям, повышенному уровню пыли или магнитным полям.
Высокий уровень сопротивления между выходом и входом.
Низкое потребление энергии.
Большое число коммутаций, которое не ограничивается производителем. В реальности оно достигает 109.

Внутривидовые отличия

Кроме основной классификации, стоит выделить отличия внутри существующих видов ТТР.

Выделяются такие типы:

  • ТРЕХФАЗНЫЕ — способны проводить токи величиной 10-120 Ампер одновременно в трех фазах.
  • РЕВЕРСИВНЫЕ — устройства, построенные на полупроводниковом принципе, способные работать в схемах с постоянным и переменным током. По назначению и принципу действия они идентичны однофазным. Обязательное условие — наличие управляющей цепи, защищающей устройство от ложного срабатывания. К преимуществам твердотельных трехфазных реле стоит отнести способность работать одновременно по 3-м фазам, а также продолжительный ресурс. Повышенный срок службы объясняется наличием надежной изоляции и продуманной управляющей цепи. В процессе применения твердотельных моделей нет шума, искр, дребезжания при переключениях и других негативных факторов.
  • ОДНОФАЗНЫЕ — изделия, обеспечивающие разделение цепи при переходе синусоиды через ноль. ТТР работает в следующем диапазоне — 10-500 А. Управление осуществляется несколькими способами.

Статьи о товаре

Реле электромагнитное: основа управления автомобильными электроцепями

Современный автомобиль — это развитая электрическая система с десятками электроприборов различного назначения. Управление этими приборами строится на основе простых устройств — электромагнитных реле. Все о реле, их типах, конструкции и работе, а также об их верном выборе и замене — читайте в статье.
ия этих цепей осуществляется не напрямую с приборной панели, а дистанционно с помощью вспомогательных элементов — электромагнитных реле.

Электромагнитные реле выполняют несколько функций:

Обеспечивают дистанционное управление силовыми цепями, делая ненужным протягивание проводов большого сечения непосредственно к приборной панели автомобиля;
Разделяют силовые цепи и цепи управления электрооборудованием, повышая безопасность и надежность электросистемы транспортного средства;
Сокращают длину проводов силовых цепей;
Облегчают реализацию централизованной системы управления электрооборудованием автомобиля — реле собираются в одном или нескольких блоках, в которых сходятся большое число электрических цепей;
Некоторые типы реле — снижают уровень электрических помех, возникающих при коммутации силовых цепей.

Конструкция автомобильного реле

Принцип работы 4-х и 5-контактных реле

Реле являются важными деталями электросист

Все статьи

Оцените статью:

Реле что это такое (простыми словами) релейное устройство

Лада 2110 ツɐʞdиҺツ (БЫВШАЯ) ›


Бортжурнал ›
Принцип действия и назначение работы Реле.

Для чего нужна установка реле в автомобиле ? Начнем с определения:

***********************************************************************************************************************
Что такое реле и для чего оно нужно

Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.
Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом, тем более все это есть на той же википедии. Отметим лишь, что наибольшее распространение получили электрические (электромагнитные) реле.

Понять для чего нужно реле из определения трудно, поэтому разжуем на простых словах:
Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).

Электромагнитное реле состоит из:
электромагнита (представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала).
якоря (пластина из магнитного материала, через толкатель управляющая контактами).
переключателя (могут быть замыкающими, размыкающими, переключающими).


При пропускании электрического тока через обмотку электромагнита возникающее магнитное поле притягивает к сердечнику якорь, который через толкатель смещает и тем самым переключает контакты.
**************************************************************************************************************************
Контакты и принцип работы реле

Контакты реле:
Контакты 85 и 86 — это катушка.
Контакт 30 — общий контакт, всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.
Контакт 87А — нормально-замкнутый контакт.
Контакт 87 — нормально-разомкнутый контакт.
Силовые контакты имеют всегда маркировку 30, 87 и 87а.


Принцип действия реле:
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что, если на реле нет маркировки диода) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87.
************************************************************************************************************************
Некоторые виды реле:
-реле с пятью контактами (5ти контактное реле). Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87.
-реле с четырьмя контактами (4х контактное реле). Контакт 87а или 87 может отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.

Все реле имеют контакты обмотки (85 и 86 контакты).
*************************************************************************************************************************
Применяемость и назначение:

Реле 4х контактное и 5и контактное используются применяются в авто как средство включение или переключение цепи.

Вывод:
Главное отличие и сходства 4х контактного реле от 5ти контактного реле в том:
-Сходство этих типов реле. У них есть катушка возбуждения которая переключает перемычку (якарь). (Контакты 86,85-катушка)
-Отличие этих реле состоит в том что.
У 4х контактного реле контур всегда разомкнут (контакты 87,30) и под воздействием катушки (возбудителя) контур замыкается (происходит контакт).
У 5ти контактного реле контур разомкнута, замкнутый (контакты 87а,30- замкнуты) (контакты 87,30-разомкнуты) под воздействием катушки(возбудителя) происходит переключение перемычки (якоря) с контакта 87а на контакт 87.

Схему применения различны:

Удачи всем!

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройство

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

  • контактные;
  • бесконтактные.

На фото (обведено красным) показано, где находится одно из реле в стиральной машине

В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое электрооборудование, мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

ИзображениеОписание
Схематически обмотка соленоида выглядит как прямоугольник, от наибольших сторон которого отходят выводы питания электромагнита – А и А1. Также на схеме это коммутационное устройство может обозначаться буквой К.
Контакты КУ на схеме изображаются точно так же как и контакты переключателей.
Поляризованное реле на схеме изображается в виде прямоугольника с жирной точкой на одном из выводов контакта. Буквенное обозначение P внутри прямоугольника также говорит о полярности устройства.
Иногда внутри прямоугольника указывают параметры или конструктивные особенности. Так, например, две наклонные линии могут обозначать, что в устройстве имеется 2 обмотки.

Подробнее, с символическим обозначением реле и других элементов электронных и электрических схем, можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

ПроизводительИзображениеОписание
Finder (Германия)Компания Финдер производит реле и таймеры и занимает среди европейских производителей третье место. Производитель выпускает реле:
  • общего назначения;
  • твердотельные;
  • силовые;
  • РСВ;
  • времени;
  • интерфейсные и многие другие.

Продукция компании имеет сертификаты ISO 9001 и ISO 14001.

АО НПК «Северная заря» (Россия)Основная продукция российского производителя – якорные электромагнитные коммутационные устройства для специального и индустриального использования, а также слаботочные реле времени с контактными и бесконтактными выходами.
Omron (Япония)Японская компания производит высоконадежные радиоэлектронные компоненты, среди которых:
  • твердотельные и электромеханические реле;
  • низковольтные КУ;
  • кнопочные переключатели;
  • устройства контроля и управления цепи.
COSMO
Electronics (Тайвань)
Корпорация производит радиотехнические компоненты, среди которых можно выделить релейные компоненты, которые с 1994 года получили сертификат по стандарту ISO 9002.

Продукция компании широко применяется в телекоммуникации, промышленном и медицинском оборудовании, бытовой технике и автомобильном оборудовании.

American ZettlerБолее 100 лет компания Zettler держит лидерство и устанавливает стандарты работы и качества электротехнических элементов. Этот производитель выпускает более 40 видов КУ, которые удовлетворяют потребности самых различных проектов.

Продукция компании широко применяется в телекоммуникации, периферийной вычислительной технике, средствах управления и прочих типах электронного и электрического оборудования.

Где приобрести реле и их стоимость

Реле в зависимости от типа КУ, производителя, сферы применения и продавца могут стоить от 15$ до нескольких сотен. Приобрести необходимое коммутационное устройство можно непосредственно у производителя в традиционных специализированных магазинах или интернете. В настоящее время купить нужное реле любого типа и назначения не составит труда. Существуют специальные каталоги, в которых указывается маркировка, компания-производитель, параметры и стоимость изделия.

Как следует из этого обзора, реле является неотъемлемой частью практически любой электрической и электронной схемы промышленного оборудования и бытовой техники. Полную информацию об этом виде коммутационного устройства сложно втиснуть в рамки одной статьи. Если у вас возникнут какие-либо вопросы по этой теме, то задавайте и будем вместе разбираться.

Электрическое реле устройство, в котором при достижении определенно значения входной величины, выходная величина изменяется скачком — выходные контакты либо замыкаются — в управляемой цепи появляется ток (напряжение), либо размыкаются. Реле применяют в цепях управления с током менее 1 А. Входной величиной реле могут быть механические, тепловые, электрические и другие внешние воздействия.

Широкое распространение получили электрические реле (электромагнитные, магнитоэлектрические, электродинамические, индукционные), которые реагируют на изменения тока (напряжения) в обмотке управления (намагничивающей обмотке).

На рис 2.15, а показано устройство простейшего электромагнитного реле клапанного типа: при определенной МДС в цепи управления возникающая электромагнитная сила F притяжения якоря 3 к ярму 1 превышает силу противодействующей пружины 2. Реле срабатывает, воздушный зазор уменьшается, клапан 4 нажимает на подвижный контакт 5 и прижимает его с силой F, зависящей от значения воздушного зазора в конце хода якоря, к неподвижному контакту 6.

Управляемая цепь (цепь управления) замыкается, исполнительный элемент 7 производит требуемое действие. Контакты реле в исходном положении могут быть как разомкнуты, так и замкнуты, в последнем случае при срабатывании реле они размыкаются — действие какихлибо устройств прекращается. Первоначально открытые (замыкающие) контакты изображают на схемах, как показано на рис. 2.16, а, первоначально закрытые (размыкающие) контакты имеют условное обозначение, показанное на рис. 2.16, б.

Многие электромагнитные реле имеют несколько контактных пар, тогда их используют для управления несколькими электрическими цепями.
Электрические реле выполняют множество функций, связанных с контролем режимов работы важных элементов электрической цепи генераторов, трансформаторов, линий передач, различных приемников.

Интересное видео о работе реле смотрите ниже:

При нарушении нормального режима того или иного элемента соответствующее реле приводит в действие аппаратуру, которая либо восстанавливает нормальный режим работы, либо отключает поврежденный участок. Такие реле — реле защиты — могут «наблюдать» за током в цепи (токовая защита), напряжением на отдельных участках (защита по напряжению), изменениям мощности (реле мощности), изменением частоты тока и т. д.

В зависимости от значения или направления входной величины, приводящей к срабатыванию реле, различают реле: максимальные, минимальные, направленного действия, дифференциальные и др.

В зависимости от времени срабатывания — отрезка времени от момента появления управляющего воздействия до момента замыкания контактов реле — различают реле быстродействующие (tср < 0,05 с), нормальные (tср = 0,05—0,25 с) и с выдержкой времени (реле времени).

Если реле «реагирует» только на значение входной величины (тока) и «не реагирует» на направление этой величины, то его называют нейтральным. Реле, «чувствующие» полярность (направление) входной величины (напряжения, тока), называются поляризованными.

Реле по способу воздействия

По способу воздействия исполнительного элемента реле на управляемую величину различают:

  • реле прямого действия, в которых исполнительный элемент (у электромеханических реле исполнительным элементом является подвижная контактная система) непосредственно воздействует на цепь управления,
  • реле косвенного действия, в которых исполнительный элемент воздействует на контролируемую цепь через другие аппараты.

Реле по способу включения воспринимающего элемента

По способу включения воспринимающего элемента различают первичные, вторичные и промежуточные реле.

Воспринимающим элементом электромагнитных реле является электромагнит, преобразующий управляющий ток (напряжение) в перемещение якоря относительно ярма.

Воспринимающими элементами других электрических реле могут быть магнитоэлектрический механизм, индукционная система, электродинамический механизм и т. д.

Воспринимающий элемент первичных реле включается непосредственно в контролируемые цепи. У вторичных реле воспринимающий элемент включается в контролируемые цепи через измерительные трансформаторы. Промежуточные реле работают в цепях исполнительных элементов других реле и предназначаются для усиления и преобразования сигналов первичных или вторичных реле.

Реле защиты

Рассмотрим устройство и принцип действия электромагнитных реле токовой защиты — реле максимального тока. Электромагнитные реле, получившие очень широкое распространение, по конструктивному исполнению воспринимающего элемента бывают клапанного типа и с поворотным якорем.

Катушка возбуждения реле тока РТ включается последовательно в контролируемую цепь (рис. 2.17)

. При токах / в этой цепи, превышающих допустимые значения, сила притяжения якоря к ярму преодолевает сопротивление пружины и приводит к размыканию или замыканию контактов Р~ в цепи управления другого аппарата (рис. 2.17, а, б) — аппарата КМ.

Размыкание контактов РТ в цепи аппарата (реле) КМ (рис. 2.17, а) приводит к размыканию контактов КМ в контролируемой цепи питания приемника, т. е. цепь тока / разрывания (одновременно размыкаются контакты КМЬ шунтировавшие кнопку «Пуск»). Исчезновение тока/в цепи возбуждения реле тока Рт приводит вновь к замыканию его контактов Рт (контакты этого реле при отсутствии тока в его обмотке всегда замкнуты), но теперь цепь возбуждения реле КМ разомкнута, так как кнопка «Пуск» не включена и разомкнуты контакты KMj. Для включения цепи питания приемника следует вновь нажать кнопку «Пуск», реле КМ сработает и замкнет свои контакты КМ}.

Кнопку «Пуск» после этого можно отпустить, так как цепь возбуждения реле КМ продолжает быть замкнутой через шунтирующие кнопку «Пуск» контакты КМР. Срабатывание реле Рт на схеме рис. 2.17, 6 приводит к замыканию первоначально разомкнутых контактов Рт в цепи реле КМ.

Реле КМ срабатывает и размыкает свои первоначально замкнутые контакты КМ, шунтировавшие резистор R в цепи питания приемника.

При этом последовательно с приемником включается резистор с сопротивлением R и тем самым значение тока в цепи ограничивается. Когда ток снизится до нормального значения, реле РТ «отпустит» свои контакты Рт, реле КМ отключится и резистор R будет вновь зашунтирован контактами КМ.

В качестве токовых реле применяют также реле с поворотным якорем (рис. 2.18), где между полюсами электромагнита / помещен якорь 3 из магнитомягкого материала. В отсутствие тока в обмотке возбуждения 2 пружина 4 удерживает якорь в таком положении, что контакты 5 и 6 разомкнуты, т. е. цепь управления разомкнута. Когда ток в обмотке возбуждения электромагнита достигнет значения, при котором сила, стремящаяся повернуть якорь к ярму, превысит силу противодействия пружины, якорь повернется, контакты 5 и 6 замкнутся, в управляемой цепи произойдет желаемое изменение режима.

Ещё одно видео о работе электромагнитного реле:

Вращение поводка, связанного с пружиной, вызывает изменение силы противодействия пружины 4 и, следовательно, настройку реле на требуемый ток срабатывания.

Значения токов срабатывания указывают на шкале. Это же реле может быть использовано для контроля значения напряжения на какомлибо элементе. В этом случае его обмотка возбуждения, очевидно, должна иметь значительно большее количество витков из провода меньшего диаметра по сравнению с обмоткой тока.

Защиту приемника от недопустимого снижения напряжения на нем можно осуществить с помощью реле минимального напряжения, включенного по схеме рис. 2.19.

Если напряжение источника соответствует требуемому напряжению, то реле Рн срабатывает и его первоначально разомкнутые контакты Рн замыкаются (позиции 5 и 6 на рис. 2.18). Нажав кнопку «Пуск», замыкают цепь возбуждения реле К и посредством его контактов К приемник подключается к источнику.

Если напряжение источника уменьшается ниже допустимого предела (что определяется настройкой реле Рн), то сила противодействия пружины 4 (см. рис. 2.18) преодолевает силу притяжения якоря 3 к ярму 1 и контакты 5, 6 размыкаются. Цепь тока возбуждения реле К (рис. 2.19) размыкается, и приемник отключается от источника.

Для защиты электротехнических устройств от токов перегрузки, когда длительная эксплуатация устройства в таком режиме может вызвать выход его из строя за счет недопустимого перегрева, применяют тепловые реле.

Тепловое реле (рис. 2.20, а) состоит из биметаллической пластины 2, которая находится в тепловом поле нагревателя 7, включенного последовательно с контролируемым объектом (приемником), и контактов 4. Если контролируемый ток/больше допустимого, то через некоторое время биметаллическая пластина 2 под действием избыточной теплоты нагревателя 1 изогнется, так как ее нижний слой расширяется (удлиняется) больше, чем верхний. Пластина 2 освобождает защелку 3, которая под действием пружины поворачивается, и контакты 4размыкаются. Схема включения теплового реле представлена, например, на рис. 2.20, 6, где видно, что при срабатывании теплового реле его контакты разрывают цепь питания реле К и отключают приемник от источника. После охлаждения биметаллической пластины, реле механическим путем возвращается в исходное положение.

Реле управления и автоматики (указательные и сигнальные реле). Электромеханические реле управления представляют собой слаботочные аппараты, предназначенные для выполнения логических и измерительных функций в системах управления. Для характеристики работы реле вводят ряд коэффициентов. Если рассматривать реле в качестве нелинейного элемента, связь входной /вх и выходной /вых величин которых изображена на рис. 2.21, то можно ввести коэффициент возврата Кв как отношение входной величины /п, при которой реле срабатывает, к значению этой же величины /отп, при которой реле отпускает.

Этот коэффициент зависит от соотношения тяговой характеристики Fx (/в) реле (рис. 2.22) и характеристики Fnp(lB) противодействующей пружины.

В начале процесса срабатывания реле при Iвх = Iп зазор максимален (l в нач) и сила притяжения F1 якоря к ярму чуть больше силы сжатия Fnp противодействующей пружины. В конце процесса срабатывания реле зазор минимален (/в кон) и сила Fx притяжения якоря к ярму при том же токе /п уже больше силы F , что необходимо для надежного замыкания контактов реле. Отключение реле произойдет при токе /вх, равном току /отп , т. е. когда сила F= F2 станет меньше силы Fnp. Чем меньше величина ДР= Fl — F2 (рис. 2.22), тем, очевидно, выше коэффициент возврата, меньше разница в значениях тока срабатывания /п и тока отпускания /отп. Обеспечить высокий коэффициент возврата можно только у реле с малым ходом якоря, при уменьшении трения в механизме, использования ферромагнитных материалов с узкой петлей гистерезиса. Для повышения надежности срабатывания реле нужно обеспечить выполнение условия /вх > /п. Необходимое превышение тока /вх над значением 1п называют коэффициентом запаса.

Чувствительность реле

Важным параметром реле является чувствительность, т. е. мощность Ру в цепи управления, при которой срабатывает реле.

У высокочувствительных реле Ру < 10 мВт, реле нормальной чувствительности срабатывают при Ру = 1—5 Вт, реле низкой чувствительности при Ру = 10—20 Вт.
Мощность в цепи, которую коммутируют контакты реле Рк, значительно превышает мощность цепи управления. Отношение этих мощностей называют коэффициентом усиления (управления) реле:

Значение Ку у высокочувствительных реле достигает нескольких тысяч.
По значению мощности Рк реле подразделяют на сильноточные (Рк > 500 Вт), нормальной мощности или промежуточные (Рк < 150 Вт в цепях постоянного тока и Рк < 500 ВА в цепях переменного тока) и слаботочные реле систем автоматики, управления, связи (Рк < 50 Вт в цепях постоянного тока и Рк< 120 ВА в цепи переменного тока).

Конструкции промежуточных реле довольно многообразны. Применяются реле клапанного типа (рис. 2.23), предназначенные для работы в цепях постоянного и переменного токов. На рис. 2.23 видна контактная система 7, содержащая несколько пар контактов, коммутирующих цепи ab, cd, ef. Магнитная цепь реле имеет центральный сердечник (ярмо) 4, обмотку возбуждения 5, включаемую в цепь управляющего сигнала /у, и якорь J, который при своем движении к ярму 4 посредством траверсы 2 замыкает контактные группы ab, cd9 ef. Если это реле предназначено для работы в цепях переменного тока, то магнитопровод выполняют шихтованным.

В конструкции слаботочных реле стремятся уменьшить габаритные размеры, но одновременно повысить разрываемую мощность (Рк) и быстродействие.

Современные слаботочные реле способны производить 200—300 млн срабатываний за срок службы. Одна из конструкций слаботочных реле показана на рис. 2.24.

Все рассмотренные реле относятся к типу нейтральных, т. е. не реагирующих на полярность электрического сигнала в цепи управления они срабатывают при любом направлении тока в обмотке возбуждения. В случаях, когда требуется, чтобы реле срабатывало при определенном направлении тока, применяют поляризованные реле.

В поляризованном реле в магнитную цепь включается постоянный магнит 2 (рис. 2.25). Этот магнит создает основной магнитный поток Ф0, и если якорь J реле занимает среднее положение в зазоре магнитной системы, то на него действуют две равные по значению и противоположные по направлению силы притяжения к полюсам постоянного магнита. Положение якоря неустойчиво, и для удержания его в среднем положении якорь укрепляют на плоской пружине, упругость которой создает устойчивость. Если в катушке электромагнита 1 появляется ток /у, то возбуждается дополнительный магнитный поток Фу того или иного направления в зависимости от направления магнитодвижущей силы.

Таким образом, изменяются результирующие магнитные потоки в зазорах между якорем и полюсами N—S постоянного магнита (рис. 2.25): в одном из этих зазоров магнитный поток увеличивается, в другом — уменьшается. Сила притяжения якоря пропорциональна квадрату магнитного потока, и, следовательно, якорь, преодолевая сопротивление пружины, притягивается к тому или другому полюсу постоянного магнита — реле срабатывает — контакты 4 замыкают одну либо другую цепь в зависимости от направления тока управления.

Поляризованные реле являются достаточно быстродействующими (время срабатывания достигает тысячных долей секунды), чувствительными (Ру = 0,01—5 мВт), позволяют коммутировать токи 0,21 А при напряжении до 24 В. Высокое быстродействие дает возможность использовать их для коммутации с частотой включений 100-200 Гц.

Тенденция к уменьшению габаритных размеров электромагнитных устройств обусловила появление миниатюрных герметических электромагнитных реле, соизмеримых по размерам с полупроводниковыми элементами. Широкое распространение получают герконовые реле, обладающие высоким быстродействием, надежностью и очень большим сроком службы.

Особый класс аппаратов с герконами составляют реле с электромагнитной памятью (рис. 2.26). Геркон / помещен в магнитное поле магнитотвердого феррита 4 с наконечниками 2. Импульс тока в катушке 3 приводит к срабатыванию реле контакты 5 замыкаются, оставаясь замкнутыми и после окончания импульса тока управления за счет намагничивания ферритового сердечника. Для отпускания реле необходимо подать импульс тока обратного направления.

Значение этого обратного тока должно быть таким, чтобы ферритовый сердечник размагнитился, но не перемагнитился, иначе контакты снова замкнутся.


Электроника для чайников: что такое реле и зачем оно нужно. Устройство, типы, описание


Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В этой статье расскажем о назначении реле и принципе его работы.

Существует очень много типов и классификаций реле. Но мы поговорим не только о них, но и о том, что такое реле и как оно работает. Поехали!

Определение реле таково:

Реле – это электромагнитное коммутационное устройство, предназначенное для установки и разрыва соединений в электрических цепях. Реле срабатывает при скачкообразном изменении входной величины.

Говоря проще, когда входная величина меняется (ток, напряжение), реле замыкает или размыкает цепь. При этом в зависимости от типа реле входная величина не обязательно имеет электрическую природу.

Слово «реле» происходит от французского relay. Это понятие обозначало смену почтовых лошадей или передачу эстафеты.

Как работает реле?

Во-первых, вспомним Джозефа Генри, с именем которого связано понятие индуктивности. Провод, по которому течет ток, является магнитом. Если мы намотаем провод витками на сердечник, то получится катушка индуктивности.

Как катушка индуктивности ведет себя в цепи переменного тока? Если катушку включить в цепь, то фаза тока в цепи будет отставать от напряжения. Другими словами, при максимальном значении напряжения ток будет минимален и наоборот.

Это связано с тем, что когда катушка включена в цепь, в ней возникает ЭДС самоиндукции, которая препятствует росту основного тока через катушку.

Теперь вернемся к реле. Простейшее электромагнитное реле состоит из электромагнита (катушки), якоря и соединяющих элементов. При подаче электрического тока на катушку она притягивает якорь с контактом, который замыкает цепь.

Чтобы представить все это, посмотрим на рисунок:

Устройство и вид электромагнитного реле

Здесь 1 — катушка, 2 — якорь, 3 — коммутационные контакты.

Реле имеет две цепи: управляющую и управляемую. Управляющая цепь – это цепь, через которую ток подается на катушку. Управляемая – цепь, которую и замыкает якорь при срабатывании реле.

Таким образом, реле позволяет контролировать большие токи в управляемой цепи при помощи слаботочной управляющей цепи.

На каждом реле есть обозначения контактов управляемой и управляющей цепи. Также на корпусе изделия указаны значения тока и напряжения, на которые рассчитано реле.

Обозначения на корпусе реле

Электромагнитное реле, рассмотренное выше, не работает мгновенно. После подачи тока на катушку должно пройти какое-то время, и лишь потом реле сработает. Это связано с таким явлением, как гистерезис. Гистерезис переводится с латинского как отставание или запаздывание.

Мы уже говорили про ЭДС самоиндукции, возникающую в катушке. Когда реле включается в цепь, в катушке начинает течь ток, но сила тока нарастает постепенно. Нарастание тока в катушке можно представить в виде петли гистерезиса. Когда нужное значение силы тока достигнуто, реле срабатывает.

По этой причине реле не используются в самой быстродействующей аппаратуре, где время срабатывания должно быть сведено практически к нулю.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Типы реле

В зависимости от входной величины, на которую реагирует реле, бывают:

  • реле тока;
  • реле напряжения;
  • реле частоты;
  • реле мощности.

Также в зависимости от принципа действия различают:

  • электромагнитные реле;
  • магнитоэлектрические реле;
  • тепловые реле;
  • индукционные реле;
  • полупроводниковые реле.

Применение реле

В основном реле применяются для защиты силовой аппаратуры от перенапряжений, в электронике автомобилей. Реле также присутствуют во многих бытовых приборах. В чайнике используется тепловое реле. В каждом холодильнике есть пусковое реле.

Джозеф Генри изобрел реле в 1835 году. Первые реле нашли свое предназначение в телеграфии.

Например, логично предположить, что реле тока служит для контроля силы тока в цепи.

Так, при перегрузках на электродвигателе включается реле тока, которое своими контактами включает реле времени. По прошествии допустимого времени работы двигателя в режиме перегрузки реле времени разрывает цепь.

Блок реле тока

Конечно, сначала все это может показаться сложным и запутанным. Однако если начать разбираться и приложить немного усилий, вы в скором времени сами сможете не только рассказать про устройство и принцип действия реле, но и успешно заняться его подключением. А в будущем, возможно, стать специалистом по релейной защите.

Когда есть студенческий сервис, специалисты которого готовы оказать помощь в любое время, больше не нужно бояться трудных предметов и строгих преподавателей.

Напоследок видео, в котором подробно, наглядно и просто рассказывается о том, как работает реле:

Электромагнитное реле

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (kΩ). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное)Сопротивление обмотки (Ω ±10%)Номинальный ток (mA)Потребляемая мощность (mW)
325120360
57072
610060
922540
1240030
24160015
4864007,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно .

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

что это, как работает, виды, проверка

Мы редко задумываемся о том, как работает то или иное устройство. До тех пор, пока оно не вышло из строя. Но если приходится разбираться в причинах поломки, тут и возникают вопросы. Рассмотрим электромагнитное реле — оно стоит в электрической части автомобилей, в бытовой технике и электронике.

Содержание статьи

Что такое электромагнитное реле, устройство, назначение

Электромагнитное реле — коммутирующее устройство, которое для работы использует электромагнитное поле. Состоит оно из электромагнитной катушки и подвижного якоря, подвижных и неподвижных контактов. Якорь и катушка закреплены на основании. Якорь подпружинен и расположен так, чтобы неподвижные контакты с неподвижными имели точки соприкосновения.

Устройство электромагнитного реле

Как работает электромагнитное реле? При подаче напряжения на обмотку в ней возникает электромагнитное поле. Закрепленный подвижно якорь притягивается к сердечнику катушки, контакты переключаются (смыкаются/размыкаются). В этом и состоит работа реле — перекидывать контакты. К ним подключена разная нагрузка и, в результате срабатывания, изменяется цепи, по которым протекает электрический ток.

При снятии питания электромагнитное поле исчезает, якорь под действием пружины возвращается в исходное состояние. Соответственно и схема возвращается в исходное состояние. По принципу действия очень похоже на работу обычного выключателя. С той лишь разницей, что кнопки нет и  «управляются» контакты автоматически, а вместо лампочки может быть участок цепи или какое-то устройство.

Для чего нужно реле в электросхемах

На рисунке выше представлена простейшая схема с электромагнитным реле. Есть кнопка, при помощи которой подается питание на катушку. К контактам подключен исполнительный орган, например, электрическая лампа. При нажатии кнопки питание подается на катушку, якорь притягивается к сердечнику катушки, и давит на контакты. Они замыкаются, на лампочку поступает напряжение и она загорается. При снятии питания с катушки, пружина оттягивает якорь в исходное положение, цепь питания лампочки разрывается и она тухнет. Этот пример показывает, для чего и как используют электромагнитные реле.

Виды электромагнитных реле

Первая классификация — по питанию. Есть электромагнитные реле постоянного и переменного тока. Реле постоянного тока могут быть нейтральными или поляризованными. Нейтральные срабатывают при подаче питания любой полярности, поляризованные реагируют только на положительное или на отрицательное (зависят от направления тока).

Виды электромагнитных реле по типу питающего напряжения и внешний вид одной из моделей

По электрическим параметрам

Еще делят электромагнитные реле по чувствительности:

  • Мощность для сработки 0,01 Вт и меньше — высокочувствительные.
  • Потребляемая обмоткой мощность при срабатывании — от 0,01 Вт до 0,05 Вт — чувствительные.
  • Остальные — нормальные.

В первую очередь стоит определиться с электрическими параметрами

Первые две группы (высокочувствительные и чувствительные) могут управляться от микросхем. Они вполне могут выдавать требуемый уровень напряжения, так что промежуточное усиление не требуется.

По уровню коммутируемой нагрузки есть такое деление:

  • Не больше 120 Вт переменного и 60 Вт постоянного тока — слаботочные.
  • 500 Вт переменного и 150 Вт постоянного — повышенной  мощности;
  • Более 500 Вт переменного тока — контакторы. Применяются в силовых цепях.

Есть еще деление по времени срабатывания. Если контакты замыкаются не более чем после 50 мс (миллисекунд) после подачи питания на катушку — это быстродействующее. Если проходит от 50 мс до 150 мс — это нормальная скорость, а все которые требуют для сработки контактов больше 150 мс — замедленные.

По исполнению

Есть еще электромагнитные реле с различной степенью герметичности.

  • Открытые электромагнитные реле. Это те, у которых все части «на виду».
  • Герметичные. Они запаяны или заварены в металлический или пластиковый корпус, внутри которого воздух или инертный газ. Доступа к контактам и катушке нет, доступны только выводы для подачи питания и подключения цепей.
  • Зачехленные. Есть чехол, но он не припаян, а соединяется с корпусом при помощи защелок. Иногда присутствует накидная проволочная петля, которая удерживает крышку.

По массе и размерам отличия могут быть очень существенными

И еще один принцип деления — по размерам. Есть микроминиатюрные — они весят менее 6 граммов, миниатюрные — от 6 до 16 граммов, малогабаритные имеют массу от 16 гр до 40 гр, а остальные — нормальные.

Виды контактных групп

Электромагнитные реле делят по способу работы контактов. Они могут быть:

  • Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
  • Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
  • Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.

В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.

Нормально закрытый (замкнутый) контакт: что значит
и принцип работы

Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.

Электромагнитное реле с нормально открытым (разомкнутым) контактом

Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).

Принцип работы электромагнитного реле с переключающими контактами

При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.

Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.

Электромагнитные реле на схемах: обмотки, контактные группы

Особенность реле в том, что оно состоит из двух частей — обмотки и контактов. Обмотка и контакты имеют различное обозначение. Обмотка графически выглядит как прямоугольник, контакты разного таки имеют каждый свое обозначение. Оно отражает их название/назначения, так что проблем с идентификацией обычно не возникает.

Типы контактов электромагнитных реле и их обозначение на схемах

Иногда рядом с графическим изображением ставят обозначение типа — НЗ (нормально замкнутый)  или НО (нормально открытый). Но чаще прописывают принадлежность к реле и номер контактной группы, а тип контакта понятен по графическому изображению.

Вообще, искать контакты реле надо по всей схеме. Ведь физически оно находится в одном месте, а разные его контакты являются частью разных цепей. Это и отображается на схемах. Обмотка в одном месте — в цепи подачи питания. Контакты разбросаны в разных местах — в цепях, в которых они работают.

Пример схемы на электромагнитных реле: контакты находятся в соответствующих цепях (см. цветовую маркировку)

Для примера посмотрите на схему с реле. Реле КА, КV1 и КМ имеют одну контактную группу, КV3 — две, KV2 — три. Но три — это далеко не предел. Контактных групп в каждом реле может быть и десять-двенадцать и больше. И схема на рисунке простая. А если она занимает пару листов формата А2 и в ней масса элементов…

Основные технические характеристики, плюсы и минусы, область применения

Как любые электротехнические детали, электромагнитное реле подбирают по параметрам. Сначала определяются с составом контактных групп, затем — с питанием. Затем наступает пора выбора характеристик.

  • Ток или напряжение срабатывания. Самое низкое значение тока или напряжения, при котором контакты уверенно переключаются.
  • Ток или напряжение отпускания. Максимальное значение параметров, при которых пружина оторвет якорь от катушки.
  • Чувствительность. Минимальный уровень мощности, при котором реле срабатывает.
  • Сопротивление обмотки. Измеряется при температуре +20°C.
  • Рабочий ток или напряжение. Это диапазон значений, при которых реле точно сработает в эксплуатационных условиях.
  • Время срабатывания. Промежуток от момента подачи питания на обмотку до переключения первого контакта.
  • Время отпускания. Через какой промежуток времени после снятия питания «отлипнет» якорь.
  • Частота коммутации. Сколько раз может сработать реле за определенный промежуток времени.

Характеристики электромагнитного реле. Один из видов

Электромеханические реле имеют большой рабочий ресурс, невысокую цену. Еще один плюс — малое падение мощности при переключении. Но они создают помехи при работе, возможен дребезг контактов, скорость срабатывания совсем невысокая, есть проблемы с индуктивными нагрузками.

Все эти свойства определяют область применения. Обычно это коммутация питания приборов, работающих от 220 В переменного тока или 12 В и 24 В постоянного. Чаще всего нагрузкой являются электродвигатели невысокой мощности, еще подключают освещение, другую индуктивную и активную нагрузку. Мощность коммутируемой нагрузки от 1 Вт до 2-3 кВт.

Как проверить электромагнитное реле

Работоспособность электромагнитного реле зависит от катушки. Поэтому в первую очередь проверяем обмотку. Ее прозванивают мультиметром. Сопротивление обмотки может быть как 20-40 Ом, так и несколько кОм. При измерении просто выбираем подходящий диапазон. Если есть данные о том, какая величина сопротивления должна быть — сравниваем. В противном случае довольствуемся тем, что нет короткого замыкания или обрыва (сопротивление стремится к бесконечности).

Проверить электромагнитное реле можно при помощи тестера/мультиметра

Второй момент — переключаются или нет контакты и насколько хорошо прилегают контактные площадки. Проверить это немного сложнее. К выводу одного из контактов можно подключить источник питания. Например — простую батарейку. При срабатывании реле потенциал должен появиться на другом контакте или исчезнуть. Это зависит от типа проверяемой контактной группы. Контролировать наличие питания также можно при помощи мультиметра, но его надо будет перевести в соответствующий режим (контроль напряжения проще).

Если мультиметра нет

Не всегда под рукой есть мультиметр, но батарейки есть почти всегда. Давайте рассмотрим пример. Есть какое-то реле в герметичном корпусе. Если знаете или нашли его тип, можно посмотреть характеристики по названию. Если данные не нашли или нет названия реле, смотрим на корпус. Обычно тут указывается вся важная информация. Напряжение питания и коммутируемые токи/напряжения есть обязательно.

Проверка обмотки электромагнитного реле

В данном случае имеем реле, которое работает от 12 V постоянного тока. Хорошо если есть такой источник питания, тогда используем его. Если нет, собираем несколько батареек (последовательно, то есть одну за одной), чтобы суммарно получить требуемое напряжение.

При последовательном соединении батареек их напряжение суммируем

Получив источник питания нужного номинала, подключаем его к выводам катушки. Как определить где выводы катушки? Обычно они подписаны. Во всяком случае, есть обозначения  «+» и «-» для подключения источников постоянного питания и знаки для переменного  типа таких «≈».  На соответствующие контакты подаем питание. Что происходит? Если катушка реле рабочая, слышен щелчок — это притянулся якорь. При снятии напряжения он слышен снова.

Проверяем контакты

Но щелчки — это одно. Это значит, что катушка работает, но надо еще контакты проверить. Возможно они окислились, цепь замыкается, но сильно падает напряжение. Может они стерлись и контакт плохой, может, наоборот, закипели и не размыкаются. В общем, для полноценной проверки электромагнитного реле необходимо еще проверить работоспособность контактных групп.

Проще всего объяснить на примере реле с одной группой. Они обычно стоят в автомобилях. Автолюбители называют их по числу выводов: 4 контактные или 5 контактные. В обоих случаях там всего одна группа. Просто четырех контактное реле содержит нормально замкнутый или нормально разомкнутый контакт, а пятиконтактное — переключающую группу (перекидные контакты).

Электромагнитное реле 4 и 5 контактное: расположение контактов, схема подключения

Как видите, питание подается в любом случае на выводы, которые подписаны 85 и 86. А к остальным подключается нагрузка. Для проверки 4-контактного реле можно собрать простейшую связку из маленькой лампочки и батарейки нужного номинала. Концы этой связки прикрутить к выводам контактов. В 4-контактном реле это выводы 30 и 87. Что получится? Если контакт на замыкание (нормально разомкнутый), при сработке реле лампочка должна загореться. Если группа на размыкание (нормально замкнутый) должна потухнуть.

В случае с 5-контактным реле схема будет чуть сложнее. Тут потребуется две связки из лампочки и батарейки. Используйте лампы разного формата, цвета или каким-то образом их разделите. При отсутствии питания на катушке у вас должна гореть одна лампочка. При срабатывании реле она гаснет, загорается другая.

Как работают реле? – Объясни это!

Как работают реле? – Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент. Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию.Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока – достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех видах машин и электрических приборы, где датчики готовы включить или за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее разберемся, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет намного большему току проходить через пружинные контакты для питания элемента, который нагревает горячую воду.

Что такое реле?

Рисунок: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака слышал шум, он начинал лаять и будил большую собаку, которая могла атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле – это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле – электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только небольшие электрические токи. Но часто они нужны нам для управления более крупными устройствами, использующими большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Обычно разомкнутые реле являются наиболее распространенными.

Вот еще одна анимация, показывающая, как реле связывает две цепи. все вместе. По сути, это то же самое, нарисованное немного по-другому. Слева – входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический выключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи протекает небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. Выходная цепь управляет сильноточным прибором, таким как лампа или электродвигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но он будет производить только небольшие электрические токи – слишком малы, чтобы приводить в действие электродвигатель в большой большой поклонник. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждения от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но существует довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым он работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Позднее реле использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле.Транзисторы – это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов стимулировала компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле – и такие пионеры, как Джозеф Генри – тоже заслуживают похвалы!

Если вам понравилась эта статья…

… вам могут понравиться мои книги. Мой последний Бездыханный: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри.Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле – отличное практическое введение. Вы можете открыть реле и поэкспериментировать с его внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса.McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и особенности упаковки, а также сопутствующие устройства, такие как герконы. В последующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают реле? – Объясни это!

Как работают реле? – Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент.Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока – достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех видах машин и электрических приборы, где датчики готовы включить или за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее разберемся, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет намного большему току проходить через пружинные контакты для питания элемента, который нагревает горячую воду.

Что такое реле?

Рисунок: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака слышал шум, он начинал лаять и будил большую собаку, которая могла атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле – это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле – электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только небольшие электрические токи. Но часто они нужны нам для управления более крупными устройствами, использующими большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Обычно разомкнутые реле являются наиболее распространенными.

Вот еще одна анимация, показывающая, как реле связывает две цепи. все вместе. По сути, это то же самое, нарисованное немного по-другому. Слева – входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический выключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи протекает небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. Выходная цепь управляет сильноточным прибором, таким как лампа или электродвигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но он будет производить только небольшие электрические токи – слишком малы, чтобы приводить в действие электродвигатель в большой большой поклонник. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждения от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но существует довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым он работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Позднее реле использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле.Транзисторы – это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов стимулировала компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле – и такие пионеры, как Джозеф Генри – тоже заслуживают похвалы!

Если вам понравилась эта статья…

… вам могут понравиться мои книги. Мой последний Бездыханный: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри.Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле – отличное практическое введение. Вы можете открыть реле и поэкспериментировать с его внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса.McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и особенности упаковки, а также сопутствующие устройства, такие как герконы. В последующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают реле? – Объясни это!

Как работают реле? – Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент.Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока – достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех видах машин и электрических приборы, где датчики готовы включить или за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее разберемся, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет намного большему току проходить через пружинные контакты для питания элемента, который нагревает горячую воду.

Что такое реле?

Рисунок: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака слышал шум, он начинал лаять и будил большую собаку, которая могла атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле – это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле – электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только небольшие электрические токи. Но часто они нужны нам для управления более крупными устройствами, использующими большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность протекает через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Обычно разомкнутые реле являются наиболее распространенными.

Вот еще одна анимация, показывающая, как реле связывает две цепи. все вместе. По сути, это то же самое, нарисованное немного по-другому. Слева – входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический выключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи протекает небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. Выходная цепь управляет сильноточным прибором, таким как лампа или электродвигатель.

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но он будет производить только небольшие электрические токи – слишком малы, чтобы приводить в действие электродвигатель в большой большой поклонник. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждения от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но существует довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или питания).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым он работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Позднее реле использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле.Транзисторы – это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов стимулировала компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле – и такие пионеры, как Джозеф Генри – тоже заслуживают похвалы!

Если вам понравилась эта статья…

… вам могут понравиться мои книги. Мой последний Бездыханный: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткий отчет о том, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри.Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле – отличное практическое введение. Вы можете открыть реле и поэкспериментировать с его внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса.McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и особенности упаковки, а также сопутствующие устройства, такие как герконы. В последующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Контактор

против реле: в чем разница?

Главная »О нас» Новости »Контакторы против реле: в чем разница?

Опубликовано: автором springercontrols

В отрасли существует много недоразумений по поводу разницы между контакторами и реле, и часто эти термины используются почти как взаимозаменяемые.Определяющие различия не всегда ясны, поэтому мы подумали, что постараемся помочь разобраться в ответе.

По данным Института инженеров по электротехнике и радиоэлектронике:

Реле – «Устройство, с помощью которого контакты в одной цепи управляются изменением условий в той же цепи или в одной или нескольких связанных цепях»

Контактор – «Устройство для многократного установления и прерывания электрической цепи в нормальных условиях»

Чем контакторы отличаются от реле?

Определения из учебников достаточно похожи, это нам не особо помогает.Оба выполняют одну и ту же задачу по переключению цепи! Итак, что на самом деле отличает эти два устройства?

1. Грузоподъемность

Реле

обычно классифицируются как несущие нагрузки до 10 А или меньше, в то время как контактор может использоваться для нагрузок более 10 А, но это определение, хотя и простое, дает неполную картину. Он не учитывает никаких физических различий или стандартов.

2. Стандарты открытых / закрытых контактов

Контакторы

почти исключительно предназначены для работы с нормально разомкнутыми контактами (форма A).С другой стороны, реле часто могут быть как нормально разомкнутыми, так и / или нормально замкнутыми, в зависимости от желаемой функции. Это означает, что с контактором, когда он обесточен, соединение (обычно) отсутствует. С реле все могло быть.

3. Вспомогательные контакты

Чтобы немного запутать, контакторы часто оснащены вспомогательными контактами, которые могут быть нормально разомкнутыми или нормально замкнутыми, однако они используются для выполнения дополнительных функций, связанных с управлением контактором. Например, контактор может передавать мощность на двигатель, в то время как вспомогательный контакт находится в цепи управления пускателя двигателя и обычно используется для включения контрольной лампы, указывающей, что двигатель работает.

4. Элементы безопасности (подпружиненные контакты)

Поскольку контакторы обычно несут высокие нагрузки, они часто содержат дополнительные функции безопасности, такие как подпружиненные контакты, чтобы гарантировать разрыв цепи в обесточенном состоянии. Это важно, потому что при высоких нагрузках контакты могут свариваться друг с другом. Это может создать опасную ситуацию, когда цепь находится под напряжением, когда она должна быть отключена. Подпружиненные контакты помогают снизить этот шанс, а также обеспечивают одновременное отключение всех цепей.Поскольку реле обычно рассчитаны на меньшую мощность, подпружиненные контакты встречаются гораздо реже.

5. Функции безопасности (гашение дуги)

Другая функция безопасности, обычно включаемая в контакторы из-за высоких нагрузок, которые они обычно несут, – это гашение дуги. Магнитное подавление дуги работает за счет увеличения пути, по которому дуга должна пройти. Если это расстояние увеличивается больше, чем энергия может преодолеть, дуга гасится. Поскольку реле не рассчитаны на высокие нагрузки, возникновение дуги вызывает меньшую озабоченность, а гашение дуги в реле встречается гораздо реже.

6. Средства безопасности (перегрузки)

Наконец, контакторы обычно подключаются к перегрузкам, которые прерывают цепь, если ток превышает установленный порог в течение выбранного периода времени, обычно 10-30 секунд. Это помогает защитить оборудование после контактора от повреждения из-за тока. Перегрузки реле встречаются гораздо реже.

Контактор и реле

Контакторы

обычно конструируются и используются в трехфазных приложениях, в то время как реле чаще используется в однофазных приложениях.Контактор соединяет 2 полюса вместе без общей цепи между ними, в то время как реле имеет общий контакт, который подключается к нейтральному положению. Кроме того, контакторы обычно рассчитаны на напряжение до 1000 В, а реле – только на 250 В.

Выбор между контакторами и реле для вашего приложения

При выборе между двумя, несколько общих правил, которым вы можете следовать, чтобы помочь

Когда использовать реле:
  • 10А или менее ток
  • до 250 В перем. Тока
  • 1 фаза

Когда использовать контактор:
  • 9А или более ток
  • до 1000 В перем. Тока
  • 1 или 3 фазы

Всегда сверяйтесь со спецификациями предметов, которые вы собираетесь использовать, и обсуждайте их с лицензированным электриком.Это только для информационных целей.

На практике вам также следует обратить внимание на эту функцию. Для любой цепи, в которой может произойти перегрузка, и отказ от обесточивания цепи создаст опасное состояние, тогда контактор, вероятно, является лучшим выбором из-за дополнительных функций безопасности. Для переключения малой мощности, когда дополнительные функции безопасности контактора не нужны, реле обычно является более экономичным выбором.

Relay Contact – обзор

3.3 Отключения с электрической сигнализацией

Схема электрического отключения также показана в общих чертах на Рис. 2.41. Любая электрическая функция отключения передается на передний и задний соленоиды отключения через дублированные системы контактов реле. Эти реле разделены на расцепители категории A и категории B . Отдельные наборы контактов на одних и тех же реле отключают автоматические выключатели напрямую в случае срабатывания категории A и через реле с малой прямой мощностью в случае категории B. Для включения механических отключений, например отключения при превышении скорости, чтобы сигнализировать об отключении автоматических выключателей, потеря давления защитной жидкости регистрируется наборами реле давления, которые обеспечивают дополнительные входы для инициирования отключения Категории B через низкий реле прямого действия. Реле давления также могут использоваться для отключения котла и вспомогательных устройств, например, обратных клапанов стравливаемого пара, в зависимости от области применения.

Реле с малой прямой мощностью используют измерение мощности через трансформаторы напряжения и тока, чтобы определить, когда вырабатываемая мощность составляет менее 1%.Это обеспечивает почти полное закрытие паровых клапанов и недопустимость превышения скорости при размыкании автоматических выключателей, даже если в дальнейшем закрытие паровых клапанов не происходит.

Вышеупомянутые общие принципы могут быть реализованы различными способами с резервированием «1 из 2» или «2 из 3». Хотя ранее описанная гидравлическая система отключения представляет собой систему «1 из 2», будет видно, что совместимость с трехканальной электрической системой все еще возможна. Теперь подробно описывается каждая из двух систем.

Резервирование системы «1 из 2» является более сложным, чем предполагает простая интерпретация этого названия. В каждый из двух каналов встроены дополнительные преобразователи, так что можно использовать не менее двух преобразователей на канал или всего четыре преобразователя. Последовательное соединение двух контактов инициирования отключения в каждом канале позволяет любому отдельному преобразователю выйти из строя, не вызывая отключения турбины. Однако ни один единичный отказ электрического компонента не предотвратит истинного отключения.Идентификация неисправных компонентов осуществляется либо схемами контроля, либо рутинными испытаниями под нагрузкой датчиков, инициирующих срабатывание «передней» и «задней» систем, по очереди. На Рис. 2.42 показана упрощенная схема отключения для одного отключения категории A , одного отключения категории B и аварийных кнопок оператора. «Передняя» и «задняя» цепи полностью независимы и питаются от двух разных источников питания постоянного тока. Необходимо подать питание на соленоид отключения турбины SOL, чтобы инициировать отключение турбины через клапан аварийного отключения (контур 2).В качестве резерва на схеме 3 показан дублированный набор контактов, управляющих вспомогательным реле OP. Отдельные наборы контактов в этом реле затем приводят в действие электромагнитные клапаны сброса давления каждого реле парового клапана, они относятся к типу 2.

РИС. 2.42. Упрощенная схема отключения с резервированием «1 из 2» с дополнительным резервированием датчиков

Цепь 1 показывает типичную функцию отключения категории A , высокое давление выхлопных газов турбины низкого давления, измеряемое реле давления PS6 и 7.Они показаны в нормальном рабочем положении; при возникновении условия отключения PS6 замыкается и активирует реле флага AXR1.1. Если PS7 также замыкается, TR3 запитывается через контакты AXR1.1 и AXR1.2. Если «передняя» система проверяется, переключатель проверки будет в положении T1, и вместо инициирования отключения лампа LP1 загорится при замыкании PS6 и PS7. Контрольно-измерительные приборы, связанные с контрольным переключателем, позволяют подавать атмосферное давление на реле давления PS6 и PS7, тем самым всесторонне проверяя функционирование всех компонентов вплоть до лампы.

Контур 4 очень похож, в этом случае PS1 и PS2 обеспечивают отключение реле низкого давления жидкости реле низкого давления категории B , показанное на рис. 2.41. Вспомогательное реле TPR2.1 используется для обеспечения других блокировок, а также отключений. Один контакт TPR2.1 подключен параллельно с другими отключающими контактами категории B для включения реле отключения TR7. В свою очередь, контакты этого реле, которые не показаны, инициируют отключение автоматического выключателя через реле малой прямой мощности.

Концепция отключения «1 из 2» обеспечивается дублированием в цепи заднего канала, где полностью независимые наборы датчиков инициируют отключение.Из-за конфигурации гидравлической системы отключения турбины отключение происходит, как только подается питание на любой из соленоидов отключения турбины.

В примерах, выбранных для иллюстрации типичных отключений категорий A и B , использовалось по два реле давления в каждом канале. Для других функций отключения может подойти другая форма резервирования. Таким образом, в некоторых приложениях для отключения используется высокая температура выхлопных газов низкого давления, измерение выполняется в каждом потоке каждого выхлопа.Для машины с шестью выхлопными трубами будет использоваться 12 преобразователей, по шесть в каждом канале, объединенных в три пары, чтобы обеспечить защиту от ложных срабатываний.

На рисунке 2.43 показан второй метод реализации схемы электрического отключения турбогенератора с использованием системы большинства голосов «2 из 3». Используя эту технику, практически невозможно, чтобы какой-либо отдельный компонент или отказ датчика вызвал ложное срабатывание. Точно так же единичный отказ не предотвратит отключение. Вспомогательные контакты, не показанные на рисунке, выдают оператору сигнал тревоги в случае отказа и запрещают тестирование под нагрузкой до тех пор, пока неисправность не будет устранена.

РИС. 2.43. Упрощенная схема отключения с резервированием «2 из 3»

Схема очень проста, основные функциональные блоки дублируются или дублируются по мере необходимости. Преобразователи подключены к трем аналогичным вспомогательным цепям отключения. Во вспомогательной цепи отключения 1 PS7 обеспечивает типичную функцию отключения категории A , такую ​​как высокое давление выхлопных газов турбины низкого давления. Он управляет вспомогательным реле RL7 через флаговое реле. Эквивалентными вспомогательными реле в каналах 2 и 3 являются реле RL8 и RL9.В правой части диаграммы показаны четыре цепи, каждая из которых использует набор контактов от реле RL7, RL8 и RL9, подключенных по принципу голосования «2 из 3». Первые два набора управляют передними и задними соленоидами отключения турбины, в то время как вторые два набора управляют реле отключения TR3 и TR4, чтобы обеспечить прямое отключение выключателя.

Особенностью этой системы является то, что испытание под нагрузкой может проводиться на каждом датчике по очереди, а работа цепи проверяется вплоть до работы соленоида отключения турбины.Таким образом, если передний соленоид гидравлически изолирован и контакты контрольного переключателя TF замкнуты, датчик PS7 может быть сброшен в атмосферу, что приведет к замыканию контактов, включив RL7 и соленоид отключения передней турбины.

Фактическое действие этого может быть показано оператору с помощью реле давления жидкости, контролирующего давление жидкости защиты в соответствующей точке на переднем аварийном отключающем клапане. Во время тестирования задние соленоиды отключения турбины обеспечивают защиту в случае реального отключения.Аналогичные средства тестирования предусмотрены для большинства датчиков, причем входные сигналы для тестирования применяются с помощью электромагнитного клапана, расположенного рядом с каждым датчиком. Это позволяет проводить все испытания под нагрузкой из ячеек расцепителя с полным набором показаний для тестера, что позволяет легко отслеживать и устранять неисправности.

Цепь категории B очень похожа на схему, описанную для категории A. Здесь отключающие контакты всех параметров отключения подключены параллельно.Таким образом, несколько подобных наборов в канале 1 работают параллельно с PS1 и RL11, и все они управляют реле RL1, которое является одним из вспомогательных реле отключения, образующих группы контактов «2 из 3» для управления соленоидами отключения турбины и реле категории B. реле отключения TR7 и TR8.

Как работают автомобильные реле?

Реле

– это переключатели, управляемые электрическим током, такие как другой переключатель, компьютер или модуль управления. Назначение автомобильного реле – автоматизировать эту мощность для включения и выключения электрических цепей в определенное время.Однако реальное преимущество реле – это не просто автоматизация; они также обеспечивают возможность переключать несколько цепей , включая различные типы напряжения, в одном и том же реле в одно и то же время.

Релейные переключатели

12 В пост. существующие на транспортных средствах сегодня.

Как устроено реле?

Если бы вы открыли реле, вы бы увидели катушку электромагнита, переключатель и пружину. Пружина удерживает переключатель в этом положении до тех пор, пока через катушку не пройдет ток. Затем катушка генерирует магнитное поле, которое включает и выключает переключатель.

Глядя на схему ниже, вы можете увидеть распиновку типичного реле на 12 В. Обратите внимание, что каждый вывод пронумерован. 85 и 86 – это контакты катушки, а 30, 87 и 87a – контакты переключателя.

87 и 87a – это два контакта, к которым будет подключаться 30. Если катушка не активирована, 30 всегда будет подключен к 87a. Вы можете думать об этом как о выключателе в положении ВЫКЛ. Когда на катушку подается ток, 30 подключается к выводу 87. Самое замечательное в реле то, что вы можете установить 87 и 87a как открытыми или закрытыми, в зависимости от того, как вам нужно, чтобы переключатель работал. Если вам нужно замкнутое реле, вам нужно подключить к 87a. Если вам нужно нормально разомкнутое реле, вы подключитесь к 87.

Хотя большинство реле имеют маркировку внизу, вы всегда можете найти 30-контактный набор, перпендикулярный другим контактам, для простой идентификации источника питания .

Понимая, что 85 и 86 являются выводами катушки, эти контакты будут передавать ток через свою катушку. Один из них будет использоваться для заземления вашего тока, а другой будет подключен к аксессуару или вашей точке тока.

87 и 87a будут подключены к вашим управляемым аксессуарам, которые вы хотите включать и выключать с помощью реле.

Тогда

30 будет контактом, подключенным к вашей батарее.

Типы автомобильных реле

  1. Изменить более
  2. нормально открытый
  3. В горшке
  4. Мигалка
  5. с юбкой
  6. Задержка по времени
  7. Двойной открытый контакт

Этот список типов реле не является исчерпывающим, но это отличное начало для понимания доступных опций.

Чтобы узнать больше об этих различных типах реле, ознакомьтесь с публикацией в нашем блоге о типах реле.

【Реле управления】 Что такое реле управления?

Что такое реле управления?

Управляющее реле, также известное как реле, представляет собой переключатель, электромагнитный переключатель. Реле управления позволяет электрическому току проходить через проводящую катушку, которая размыкает или замыкает переключатель. Он также защищает цепь от тока. С управляющим реле пользователям не нужно вручную поворачивать переключатель, чтобы изолировать или изменить состояние электрической цепи.

В настоящее время управляющие реле играют решающую роль в современных электронных устройствах. Это электронные компоненты, которые приводят в действие такие электронные компоненты, как двигатель, электростанции, систему питания, транзисторы и многое другое.

Различные типы управляющих реле

Существуют различные типы управляющих реле в зависимости от принципа действия и конструктивных особенностей.

Твердотельные реле – В нем используются твердотельные компоненты для выполнения операций переключения без перемещения каких-либо частей.

Контактор – большое реле, используемое для переключения большого количества электроэнергии через его контакты.

Электромагнитное реле – Состоит из электрических, механических и магнитных компонентов и имеет рабочие катушки и механические контакты. Следовательно, когда катушка активируется системой питания, механический контакт либо разомкнут, либо замкнут. Система питания имеет 2 типа переменного и постоянного тока.

Реле тепловой защиты от перегрузки – работает по принципу теплового воздействия электрической энергии.Когда через цепь протекает чрезмерный ток, цепь размыкается из-за того, что биметаллическая полоса испытывает повышение температуры.

Как работает реле управления? (Принципиальная схема)

Пример схемы управляющего реле

Схема управляющего реле

Реле управления

позволяет цепи с низким током управлять цепью с высоким током. Используя приведенную выше схему, когда электрический ток проходит через катушку, он генерирует электромагнитное поле, которое притягивает переключатель вниз.Таким образом замыкается переключатель, замыкающий цепь и позволяющий протекать электрическому току. Когда через катушку не течет ток, переключатель возвращается в исходное положение, что приводит к разрыву цепи.

Общие сведения о типе контактов реле

Каждое реле управления имеет тип контакта, такой как SPST-NO, но что это означает?

Полюса представляют собой количество цепей, управляемых переключателем.

Броски представляют количество положений, которые может принимать переключатель.

Символ SPST

Символ SPST

, однополюсный, одинарный, SPST , имеет две клеммы, которые можно подключать и отключать. У такого реле, включая две катушки, всего четыре клеммы.

Single Pole Double Throw, SPDT , имеет общий вывод, который соединяет один из двух других. Включая две катушки, это реле имеет всего пять клемм. Независимо от того, активна катушка или нет, либо «A», либо «B» всегда находится в состоянии покоя, в то время как другая должна быть катушкой для питания.

Double Pole Single Throw, DPST эквивалентно двум SPST, активируемым одной катушкой. Включая две катушки, это реле имеет всего 6 клемм.

Omron MY4IN

Double Pole Double Throw, DPDT эквивалентно двум SPDT, активируемым одной катушкой. Включая две катушки, это реле имеет в общей сложности 8 клемм.

Разница между нормально разомкнутыми (NO) и нормально замкнутыми (NC) контактами

НО контакты пропускают ток, когда реле находится под напряжением.Это означает, что при наличии напряжения контакт замыкается и пропускает ток.

НЗ-контакты пропускают ток, когда реле не находится под напряжением. В отличие от NO, размыкающийся контакт размыкается и прерывает прохождение тока.

* Переключение (CO) аналогично реле двойного выброса (DT).

Различия между управляющим реле и контакторами

Оба этих электрических устройства выполняют одну и ту же задачу по переключению цепи, и даже контакторы – это термин для больших реле.Означает ли это, что можно использовать либо управляющее реле, либо контакторы? Нет, а вот почему?

Нагрузочный конденсатор

– управляющие реле классифицируются как несущие нагрузки до 10 ампер или меньше. Принимая во внимание, что контакторы будут работать с нагрузками более 10 ампер.

Контакты

– контакторы в основном предназначены для работы с нормально разомкнутыми контактами, в то время как управляющее реле может работать как с нормально разомкнутыми, так и с нормально замкнутыми контактами.

Вспомогательные контакты

– контакторы часто оснащаются вспомогательными контактами, которые используются для выполнения дополнительных функций, а реле управления – нет.

Устройства безопасности

– Поскольку контакторы работают с высокими нагрузками, они обычно оснащаются такими устройствами безопасности, как подпружиненные контакты, дугогасящие устройства и устройства защиты от перегрузок.

Приложения

– Контакторы обычно изготавливаются и используются в трехфазных приложениях, но реле чаще используется в однофазных приложениях.

Как мне узнать, что мне нужно: реле управления или контактор?

Чтобы подвести итог, какое электрическое устройство выбрать:

Реле управления Контактор
10 А и ниже 9A и выше
Макс.напряжение 250 В Максимальное напряжение 1000 В
1 фаза 1 или 3 фазы

Цены на реле управления

С ценами на управляющие реле и контакторы вы можете ознакомиться на нашем сайте ELECTGO.В ELECTGO мы предлагаем широкий спектр промышленных товаров, включая управляющие реле и контакторы таких брендов, как Schneider и Omron.

https://sg.electgo.com/categories/56-control-relays

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *