Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Тиристоры: принципы работы и проверки

Эх, знали бы вы, как занудно и безобразно читал нам электротехнику преподаватель в институте. Тему про тиристоры: принципы работы, устройство и их проверку бубнил себе под нос, рисовал на доске графики, P-N переходы с дырками и электронами так, что понять его было очень сложно.

Чтобы подготовиться к экзамену, мне пришлось покупать учебники и разбираться самостоятельно. В зачетку получил пятерку, но предмет был быстро забыт …

Буквально через год после выпуска в должности инженера пришлось разбираться с работой тиристорной схемы. Знания возобновлял практически с нуля.

Помогли коллеги, показавшие удобные методики, избавившие от всех этих высоконаучных заумностей и позволившие представлять сложные электротехнические процессы простыми схемами.

Пользуюсь ими и поныне. Поскольку они не потеряли свою актуальность, то поэтапно раскрываю их технологию для разных случаев практической деятельности ниже.

Содержание статьи

Тиристор в электрической схеме: что это за полупроводник

Если воспользоваться научными терминами, то можно заметить, что конструкция этого сложного электронного прибора включает монокристалл полупроводника с тремя или большим количеством p-n переходов.

Они сделаны для того, чтобы изменять его проводимость до двух критических состояний, когда он:

  1. Открыт и пропускает через себя электрический ток.
  2. Полностью закрыт.

Для подключения к электрической схеме он снабжен, как правило, тремя, двумя или четырьмя выводами от контактных площадок p-n слоев.

Не стану дальше продолжать эту тему научным языком, ибо новички ничего не поймут, а мне сложно объяснить простыми терминами, как перемещаются носители зарядов (дырки и электроны) по всей этой структуре в каждом конкретном случае.

Да и никому это сейчас не надо кроме студентов, стремящихся сдать экзамен, и работников, проектирующих, разрабатывающих новые устройства.

Домашнему же электрику требуется просто понимать принцип работы конечного прибора дабы уметь проверять его исправность и грамотно эксплуатировать в повседневной жизни.

Поэтому показываю конечный результат — как выглядит вольт амперная характеристика тиристора при его работе.

На ней выделены две области рабочего состояния при прямом и обратном приложении напряжения, формирующие пять режимов, расписанных на картинке. Не будем вдаваться глубоко в теорию и сделаем для себя краткие выводы:

  1. на начальном этапе области прямых смещений полупроводник закрыт, потом он открывается и остается открытым;
  2. при обратном подключении к источнику напряжения он вначале не пропускает ток, но при достижении критического состояния пробивается.

Как же выглядит и обозначается тиристор на электрических схемах

Современная промышленность использует огромный ассортимент этих уникальных полупроводников. Они выпускаются в разных корпусах с возможностями передачи и коммутирования всевозможных мощностей.

Привожу внешний вид только небольшой их части, изготавливаемых в металлическом корпусе, предназначенном для работы в силовых цепях с большими токами.

А еще имеются конструкции, выпускаемые в пластиковом корпусе, позволяющем коммутировать токи меньших величин. Они применяются в схемах управления различных бытовых устройств.

Внешне тиристор выглядит как диод.

Только в большинстве случаев он имеет дополнительный вывод для подключения к внешней цепи — управляющий электрод. Обозначение на схеме тоже примерно одинаковое.

Изменение касается только небольшой дорисовки катодного вывода — маленькой ломаной линии. Все это хорошо видно при сравнении.

Внешний вид диодов и тиристоров, а также их обозначения на схемах похожи не случайно. Они, хоть и немного отличаются конструктивно, но работают по общему принципу: пропускают электрический ток только в одну сторону.

Этот вопрос я излагаю дальше более конкретно.

Как просто понять принципы работы и научные термины этого сложного полупроводника: 2 мневмонических правила

Заповедь №1 для новичка

Представим, что мы сплавляемся на большом плоту по широкой реке. Двигаться мы можем только по течению, а не против него. Поток воды перемещается за счет разности высот (потенциалов), обладающих различным уровнем потенциальной энергии.

Вот и ток в диоде может проходить только в одну сторону: от анода к катоду. Иное движение электронов блокирует полупроводниковый переход. Других средств регулирования здесь нет.

Все это полностью соответствует работе тиристора, но с небольшими дополнениями: диод сразу открывается при прямом приложении напряжения к его выводам.

Тиристор же в этом случае закрыт, ток не проводит. Он действует как плотина со шлюзами, загораживающая реку. Наш плот просто остановится перед возникшей преградой. Для возобновления движения ему необходимо открыть ворота водяного заграждения.

Делается все это по команде, когда импульс тока определенного направления подается через управляющий электрод, например, на анод (при соответствующем управлении).

Только в этом случае закрытый полупроводниковый переход открывается и сохраняет свое состояние в течение всего времени, пока на него подано прямое входное напряжение.

Если импульс тока исчезает, то это не влияет на работу полупроводникового перехода: он остается открытым. Для закрытия тиристора необходимо: разорвать цепь питания в любом месте или вывести из работы источник напряжения либо надежно зашунтировать анод с катодом.

Вот такое простое мневмоническое правило, основанное на сравнении гидравлических и электротехнических процессов позволяет легче работать с этим сложным электронным изделием.

Завет №2: особенности применения тиристоров внутри цепей постоянного и переменного тока

Внутреннее сопротивление полупроводниковых переходов в открытом состоянии довольно маленькое. Ток через него определяется по закону Ома, а при приложенном постоянном напряжении по величине он не меняется.

Схема управления тиристором в этом случае не позволяет корректировать его силу. Регулировать ее нужно другими средствами.

Импульс же тока, подаваемый посредством управляющей команды, регулируется до безопасного значения подключенным токоограничивающим резистором R.

Делается это для исключения пробоя слоя полупроводников, задействованных в протекании управляющего сигнала.

Как работает тиристор в схеме бытовых приборов на переменном токе

Иные перспективы создают переменные цепи, а, особенно, синусоидальные источники напряжения. У них сигнал имеет не строго постоянную величину, а меняющуюся во времени форму синусоиды.

Здесь каждый период колебания состоит из двух полупериодов:

  1. положительного;
  2. отрицательного.

Они имеют свои знаки на графике: «плюс» и «минус». Реально же при смене полупериода направление протекания тока меняется на строго противоположное.

Когда синусоида достигает нулевой амплитуды, то ток через полупроводниковый переход прекращается, он закрывается. Для возобновления процесса необходимо на следующем положительном полупериоде вновь подать импульс на управляющий электрод.

Все это происходит автоматически. Одновременно смещение положения открывающего импульса по времени (в угловой системе измерения — по фазе) позволяет регулировать силу тока за счет изменения момента открытия перехода.

Включение второго тиристора с соответствующей полярностью в нижнюю полуволну позволяет регулировать и ее величину. Тогда мы получаем не чистую синусоидальную форму, а немного обрезанную по времени (до момента включения управляющего импульса).

3 варианта такого сигнала показаны на нижнем графике выходного тока при открытии двух тиристоров в моменты:

  1. возрастания полуволны;
  2. на ее амплитуде;
  3. и при спаде.

Таким обрезанным, а не чисто синусоидальным током питается наш электроинструмент: дрели, перфораторы, болгарки и другие приборы с тиристорным или симисторным управлением.

В общем-то ничего страшного в подобном изменении формы сигнала нет: все производители провели массу экспериментов и запустили эту схему в эксплуатацию.

Нам же все это необходимо четко представлять, ибо при ремонте или наладке с помощью осциллографа такие сигналы напряжения необходимо проследить на контрольных точках электрической цепи.

Выпрямительные устройства с регулировкой тока — второй принцип работы

Схемы зарядных, пускозарядных приборов и сварочных аппаратов постоянного тока работают на выпрямленном напряжении. При этом часто устройства выпрямления типового диодного моста заменяется на трансформаторное преобразование однофазного сигнала с двумя диодами или тиристорами.

Ее принято называть двухполупериодным выпрямлением.

Здесь в каждой выходной полуобмотке силового трансформатора вмонтирован тиристор, обрабатывающий свою полуволну.

Выпрямление же достигается схемой подключения полуобмоток с общей точкой и выбором направления подключения цепи «анод-катод» каждого полупроводникового прибора.

Итоговая форма выпрямленного и измененного сигнала выглядит следующим образом.

Опять же, для сравнения с предыдущим принципом показываю форму сигналов в трех вариантах запуска фазосдвигающего управляющего импульса. Здесь видно, что отрицательный полупериод перевернулся, а работа схемы управления не изменилась.

Правило №3: отличия управления транзистором и тиристором

У меня как-то так получилось, что вначале пришлось практически осваивать электронные схемы, работающие на транзисторах, а только после них — тиристорные сборки.

Поэтому я вначале уяснил и запомнил, что выходной сигнал на транзисторе можно изменять за счет величины разницы потенциалов на его базе, то есть напряжением.

Мои же друзья разъяснили, что тиристорная схема, как правило, открывается током, протекающим через управляющий электрод.

Такое небольшое дополнение к вышеизложенному материалу новичкам стоит запомнить. А чтобы понять разницу между силой электрического тока и величиной действующего напряжения я написал две отдельные статьи.

Рекомендую ознакомиться с ними подробнее. Они тоже изложены простым языком.

Как проверить тиристор: 3 доступные методики для новичков

Принцип этой технологии я буду показывать на примере силового тиристора КУ202Н по одной простой причине: он оказался под рукой при написании статьи, а все более мощные модели я умудрился раздать друзьям для их самоделок…

Способы электрических
проверок буду показывать на его примере. Для этого публикую важные характеристики, которые надо учитывать при работе. Они делятся на две группы:

  1. предельные;
  2. номинальные.

Параметры первой категории относятся к импульсному режиму, используемому кратковременно. Они нас не интересуют: длительную эксплуатацию могут создать только номинальные показатели.

Обращаем внимание на:

  1. Максимально допустимое напряжение — 400 В;
  2. Постоянный ток в открытом и закрытом состоянии — 10 А;
  3. Ток удержания — 200 мА;
  4. Отпирающий постоянный ток — 100 мА.

Эти данные для других полупроводниковых приборов можно взять в технических справочниках и на многочисленных сайтах в сети интернет.

Самый первый метод проверки: стрелочным тестером или цифровым мультиметром

Оценка состояния исправности КУ202Н прибором Ц4324 за 3 шага

Такой раритетный измерительный инструмент старого электрика у меня до сих пор в рабочем состоянии. Он сохранился благодаря знаку качества и постоянной внимательности при замерах.

Шаг №1. Выставление режима и замер закрытого состояния перехода

Устанавливаю центральным переключателем режим измерения сопротивлений и кнопкой — предел «килоомы». Плюсовой вывод цешки сажу на анод, а минусовой подключаю к катоду.

Для наглядности пометил их на фотографии ярким красным цветом «+» и «-» прямо на изоляции крокодилов.

Измерительная стрелка показывает очень большое сопротивление. Оно же будет при обратной полярности выводов. Можете проверить.

Шаг №2. Открытие тиристора

Касанием руки подключаю вывод управляющего электрода на корпус (анод) полупроводника.

Стрелка резко отклоняется к началу шкалы в сторону меньшего сопротивления. Показание порядка 0,15 k свидетельствует об открытии n-p перехода.

Шаг №3. Проверка открытого состояния при снятии управляющего сигнала

Отвожу провод вывода от корпуса полупроводника и наблюдаю показание стрелки.

Оно не изменилось: переход сохранил свое открытое положение. Он исправен.

Проверка состояния КУ202Н цифровым мультиметром

Принципиальных отличий анализа тиристорных устройств здесь нет. Технология та же. Показываю ее фотографиями на примере моего карманного мультиметра Mestek MT-102.

Для первого шага перевожу его в режим проверки полупроводников и подключаю прибор крокодилами.

На дисплее видно, что переход закрыт: сопротивление большое.

Затем перемыкаю вывод управляющего электрода на анод. Полупроводник открылся.

При разрыве перемычки показания на дисплее не изменились.

Доступный для всех способ проверки током от батарейки и обычной лампочкой

Эта методика популярна, но она требует предварительно учитывать технические характеристики испытуемого прибора и выходные величины от нагрузки, создаваемые лампочкой.

Для силовых транзисторов это не критично, но у маломощных изделий можно нерасчетным током повредить структуру электронных компонентов.

Демонстрацию методики буду выполнять на примере конструкции самого доступного китайского фонарика на светодиодах и обычной лампочки. Принципиальных различий нет при использовании одной батарейки формата АА или ААА.

На всякий случай выполнил мультиметром замер тока лампочки.

Получил результат 183 миллиампера, что вполне нормально для нашего случая.

Теперь использую этот блок батареек для проверки. Подаю его плюс на анод, а минус на катод проверяемого полупроводника через лампочку.

Свечения нет. Это значит, что сопротивление проверяемой цепи большое, все переходы закрыты.

Замыкаю управляющий электрод на корпус прибора — анод.

Лампочка загорается: прибор открылся.

Запуск тиристора в работу можно выполнить подачей плюса напряжения от пальчиковой батарейки на его анод, а минус необходимо предварительно подключить к управляющему электроду.

Так рекомендуют справочники, но я предпочитаю первый способ. Он проще.

Теперь размыкаю созданное подключение. Лапочка не прекращает светиться: ток продолжает течь по цепи анод-катод.

Полупроводник остался в открытом положении, он исправен.

Как можно проверить тиристор на электронной плате без выпаивания со схемы: советы бывалых

Работу, как и всегда, необходимо выполнять при снятом напряжении. Это делается не только в целях безопасности, но и для достоверности результата.

Следующим шагом потребуется выцепить из схемы платы управляющий электрод. Разъединить его контакт можно паяльником или перерезать дорожку ножом.

Я же буду проводить эксперимент на том же самом КУ202Н без платы. Для проверки потребуется 2 отдельных прибора:

  1. омметр;
  2. милливольтметр постоянного тока.

Их можно заменить двумя мультиметрами или тестерами, что я и показываю следующими фотографиями. Свой тестер Ц4324 перевожу в режим измерения постоянного напряжения на пределе =1,2В. Подключаю его к аноду и катоду.

Mestek MT-102 устанавливаю в режим омметра и крокодилами сажу его на выводы полупроводника так, чтобы плюс попал на управляющий электрод, а минус — на анод.

Стрелка тестера отклонилась вправо, показывая значение меньшее вольта. По этому замеру можно судить об исправности полупроводникового перехода.

Любая из трех методик проверки основана на принципах работы тиристоров. Она учитывает протекание в них токов через полупроводниковые переходы. При их выполнении важно оценить четыре последовательных этапа: Обычное закрытое состояние до получения команды.Открытие по команде.Удержание в открытом состоянии при отключении управляющего сигнала.Закрытие при пропадании питания.

Для более наглядного представления этих процессов я специально записал видеоролик. Смотрите его здесь.

Однако я рассмотрел только КУ202Н, как довольно распространенную модель, хоть она уже и снята с производства. В одной статье сложно показать все остальные. А их очень много.

Какие существуют разновидности тиристоров: краткие сведения

Развитие науки и электронных технологий в частности способствовало созданию большого количества полупроводниковых приборов с различной структурой слоев и переходов. (Смотрите картинку в начале статьи.)

Я относительно подробно показал выше структуру и принцип работы КУ202 и аналогичных тиристоров с тремя выводами. Однако это не полный обзор, а только частный случай, характерный для большинства подобных приборов.

Они отличаются по:

  • количеству выводов и способу управления;
  • проводимости;
  • режимам работы;
  • быстродействию;
  • другим эксплуатационным параметрам.

Количество выводов

У основной четырехслойной структуры может быть создано 2, 3 или 4 контактных отвода для подключения к внешней схеме.

Что такое динистор

Корпуса с двумя выводами называют динисторами. Для открытия этих полупроводников между анодом и катодом импульсом подают повышенное напряжение.

По принципу работы динисторы бывают:

  1. симметричные;
  2. несимметричные.

Второй тип при обратном напряжении (плюс на катоде, а минус на аноде) всегда закрыт. Он ведет себя как диод и при аварийном токе сгорает. Симметричные же динисторы работают при любой полярности.

Как работает тринистор

Такое название закрепилось за триодными тиристорами (с третьим выводом управляющего электрода). Частный случай этих приборов мы уже разобрали, но на практике следует учитывать, что подобные изделия могут выпускаться с:

  1. Катодным управлением, когда командный сигнал поступает по цепи управляющий электрод — катод.
  2. Анодным — тот случай, что показан на примере КУ202.

При проверке работоспособности полупроводникового перехода следует учесть его конструкцию, а не бездумно копировать мою методику или любую другую, взятую из интернета.

Тринисторы могут выполняться с различными способами закрытия:

  1. запираемые;
  2. незапираемые.

Первым для перехода в закрытое состояние достаточно снизить ток по цепи «анод-катод». Вторым необходимо подать напряжение запирания на управляющий электрод.

Еще раз хочу подчеркнуть, что изложенная методика проверки на примере КУ202 применима для незапираемых тиристоров с управлением по аноду.

Виды проводимостей

В самом начале я сравнивал работу полупроводников с течением реки и заострил внимание на том, что через них ток проходит в одну сторону. Только это утверждение характерно для большинства, а не всех поголовно случаев.

Однако учтите, что есть и иные конструкции, специально созданные:

  1. с не высоким обратным напряжением, которые называют обратно-проводящими;
  2. без нормировки обратной проводимости. Их применяют в схемах, исключающих появление обратного напряжения;
  3. для пропускания тока в обе стороны по цепи анод-катод. Это симметричные тиристоры, называемые симисторами либо триаком (от англ — «triac»).

При их проверке следует в обязательном порядке учитывать конструктивные особенности электронных переходов.

Тринисторы чаще всего создаются для работы в схеме электронного ключа. Они управляют мощной силовой нагрузкой за счет подачи слабого сигнала команды через управляющий электрод.

Быстродействие

Этим параметром оценивают скорость перехода полупроводниковых изделий из закрытого состояния в открытое и наоборот. Он может быть критичен при работе сложных схем защит или управления технологическими процессами.

Импульсный режим работы

Созданы и такие приборы, способные мгновенно реагировать на быстро возникающие электротехнические ситуации на сложном производстве. Но в домашнем оборудовании их не применяют.

Особенности лавинных тиристоров

Такие конструкции имеют лавинную вольт-амперную характеристику. При подаче обратного напряжения развивается лавинный процесс. Такая ВАХ:

  • устойчива к высоким перенапряжениям схемы;
  • способна работать без дополнительных защит;
  • равномерно перераспределяет энергию по последовательно подключенным полупроводниковым переходам.

Их используют в схемах защит полупроводниковых разрядников и преобразователях.

Тиристоры имеют очень много разновидностей внутренней схемы, корпусов и принципов работы. Проверка их технического состояния должна учитывать все эти особенности.

Довольно оригинально эта информация изложена в видеоролике владельца Радиолюбитель.

Поскольку тема про тиристоры, принципы их работы и проверки весьма обширная, то жду ваших дополнений или комментариев, которые будут полезны и понятны всем домашним электрикам, включая новичков.

В чем отличие работы тиристора и транзистора? — Радиомастер инфо

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Отсюда вывод.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

 

 

 

 

 

 

 

 

Чем отличается тиристор от симистора

В 1963 году у многочисленного семейства тринисторов появился еще один "родственник" – симистор. Чем же он отличается от своих «собратьев» – тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт – ток в цепи отсутствует (дверь закрыта – прохода нет), прибор открыт – в цепи возникает электрический ток (дверь отворилась – входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается "от себя", но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.

Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.

Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р- n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.

Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).

Тринисторный аналог симистора

Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.

В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — "подтолкнем" его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.

Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).

Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).

Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.

Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает "тиристор симметричный".

Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.

Для практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.

А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно.

Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, "командующего" лампами, в таком приборе выполняет полупроводниковый симистор.

Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.

Рис. 5. Принципиальная схема регулятора

Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.

Рис. 6. Временные диаграммы напряжения: а – в сети; б – на управляющем электроде симистора, в – на нагрузке.

Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)

Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.

Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым яркость свечения лампы или температуру нагревательного элемента.

В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре полупроводниковых диода серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.

Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.

Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.

Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.

Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.

ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) – допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Как проверять тиристоры и симисторы тестером и мультиметром?

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой.

По своей сути, он является силовым электронным ключом без полного управления.

Инструменты и материалы для проверки

Для осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:

  • блок питания или батарея, которые будут выступать в роли источника постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • мультиметр;
  • тестер;
  • паяльный аппарат;
  • тиристор;
  • паяльный аппарат;

Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками.

Для него потребуется наличие следующих материалов и элементов:

  • плата;
  • резисторы, количество 8 штук;
  • конденсаторы, количество 10 штук;
  • диоды, количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • трансформатор;
  • предохранитель;
  • тумблер, количество 2 штуки;

Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:

  1. Соединение всех элементов производится при помощи специальных проводов с зажимами.
  2. Необходимо последовательно контролировать напряжение между различными контактами. Для осуществления проверки допускается подключение переключателей к разным контактным группам.
  3. После сбора схемы необходимо осуществить подключение тиристора, если он находится в исправном состоянии, то лампа накаливания не будет включаться.
  4. Если лампочка не зажигается даже после нажатия пусковой кнопки, то необходимо при помощи установленного переключателя повысить величину управляющего электрического тока.При разрыве соответствующей цепи, лампочка гаснет.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Устройство и принцип работы

Устройство тиристора выглядит следующим образом:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
  3. Всего имеются не более 2 управляющих электродов, которые подсоединены к внутренним слоям полупроводника.
  4. Если в устройстве полностью отсутствуют управляющие электроды, то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
  5. Данные приборы могут подразделяться на виды, в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
  6. При наличии в конструкции управляющего электрода, тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.

Принцип действия тиристора, подключенного к цепи постоянного тока, заключается в следующем:

  1. Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
  2. На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала, скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
  4. Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.

принцип работы

Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:

  1. В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
  2. При подключении тиристора в подобные цепи, применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
  3. Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
  4. При использовании фазового управления, кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток, под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток, который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение, определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.

Советы

В завершение можно дать несколько следующих рекомендаций, которые могут пригодиться при осуществлении проверок тиристровых приборов:

  1. В отдельных ситуациях целесообразно проводить не только проверку исправности, но также и отбор тестируемых приборов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложнен тем, что источник питания обязательно должен обладать напряжением на выходе с показателем не менее 1000В.
  2. Зачастую, проверка выполняется при помощи мультиметров или тестеров, поскольку такое тестирование организовать проще всего, но необходимо знать, что не все модели данных устройств способны осуществить открытие тиристора.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели, близкие к нулю. По этой причине, кратковременное соединение анода исправного прибора с управляющим электродом показывает параметры сопротивления, которые свойственны короткому замыканию, а подобная процедура с неисправным тиристором не вызывает подобной реакции.

Статья была полезна?

0,00 (оценок: 0)

принцип действия, применение, устройство и управление ими

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор - устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для "чайников" этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор - принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.

Советские тиристоры КУ101 основные характеристики и цоколевка

Параметр Обозначение Еди-
ница
Тип тиристора
КУ101А КУ101Б КУ101Г КУ101Е
Постоянный ток в закрытом состоянии Iз. с мА 0,15 0,15 0,15 0,15
Постоянный обратный ток при Uобр max Iобр мА 0,15 0,15 0,15 0,15
Отпирающий постоянный ток управления Iу. от мА 0,05...7,5 0,05...7,5 0,05...7,5 0,05...7,5
Отпирающее постоянное напряжение управления Uу. от В 0,25...10 0,25...10 0,25...10 0,25...10
Напряжение в открытом состоянии Uос В - - - -
Неотпирающее постоянное напряжение управления Uу. нот В - - - -
Время включения tвкл мкс 2 2 2 2
Время выключения tвыкл мкс 70 70 70 70
Предельно допустимые параметры
Постоянное напряжение в закрытом состоянии Uз. с max В 50 80 80 150
Постоянное обратное напряжение Uобр max В 10 50 80 150
Постоянное обратное напряжение управления Uу. обр max В - - 2 -
Минимальное прямое напряжение в закрытом состоянии Uз. с min В 10 10 10 10
Постоянный ток в открытом состоянии Iос min А 0,075 0,075 0,075 0,075
Импульсный ток в открытом состоянии Iос. и min А 0,15 0,15 0,15 0,15
Постоянный прямой ток управления Iу max А 0,015 0,015 0,015 0,015
Импульсная рассеиваемая мощность УЭ Pу. и max Вт 0,5 0,5 0,5 0,5
Средняя рассеиваемая мощность Pср max Вт 0,15 0,15 0,15 0,15
Максимальная температура окружающей среды Tmax °С +85 +85 +85 +85
Минимальная температура окружающей среды Tmin °С -60 -60 -60 -60

Что такое тиристор? Типы тиристоров и их применение

Что такое тиристор? Типы тиристоров и их применение

Тиристоры - интересный класс полупроводниковых приборов. Они имеют аналогичные характеристики с другими твердотельными компонентами из кремния, такими как диоды и транзисторы. Поэтому отличить тиристоры от диодов и транзисторов может быть сложно. Чтобы усложнить задачу, на рынке доступны различные типы тиристоров.

В некоторых случаях то, что отличает тиристоры друг от друга, может быть всего лишь крошечной деталью.

Также, в зависимости от производителя, данный тиристор может называться другим именем.

Для успешного применения тиристоров при проектировании схем важно знать их уникальные характеристики, ограничения и их взаимосвязь со схемой. Вот почему мы потратили некоторое время на то, чтобы разобраться во всем этом, чтобы вы могли лучше понять, какой тиристор лучше всего подходит для вашего приложения.

Что такое тиристор?

Тиристор - это четырехслойный прибор с чередующимися полупроводниками P-типа и N-типа (P-N-P-N).

В своей основной форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (контрольный вывод). Затвор контролирует поток тока между анодом и катодом.

Основная функция тиристора - регулировать электрическую мощность и ток, действуя как переключатель.Для такого небольшого и легкого компонента он обеспечивает адекватную защиту цепей с большими напряжениями и токами (до 6000 В, 4500 А).

Он привлекателен в качестве выпрямителя, поскольку может быстро переключаться из состояния проводимости тока в состояние непроводимости.

Кроме того, его стоимость обслуживания невысока, и при правильной эксплуатации он остается работоспособным в течение длительного времени без возникновения неисправностей.

Тиристоры используются в самых разных электрических цепях, от простых охранных сигнализаций до линий электропередачи.

Как работают тиристоры?

Тиристор со структурой P-N-P-N имеет три перехода: PN, NP и PN. Если анод является положительным выводом по отношению к катоду, внешние переходы, PN и PN смещены в прямом направлении, а центральный переход NP с обратным смещением. Следовательно, переход NP блокирует прохождение положительного тока от анода к катоду. Говорят, что тиристор находится в состоянии прямой блокировки . Точно так же прохождение отрицательного тока блокируется внешними PN-переходами.Тиристор находится в состоянии обратной блокировки .

Другое состояние, в котором может находиться тиристор, - это состояние прямой проводимости , при котором он получает достаточный сигнал для включения и начинает проводить.

Давайте на минутку выделим уникальные свойства, которые тиристоры привносят в схему, углубившись в природу сигнала и отклик тиристора.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089. ITU-TK, 20 & K. 21

MDE Semiconductor уделяет особое внимание решениям по защите цепей.

Краткое описание включения тиристора

Когда на вывод затвора подается достаточный положительный сигнальный ток или импульс, он переводит тиристор в проводящее состояние.Ток течет от анода к катоду и будет продолжать течь, даже когда сигнал затвора удален. Говорят, что тиристор «зафиксирован».

Чтобы разблокировать тиристор, необходимо выполнить сброс схемы путем уменьшения анодно-катодного тока ниже порогового значения, известного как ток удержания.

Включение тиристора на уровне полупроводникового материала

Структура PNPN тиристора может быть интерпретирована как два транзистора, соединенные вместе.То есть ток коллектора от транзистора NPN питает базу транзистора PNP. Точно так же ток коллектора от транзистора PNP питает базу транзистора NPN.

Для фиксации тиристора и начала проведения тока сумма общей базы

коэффициенты усиления по току двух транзисторов должны превышать единицу.

Когда на затвор подается положительный ток или кратковременный импульс, который в достаточной степени увеличивает коэффициент усиления контура до единицы, происходит регенерация.Это означает, что импульс заставляет транзистор NPN проводить ток, который, в свою очередь, смещает транзистор PNP в проводимость. Если

начальный пусковой ток на затворе удаляется, тиристор остается во включенном состоянии, пока ток через тиристор достаточно высок, чтобы соответствовать критериям единичного усиления. Это ток фиксации .

Тиристор может включиться также из-за лавинного пробоя блокировочного перехода.Чтобы тиристор включился при нулевом токе затвора, приложенный ток должен достигнуть напряжения отключения тиристора. Это нежелательно, так как поломка приводит к повреждению устройства. Для нормальной работы тиристор выбирается таким образом, чтобы его напряжение отключения было больше, чем наибольшее напряжение, которое будет испытываться от источника питания. Таким образом, включение тиристора может произойти только после того, как на затвор будет подан преднамеренный импульс, за исключением случаев, когда тиристор был специально разработан для работы в режиме отключения.(См. Типы тиристоров с возможностью управляемого отключения ниже).

Тиристор выключения

Чтобы выключить тиристор, который зафиксирован (включен / включен), ток через него должен измениться так, чтобы коэффициент усиления контура был ниже единицы. Выключение начинается, когда ток снижается ниже значения тока удержания.

Тиристоры различных типов и их применение

Тиристоры

можно классифицировать в зависимости от характера их поведения при включении и выключении, а также их характеристик напряжения и тока: Различные классы:

  1. Тиристоры с возможностью включения (однонаправленное управление)
  2. Тиристоры с возможностью отключения (однонаправленное управление)
  3. Двунаправленное управление

  1. Тиристоры с возможностью включения (однонаправленное управление)

  1. Кремниевый управляемый выпрямитель (SCR)

SCR - наиболее известные тиристоры.Как объяснено в общем описании тиристоров выше, тиристор остается зафиксированным даже при снятии тока затвора. Чтобы разблокировать, необходимо снять ток между анодом и катодом или сбросить анод до отрицательного напряжения относительно катода. Эта характеристика идеальна для регулирования фазы. Когда анодный ток становится равным нулю, тиристор перестает проводить и блокирует обратное напряжение.

SCR используются в схемах переключения, приводах двигателей постоянного тока, статических переключателях переменного / постоянного тока и инвертирующих схемах.

  1. Тиристор обратного тока (RCT)

Тиристоры обычно пропускают ток только в прямом направлении, но блокируют токи в обратном направлении. Однако RCT состоит из SCR, интегрированного с обратным диодом, который устраняет нежелательную индуктивность контура и снижает переходные процессы обратного напряжения. RCT обеспечивает электрическую проводимость в обратном направлении с улучшенной коммутацией.

RCT используются в инверторах и приводах постоянного тока для мощных прерывателей.

  1. Светоактивированный кремниевый выпрямитель (LASCR)

Они также известны как тиристоры с управляемым светом (LTT). Для этих устройств, когда легкие частицы попадают на обратносмещенный переход, количество электронно-дырочных пар в тиристоре увеличивается. Если сила света больше критического значения, тиристор включится. LASCR обеспечивает полную электрическую изоляцию между источником света и переключающим устройством преобразователя мощности.

LASCR используются в передающем оборудовании HVDC, компенсаторах реактивной мощности и генераторах импульсов большой мощности.

  1. Тиристоры с возможностью отключения (однонаправленное управление)

Традиционные тиристоры, такие как тиристоры, включаются при подаче достаточного количества управляющего импульса. Чтобы выключить их, необходимо отключить главный ток. Это неудобно в схемах преобразования постоянного тока в переменный и постоянного в постоянный, где ток, естественно, не становится нулевым.

  1. Затвор запорный тиристор (ГТО)

GTO отличается от стандартного тиристора тем, что его можно отключить, подав отрицательный ток (напряжение) на затвор, не требуя снятия тока между анодом и катодом (принудительная коммутация). Это означает, что GTO можно выключить стробирующим сигналом с отрицательной полярностью, что делает его полностью управляемым переключателем. Его также называют коммутатором, управляемым воротами, или GCS. Время выключения GTO примерно в десять раз меньше, чем у эквивалентного SCR.

GTO

с возможностью обратной блокировки, сравнимой с их номинальным напряжением в прямом направлении, называются симметричными GTO. Асимметричные GTO не обладают значительной возможностью блокировки обратного напряжения. GTO с обратной проводимостью состоят из GTO, интегрированного с встречно-параллельным диодом. Асимметричные GTO - самая популярная разновидность на рынке.

GTO используются в приводах двигателей постоянного и переменного тока, мощных инверторах и стабилизаторах переменного тока.

  1. МОП отключающий тиристор (МТО)

MTO представляет собой комбинацию GTO и MOSFET для улучшения отключающей способности GTO.GTO требует подачи большого тока отключения затвора, пиковая амплитуда которого составляет около 20-35% анодно-катодного тока (ток, который необходимо контролировать). MTO имеет два управляющих терминала, затвор включения и затвор выключения, также называемый затвором MOSFET.

Чтобы включить MTO, приложенный импульс затвора достаточной величины вызывает фиксацию тиристора (аналогично SCR и GTO).

Для выключения MTO на затвор полевого МОП-транзистора подается импульс напряжения.MOSFET включается, замыкая эмиттер и базу NPN-транзистора, тем самым останавливая фиксацию. Это намного более быстрый процесс, чем GTO (приблизительно 1-2 мкс), и в этом случае большой отрицательный импульс, приложенный к затвору GTO, направлен на извлечение достаточного тока из базы NPN-транзистора. Кроме того, более быстрое время (MTO) устраняет потери, связанные с текущей передачей.

MTO используются в высоковольтных системах до 20 МВА, моторных приводах, гибких линиях передачи переменного тока (FACT) и инверторах источников напряжения для высокой мощности.

  1. Эмиттер выключения тиристоров (ЭТО)

Как и MTO, ETO имеет два вывода, нормальный затвор и второй затвор, соединенные последовательно с полевым МОП-транзистором.

Чтобы включить ETO, на оба логических элемента подается положительное напряжение, что приводит к включению NMOS и выключению PMOS. Когда в нормальный затвор подается положительный ток, ETO включается.

Для выключения, когда на затвор полевого МОП-транзистора подается сигнал отрицательного напряжения, NMOS отключается и передает весь ток от катода.Процесс фиксации останавливается, и ETO выключается.

ETO

применяются в инверторах источников напряжения для высокой мощности, гибких линиях передачи переменного тока (FACT) и статических синхронных компенсаторах (STATCOM).

  1. Двунаправленное управление

Обсуждаемые до сих пор тиристоры были однонаправленными и используются в качестве выпрямителей, преобразователей постоянного тока в постоянный и инверторов. Чтобы использовать эти тиристоры для управления напряжением переменного тока, два тиристора должны быть соединены встречно параллельно, в результате чего получатся две отдельные схемы управления, которые потребуют большего количества проводных соединений.Двунаправленные тиристоры, которые могут проводить ток в обоих направлениях при срабатывании триггера, были разработаны специально для решения этой проблемы.

  1. Триод переменного тока (TRIAC)

Тиристоры

являются вторыми по распространенности тиристорами после тиристоров. Они могут управлять обеими половинами переменного сигнала, тем самым более эффективно используя доступную мощность. Однако симметричные преобразователи частоты обычно используются только для приложений с низким энергопотреблением из-за присущей им несимметричной конструкции.В приложениях с высокой мощностью симисторы имеют некоторые недостатки при переключении при разных напряжениях затвора в течение каждого полупериода. Это создает дополнительные гармоники, которые вызывают дисбаланс в системе и влияют на характеристики ЭМС.

Маломощные триаки используются в качестве регуляторов света, регуляторов скорости для электрических вентиляторов и других электродвигателей, а также в компьютерных схемах управления бытовой техникой.

  1. Диод переменного тока (DIAC)

DIACS - это устройства с низким энергопотреблением, которые в основном используются вместе с TRIACS (размещены последовательно с выводом затвора TRIAC).

Поскольку TRIAC по своей природе несимметричны, DIAC предотвращает прохождение любого тока через затвор TRIAC до тех пор, пока DIAC не достигнет своего триггерного напряжения в любом направлении. Это гарантирует, что TRIACS, используемые в переключателях переменного тока, срабатывают равномерно в любом направлении.

DIAC используются в диммерах для ламп.

  1. Кремниевый диод переменного тока (SIDAC)

SIDAC электрически ведет себя так же, как DIAC.Основное различие между ними заключается в том, что SIDAC имеют более высокое напряжение отключения и большую мощность, чем DIAC. SIDAC - это пятиуровневое устройство, которое можно использовать непосредственно в качестве переключателя, а не в качестве триггера для другого коммутационного устройства (например, DIAC для TRIACS).

Если приложенное напряжение соответствует или превышает напряжение отключения, SIDAC начинает проводить ток. Он остается в этом проводящем состоянии даже при изменении приложенного напряжения до тех пор, пока ток не станет ниже его номинального тока удержания.SIDAC возвращается в непроводящее состояние, чтобы повторить цикл.

SIDAC используются в релаксационных генераторах и других устройствах специального назначения.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089.ITU-TK, 20 и K. 21

Как работает тиристор / SCR? Основные операции »Примечания по электронике

Тиристор / тиристор можно рассматривать как два встречных транзистора, чтобы объяснить его работу и принцип работы.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


При проектировании и использовании схем тиристоров или тиристоров помогает понять принцип работы тиристора.

По сути, работу тиристора / тиристора можно объяснить с помощью переключателя с фиксацией. После настройки током на затворе он требует снятия напряжения на катоде и аноде, прежде чем он перестанет проводить.

Работа тиристора: основы

В работе тиристор / тиристор имеет три состояния, в которых он может находиться в любой момент времени:

  • Блокировка обратного направления: В этом режиме или состоянии тиристор блокирует ток таким же образом, как и диод с обратным смещением.Тиристор / SCR может проводить только в одном направлении и блокируется в обратном направлении.
  • Прямая блокировка: В этом режиме или состоянии работа тиристора такова, что он блокирует прямую проводимость тока, которая обычно переносится диодом с прямым смещением. В этом состоянии тиристор / SCR не находится во включенном состоянии, так как вентиль не сработал.
  • Прямая проводимость: В этом режиме тиристор / SCR приводится в действие током на затворе.Он будет проводиться независимо от состояния ворот. Ток должен быть подан только на затвор, чтобы запустить тиристор / тиристор, и он останется проводящим. Устройство перестанет проводить, когда прямой ток упадет ниже порогового значения, известного как «ток удержания».

Тиристор состоит из четырех полупроводниковых областей: P N P N. Внешняя область P образует анод, а внешняя область n - катод, как показано ниже.

Базовая структура тиристора / SCR

Чтобы посмотреть, как работает тиристор, полезно использовать упрощенную эквивалентную схему.Он состоит из двух встречных транзисторов, как показано ниже.

Транзистор с эмиттером, соединенным с катодом тиристора, является устройством NPN, тогда как транзистор с эмиттером, соединенным с анодом SCR, представляет собой разновидность PNP. Затвор подключен к базе транзистора NPN.

Эквивалентная схема тиристора

Эта схема образует петлю положительной обратной связи внутри тиристора. Выход одного транзистора подан на вход второго. В свою очередь, выход второго транзистора возвращается на вход первого.В результате видно, что общий коэффициент усиления по току устройства превышает единицу. Это означает, что когда ток начинает течь, он быстро нарастает до тех пор, пока оба транзистора не будут полностью включены или насыщены.

Когда на тиристор подается напряжение, ток не течет, потому что ни один из транзисторов не проводит ток. В результате нет полного пути через устройство. Если через электрод затвора пропустить небольшой ток, это включит транзистор TR2. Когда это произойдет, коллектор TR2 упадет по направлению к напряжению на эмиттере, т.е.е. катод всего устройства. Когда это происходит, ток будет течь через базу TR1 и включить этот транзистор. Опять же, теперь он будет пытаться подтянуть напряжение на коллекторе TR1 к его напряжению эмиттера. Это вызовет протекание тока в эмиттере TR2, в результате чего его состояние "включено" будет поддерживаться. Таким образом, для включения тиристора требуется только небольшой пусковой импульс на затворе. После включения тиристор можно выключить только сняв напряжение питания.

Принцип действия рассматриваемого тиристора относительно прост для понимания.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Как работает тиристор?

Прежде чем углубляться в работу тиристора, давайте разберемся, зачем он нужен, когда у нас уже есть крошечный компонент под названием транзистор, который может помочь нам в переключении и усилении.

Хотя транзисторы могут переключаться, они не справляются с большими токами. Еще одна проблема с транзисторами заключается в том, что они выключаются, когда мы убираем ток переключения.

Когда мы хотим сработать и ток переключения снимается, нам нужно другое устройство, потому что здесь транзистор выходит из строя.Для решения обеих вышеперечисленных проблем требуется тиристор. Помимо обработки большого количества тока, он также может работать непрерывно, даже если ток переключения отключен.

Тиристор - это четырехслойное твердотельное полупроводниковое устройство, которое содержит 3 последовательно соединенных PN перехода с 3 выводами, называемыми анодом, катодом и затвором. Как и диод, тиристор также является однонаправленным устройством, но, в отличие от диода, он может использоваться как переключатель разомкнутой цепи.

Принцип работы тиристора

В тиристоре кремниевая пластина легирована четырьмя альтернативными типами P и N, которые выглядят как два транзистора, соединенных друг с другом (как показано на рисунке ниже).

Здесь P (катод) и N (анод) соединены последовательно, таким образом мы получаем три контактных контакта: анод, затвор и катод.

Когда мы смещаем вперед анод и катод, то есть анод и катод, подключенные к положительной и отрицательной клеммам батареи, первый PN переход и последний PN переход (j1 и j3) становятся смещенными вперед из-за разрыва обедненного слоя. Переход j2 остается смещенным в обратном направлении, поскольку на затвор не подается ток.

Когда мы подаем ток на затвор, тогда слой перехода j2 начинает разрываться, и ток начинает течь в цепи. Когда на вывод затвора подается достаточный положительный сигнальный ток или импульс, он переводит тиристор в проводящее состояние.

Тиристор может быть только полностью включен или выключен, что означает, что он не может находиться между состояниями включения и выключения, как у транзисторов. Это делает тиристор непригодным в качестве аналогового усилителя, но может использоваться в качестве переключающего устройства.

Его три режима работы:

Режим блокировки вперед

Перемычки j1 и j3 находятся в прямом рабочем состоянии, в то время как j2 находится в состоянии обратного смещения и не позволяет току течь.

Режим прямой проводимости

Здесь на вывод затвора подается положительное напряжение, вызывая пробой области обеднения j2. Из-за этого в цепи начинает течь ток, что приводит к переходу в режим включения.

Обратный режим блокировки

Здесь мы подаем отрицательное напряжение на анод и положительное напряжение на катод, в то время как затвор остается в разомкнутой цепи, в результате чего j1 и j3 имеют обратное смещение, а j2 - прямое смещение. Поскольку j1 и j2 имеют обратное смещение, протекание тока невозможно.

Использование и типы тиристоров

Обычно бывает 3 типа тиристоров:

1. Кремниевый выпрямитель -

SCR

Он может управлять сильным током и обычно используется в качестве высокочастотного переключателя в электрической цепи.

2. Тиристор выключения ворот - GTO

Они используются в инверторах, приводах переменного тока, индукционных нагревателях и т. Д.

3. Биполярный транзистор с изолированным затвором - IGBT

Они используются в импульсных источниках питания, управлении двигателями, индукционном нагреве и т. Д.

Мы используем тиристор в качестве схемы переключения, где мы должны управлять двигателями и включать / выключать лампы.

Примечание: Тиристорные устройства в основном используются там, где используются высокое напряжение и ток, и часто используются для управления переменным током (AC)

Видеоурок, объясняющий тиристор

Видео предоставлено:
Learn Engineering Тиристор

- для чего это электронное устройство? - ES Components

Тиристор (/ θaɪˈrɪstər /) представляет собой твердотельный полупроводниковый прибор с четырьмя слоями чередующихся материалов P- и N-типа.Он действует исключительно как бистабильный переключатель, проводящий, когда затвор получает триггер тока, и продолжает проводить до тех пор, пока напряжение на устройстве не изменится на обратное, или пока напряжение не будет снято (каким-либо другим способом). Трехпроводной тиристор предназначен для управления большим током на пути от анода к катоду, управляя этим током меньшим током его другого вывода, известного как его затвор. Напротив, двухпроводный тиристор предназначен для включения, если разность потенциалов между его выводами достаточно велика (напряжение пробоя).

Некоторые источники определяют кремниевый выпрямитель (SCR) и тиристор как синонимы. Другие источники определяют тиристоры как более изысканно сконструированные устройства, которые включают по крайней мере четыре слоя чередующейся подложки N-типа и P-типа.

Первые тиристорные устройства были выпущены в продажу в 1956 году. Поскольку тиристоры могут управлять относительно большой мощностью и напряжением с помощью небольшого устройства, они находят широкое применение в управлении электроэнергией, начиная от диммеров света и управления скоростью электродвигателя до высокой. -передача постоянного тока по напряжению.Тиристоры могут использоваться в схемах переключения мощности, схемах замены реле, схемах инверторов, схемах генераторов, схемах датчиков уровня, схемах прерывателей, схемах диммирования света, схемах недорогих таймеров, логических схемах, схемах регулирования скорости, фазовых схемы управления и т. д. Первоначально для отключения тиристоров требовалось только реверсирование тока, что затрудняло их применение для постоянного тока; более новые типы устройств можно включать и выключать с помощью управляющего сигнала. Последний известен как тиристор выключения затвора или тиристор GTO.Тиристор не является пропорциональным устройством, как транзистор. Другими словами, тиристор может быть только полностью включен или выключен, а транзистор может находиться между включенным и выключенным состояниями. Это делает тиристор не подходящим в качестве аналогового усилителя, но полезным в качестве переключателя.

Источник: Википедия

Тиристоры (SCR)

  • Изучив этот раздел, вы сможете:
  • Распознать типичные пакеты SCR:
  • Опишите типичную конструкцию SCR:
  • Изучите типовые диаграммы характеристик SCR:
  • Ознакомьтесь с соображениями безопасности при демонстрации SCR.

Тиристорные блоки (SCR)

Рис. 6.0.1 Типичные пакеты SCR

Тиристор - это общее название ряда высокоскоростных переключающих устройств, часто используемых при управлении мощностью переменного тока и переключении переменного / постоянного тока, включая симисторы и тиристоры (выпрямители с кремниевым управлением). SCR - это очень распространенный тип тиристоров, и несколько примеров распространенных корпусов SCR показаны на рисунке 6.0.1. Доступны многие типы, которые могут переключать нагрузку от нескольких ватт до десятков киловатт.Условное обозначение схемы SCR показано на рисунке 6.0.2. и предполагает, что SCR действует в основном как КРЕМНИЙНЫЙ ВЫПРЯМИТЕЛЬНЫЙ диод с обычными соединениями анода и катода, но с дополнительной клеммой CONTROL, называемой GATE. Отсюда и название выпрямитель с кремниевым управлением.

Триггерное напряжение, приложенное к затвору, когда анод более положительный, чем катод, включает тиристор, чтобы позволить току течь между анодом и катодом. Этот ток будет продолжать течь, даже если триггерное напряжение будет удалено, пока ток между анодом и катодом не упадет почти до нуля из-за внешних воздействий, таких как отключение цепи, или форма волны переменного тока, проходящая через нулевое напряжение как часть ее цикл.

Рис. 6.0.2 Типовое обозначение конструкции и схемы SCR


Выпрямитель с кремниевым управлением (SCR)

SCR, в отличие от обычных двухслойных выпрямителей с PN-переходом, состоят из четырех слоев кремния в структуре P-N-P-N, что можно увидеть в разрезе SCR на рис. 6.0.2. Добавление затвора к этой структуре позволяет переключать выпрямитель из непроводящего состояния с прямой блокировкой в ​​состояние с низким сопротивлением и прямой проводимостью (см.также рис.6.0.3). Таким образом, небольшой ток, приложенный к затвору, может включить гораздо больший ток (также при гораздо более высоком напряжении), приложенный между анодом и катодом. Когда SCR проводит, он ведет себя как обычный кремниевый выпрямитель; ток затвора может быть удален, и устройство останется в проводящем состоянии.

SCR приводится в действие путем подачи запускающего импульса на вывод затвора, в то время как выводы основного анода и катода смещены в прямом направлении. Когда устройство смещено в обратном направлении, стробирующий импульс не действует.Чтобы выключить SCR, ток между анодом и катодом должен быть уменьшен ниже определенного критического значения «тока удержания» (близкого к нулю).

Обычно тиристоры применяются в коммутации мощных нагрузок. Они являются переключающим элементом во многих бытовых регуляторах освещенности, а также используются в качестве элементов управления в регулируемых или регулируемых источниках питания.

Рис. 6.0.3 Характеристики SCR

SCR Характеристики

На рис. 6.0.3 показана типичная характеристическая кривая для SCR.Видно, что в области обратной блокировки он ведет себя аналогично диоду; весь ток, за исключением небольшого тока утечки, блокируется до тех пор, пока не будет достигнута область обратного пробоя, и в этот момент изоляция из-за истощенных слоев на переходах разрушится. В большинстве случаев обратный ток, протекающий в области пробоя, приведет к разрушению тринистора.

Однако, когда SCR смещен в прямом направлении, в отличие от обычного диода, ток не начинает течь, когда чуть больше 0.При подаче напряжения 6В не течет никакой ток, кроме небольшого тока утечки. Это называется режимом прямой блокировки, который распространяется на сравнительно высокое напряжение, называемое «прямое напряжение переключения». SCR обычно работает при напряжениях, значительно меньших, чем перенапряжение прямого прерывания, поскольку любое напряжение, превышающее перенапряжение прямого прерывания, приведет к неконтролируемой проводимости SCR; затем SCR внезапно показывает очень низкое прямое сопротивление, позволяя протекать большому току.Этот ток «фиксируется» и будет продолжать течь до тех пор, пока либо напряжение на аноде и катоде не упадет до нуля, либо прямой ток не снизится до очень низкого значения, меньшего, чем «ток удержания», показанный на рис. 6.0.3. . Однако прямой разрыв по проводимости может произойти, если SCR используется для управления напряжением переменного тока (например, от сети или сети), и возникает внезапный всплеск напряжения, особенно если он совпадает с пиковым значением переменного тока (или близок к нему). Если SCR случайно переведен в режим прямого прерывания, это может вызвать внезапный, но кратковременный скачок максимального тока, который может иметь катастрофические последствия для других компонентов в цепи.По этой причине часто обнаруживается, что в SCR есть какой-либо метод подавления выбросов, включенный либо в конструкцию SCR, либо в качестве внешних компонентов, обычно называемых «демпфирующей схемой».

Правильный способ инициирования включения SCR - это подать ток на затвор SCR, пока он работает в «области прямой блокировки», затем SCR «срабатывает», и его прямое сопротивление падает до очень высокого уровня. низкая стоимость. Это создает «ток фиксации», который из-за низкого прямого сопротивления SCR в этом режиме позволяет очень большим (несколько ампер) токам протекать в «прямой проводящей области» без каких-либо изменений прямого напряжения (примечание что характеристическая кривая после срабатывания тринистора практически вертикальна).В этой области будет течь ток, который может изменяться, но если прямой ток упадет ниже значения «удерживающего тока» или напряжение между анодом и катодом снизится почти до 0 В, устройство вернется в свою зону прямой блокировки, эффективно поворачивая выпрямитель. выключен, пока он не сработает еще раз. Использование затвора для запуска проводимости таким образом позволяет управлять проводимостью, что позволяет использовать SCR во многих системах управления переменного и постоянного тока.

Рис. 6.0.4 Двухтранзисторная модель SCR

Как работает SCR

Модель с двумя транзисторами SCR

Фактическую работу SCR можно описать, обратившись к рис.6.0.4 (a) и (b), где показаны упрощенные схемы структуры SCR с помеченными P- и N-слоями и переходами. Чтобы понять работу SCR, четыре уровня SCR теоретически можно представить как небольшую схему, состоящую из двух транзисторов (один PNP и один NPN), как показано на рис. 6.0.4 (b). Обратите внимание, что слой P2 образует как эмиттер Tr1, так и базу Tr2, а слой N1 формирует базу Tr1 и коллектор Tr2.

Состояние «выключено»

На рис.6.0.4 (c), при отсутствии сигнала затвора и затворе (g) с тем же потенциалом, что и катод (k), любое напряжение (меньше, чем перенапряжение прямого размыкания), приложенное между анодом (a) и катодом (k ), так что анод положительный по отношению к катоду не будет создавать ток через SCR. Tr2 (NPN-транзистор) имеет 0В, приложенное между базой и эмиттером, поэтому он не будет проводить, и поскольку его напряжение коллектора обеспечивает базовое возбуждение для Tr1 (PNP-транзистор), его переход база / эмиттер будет смещен в обратном направлении.Таким образом, оба транзистора выключены, и между анодом и катодом SCR не будет протекать ток (кроме небольшого обратного тока утечки), и он работает в области прямой блокировки.

Запуск SCR

Когда SCR работает в области прямой блокировки (см. Характеристики SCR на рис. 6.0.3), если затвор и, следовательно, база Tr2, см. Рис. 6.0.4 (c), становятся положительными по отношению к катоду (также эмиттер Tr2) путем применения стробирующего импульса, так что небольшой ток, обычно от нескольких мкА до нескольких мА в зависимости от типа тринистора, вводится в базу Tr2, Tr2 включается и напряжение на его коллекторе падает.Это вызовет протекание тока через PNP-транзистор Tr1 и быстрое повышение напряжения на коллекторе Tr1 и, следовательно, на базе Tr2. Базовый эмиттерный переход Tr2 станет еще более смещенным вперед, быстро включив Tr1. Это увеличивает напряжение, прикладываемое к базе Tr2, и сохраняет проводимость Tr2 и Tr1, даже если исходный стробирующий импульс или напряжение, которые запустили процесс включения, теперь удаляются. Теперь между слоями анода P1 (a) и катода N2 (k) будет протекать большой ток.

Сопротивление между анодом и катодом падает почти до нуля, так что теперь ток тринистора ограничивается только сопротивлением любой цепи нагрузки.Описанное действие происходит очень быстро, поскольку включение Tr2 с помощью Tr1 является формой положительной обратной связи, когда каждый коллектор транзистора подает большие изменения тока на базу другого.

Поскольку коллектор Tr1 подключен к базе Tr2, действие включения Tr1 фактически подключает базу Tr2 (вывод затвора) к высокому положительному напряжению на аноде (a). Это гарантирует, что Tr2 и, следовательно, Tr1 остаются проводящими, даже когда стробирующий импульс удален. Чтобы выключить транзисторы, напряжение на аноде (a) и катоде (k) должно иметь обратную полярность, как это произошло бы в цепи переменного тока в то время, когда положительный полупериод волны переменного тока достигал 0 В, прежде чем стать отрицательным. на вторую половину цикла или в цепи постоянного тока ток, протекающий через тиристор, отключается.В любом из этих случаев ток, протекающий через тиристор, будет снижен до очень низкого уровня, ниже уровня удерживающего тока (показанного на рис. 6.0.3), поэтому переходы база-эмиттер больше не имеют достаточного прямого напряжения для поддержания проводимости.

Рис. 6.0.5 Низковольтное питание SCR

Демонстрация работы SCR

Поскольку SCR обычно используются для управления мощными высоковольтными нагрузками, это представляет значительный риск поражения электрическим током для пользователей в любых экспериментальных или образовательных средах.Однако схемы, описанные на следующих веб-страницах Модуля 6, предназначены для демонстрации различных методов управления, используемых с тиристорами с использованием переменного тока низкого напряжения (12В RMS ), как показано на рис. 6.0.5, вместо того, чтобы подвергать пользователя опасности использования сетевого (линейного) напряжения. Обратите внимание, что схемы, показанные в этом модуле, предназначены только для демонстрации низкого напряжения, а не как рабочие схемы управления для сетевых (линейных) цепей. Для реальных рабочих примеров вы должны обратиться к инструкциям по применению, выпущенным производителями SCR.

Часть схемы, содержащая SCR (SCR C106M), вместе с токоограничивающим резистором 33R и лампой 12 В 100 мА, построена на небольшом куске Veroboard (прототипной платы), который можно легко прикрепить к макетной плате с помощью 'Blu Tack 'или аналогичный временный клей, позволяющий экспериментально конструировать различные схемы управления на макетной плате. На SCR подается переменный ток через двухполюсный переключатель и изолирующий трансформатор с 230 В на 12 В (идеален небольшой медицинский изолирующий трансформатор) с предохранителем 250 мА во вторичной цепи, все они размещены в коробке с двойной изоляцией.

Рис. 6.0.6 Цепи питания низковольтного тиристора

Мостовой выпрямитель находится в отдельном изолированном корпусе с резистором с проволочной обмоткой 1K8, подключенным к выходу, чтобы обеспечить постоянную нагрузку. Это гарантирует, что формы выходных сигналов двухполупериодного выпрямленного выхода 12 В могут быть надежно отображены на осциллографе. Эти отдельные схемы, показанные на рис. 6.0.6, просто сконструированы и представляют собой полезный набор для демонстрации и экспериментов с различными типами тринистора или источника питания при низком напряжении.

Учебное пособие по основам работы с тиристорами

- Силовая электроника от А до Я

Введение:
Тиристор представляет собой трехконтактное устройство с четырьмя слоями материала чередующегося типа P и N (три P-N перехода). Три терминала: анод, катод и затвор.

  • Тиристор упоминается как кремниевый управляемый выпрямитель (SCR), поскольку он состоит из кремния и работает как управляемый выпрямитель.
  • Тиристор по своей природе является устройством с медленным переключением по сравнению с BJT или MOSFET из-за длительного срока службы носителей, используемых для низких потерь в открытом состоянии, и из-за большого количества накопленного заряда.
  • Поэтому обычно используется при более низких частотах переключения.
  • Имеет большие токи обратного восстановления.

Типы тиристоров:

Однонаправленный тиристор

  • Тиристоры, которые проводят только в прямом направлении, известны как однонаправленные тиристоры.

    Двунаправленный тиристор:

    • Тиристоры, которые могут проводить как в прямом, так и в обратном направлении, известны как двунаправленные тиристоры
    • Пример: TRIAC - TRIode AC switch

    Триггерные устройства, которые запускают устройства:

  • 9038 генерировать управляющий сигнал для переключения устройства из непроводящего в проводящее состояние называется запускающим устройством.
  • Ex: Диодный переключатель переменного тока-DIAC,
    UJT - Однопереходный транзистор
    SUS - Кремниевый односторонний переключатель
    SBS - Кремниевый двусторонний переключатель

Символ:
Символ тиристора содержит традиционный символ диода с выводом затвора.

Структура:

Тиристор имеет уникальную четырехслойную конструкцию с чередующимися областями P-типа и N-типа. Он приведен ниже:

SCR выглядит как два PNP-транзистора, соединенных спина к спине.

Это можно понять, если обратиться к рисунку выше.

Работа и характеристика VI тиристора:
Работа тиристора объясняется четырьмя режимами.

  1. Прямой режим блокировки
  2. Прямой режим
  3. Обратный режим блокировки
  4. Обратный режим блокировки

Прямой режим блокировки [V AK = + ve & V G]

  • Когда на анод относительно катода подается положительное напряжение, переходы J1 и J3 смещаются в прямом направлении, переход J2 смещается в обратном направлении.
  • SCR находится в состоянии прямой блокировки. В это время сигнал Gate не применяется.
  • В переходе J2 образуется обедненный слой, и ток не течет от анода к катоду.
  • Как показано в характеристике VI, через устройство протекает небольшой ток, называемый , прямой ток утечки .

Режим прямой проводимости [V AK = + ve & V G = + ve]

  • Когда небольшое положительное напряжение подается на клемму затвора, а положительное напряжение подается на анод относительно к катоду переход J3 становится смещенным вперед.
  • Таким образом, тиристор действует как замкнутый переключатель и проводит большое значение прямого тока с небольшим падением напряжения.
  • С применением стробирующего сигнала SCR перешел из состояния прямой блокировки в состояние прямой проводимости. Он называется с защелкой .
  • Без стробирующего сигнала SCR перешел из состояния прямой блокировки в состояние прямой проводимости при напряжении прямого пробоя fbd ) .
  • Когда значение стробирующего сигнала увеличивается, фиксация происходит для низких напряжений V ak , как показано на рисунке.
  • При наличии прямого тока (т.е. после включения тиристора подходящим напряжением затвора) он не выключится даже после снятия напряжения затвора. Тиристор выключится только тогда, когда прямой ток упадет ниже тока удержания.
  • Удерживающий ток определяется как минимальный ток, необходимый для удержания тринистора в состоянии прямой проводимости.

Режим обратной блокировки [V AK = -ve]

  • Когда на анод подается отрицательное напряжение относительно катода, переходы J1 и J3 смещены в обратном направлении, а переход J2 - в прямом. .
  • SCR находится в состоянии обратной блокировки. т.е. он действует как разомкнутый переключатель.
  • Как показано на рисунке, через устройство протекает небольшой обратный ток утечки.

Режим обратной проводимости:

  • По мере дальнейшего увеличения обратного напряжения при обратном напряжении пробоя (V BR ) лавинный пробой происходит на переходах J1 и J3.
  • SCR действует как замкнутый переключатель в обратном направлении.
  • Большой ток приводит к большим потерям в SCR, рассеиваясь в виде тепла, тем самым повреждая SCR.

Характеристики переключения SCR объясняют потери при включении и выключении устройства, что является очень важным фактором, который следует учитывать при выборе устройства.

Процесс включения тиристора называется запуском. Щелкните здесь, чтобы узнать больше о различных методах запуска ...
Процесс выключения SCR известен как коммутация. Щелкните здесь, чтобы узнать больше о методах выключения SCR ...
SCR должен работать в пределах указанных номиналов. Щелкните здесь, чтобы узнать больше о различных защитах тиристоров…

Параметры тиристоров:
Ток фиксации (I L ):
Это минимальный анодный ток, необходимый для переключения (фиксации) тиристора из состояния ВЫКЛ. .

Ток удержания (I H ):
Это минимальный анодный ток, необходимый для удержания тиристора во включенном состоянии.
(ИЛИ)
Это минимальный ток, ниже которого устройство перейдет из состояния ВКЛ в состояние ВЫКЛ.

Пиковое обратное напряжение:
Это максимальное напряжение, которое может быть приложено к тиристору в условиях обратного смещения.

Пиковое обратное напряжение:
Это максимальное напряжение, которое устройство может безопасно выдерживать в выключенном состоянии.

Напряжение в состоянии ВКЛ:
Напряжение, которое появляется на устройстве во время его включения, называется напряжением в состоянии ВКЛ.

Скорость нарастания напряжения dv / dt:
Скорость, с которой напряжение на устройстве растет без срабатывания устройства, называется скоростью нарастания напряжения.

Текущий рейтинг:
Текущая допустимая нагрузка устройства известна как его текущий рейтинг.

Достоинства SCR:

  • Доступны SCR с высоким номинальным напряжением и током.
  • По состоянию потери в SCR уменьшены.
  • Требуется очень небольшое количество привода затвора, поскольку SCR является регенеративным устройством.

Недостатки SCR:

  • Затвор не управляется после включения SCR.
  • Для выключения тиристора требуются внешние цепи.
  • Очень низкие рабочие частоты.
  • Демпфирующие цепи необходимы для защиты от дв / дт.

Применения SCR:

  • SCR используются для управляемых выпрямителей.
  • Регуляторы переменного тока для систем освещения и отопления.
  • Двигатель постоянного тока приводит в действие большие блоки питания и электронные выключатели

Спасибо за чтение….Подпишитесь, чтобы получать обновления на свой почтовый идентификатор…

Полупроводники: тиристоры и многое другое

В Основа современной электроники

1.) Основы
2.) Важные полупроводниковые приборы
2.a) Регулировка мощности: тиристоры: тиристоры, симисторы, диоды
2.b) Другое применение: диоды, транзисторы
3.) Материалы
4.) Хронология истории
5.) Рекомендуемые Пионеры

1.) Основы

Что такое полупроводник?
Полупроводниковые материалы - это материалы, которые позволяют электричеству проходят за счет потока электронов. Напротив, нормальные проводники имеют ионная проводимость. Различные элементы являются полупроводниками. Один из Первым экспериментировали с германием (Ge) (элемент № 32). Кремний и галлий - более известные полупроводники сегодня.

Полупроводники настолько универсальны в применении благодаря способности люди, чтобы точно контролировать, как эти материалы проводят электричество: контролируя размер кристалла элемента и легируя, можно добиться желательно резистивно.
Легирование представляет собой введение определенных примесей в чистый образец полупроводник для достижения желаемых свойств. Легирование полупроводника на высоких уровнях заставляет материал действовать больше как проводник, это называется дегенеративным. Слаболегированный полупроводник называется примесью. Существует множество методов легирования материалов, и это очень сложный процесс. Область исследования.

Чтобы понять p-n-переходы и полупроводники лучше, вам нужно будет вложить хорошие деньги количество времени на лекции, это не простое явление и слишком долго рассказывать здесь.Посмотрите 59-минутную вводную лекцию в Solid состояние (полупроводники) от ITT Мадрас здесь.

Будущее:
Полупроводники являются основой бытовой электроники сегодня и будут продолжать быть жизненно важным на долгое время. Технологии, которые заменят многие полупроводники Электроника будет состоять из электроники на основе углеродных нанотрубок и искусственных алмазов. В военные и НАСА используют алмазы вместо кремниевых пластин, потому что они менее подвержены повреждать вредными лучами в космосе.Твердотельная технология, используемая в нашей электросети и электроника склонна к повреждению во время солнечных вспышек или других электромагнитных импульсов События.

Строительство:
Полупроводник устройства состоят из одного или нескольких p-n переходов. На рисунке ниже вы увидеть простой полупроводниковый прибор, состоящий из монокристалла арсенид галлия. Область n может быть легирована теллуром, а p область может быть легирована цинком.Есть много материалов, которые можно используется для допинга. У нас есть видео о том, как это работает.

Важно Полупроводниковые приборы:

2.a) Мощность Кондиционирование: тиристоры: тиристоры, симисторы и диоды

(контроль и манипулирование силы для выполнения данной работы):

Тиристоры - семейство полупроводниковых устройств, используемых для выполнения многих работ.это используется в передаче электроэнергии постоянного тока и содержит не менее 4 слоев полупроводниковых слоев n- и p-типа (устройство PNPN). SCR, диаки и симисторы представляют собой разновидности тиристоров.

Исправление - пропускание тока только в одном направлении. Диоды и тиристоры бывают выпрямители.

SCR - Выпрямитель с кремниевым управлением - Одно устройство, которое может выполнять эту работу реле, переключателя, автоматического выключателя, магнитного усилителя и многих других более.SCR - это управляемый полуволновой выпрямитель. Он используется с мощность переменного тока средней и высокой мощности - от диммеров лампы до управления двигателем к передаче энергии.

SCR позволяет ток должен идти только в одном направлении, как диод, за исключением того, что он только позволяет току проходить, когда он находится на желаемом уровне. Диод позволяет протекать всему току, пока анод остается положительным.

SCR либо "включено" или "выключено".Когда ток подается на один конец, он повышается, когда он достигает заданного значения, разрешается проходить через устройство. Когда ток падает ниже «удерживающего тока» SCR полностью блокирует ток. Когда ток меняет направление, SCR блокирует это как Что ж.

Детали:

Анод - (+) ток течет с этой стороны, электроны выходят с этой стороны
Катод - (-) ток течет с этой стороны.
Gate - устройство может быть включено или выключено калиткой

Вы можете увидеть что, контролируя значение, когда ток заблокирован, форма волны нарезан. Допуская пропускание меньшего тока, вы можете уменьшить количество мощности, идущей к электродвигателю, замедляя его. Еще одна вещь вы можете преобразовать переменный ток в постоянный, например, на интерфейсе, где Электроэнергия переменного тока соответствует линии электропередачи HVDC.

Это был улучшение того, что механические или ртутные выключатели дуги приводят к дуга образуется при физическом сближении двух проводников.Эта дуга может вызвать опасный скачок напряжения, который может повредить чувствительную электронику. Еще одно улучшение состоит в том, что SCR предотвращает утечку тока. через, когда он в выключенном состоянии. Это устройство было одним из самых важные ранние разработки в электронике. Впервые построен Бобом Hall в GE, на основе рудиментарной работы устройств PNPN в Bell Labs.

Симистор - Используется в качестве триггера для SCR.Подобен SCR, за исключением того, что он может сделать полное выпрямление волны. Концепция, разработанная Биллом Гуцвиллером и построенная Гордон Холл (GE) (1957).

Подробнее о симисторах здесь>

Diac - (Диод переменного тока). Как SCR, за исключением того, что он работает в обоих направлениях. Он не проводит до тех пор, пока не появится напряжение отключения. отпускается, затем он проводит до тех пор, пока ток не упадет ниже определенного порог.Когда полярность меняется, все будет работать так же. опять таки.
Есть несколько видов диак. Силовой диак в Японии называется сидак и был первым использовались в первых диммерах ламп, продаваемых потребителям в США. Этот диак был построен Хатсон из Техаса. Позже этот диакритический диммер был заменен на SCR.

Другой сигнальный диод, называемый диаком, представляет собой низковольтное устройство, используемое в основном для затвора. Тиристоры и симисторы, но не способны передавать какую-либо определенную мощность.

Существуют и другие диаки, официально известные как квадрак (комбинация диак-симистор) и генераторы переменного тока. Сегодня устройства сейчас доступны до 3000 ампер и 10 кВ с как минимум 25 различными структурами.

Подробнее о диаках здесь>

2.b) Другое применение: Диоды и транзисторы:

Диод - Может быть изготовленным из полупроводников или в виде вакуумной лампы.
Имеет низкое сопротивление в одном направлении и высокое сопротивление в другом. Он действует как односторонний клапан в водопроводной трубе (водопровод - хороший аналогия)

Он может преобразовывать переменный ток в Постоянного тока, он также используется для обнаружения сигналов VHF, UHF и в качестве измерителя выпрямитель. Первый тип полупроводника был сделан из германия.


Применения и типы: туннельный диод, Светодиоды, лазер, и узнайте больше о различных типах диодов>

Вверху: большой старый ВЧ-блок питания, используемый для питания микроволновой печи. (предварительно твердое состояние).Эта тяжелая «коробка» имеет длину около 1,5 дюйма (45 см).

Вверху: твердотельный ВЧ источник питания, который выполняет ту же работу. как тяжелый ящик слева. Этот очень легкий и маленький. Твердотельные устройства стабилизации мощности позволяют для гораздо меньших компьютеров и бытовой техники.

Подробнее Приложения и устройства:
Слишком много применений материала, чтобы перечислить, однако вы можете щелкнуть следующие ссылки, чтобы просмотреть соответствующие страницы и видео на веб-сайт Технического центра Эдисона.

3.) Материалы:


Узнайте о многих материалах Периодической таблицы, которые являются полупроводниками:

Германий
Кремний
Индий
Галена
Подробнее


Видео ниже: основы создания интегральных схем на кремниевых пластинах (часть нашей серии «Медь» в нашей серии «Электрический мир»).

4.) История:

Основные события и даты:


1906 - Первый полупроводниковый прибор: 'Cat's Разработан детектор Whisker - использует провод, тесно контактирующий с Galena
1925 - Идея полевого транзистора, разработанная Джулиусом Эдгаром Лилиенфельдом, но он не мог построить рабочую модель из-за некачественных материалов.
1934 - Oskar Heil также разрабатывает полевой транзистор
1947 - Бардин и Браттейн открывают эффект усиления в германии. в Bell Labs. Это первый точечный транзистор
1948 - Точечный транзистор также независимо обнаружен в Германии
1949 - Вернер Якоби создает первую «интегральную схему». из 5 транзисторов
1953 - Первый транзистор, коммерчески проданный компанией Philco
1954 - Первый кремниевый транзистор, сделанный Texas Instruments.
1955 - Первый все транзисторные автомобильные радиоприемники производства Philco
Вверху: Боб Холл (слева) и Сол Душман смотрят большой сингл кристалл германия в General Electric.Работа Холла привела к значительным улучшениям в транзистор, тем временем в тех же лабораториях GE вакуумные лампы были заменены из хрупких больших стеклянных трубок на керамические прочные цилиндры размером с горошину. Руководство GE решило отложить свое ожидание в пользу новых небольших электронных ламп. Колокол Лаборатории в конечном итоге выиграли в этой битве, заменив лампы на твердотельные.

1956 - Первый коммерческий тиристор имеется в наличии

1957 - Гордон Холл и Фрэнк У.(Билл) Гуцвиллер разрабатывает SCR (кремниевый выпрямитель) в General Electric. Гуцвиллер нарисовал эту идею на бумаге, в то время как Холл ее построил, и, по мнению некоторых, заслуживает похвалы. Гордон Холл на объекте Клайд отдела полупроводниковой продукции был оспорен своего менеджера Рэя Йорка, чтобы проверить, сможет ли он использовать SCR, о котором на тот момент только предполагалось. Он был успешным однако Боб Муни (патентный поверенный) считал, что защита заявки будет стоить очень дорого. что это не будет чем-то, что СДПГ может себе позволить.

Обратите внимание, что многие люди помогли разрабатывают эту технологию в Bell Labs и General Electric. Ник Холоньяк и Дик Олдрич покинули Bell Labs и были отправлены в лабораторию Advanced Semiconductor Lab в GE Syracuse под направление Харриса Салливана. Как и в случае с МРТ и другими технологиями, есть Было много споров по поводу того, кто изобрел устройство. "Билл [Гуцвиллер] был менеджером Application Engineering и предположил, что было бы замечательно иметь выпрямитель с управляющий электрод.Но такие предложения не являются изобретением и не сводятся к упражняться."


1958 - Texas Instruments создает первую настоящую «интегральную схему». состоящий из одного куска полупроводникового материала с несколькими компонентами внутри него.

1960 - Первый МОП - транзистор полевой металл-оксид-полупроводник

5.) Рекомендуемые Пионеры:

Колокол Лаборатории:
Джон Бардин (транзистор)
Уильям Шокли (транзистор)
Уолтер Браттейн (транзистор)
Фред Зейтц (физика твердого тела)
Гордон Тил и Морган Спаркс - разработал метод двойного легирования германия

.

Джон Молл - переключатель PNPN (свинцовый в SCR)
Карл Фрош - обнаружил маскирующий диоксид кремния
Моррис Таненбаум -

Со временем сюда будут добавлены новые имена

Общие Электрический:
Роберт Н.Холл - полупроводниковый лазер, Транзисторы, SCR, изобрели процесс диффузии сплава. Schenectady
Закажите с ним полное видео-интервью. Показать # T007. Пожертвовать чтобы получить это на DVD.
William Dunlap -
Crawford Dunlap - легирование германием, улучшение процесса диффузии сплава


Николай Холоняк - красный светодиод, Симисторные, металлические тонкопленочные технологии. (также работал в Bell Labs). Сиракузы

Ричард Олдрич - Triac.Сиракузы
Ray York - Triac. Syracuse
Finis Gentry - симистор. Сиракузы

Берни Бедфорд - SVC - Статический Компенсатор VAR. Schenectady
Билл Гуцвиллер - изобретатель симистора, SCR - кремниевого выпрямителя. Clyde

John Harnden Jr. - GEMOV - Металлооксидный варистор и кондиционирование питания, SCR. Скенектади.
Билл Моррис - GEMOV - Металлооксидный варистор. Schenectady
Fracois Martzloff - GEMOV
Joe Wong - GEMOV
William Kornrumpf - SCRs.Скенектади

John Saby - переход из сплава Транзистор - Syracuse
Addison Sheckler - улучшенные диоды с помощью методов кристаллизации - Syracuse
Jerry Suran - диод с двойной базой. Сиракузы

RCA:

Жак Панков - переход из сплава транзистор

Texas Instruments:

Гэри Питтман (Первый светодиод, инфракрасный)
Bob Biard (Первый светодиод, инфракрасный)

Monsanto:

Джордж Крэфорд (желтый светодиод)

Другое Компании / университеты:

Сюдзи Накамура (синий светодиод)

Подробнее о Изобретатели светодиодов

Роберт Нойс - Triac
Вернер Якоби


Рекомендуемые видеоролики по истории полупроводников:

The GE Semiconductor Business, устная история с докторомОливер Винн - Бывший менеджер микропроцессорного подразделения General Electric


Связанные темы:

Статья M.W. & J.Harnden

Источники:

Полупроводник Исследования и разработки в General Electric , Марк П.Д. Burgess
Видео-интервью с Робертом Холлом , Технологическим центром Эдисона. 2008. Выставка # T007
светодиодов и OLED, Edison Tech Center.2012
Википедия: Транзисторы, диоды, симисторы
Оливер Винн - инженер-электрик
Теория биполярных переходных транзисторов Чака МакМаниса. 2003.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *