Двигатель постоянного тока | Устройство и принцип работы электродвигателя постоянного тока
Электрические машины востребованы для работы оборудования разного назначения. Агрегаты встречаются в бытовых и промышленных устройствах. Для получения большой механической мощности с возможностью управления частотой вращения спросом пользуется двигатель постоянного тока (ДПТ или DC двигатели).
Устройство и принцип действия
Внешне двигатель постоянного тока представлен компактным моноблочным устройством с клеммами для подключения. На выходе вал, через который передается крутящий момент рабочему механизму.
Электрическая машина состоит из двух основных компонентов:
- Статор. Неподвижный элемент двигателя с обмоткой для возбуждения электродвижущей силы (ЭДС). У статора противоположно расположено два постоянных магнита с разными полюсами.
- Ротор. Вращающийся элемент ДПТ, который преобразует электромагнитную силу в механическую энергию.
На роторе присутствует токопроводящая обмотка с концами на щетках. Они являются контактами, на которые подается электроэнергия. Поток заряженных частиц через обмотку проходит по касательной постоянный магнит статора, возбуждая электродвижущую силу. Она приводит в действие ротор, который вращается с постоянной скоростью.
Направление потока электрических зарядов векторное и прямое, поэтому ротор двигателя немного прокрутится и остановится. Для непрерывного вращения на его конце установлена токопроводящая пластина (ламель).
Но одной ламели недостаточно, т.к. после проворачивания ротора на 180 °C на пути будет магнит с обратной полярностью. И чтобы якорь не вращался «туда-сюда», ламели расположены по всей окружности конца ротора в виде неподвижного щеточного коллектора на подшипниках скольжения. Независимо от текущего положения ротора, в любой момент вращения возле магнита всегда будет ламель, принимающая постоянный ток.
За свою конструкцию такие машины называются коллекторными электродвигателями. Они первыми были разработаны и до сих пор в спросе. Агрегаты долговечны, поддерживают регулировочную скорость вращения ротора. Все электрические машины постоянного тока — синхронные двигатели. Называются они так по причине одинаковой скорости вращения магнитного поля и ротора.
С развитием электроники появились DC двигатели без щеточного коллектора. Постоянный ток подается на статор, а закрепленные на роторе постоянные магниты начинают вращать якорь. С конструктивной стороны такие машины более сложные и имеют узкое назначение. Используются в условиях, в которых применение коллекторных электродвигателей не оправдано.
Способы возбуждения ЭДС ДПТ
Благодаря низкой себестоимости коллекторные электромоторы распространены в недорогих бытовых устройствах. Но их мощности недостаточно для крупногабаритного оборудования. Поэтому в промышленности применяются машины с обмоткой на статоре (вместо постоянного магнита). По классификации агрегаты отличаются способом возбуждения ЭДС.
Последовательное возбуждение
Обмотка возбуждения на статоре и на якоре питаются от одного источника постоянного тока. Сначала он проходит по статору, а когда он поступит на ротор, уже будет действовать ЭДС. Это самая удачная схема запуска двигателя — можно обеспечить плавный пуск машины и доступна регулировочная скорость вращения.
Но есть и существенный недостаток — возбуждаемое магнитное поле растет лишь с повышением постоянного тока. Поэтому для получения высокой скорости подается больше мощности. В результате часто происходят искрения и перегорания ламелей. При использовании двигателей с последовательным возбуждением приходится выбирать между производительностью и долговечностью.
Параллельное возбуждение
Поток частиц идет от одного источника одновременно на обмотки статора и ротора ДПТ. Напряжение будет одинаковым, а вот сила распределяться между проводниками. Машины с такой конфигурации самые простые в производстве и компактны. Концы проводников статора и ротора подсоединены напрямую к щеткам. Нет дополнительных соединений обмоток между собой (которое есть при последовательном возбуждении).
Но с увеличением силы заряда на обмотке возбуждения, на якоре будет спад, и наоборот. Поэтому электродвигатели постоянного тока с параллельным возбуждением могут работать лишь с одной скоростью. Они часто используются в насосах магистральных трубопроводов, которые работают под конкретным напором.
Независимое возбуждение
На якорь и статор подается напряжение от разных источников питания. Такая схема позволяет обеспечить плавный пуск, т.к. при увеличении скорости вращения возбужденное поле не меняется. И это значительно продлевает ресурс машины.
У электродвигателей постоянного тока с независимым возбуждением только один недостаток — частый выход из строя якоря. Это связано с тем, что при перегрузках ЭДС не меняется (т.к. она возбуждается иным источником, не задействованным при регулировании оборотов ротора). Оператор может заметить дефекты в работе только когда уже становится поздно (сильный шум, запах перегоревшей изоляции).
Смешанное (комбинированное) возбуждение
У таких машин несколько катушек возбуждения с разным соединением. Электродвигатели сложны и функциональны. Они применяются в условиях, когда требуется бесперебойная работа, а сохранность агрегата вторична.
Например, при штатной работе задействуется обмотка возбуждения, которая параллельно соединена с проводником якоря, и ротор вращается с одной скоростью. А в момент перебоев на генераторе или подстанции подача тока переключается на другую катушку, у которой независимое от якоря возбуждение. Электродвигатели постоянного тока со смешанным возбуждением не встречаются в бытовых устройствах. В зависимости от режима работы по факты такие агрегаты могут иметь классификацию.
Способы эксплуатации
Электрически е DC машины постоянного тока могут работать в прямом и обратном порядке. В результате их можно использовать в качестве генераторов путем преобразования механической силы в электрическую энергию.
Режим электродвигателя
Подаваемый постоянный ток преобразовывается в механическую силу вращения ротора, которую можно использовать в разных целях:
- перекачка газообразных и жидких сред;
- транспортировка и подъем грузов;
- обработка материалов разной прочности.
Электрическая машина постоянного тока находит широкое применение только от одного вращения, но и это не предел ее возможностей. У преобразования линейная зависимость — обороты зависят от напряжения (чем оно выше, тем их больше на единицу времени). Такая зависимость позволяет использовать две опции:
- Регулирование скорости вращения. С помощью частотного преобразователя меняется напряжение, а за ним прямо пропорционально растут или падают обороты. Это позволяет использовать оборудование более эффективно (менять напор перекачки, ускорять подъем более легких грузов и т. д.).
- Плавный запуск. Пусковой ток подается не сразу базовым напряжением, а с постепенным его увеличением до требуемого значения. Также можно обеспечить плавный переход при переключении скорости вращения. Эта функция значительно сокращает износ машины от резких вращений.
С развитием электроники стало возможным регулировать вращение ротора двигателей постоянного тока под управлением других устройств, делая его работу автономной:
- Термостат у котла задает скорость вращения насоса, при которой в трубах будет достигнута нужная температура.
- Аварийная система обесточивает агрегат при его перегреве.
- Реле давления останавливает перекачку в магистральных трубопроводах при полном резервуаре, и с его опустением снова запустит машину.
Режим генератора
Принцип заключается в реверсивной работе DC электродвигателя. Под действием механической силы ротор начинает вращаться и генерировать электрический заряд на полюсах. Токосъем происходит подключением сетей к щеткам.
Подавляющее большинство двигателей с работой в режиме генератора действуют в электростанциях. Для движения ротора задействуется течение реки или пар. Крупные перерабатывающие заводы могут обеспечивать себя электроэнергией с нулевой себестоимостью. В качестве механической силы для движения ротора используется побочный продукт в виде струи газа.
Также распространено применение компактных мини-электростанций. Они представлены установкой с двигателем внутреннего сгорания и генератора. Ротор приводится в движение сжиганием бензина или ДТ. Мини-электростанции распространены на строительных промышленных объектах в условиях отсутствия электросетей.
На практике в целях продления срока службы генератора ротор ДПТ всегда работает с минимальной нагрузкой. Ток необходимых характеристик получается подключением выпрямителей, резисторов и инверторов.
Универсальный электродвигатель
Если у машины магнитное поле возбуждения и ротор вращаются с одинаковой скоростью (синхронная машина), он устроен так, что возможно питание от постоянного и переменного тока. Дополнительная обмотка возбуждения проходит не по всему статору, а секционно (по образу с ламелями щеточного коллектора). При включении двигателя в цепь с источником постоянного тока питание подается на основную обмотку статора, а когда от переменного — на дополнительную.
Такой подход позволяет коллекторному двигателю постоянного тока работать от общей сети. Он используется в бытовых приборах с высокой производительностью. Вся причина в том, что переменный ток электросети напряжением 230 В и частотой 50 Гц можно преобразовать во вращение ротора с крутящим моментом не более 3000 об. /мин. В обычном режиме оборудование работает от переменного источника питания. Но когда требуется очень высокая скорость вращения механизма, происходит предварительное выпрямление. Ток становится постоянным и после передается на щетки машины.
Достоинства
У электродвигателей постоянного тока много преимуществ, среди которых можно отметить следующее:
- Линейная зависимость преобразования энергии. По характеристикам источника можно заранее рассчитать обороты, с которыми движется ротор (и наоборот для генератора). Это обеспечивает плавным пуском и регулировочной скорость вращения электромотора.
- Универсальная конструкция. Для любых задач подходит коллекторный двигатель, и наладить производство одного вида машин проще.
- Компактность. Синхронные двигатели состоят только из статора и якоря, остальные компоненты незначительны и не почти не влияют на размер агрегата.
Двигатели постоянного тока отлично подходят для предприятий на производстве. Но в быту по ряду качеств они проигрывают основному конкуренту — асинхронным двигателям:
- Меньший рабочий ресурс и требовательность к частому обслуживанию с заменой изношенных частей.
- Сложная конструкция якорей, не позволяющая отремонтировать или заменить их самому.
- Для подключения к общей сети требуется выпрямитель.
По этим причинам в домашних устройствах и бытовых инструментах присутствуют асинхронные двигатели. Их принципиальное отличие в поле возбуждения, которое всегда вращается быстрее ротора. Такие машины устроены так, что работают только от переменного тока.
Типы неисправностей
Двигатели постоянного тока используются для приведения в движение крупногабаритных агрегатов с большой нагрузкой, и где требуется часто менять скорость вращения. Преимущественно это область энергетики и производства с тяжелыми условиями работы, ускоряющими износ мотора. Но даже при бережной эксплуатации возможен выход из строя.
Для двигателей постоянного тока характерны многие поломки, которые можно объединить в 4 типа неисправностей:
- Разрушение изоляции и обмотки. При перегреве или коротком замыкании электромотор получает сильный урон. Изоляция разрушается, а уязвимая часть обмотки деформируется под действием внешнего тепла или роста сопротивления материала проводника. Поломке предшествует перегрев и шумная работа. Принципиальное отличие замыкания от перегрева в том, что неполадка на стороне и ее придется устранить после ремонта агрегата.
- Отсутствие питания. При наличии постоянного тока полный отказ в работе двигателя указывает на обрыв одной или нескольких обмоток. Зачастую такая ситуация происходит в результате повреждения витков из-за неаккуратного обслуживания. В половине случаев обмотку двигателя можно восстановить без замены.
- Постукивания и вибрации. Разбалансировка вала или разрушение подшипников скольжения нарушает синхронную передачу крутящего момента рабочему механизму. В результате происходят многократные толчки между валами, которые еще сильнее вредят электромотору. Возможно механическое разрушение отдельных частей (уцелевших подшипники, ламели коллектора).
- Рабочие характеристики не соответствуют настройкам. Отвечающий за подачу постоянного тока на двигатель механизм неисправен. При повреждении катушки частотного преобразователя изменение скорости вращения ротора не будет соответствовать настройкам. При дефектной работе в режиме генератора токосъем не соответствует требуемым параметрам.
При наблюдении любых признаков неисправности необходимо отключить двигатель и передать его в сервис для ремонта. Дальнейшая эксплуатация мотора постоянного тока под нагрузкой причинит ему еще больше урона или нарушит работу оборудования. Восстановление машины необходимо доверить только специалистам. Только профессионалы способны на определение всех неисправностей и смогут устранить их за короткий срок.
Технический центр «Хельд» ремонтирует электрические моторы постоянного тока и устраняет неисправность любой сложности. Мастера восстанавливают обмотку статора и якоря, меняют подшипники скольжения, делают балансировку ротора. Также мы ремонтируем бытовые и промышленные агрегаты с работой от электродвигателя постоянного тока до 1000 кВт: генераторы, станки, компрессоры, насосы.
Если вам требуется срочное и профессиональное восстановление мотора, обратитесь в нашу компанию. Специалисты быстро изучат состояние машины, найдут все неисправности и сообщат условия ремонта.
Как устроен и принцип действия двигателя постоянного тока (видео)
Подавляющее большинство электроприводов нашего времени использует энергию переменного тока в асинхронном режиме. Тем не менее, двигатель постоянного тока, устройство и принцип действия которого будут рассматривать в этой статье, востребован ничуть не меньше. Что он собой представляет, какие существуют теоретические и технические особенности его эксплуатации, постараемся разобраться далее.
Что такое постоянный ток и чем он отличается от переменного?
Начать рассмотрение вопроса работы эл. двигателей необходимо с того, на чем она базируется, то есть с определения понятия «электрический ток» и его основных видов. Еще со школы нам должно быть известно, что в физике электрическим током называют направленное движение заряженных частиц (электронов или ионов). Его разделение на постоянный и переменный происходит в зависимости от величины и направления тока в некотором промежутке времени. Это хорошо видно на следующем графике:
Как видим, график (красная линия) не меняется по времени, напряжение остается стабильным. В то же время, переменный ток (зеленый график) имеет форму синусоиды, постоянно меняя свое значение и направление со временем. Периодичность, с которой график проходит через одинаковые точки по ординате называется частотой и ее стандартное значение 50 Гц.
На самом деле, практически любой бытовой прибор, электроинструмент использует постоянный ток, который преобразовывается из переменного (сетевого). Может возникнуть закономерный вопрос, а для чего тогда использовать синусоидальный ток? Дело в том, что такая форма задания тока позволяет легко преобразовывать напряжение, идущее от генератора электростанции с 200-300 тысяч Вольт до привычных 220, с учетом коэффициента эффективности.
Принцип действия электродвигателя
Работа любого эл. двигателя пост. тока базируется на принципе взаимного действия магнитных полей статора и ротора. Здесь также нужно вспомнить базовую физику и историю с рамкой, вращающейся в однородном магнитном поле. Задание предполагает подачу на нее тока, индуцирующего собственное круговое магнитное поле. При взаимодействии с предыдущим формирует направленную перпендикулярно силу Ампера. Она выталкивает рамку из однородного поля.
В нашем случае, принцип действия тот же, но роль неподвижного однородного магнитного поля играет статор, а рамки – вращающийся ротор электродвигателя, обмотками, который еще называется якорем.
Как видим, два полюса статора создают однородное магнитное поле. Обмотка ротора состоит из двух частей, которые наматываются на его полюсах и соединены между собой последовательно. Концы обмоток замыкаются на разделенных, расположенных на валу электродвигателя коллекторных пластинах. Они имеют физический контакт (трение) с неподвижными щетками из графита, на которые подается пост. ток. Если при подключении соблюсти принцип расположение полюсов тока, как показано на рисунке, то полюс якоря, расположенный на схеме слева, станет условно северным, как и находящийся в непосредственной близости полюс статора электродвигателя.
Естественная реакция на действие магнитных сил заключается в том, что равнозначные полюса отталкиваются. В нашем случае такое возможно только за счет вращения. По инерции, северный полюс якоря, провернувшись на 180º станет напротив южного полюса статора. По логике вещей они должны начать притягиваться, что приведет к торможению. Чтобы этого не допустить, в момент перехода нейтральной линии коллектор переключает обмотки якоря местами, чтобы вновь организовать отторжение полюсов.
Учитывая эту информацию устройство двигателя постоянного тока можно изобразить следующим образом:
Характеристики эл. двигателя
Любой электродвигатель – это оборудование, которым можно и нужно управлять в зависимости от требуемых условий. Регулирование происходит одним из трех основных способов/принципов:
- Изменение напряжения, которое подается на обмотки ротора,
- Ввод в цепь дополнительного сопротивления,
- Изменения возбуждения (величины потока).
Работа эл. двигателя оценивается по графикам характеристик, которые бывают:
- Механическими. Представляют собой зависимость частоты/скорости вращения от момента на валу с учетом поправочного коэффициента,
- Регулировочными. Зависимость частоты вращения от напряжения в цепи питания обмоток якоря, сопротивления или потока.
На графике механической характеристики откладываются значения частоты вращения (ось ординат) и момента (ось абсцисс). По форме она представляет прямую с отрицательным уклоном. Построение графика происходит для определенной величины напряжения. Базовым уравнением механической характеристики является:
где ω – скорость вращения якоря, U – напряжение якорной цепи, К – конструктивный коэффициент, Ф – значение потока, RЯ – активное сопротивление якорной обмотки, М – электромагнитный момент электродвигателя.
В отличие от нее, график регулировочной характеристики строится для определенного момента на валу (ось абсцисс). На оси ординат по-прежнему находится частота. Для каждого из видов регулирования электродвигателя, уравнение будет иметь отдельную форму:
- Уравнение при регулировании напряжением:
- Уравнение при реостатном регулировании (сопротивлением):
- Уравнение при потоковом регулировании:
Сравнительный вид графиков представлен ниже:
Также следует напомнить, что механические характеристики могут быть естественными (снятые при номинальном режиме) или искусственными (получаются при изменении напряжения, сопротивления или потока).
Режимы работы эл. двигателей
Используя уже известный нам график для характеристик, но расширив его на четыре квадранта, можно оценить существующие режимы работы оборудования.
Нумерация квадрантов происходит против часовой стрелки, начиная с правого верхнего, в котором координаты по обеим осям идут со знаком «+». Как видно из графика, в первом и третьем квадрантах наблюдается двигательный режим, для которого мощность Р = М·ω >, 0. В двух других квадрантах реализуется режим генератора или тормозной, имеющий отрицательное значение мощности.
Как видим, график образует несколько характерных точек и зон, ответственных за отдельные режимы:
- Холостой ход. Образуется в точке ωо. В этом случае ток и момент равны нулю, а сам эл. двигатель не получает энергии,
- Генератор при параллельном подключении. Называется еще тормозным с рекуперацией в сеть. Реализуется при ω >, ωо и E >, U. Эл. двигатель получает механическую энергию от работающего оборудования, а в сеть взамен отдается электрическая (генератор тока),
- Короткое замыкание. В этом случае ω = 0 и Е = 0. Механическая энергия от вращения вала не отдается, а электрическая превращается в тепловую,
- Генератор при последовательном соединении. Этот режим еще называется торможением с противовключением. При этом ω <, 0, а ток и ЭДС имеют одинаковое направление. Выработка электричества происходит за счет вращения оборудования, совмещенного с валом ротора,
- Автономный генератор. Режим динамического торможения предполагает выработку электричества за счет одной лишь механической энергии вращения вала от привода, без участия сети.
Технические и энергетические параметры функционирования двигателей постоянного тока позволяют с большой эффективностью использовать их в разных сферах, от машиностроения до легкой промышленности и даже игрушек. Они могут действовать в чисто двигательном или режиме генератора (тормозном), используя различные коэффициенты.
рупий | Электронные и электрические компоненты
РС | Электронные и электрические компоненты- Справка
- Торговые прилавки
Разделы нашей продукции:
- Аккумуляторы и зарядные устройства
- Соединители
- Дисплеи и оптоэлектроника
- Контроль электростатического разряда, чистые помещения и прототипирование печатных плат
- Пассивные компоненты
- Блоки питания и трансформаторы
- Raspberry Pi, Arduino, ROCK и инструменты разработки
- Полупроводники
- Механизм автоматизации и управления
- Кабели и провода
- Корпуса и серверные стойки
- Предохранители и автоматические выключатели
- HVAC, вентиляторы и управление температурным режимом
- Осветительные приборы
- Реле и формирование сигналов
- Переключатели
- Доступ, хранение и обработка материалов
- Клеи, герметики и ленты
- Подшипники и уплотнения
- Инженерные материалы и промышленное оборудование
- Застежки и крепления
- Ручной инструмент
- Механическая передача энергии
- Сантехника и трубопровод
- Пневматика и гидравлика
- Электроинструменты, Пайка и сварка
- Компьютеры и периферия
- Уборка и техническое обслуживание помещений
- Офисные принадлежности
- Средства индивидуальной защиты и рабочая одежда
- Безопасность и скобяные изделия
- Безопасность сайта
- Испытания и измерения
, как он работает? – Магнитные инновации
Двигатель постоянного тока (DC) — это двигатель, который преобразует энергию постоянного тока в механическую энергию. Первый двигатель постоянного тока был разработан примерно в 1830–1840-х годах. Они не имели коммерческого успеха, потому что эти двигатели питались от батарей, а батареи все еще были очень дорогими, а качество было низким. Когда в конце 1800-х годов была создана электрическая сеть и изобретены перезаряжаемые батареи, все изменилось. На рынок вышли первые коммерчески жизнеспособные двигатели постоянного тока. Двигатели постоянного тока постоянно совершенствуются, но в то же время были разработаны и другие типы двигателей, такие как двигатель BLDC. В результате использование щеточных двигателей постоянного тока в ряде приложений сегодня ограничено.
Принцип работы двигателя постоянного тока
Ротор обычно располагается внутри двигателя, а статор — снаружи. Ротор содержит обмотки катушек, которые питаются от постоянного тока, а статор содержит либо постоянные магниты, либо электромагнитные обмотки. Когда двигатель питается от постоянного тока, внутри статора создается магнитное поле, притягивающее и отталкивающее магниты на роторе. Это приводит к тому, что ротор начинает вращаться. Для поддержания вращения ротора двигатель имеет коммутатор. Когда ротор выровняется с магнитным полем, он перестанет вращаться, но в этом случае коммутатор изменит направление тока через статор и, таким образом, изменит направление магнитного поля. Таким образом, ротор может продолжать вращаться. См. изображение справа для схематического отображения того, как работает двигатель постоянного тока.
DC Motor Applications
. Пускатели двигателей в автомобилях
Четыре типа двигателей постоянного тока (DC)
Существует четыре типа двигателей постоянного тока. Все четыре типа работают примерно одинаково, так как двигатель постоянного тока всегда состоит из двух основных частей: ротора и статора.
- Двигатель постоянного тока с постоянными магнитами
- Серийный двигатель
- Шунтовой двигатель
- Комбинированный двигатель
Преимущества и недостатки двигателя постоянного тока
Когда дело доходит до пуска и регулирования, коллекторные двигатели постоянного тока имеют хорошие характеристики.