Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Читайте также:

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Читайте также:

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная – для схемы звезда.

С конденсатором дополнительная упрощенная – для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Читайте также:

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Подключаем трехфазный двигатель без конденсаторов

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Подключаем трехфазный двигатель без конденсаторов

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Довольно часто в быту приходится использовать трехфазные электродвигатели для своих самоделок (наждаки, циркулярные пилы и т.п.) в однофазной сети 220 вольт. Как правило, для запуска трёхфазника в домашней сети применяют давно известный способ – одну из обмоток подключают через фазосдвигающий конденсатор. Но у этого решения есть серьёзный недостаток.

Во-первых, огромные размеры бумажных конденсаторов (особенно если используются пусковые ёмкости) иногда сопоставимы с размером самого электродвигателя. Во-вторых, в настоящее время достать такие конденсаторы непросто. А можно ли использовать трёхфазный электродвигатель в однофазной сети вообще без конденсаторов? Оказывается можно!

Хочу поделиться найденной и проверенной на практике альтернативной заменой конденсаторов тиристорным ключом. Используя тиристорный ключ, можно запустить трёхфазный электродвигатель без использования конденсаторов. Схема ключа проста и не требует настройки. Готовый и помещённый в подходящий корпус тиристорный ключ занимает место не более пачки сигарет.

Принципиальная схема устройства:

Устройство работает следующим образом: при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества.

Все резисторы типа МЛТ

VT1, VT2 – любые из этой серии

Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт

Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

Моя изменения при которых схема стабильно заработала:

Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 – 22 кОм, R3 – 10 кОм, R4 – 22 кОм, R2 – 47 кОм, R1 – 56 кОм, R7 – 20 кОм. VD3, VD4 – 1N4007, VD1, VD2 – Д233ВП, VD5 – Д814Д.

Печатная плата:

Схема была испытана на двигателе мощностью 3 кВт.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: “треугольник”, или “звезда”, мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные “фазосдвигающие” устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору “помогает” дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, ВтIC1=IL1, AC1, мкФL1, Гн
1000.263.82.66
2000.537.61.33
3000.7911.40.89
4001.0515.20.67
5001.3219.00.53
6001.5822.90.44
7001.8426.70.38
8002.1130.50.33
9002.3734.30.30
10002.6338.10.27
11002.8941.90.24
12003.1645.70.22
13003.4249.50.20
14003.6853.30.19
15003.9557.10.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° – IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.

Таблица 2
P, ВтIC1, AIL1, AC1, мкФL1, Гн
1000.350.185.13.99
2000.700.3510.22.00
3001.050.5315.21.33
4001.400.7020.31.00
5001.750.8825.40.80
6002.111.0530.50.67
7002.461.2335.60.57
8002.811.4040.60.50
9003.161.5845.70.44
10003.511.7550.80.40
11003.861.9355.90.36
12004.212.1161.00.33
13004.562.2866.00.31
14004.912.4671.10.29
15005.262.6376.20.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220237254
0.20.630.540.46
0.51.261.060.93
12.051.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
ТрансформаторНоминальный
ток, A
Мощность
двигателя, Вт
ТС-360М1.8600…1500
ТС-330К-11.6500…1350
СТ-3201.6500…1350
СТ-3101.5470…1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25400…1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1350…900
ТС-200К1330…850
ТС-200-20.95300…800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87275…700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

 

Довольно часто в быту приходится использовать трехфазные электродвигатели для своих самоделок (наждаки, циркулярные пилы и т.п.) в однофазной сети 220 вольт. Как правило, для запуска трёхфазника в домашней сети применяют давно известный способ – одну из обмоток подключают через фазосдвигающий конденсатор. Но у этого решения есть серьёзный недостаток.

 

 

Во-первых, огромные размеры бумажных конденсаторов (особенно если используются пусковые ёмкости) иногда сопоставимы с размером самого электродвигателя. Во-вторых, в настоящее время достать такие конденсаторы непросто. А можно ли использовать трёхфазный электродвигатель в однофазной сети вообще без конденсаторов? Оказывается можно!

 Хочу поделиться найденной и проверенной на практике альтернативной заменой конденсаторов тиристорным ключом. Используя тиристорный ключ, можно запустить трёхфазный электродвигатель без использования конденсаторов. Схема ключа проста и не требует настройки. Готовый и помещённый в подходящий корпус тиристорный ключ занимает место не более пачки сигарет.


Принципиальная схема устройства:

Устройство работает следующим образом: при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества.

Все резисторы типа МЛТ

VT1, VT2 – любые из этой серии

Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт

Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

 

Моя изменения при которых схема стабильно заработала:

Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 – 22 кОм, R3 – 10 кОм, R4 – 22 кОм, R2 – 47 кОм, R1 – 56 кОм, R7 – 20 кОм. VD3, VD4 – 1N4007, VD1, VD2 – Д233ВП, VD5 – Д814Д.


Печатная плата:

https://eurosamodelki.ru/uploads/files/dvigatel.lay

Схема была испытана на двигателе мощностью 3 кВт.

Запуск трехфазных электродвигателей с помощью конденсаторов

Запуск трехфазных электродвигателей с помощью конденсаторов, подключая их к бытовой однофазной электросети, можно осуществлять только в исключительных случаях (когда нет возможности подключиться к трехфазной сети), поскольку в ней сразу возникает вращающееся магнитное поле, создающее условия для того, чтобы ротор вращался в статоре. Помимо прочего, этот режим позволяет достичь максимальной мощности и эффективности работы электромотора.

Для того чтобы достичь максимальной выходной мощности электродвигателя (максимум 70% сравнительно с трехфазным подключением), при подключении к домашней однофазной электросети совершают три обмотки по схеме «треугольник». При подключении по схеме «звезда» максимальная мощность достигает не более 50% от возможной. При однофазном подключении на два выхода создается возможность подключения фазы и ноля без третьей фазы, которую восполняет конденсатор.

От того, как сформирован третий контакт (через фазу или ноль), зависит направление вращения ротора. В режиме одной фазы достигается идентичность частоты вращения трехфазному режиму.

Как подключить электромотор с конденсатором

Асинхронные электромоторы мощностью до 1.5кВт, запускающиеся без нагрузки, требуют для своего подключения только рабочий конденсатор. Один конец конденсатора подключают к нулю, а второй – к третьему выходу треугольника. Для изменения направления вращения ротора подключение конденсатора ведут от фазы.

Если мотор сразу при запуске работает под нагрузкой или его мощность превышает 1.5кВт, в схему вводят пусковой конденсатор, включающийся в работу параллельно рабочему. Он включается всего на несколько секунд и увеличивает пусковой толчок во время старта. При кнопочном подключении пускового конденсатора остальную схему подключают от сети через тумблер или через кнопку с двумя фиксирующими положениями.

Для запуска подключают питание через тумблер или двухпозиционную кнопку, затем нажимают на пусковую кнопку и удерживают ее до запуска электромотора. По осуществлении запуска кнопку отпускают, и ее пружина размыкает контакты и отключает пусковую емкость.

Для реверсивного запуска трехфазных электродвигателей с помощью конденсаторов в сети 220В в схему вводят тумблер переключения, который служит для подключения одного конца рабочего конденсатора к фазе и к нулю.

Если мотор не запускается или слишком медленно набирает обороты, в схему вводят пусковой конденсатор, подключаемый через кнопку «Пуск». Обычно на схемах провода, предназначенные для подключения этой кнопки в режиме реверса, обозначаются фиолетовым цветом. Если реверс не нужен, кнопка с проводами и правый пусковой конденсатор в схему не вводятся. Для запуска двигателя, рассчитанного на 220В, конденсаторы не нужны.

Выбор конденсаторов для электромоторов

Для подключения трехфазных электромоторов к бытовой сети нужно использовать только модели типа МБГЧ, МБПГ, МБГО и БГТ с рабочим напряжением (U раб.) минимум 300 вольт. Обозначение и величина емкости конденсатора указываются на его корпусе.

Расчет емкости

  • Для подключения звездой используют формулу Сраб.=2800х(I/U), а для подключения треугольником – Сраб.=4800х(I/U), где Сраб. – это емкость рабочего конденсатора в мкФ, I – потребляемый мотором ток (по паспорту), U – напряжение сети, равное 220 вольтам. Емкость пусковых конденсаторов, обычно превышающую емкость рабочих конденсаторов вдвое-втрое, подбирают экспериментальным путем.
  • Расчет надо составлять на номинальную мощность, поскольку при работе в половину силы электромотор будет нагреваться. Для уменьшения тока в обмотке необходимо уменьшить емкость рабочего конденсатора. Если емкости не хватает до необходимой, электродвигатель будет развивать низкую мощность.
  • Лучше всего начинать подбор конденсатора для трехфазного электродвигателя с наименьшего допустимого значения емкости, и постепенно увеличивать показатель до оптимальной величины.
  • При долгой работе без нагрузки электромотор, переделанный с 380В на 220В, сгорит.
  • После отключения агрегата на выводах конденсаторов долго сохраняется напряжение опасной величины, поэтому их надо ограждать во избежание случайного прикосновения.
  • Необходимо разряжать конденсаторы каждый раз перед началом их эксплуатации.
  • Трехфазный электромотор мощностью свыше 3кВт нельзя подключать к домашней электросети на 220 вольт, потому что при неправильно подобранной защите будет плавиться изоляция проводов и выбиваться пробки, в худшем случае возможно возгорание.

При соблюдении вышеперечисленных правил и рекомендаций подключение трехфазного электродвигателя к бытовой сети не представляет сложности. Не следует только забывать о технике безопасности.


Запуск трехфазных электродвигателей с помощью конденсаторов

Существует масса разнообразных электрических двигателей, но все они имеют две характеристики, основанные на напряжении сети, к которой привязаны они и их мощность. Многие не имеют представления, как подключить двигатель 380 на 220В. Статья раскроет эту тему.

Как подключить электродвигатель 380 на 220?

Существует две схемы такого подсоединения. Каждая имеет свои особенности.

  1. Звезда-треугольник;
  2. Конденсаторы.

В хозяйстве иногда возникает потребность подключения к однофазной электросети электрический двигатель, который рассчитан на работу в трехфазной сети. Этот случай считается исключительным, и к нему стоит прибегать только, если нет возможности подключиться к трехфазной электросети, так как в ней сразу создается магнитное вращающееся поле, которое создает условия для вращения ротора в статоре. Ко всему прочему в этом режиме достигается максимальная мощность и эффективность работы электродвигателя.

Если вы подключаете к бытовой однофазной электрической сети, то совершайте три обмотки по схеме «треугольник» для того, чтобы получить наибольшую выходную мощность асинхронного электромотора ( это будет максимум 70%, если сравнивать с трехфазным подключением). Если подключаете схемой «звезда», то максимальная мощность будет достигать 50% от возможной.

Однофазное подключение на два выхода дает возможность подключить фазу и ноль, третьей фазы нет, но она восполняется конденсатором.

Направление вращения электрического двигателя будет зависеть от того, как будет сформирован третий контакт: через фазу или ноль. В режиме одной фазы частота вращения будет идентичной трехфазному режиму. Как подключить двигатель 380 на 220? Какова схема подключения электрического двигателя 380 на 220 В с конденсатором?

Подключение электродвигателя с конденсатором

При подключении маломощных асинхронных электрических двигателей до 1,5 кВт, запускающихся без нагрузки, необходимо иметь только рабочий конденсатор. К нулю подключаем один его конец, другой же к третьему выходу треугольника. Чтобы изменить направление вращения мотора подключение конденсатора ведем не от нуля , а от фазы.

В случае работы двигателя сразу при запуске под нагрузкой или когда его мощность более 1,5 кВт, то для успешного запуска нужно внести в схему пусковой конденсатор, который будет включаться в работу параллельно рабочему. Он нужен для увеличения пускового толчка при старте, он станет включаться всего на несколько секунд.

Обычно пусковой конденсатор имеет кнопочное подключение, остальная же схема подключается от электрической сети через тумблер либо же через кнопку с двумя фиксирующимися положениями. Чтобы произвести запуск требуется подключить питание через тумблер или двухпозиционную кнопку, затем произвести нажатие на пусковую кнопку и удерживать ее до тех пор, пока не запустится электрический двигатель. Как только запуск произошел, отпускаем кнопку, при этом ее пружина разомкнет контакты и произведет отключение пусковой емкости.

Если необходим реверсивный запуск трехфазного двигателя в сети 220 вольт, тогда нужно будет занести в схему тумблер переключения. Он нужен для подключения одного конца рабочего конденсатора к фазе и к нулю.

В случае, если двигатель не желает запускаться либо очень медленно набирает скорость оборотов, то необходимо внести в схему пусковой конденсатор, который подключен через кнопку «Пуск». Для подключения этой кнопки на реверсивной схеме для обозначения проводов используется фиолетовый цвет. Если в реверсе нет необходимости, то со схемы выпадает кнопка вместе с проводами и пусковой правый конденсатор.

Подключение электродвигателя без конденсаторов

Как ни крути, но работать трехфазный электродвигатель будет в однофазной сети на 220 В только с конденсаторами. Они не нужны для запуска электромоторов, которые рассчитаны на работу с напряжением сети в 220 вольт.

Собрать самостоятельно схему подключения не так и сложно. Сложность будет заключаться в подборе необходимой емкости рабочего конденсатора, дополнительные хлопоты возникнут, если потребуется пусковой.

Выбор конденсаторов для электродвигателей

Как подобрать нужные модели? На корпусе находятся обозначения и величина емкости. Заострите внимание только на моделях типа МБГЧ, МБПГ, МБГО, БГТ с рабочим напряжением, которое обозначает (U раб), не менее 300 вольт.

Как рассчитать емкость конденсаторов для электродвигателей?

  • Чтобы рассчитать рабочую емкость конденсатора для схемы подключения звездой, необходимо использовать формулу Cраб=2800х(I/U). В случае подключения обмоток треугольником, тогда по такой формуле: Сраб=4800х(I/U).
  • Для получения результатов по величине в мкФ емкости рабочего конденсатора Сраб, нужно потребляемый двигателем ток (по паспорту) разделить на напряжение сети U, которое равняется 220 вольт, полученные данные умножаются на 4800, если задействован треугольник, или 2800, если работа производилась со звездой.

Экспериментальным способом подбирается емкость пусковых. Обычно их емкость превосходит емкость рабочих в 2-3 раза.

К примеру, есть электродвигатель обмотки, провода которого имеют соединение треугольником, величина потребляемого тока равна 3 амперам. Эти данные подставляем в формулу Сраб= 4800 x (3 / 220)≈ 65 мкФ. При этом пусковой будет иметь пределы в 130-160 мкФ. Но такая емкость редко встречается у конденсаторов, что приводит к параллельному подключению для рабочего, к примеру, шесть по десять плюс один на 5 мкФ.

Учтите то, что расчет составляется на номинальную мощность. Работая в половину силы, электрический двигатель станет нагреваться, поэтому следует уменьшить емкость рабочего конденсатора, чтобы уменьшить ток в обмотке.

При не достающей до требуемой емкости, мощность, развиваемая электрическим двигателем, будет низкой.

Профессионалы рекомендуют начинать подбирать конденсатор для трехфазного двигателя с наименьшего допустимого значения емкости, постепенно увеличивая показатель до оптимального значения.

Помните о том, что если электрический двигатель, переделанный с 380 на 220 вольт, будет долго работать без нагрузки, он сгорит.

Обратите внимание! После отключения конденсаторы на своих выводах достаточно долго сохраняют напряжение опасной величины . Не забывайте следить за соблюдением мер по безопасности: всегда их ограждайте, чтобы исключить случайное прикосновение. Перед эксплуатацией конденсаторов каждый раз не забывайте производить их разрядку.

Всегда помните о том, что не следует подключать трехфазный двигатель, у которого мощность более 3 кВт, к обычной электросети дома на 220В. Это приводит к тому, что начинает происходить выбивание пробок, плавиться изоляция проводов, если неправильно подобрана защита.

Как подключить трехфазный двигатель на одну фазу

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Теоретический материал, изложенный в первой части темы, посвященной однофазному подключению трехфазного электродвигателя, предназначен для того, чтобы домашний мастер мог осознанно перевести промышленные устройства сети 380 вольт на бытовую электрическую проводку 220.

Рекомендуем внимательно ознакомиться с этой статьей здесь.

Благодаря ей вы не просто механически повторите наши рекомендации, а будете выполнять их осознанно.

Оптимальные схемы для подключений трехфазного двигателя к бытовой однофазной сети

Среди многочисленных способов подключения электродвигателя на практике широкое распространение получило всего два, именуемые коротко:

Название дано по методу соединения обмоток в электрической схеме внутри статора. Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.

В схеме звезды линейное напряжение подводится сразу на две обмотки, соединенные последовательно. Их электрическое сопротивление складывается, осуществляет бо́льшее противодействие проходящему току.

У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.

Обращаем внимание на два этих отличия и делаем практические выводы для их использования:

  1. схема звезды обладает пониженными токами в обмотках, позволяет эксплуатировать электродвигатель длительно с минимальными нагрузками, обеспечивать небольшие крутящие моменты на валу;
  2. более высокие токи, создаваемые схемой треугольника, обеспечивают лучшую выходную мощность, позволяют использовать двигатель в экстремальных нагрузках, поэтому ему требуется надежное охлаждение для длительной работы.

Два этих отличия подробно объяснены на картинке. Внимательно посмотрите на нее. Красными стрелками для наглядности специально помечены приходящие напряжения с линии (линейные) и приложенные к обмоткам (фазные). У схемы треугольника они совпадают, а для звезды — снижены за счет подключения двух обмоток через нейтраль.


Эти способы следует проанализировать применительно к условиям работы вашего будущего механизма на этапе проектирования, до начала его создания. Иначе двигатель схемы звезды может не справляться с подключенными нагрузками и будет останавливаться, а у треугольника — перегреваться и в итоге сгорит. Нагрузку по току двигателя можно предусмотреть выбором схемы подключения.

Как узнать схему подключения обмоток статора у асинхронного двигателя

На каждом заводе принято на корпусе электротехнического оборудования помещать информационные таблички. Пример ее исполнения для трехфазного электродвигателя показан на фотографии.


Домашнему мастеру можно обращать внимание не на всю информацию, а только на:

  1. мощность потребления: по ее величине судят о работоспособности подключаемого привода;
  2. схему соединения обмоток — вопрос только что разобран;
  3. число оборотов, которое может потребовать подключения редуктора;
  4. токи в фазах — под них созданы обмотки;
  5. класс защиты от воздействий внешней среды — определяет условия эксплуатации, включая защиту от атмосферной влаги.

Сведениям завода обычно можно доверять, но они создавались для нового двигателя, поставляемого в продажу. Эта схема за все время эксплуатации может подвергаться реконструкции несколько раз, потеряв свой первозданный вид. Старый двигатель при неправильном хранении может потерять работоспособность.

Следует выполнить электрические измерения его схемы и проверить состояние изоляции.

Как определить схемы подключения обмоток статора

Для проведения электрических замеров необходимо иметь доступ к каждому окончанию всех трех обмоток. Обычно шесть их выводов подключены на свои болты внутри клеммной коробки.

Но, среди способов заводского монтажа встречается такой, когда специальные асинхронные модели изготовлены по схеме звезды так, что нейтральная точка собрана концами обмоток внутри корпуса, а на вводную коробку заведена одной жилой ее сборка. Этот неудачный для нас вариант потребует раскручивания на корпусе шпилек крепления крышек для снятия последних. Затем надо подобраться к месту соединения обмоток и разъединить их концы.

Электрическая проверка концов обмоток статора

Для работы нам потребуется омметр. Можно воспользоваться тестером в этом режиме или даже простой батарейкой с лампочкой. Любым из этих приборов необходимо проверить цепь каждой обмотки. Этот вопрос более подробно изложен отдельной статьей.


После нахождения обоих концов для одной обмотки их необходимо пометить собственной маркировкой для проведения последующих проверок и подключения.

Замеры полярности у обмоток статора

Поскольку обмотки навиты строго определённым образом, то нам необходимо точно найти у них начала и окончания. Для этого существует два простых электрических метода:

  1. кратковременная подача постоянного тока в одну обмотку для создания импульса;
  2. использование источника переменной ЭДС.

В обоих случаях работает принцип электромагнитной индукции. Ведь обмотки собраны внутри магнитопровода, хорошо обеспечивающего трансформацию электроэнергии.

Проверка импульсом от батарейки

Работа выполняется сразу на двух обмотках. Картинка показывает этот процесс для трех — так меньше рисовать.


Процесс состоит из двух этапов. Вначале определяются однополярные обмотки, а затем проводится контрольная проверка, позволяющая исключить возможную ошибку у выполненных измерений.

Для поиска однополярных зажимов на любую свободную обмотку подключается вольтметр постоянного тока, переключенный на предел чувствительной шкалы. По нему будем осуществлять проверку напряжения, появляющегося за счет трансформации импульса.

Минусовой вывод батарейки жестко соединяют с произвольным концом второй обмотки, а плюсом кратковременно дотрагиваются до ее второго окончания. Этот момент на картинке показан контактом кнопки Кн.

Наблюдают поведение стрелки вольтметра, реагирующей на подачу импульса в своей цепи. Она может двигаться к плюсу или минусу. Совпадение полярностей обеих обмоток будет показано положительным отклонением, а отличие — отрицательным.

При снятии импульса стрелка пойдет в обратную сторону. На это тоже обращают внимание. Затем маркируют концы.

После этого замер выполняют на третьей обмотке, а контрольную проверку осуществляют переключением батарейки на другую цепочку.

Проверка понижающим трансформатором

Источник ЭДС переменного тока на 24 вольта рекомендуется использовать в целях обеспечения электрической безопасности. Пренебрегать этим требованием не рекомендуется.

Вначале берут две произвольные обмотки, например, №2 и №3. Попарно соединяют вместе их вывода и к этим местам подключают вольтметр, но уже переменного тока. В оставшуюся обмотку №1 подают напряжение от понижающего трансформатора и наблюдают появление показаний от него на вольтметре.


Если вектора направлены одинаково, то они не будут влиять друг на друга и вольтметр покажет их общую величину — 24 вольта. Когда же полярность перепутана, то на вольтметре встречные вектора сложатся, дадут в сумме число 0, которое отобразится на шкале показанием стрелки. Сразу после замера тоже следует маркировать концы.

Затем необходимо проверить полярность для оставшейся пары и выполнить контрольный замер.

Такими простыми электрическими опытами можно надёжно определить принадлежность концов к обмоткам и их полярность. Это поможет их правильно собрать для схемы конденсаторного запуска.

Проверка сопротивления изоляции обмоток статора

Если двигатель при хранении находился в неотапливаемом помещении, то он контактировал с влажным воздухом, отсырел. Его изоляция нарушилась, способна создавать токи утечек. Поэтому ее качество надо оценивать электрическими измерениями.

Тестер в режиме омметра не всегда способен выявить такое нарушение. Он покажет только явный брак: слишком маленькая мощность его источника тока не обеспечивает точный результат замера. Для проверки состояния изоляции необходимо пользоваться мегаомметром — специальным прибором с мощным источником питания, обеспечивающим приложение к измерительной цепи повышенного напряжения 500 или 1000 вольт.

Оценка состояния изоляции должна проводиться до подачи рабочего напряжения на обмотки. Если выявлены токи утечек, то можно попытаться просушить двигатель в теплой, хорошо проветриваемой среде. Часто этот прием позволяет восстановить работоспособность электрической схемы, собранной внутри сердечника статора.

Запуск асинхронного двигателя по схеме звезды

Для этого способа концы всех обмоток К1, К2, К3 соединяются в точке нейтрали и изолируются, а на их начала подается линейное напряжение.


К одному началу жестко подключается рабочий ноль сети, а к двум другим — потенциал фазы следующим способом:

  • первая любая обмотка соединяется жестко;
  • вторая врезается через конденсаторную сборку.

Для стационарного подключения асинхронного двигателя необходимо предварительно определить фазу и рабочий ноль питающей сети.

Как подобрать конденсаторы

В схеме запуска электродвигателя используется две цепочки для подключения обмотки через конденсаторные сборки:

  • рабочая — подключенная во всех режимах;
  • пусковая — используемая только для интенсивной раскрутки ротора.

В момент запуска параллельно работают обе эти схемы, а при выводе на рабочий режим цепочка пуска отключается.

Емкость рабочих конденсаторов должна соответствовать потребляемой мощности электрического двигателя. Для ее вычисления используют эмпирическую формулу:

Входящие в нее величины номинального тока I и напряжения U как раз и вводят корректировку по электрической мощности двигателя.

Емкость пусковых конденсаторов обычно в 2÷3 крата превышает рабочую.

Правильность подбора конденсаторов влияет на образование токов в обмотках. Их необходимо проверять после запуска двигателя под нагрузкой. Для этого замеряют токи в каждой обмотке и сравнивают их по величине и углу. Хорошая эксплуатация осуществляется при минимально возможном перекосе. В противном случае двигатель работает нестабильно, а какая-то обмотка или две станут перегреваться.

Рекомендуемые выключатели

В пусковой схеме показан выключатель SA, который вводит в работу на короткое время запуска пусковой конденсатор. Существует много конструкций кнопок, позволяющих выполнять эту операцию.

Однако, хочется обратить внимание на специальное устройство, выпускаемое в советские времена промышленностью для стиральных машин с активатором — центрифугой.


В его закрытом корпусе спрятан механизм в составе:

  • двух контактов, работающих на замыкание от нажатия на верхнюю кнопку «Пуск»;
  • одного контакта, размыкающего всю цепь от кнопки «Стоп».

При нажатии на кнопку Пуск подается фаза схемы на двигатель через рабочие конденсаторы одной цепочкой и пусковые — другой. Когда же кнопку отпускают, то один контакт разрывается. Его подключают к пусковым конденсаторам.

Запуск асинхронного двигателя по схеме треугольник

Больших отличий этого способа от предыдущего практически нет. Пусковая и рабочая цепочки работают по тем же алгоритмам.


В этой схеме приходится учитывать повышенные токи, протекающие в обмотках и иные методы подбора для них конденсаторов.

Их расчет выполняется по похожей на предыдущую, но другой формуле:

Соотношения между пусковыми и рабочими конденсаторами не изменяются. Не забывайте оценивать их подбор контрольными замерами токов под номинальной нагрузкой.

Заключительные выводы

  1. Существующие технические способы позволяют подключать трехфазные асинхронные двигатели к однофазной сети 220 вольт. Многочисленные исследователи предлагают для этого свои экспериментальные схемы большим ассортиментом.
  2. Однако, этот метод не обеспечивает эффективное использование ресурса электрической мощности из-за больших потерь энергии, связанных с некачественным преобразованием напряжения для подключения к фазам статора. Поэтому двигатель работает с низким КПД, повышенными затратами.
  3. Длительная эксплуатация станков с подобными двигателями экономически не обоснована.
  4. Способ можно рекомендовать только для подключения неответственных механизмов на короткий участок времени.
  5. С целью эффективного использования асинхронного электродвигателя необходимо применять полноценное трехфазное подключение либо современный дорогой инверторный преобразователь соответствующей мощности.
  6. Однофазный электродвигатель с такой же мощностью в бытовой сети лучше справиться со всеми задачами, а его эксплуатация обойдется дешевле.

Таким образом, конструкции асинхронных двигателей, ранее массово подключаемые к домашней проводке, сейчас не пользуются популярностью, а способ их подключения морально устарел, используется редко.


Вариант подобного механизма показан фотографией наждака со снятым для наглядности защитным щитком и ограничительным упором. Даже при таком исполнении работать на нем затруднительно из-за потерь мощности.

Практические советы Александра Шенрок, изложенные в его видеоролике, наглядно дополняют материал статьи, позволяют лучше осмыслить эту тему. Рекомендую его к просмотру, но, критически отнеситесь к замеру сопротивления изоляции тестером.

Задавайте вопросы в комментариях, делитесь статьей с друзьями через кнопки социальных сетей.

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: “треугольник”, или “звезда”, мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные “фазосдвигающие” устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору “помогает” дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, ВтIC1=IL1, AC1, мкФL1, Гн
1000.263.82.66
2000.537.61.33
3000.7911.40.89
4001.0515.20.67
5001.3219.00.53
6001.5822.90.44
7001.8426.70.38
8002.1130.50.33
9002.3734.30.30
10002.6338.10.27
11002.8941.90.24
12003.1645.70.22
13003.4249.50.20
14003.6853.30.19
15003.9557.10.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. 40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° – IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85. 0,9.

Таблица 2
P, ВтIC1, AIL1, AC1, мкФL1, Гн
1000.350.185.13.99
2000.700.3510.22.00
3001.050.5315.21.33
4001.400.7020.31.00
5001.750.8825.40.80
6002.111.0530.50.67
7002.461.2335.60.57
8002.811.4040.60.50
9003.161.5845.70.44
10003.511.7550.80.40
11003.861.9355.90.36
12004.212.1161.00.33
13004.562.2866.00.31
14004.912.4671.10.29
15005.262.6376.20.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2. 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220237254
0.20.630.540.46
0.51.261.060.93
12.051.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
ТрансформаторНоминальный
ток, A
Мощность
двигателя, Вт
ТС-360М1.8600. 1500
ТС-330К-11.6500. 1350
СТ-3201.6500. 1350
СТ-3101.5470. 1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25400. 1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1350. 900
ТС-200К1330. 850
ТС-200-20.95300. 800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87275. 700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2. 3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Может ли однофазный двигатель работать без конденсатора?

Ответ:

Существует три распространенных типа однофазных двигателей: конденсаторные двигатели, двигатели с экранированными полюсами и двигатели с расщепленной фазой.

Однофазные двигатели с экранированными полюсами и с расщепленной фазой не требуют для работы конденсатора. В то время как конденсаторные двигатели работают с помощью конденсаторов. Конденсаторные двигатели также бывают разных типов в зависимости от роли конденсатора. Некоторые из них обсуждаются ниже.

Конденсаторный пусковой двигатель

В конденсаторном пусковом двигателе, как также ясно из названия, роль конденсатора заключается в запуске двигателя. Таким образом, конденсатор предназначен для обеспечения начального крутящего момента ротору путем добавления разности фаз к магнитному полю ротора. Если снять конденсатор с такого двигателя, он не начнет вращаться, когда на обмотку статора будет подаваться питание, так как начальный крутящий момент будет отсутствовать. Однако после подачи питания, если кто-то обеспечивает этот первоначальный толчок к ротору вручную с вала внешнего ротора, двигатель начнет работать и будет продолжать работать, пока питание не будет подключено к обмотке статора.Опять же, при следующем запуске потребуется внешний толчок для запуска вращения двигателя.

Двигатель с конденсатором рабочего хода

Этот тип конденсатора двигателя постоянно включен последовательно с пусковой обмоткой и обеспечивает постоянный крутящий момент. Следовательно, этот тип двигателя не сможет работать без конденсатора даже после первоначального нажатия.

Конденсатор Пусковой Конденсатор Рабочий Двигатель

В этом типе двигателя есть два отдельных конденсатора для запуска и для работы.Пусковой конденсатор должен обеспечивать пусковой толчок при работе конденсатора для обеспечения дополнительного крутящего момента во время работы. Этот двигатель представляет собой смесь двух предыдущих типов, т.е. конденсатор запускает двигатель, а конденсатор запускает двигатель. Для правильной работы этого типа двигателя потребуются оба конденсатора. Однако, как и в случае с конденсаторным типом, этот пуск двигателя может работать с внешним толчком, если пусковой конденсатор отсутствует или неисправен.

Связанные темы;

  1. Почему в асинхронном двигателе используется контактное кольцо?
  2. Почему асинхронный двигатель широко используется в промышленности?
  3. Почему в кране используется асинхронный двигатель с контактным кольцом?
  4. Почему в электромобиле используется асинхронный двигатель?

Можно ли запустить двигатель без конденсатора?

Двигатели с конденсаторным пуском используют конденсатор только для запуска, после чего конденсатор отключается центробежным выключателем.

После этого двигатель работает без конденсатора на одной обмотке.

После этого двигатель работает без конденсатора на одной обмотке.

Может ли однофазный двигатель работать без конденсатора?

нет, не обязательно для каждого однофазного двигателя переменного тока иметь конденсатор, функция конденсатора в двигателе состоит в том, чтобы потреблять ток, который приводит к току, потребляемому основной обмоткой двигателя, так что происходит смещение фаз и вращающееся поле создается результирующим током.

Может ли вентилятор работать без конденсатора?

Он подключается через пусковую обмотку и рабочую обмотку в двигателе вентилятора. Это создает разность фаз между обмотками. Итак, чтобы просто ответить на ваш вопрос, вентилятор не будет работать без конденсатора, даже если вы вращаете его вручную, потому что конденсатор необходим для создания магнитного потока, который заставляет вентилятор вращаться.

Зачем двигателю конденсатор?

Некоторым однофазным электродвигателям переменного тока требуется «рабочий конденсатор» для питания обмотки второй фазы (вспомогательной катушки) для создания вращающегося магнитного поля во время работы двигателя.Это колебание может привести к шуму двигателя, увеличению потребления энергии, снижению производительности и перегреву двигателя.

Можно ли использовать рабочий конденсатор вместо пускового?

Рабочий конденсатор:

Да, пусковые характеристики могут быть не на должном уровне, двигатель может принимать более высокий пусковой ток с меньшим крутящим моментом. Проблема возникает, когда мы используем пусковой конденсатор в качестве рабочего, так как пусковой конденсатор рассчитан на непродолжительное время, не рассчитан на длительную работу, он будет медленно разряжаться.

Могу ли я обойти конденсатор?

Определение байпасного конденсатора можно найти в словаре электроники. Шунтирующий конденсатор: конденсатор, используемый для проведения переменного тока вокруг компонента или группы компонентов. Часто переменный ток удаляется из смеси переменного / постоянного тока, при этом постоянный ток может свободно проходить через обходной компонент.

Зачем вам нужен конденсатор для запуска двигателя?

Для больших двигателей требуется конденсатор большего размера, чтобы помочь им генерировать пусковой крутящий момент, но они работают более эффективно, если установлен небольшой конденсатор, называемый рабочим конденсатором.

Может ли неисправный конденсатор испортить двигатель вентилятора?

Использование конденсатора неправильного номинала или конденсатора низкого качества может отрицательно повлиять на работу двигателя, компрессора или всей системы отопления, вентиляции и кондиционирования воздуха. В большинстве систем отопления, вентиляции и кондиционирования воздуха используется рабочий конденсатор двигателя для запуска двигателя нагнетателя, двигателя вентилятора конденсатора и / или компрессора.

Будет ли электродвигатель работать с неисправным конденсатором?

Неисправный конденсатор двигателя может вызвать проблемы с запуском или выключить двигатель во время работы. Конденсаторы двигателя накапливают электрическую энергию для использования двигателем.Чем выше емкость конденсатора, тем больше энергии он может хранить. Отключите питание двигателя, затем отсоедините его от источника питания.

Как проверить конденсатор вентилятора?

2:24

4:26

Предлагаемый зажим · 73 секунды

Двигатель или компрессор не работают? Проверка конденсатора, поиск и устранение неисправностей

YouTube

Начало предлагаемого ролика

Конец предлагаемого ролика

Почему двигателю переменного тока нужен конденсатор для запуска?

, Джон Папевски Обновлено 16 марта 2018 г.

Электродвигатели подразделяются на несколько основных типов: постоянного тока (DC), однофазного переменного тока (AC) и многофазного переменного тока.Каждый из этих типов имеет множество дизайнов. Двигатели переменного тока, используемые в вашей посудомоечной машине, пылесосе и стиральной машине, работают от однофазного переменного тока. Хотя однофазные двигатели переменного тока работают эффективно, их невозможно запустить без посторонней помощи. Конденсатор добавляет временную дополнительную фазу для запуска двигателя.

Магнитное отталкивание

Большинство электродвигателей переменного или постоянного тока используют силы противоположных магнитных полей для вращения ротора. Для этого у двигателя есть набор магнитных полей на роторе и набор вокруг него.Когда ротор вращается, магнитные поля переключаются, как магнитные полюса (север с севером, юг с югом), обращенные друг к другу. Поскольку одинаковые полюса отталкиваются друг от друга, это заставляет ротор продолжать вращаться. Силы магнитного отталкивания сохраняются на протяжении всего вращения ротора на 360 градусов.

Асинхронные двигатели

Для работы самого простого двигателя переменного тока требуется трехфазное электричество. Многофазный двигатель использует три перекрывающихся цикла тока, называемых фазами, для управления магнитными силами в двигателе.Каждая из трех отдельных фаз подключается к набору магнитных катушек, разнесенных на 120 градусов. Хотя это нормально для коммерческих и промышленных помещений, электрический ток, поступающий в ваш дом, имеет только одну или две фазы. Однофазный двигатель требует дополнительных деталей для правильной работы.

Проблема с одной фазой

Катушки двигателя, приводимые в действие одной фазой переменного тока, все чередуются одновременно, меняя местами северный и южный полюса в унисон. Это создает проблему, называемую нулевым пусковым моментом.Хотя он может запускать двигатель, который уже вращается, у него нет «толчка», чтобы заставить двигатель повернуться с полной остановки. Вы можете запустить его, вращая вручную, но кто захочет запускать пылесос вручную?

Пусковой конденсатор и переключатель

Конденсатор, подключенный к отдельной катушке двигателя, создает переменный электрический ток, опережающий главную фазу на 90 градусов. Это происходит потому, что ток через конденсатор опережает напряжение на 90 градусов. Во время пуска двигателя переключатель подключает к двигателю конденсатор и специальную пусковую катушку.Когда двигатель достигает своей рабочей скорости, выключатель отключает конденсатор. Если конденсатор остается подключенным к двигателю, это снижает его эффективность.

Конденсаторы Run-Start

В другой, немного более дорогой конструкции используются два конденсатора: один большего номинала для запуска двигателя, а другой – для поддержания его работы. В этой конструкции также используется переключатель для управления запуском двигателя. Для более крупных однофазных двигателей это помогает повысить мощность.

Однофазные двигатели переменного тока (часть 2)




(продолжение части 1)

ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ РАЗДЕЛЕННОЙ ФАЗЫ

==


FGR.26 Определение направления вращения для двигателя с расщепленной фазой.

==


FGR. 27 А конденсаторный двигатель с конденсаторным запуском.

==


FGR. 28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском конденсатор.

==


FGR. 29 Потенциальные пусковые реле.

==


FGR. 30 Подключение реле потенциала.

==

Направление вращения однофазного двигателя в целом можно определить когда мотор подключен.

Направление вращения определяется обращением к задней или задней части мотор. FGR. 26 показана схема подключения для вращения. Если по часовой стрелке вращение желательно, T5 должен быть соединен с T1. Если вращение против часовой стрелки желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток. Тип используемого двигателя будет определять фактическое подключение.

Например, FGR.24 показано подключение двигателя с двумя рабочими обмотками. и только одна пусковая намотка. Если бы этот двигатель был подключен по часовой стрелке вращения, клемма T5 должна быть подключена к T1, а клемма T8 должен быть подключен к Т2 и Т3. Если вращение против часовой стрелки желательно, клемма T8 должна быть подключена к T1, а клемма T5 должен быть подключен к Т2 и Т3.

КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА

Хотя двигатель с конденсаторным пуском работает от конденсатора и является двигателем с расщепленной фазой, он работает по другому принципу, чем индукционный пуск с сопротивлением. двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением во все времена. Конденсатор включен последовательно с обмоткой для обеспечения постоянный ведущий ток в пусковой обмотке (FGR.27). Поскольку пусковая обмотка все время находится под напряжением, центробежный переключатель не необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.

Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом. типа, так как он предназначен для постоянного использования.Исключение из этого общего Правило – это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке поклонники. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока. чтобы сэкономить место.

Конденсаторный двигатель с конденсаторным пуском в действительности работает по принципу вращающегося магнитного поля в статоре. Поскольку и запускающие, и пусковые обмотки остаются под напряжением все время, магнитное поле статора продолжает вращаться и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск и рабочий крутящий момент. Он тих в работе и имеет высокий КПД. Поскольку конденсатор все время остается подключенным к цепи, коэффициент мощности двигателя близок к единице.

Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели используйте второй конденсатор во время пускового периода, чтобы улучшить пуск крутящий момент (FGR.28).

Хороший пример этого можно найти на компрессоре системы кондиционирования. Блок кондиционирования предназначен для работы от однофазной сети. Если двигатель не герметичен, для отключения используется центробежный выключатель пусковой конденсатор из цепи, когда двигатель достигает примерно 75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые тип внешнего переключателя для отключения пускового конденсатора от цепи.

Двигатель с конденсаторным пуском, работающий от конденсатора, или постоянный разделенный конденсатор двигатель, как его обычно называют в системах кондиционирования и охлаждения промышленность, как правило, использует потенциальное пусковое реле для отключения пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение напряжение, возникающее в пусковой обмотке при работе двигателя. Схема Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы реле потенциала используется для отключения пускового конденсатора от цепи когда двигатель достигает 75% своей полной скорости. Пусковое реле Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором. Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл. пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы. в цепи.

Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в пусковая обмотка, создавая более высокое напряжение на пусковой обмотке чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от на полной скорости, напряжение на пусковой обмотке достаточно высокое, чтобы подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый Контакт SR для размыкания и отключения пускового конденсатора от цепи. Поскольку пусковая обмотка этого двигателя никогда не отключается от линия питания, катушка потенциального пускового реле остается под напряжением пока двигатель работает.

===


FGR. 31 Затененный полюс.


FGR. 32 Затеняющая катушка противодействует изменению магнитного потока при увеличении тока.


FGR.34 Затеняющая катушка противодействует изменению магнитного потока при уменьшении тока.


FGR. 33 Существует противодействие магнитному потоку, когда ток не меняется.

====

ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМИ ПОЛЮСАМИ

Асинхронный двигатель с расщепленными полюсами популярен благодаря своей простоте. и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя. Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося магнитное поле, создаваемое затеняющей катушкой, намотанной на одной стороне каждого полюса кусок.

Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для приложения с низким крутящим моментом, такие как работающие вентиляторы и нагнетатели.

ШЕЙДИНГ

Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31). На самом деле это большая петля из медной проволоки или медной ленты. Два конца соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока форма волны увеличивается от нуля к своему положительному пику, магнитное поле создается в полюсе. Когда магнитные линии потока прорезают затеняющая катушка, в катушке индуцируется напряжение. Поскольку катушка низкая сопротивление короткому замыканию, в контуре протекает большое количество тока. Этот ток вызывает сопротивление изменению магнитного потока (FGR. 32). Пока в затеняющей катушке наведено напряжение, будет противодействие изменению магнитного потока.

Когда переменный ток достигает своего пикового значения, он больше не меняется, и никакое напряжение не индуцируется в затеняющей катушке. Поскольку нет протекает ток в затеняющей катушке, нет противодействия магнитному поток. Магнитный поток полюсного наконечника теперь однороден по полюсу. лицо (ЛГР. 33).

Когда переменный ток начинает уменьшаться от пикового значения обратно в сторону нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение снова вводится в затеняющую катушку. Это индуцированное напряжение создает ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает магнитный поток, который должен быть сосредоточен в заштрихованной части полюса кусок.

Когда переменный ток проходит через ноль и начинает увеличиваться отрицательное направление, происходит тот же набор событий, за исключением того, что полярность магнитного поля обратное. Если бы эти события были просмотрены в быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица полюса.

==


FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.

==


FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами.

===

СКОРОСТЬ

Скорость асинхронного двигателя с расщепленными полюсами определяется тем же Факторы, определяющие синхронную скорость других асинхронных двигателей: частота и количество полюсов статора.

Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR. 35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.

ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ

Двигатель с расщепленными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество крутящего момента определяется силой магнитного поля статора, напряженности магнитного поля ротора и разность фазовых углов между магнитным потоком ротора и статора. Индукция заштрихованного полюса двигатель имеет низкий пусковой и рабочий крутящий момент.

Направление вращения определяется направлением, в котором вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается направление показано стрелкой в ​​FGR. 35.

Направление можно изменить, сняв обмотку статора и повернув это вокруг. Однако это не обычная практика. Как правило, Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36 показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.

==


FGR. 37 Трехскоростной мотор.

==

МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ

Есть два основных типа многоскоростных однофазных двигателей. Один из них последовательный тип полюса, а другой – запуск конденсатора со специальной обмоткой. конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последующий полюс однофазный двигатель работает, реверсируя ток через переменный полюсов и увеличение или уменьшение общего количества полюсов статора.В последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент. на разных скоростях; например, в двухскоростных компрессорах для центрального кондиционеры.

МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА

Многоскоростные двигатели вентиляторов используются уже много лет. Они вообще намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37. Обратите внимание, что обмотка хода была выбрана для получения низкого, среднего и высокоскоростной.Пусковая обмотка подключена параллельно ходовой обмотке. раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя между выводами отмечены высокий и общий. Обмотка, показанная между высокий и средний соединены последовательно с обмоткой главного хода.

Когда поворотный переключатель установлен в положение средней скорости, индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через обмотка хода.При уменьшении тока обмотки хода сила его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот вызывает большее скольжение, и скорость двигателя снижается.

Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается. вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току через обмотку хода и еще одно снижение крутящего момента. Когда крутящий момент уменьшается, скорость двигателя снова уменьшается.

Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350. Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей перегрев и повреждение обмотки двигателя, если скорость была снижена до этого степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток. чем у большинства моторов. Ходовые обмотки большинства электродвигателей с расщепленной фазой имеют провод сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток что позволяет двигателю работать таким образом без повреждений.

Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не работает. используется для работы с нагрузками с высоким крутящим моментом – только с нагрузками с низким крутящим моментом, такими как вентиляторы и воздуходувки.

ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

Однофазные синхронные двигатели малы и развивают только дробную часть Лошадиные силы.Они работают по принципу вращающегося магнитного поля. разработан статором с расщепленными полюсами. Хотя они будут работать синхронно скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах, и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие. для производства. Есть два основных типа синхронных двигателей: Уоррен, или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются как гистерезисные двигатели.

==


FGR. 38 Мотор Уоррена.

==


FGR. 39 Мотор Holtz.

==


FGR. 40 Якорь и щетки универсального двигателя.

==


FGR. 41 Компенсирующая обмотка включена последовательно с последовательным обмотка возбуждения.

==

WARREN MOTORS

Двигатель Уоррена состоит из ламинированного сердечника статора и одного катушка.Катушка обычно наматывается для работы на переменном токе 120 В. Ядро содержит две опоры, каждая из которых разделена на две секции.

Половина каждого полюсного наконечника содержит затеняющую катушку для вращения магнитное поле (FGR. 38). Поскольку статор разделен на два полюса, скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.

Разница между двигателями Уоррена и Хольца заключается в типе ротора. использовал. Ротор двигателя Уоррена построен путем укладки закаленных стальные пластины на валу ротора.Эти диски имеют высокий гистерезис. потеря. Пластины образуют две поперечины для ротора. Когда питание подключено к двигателю вращающееся магнитное поле индуцирует напряжение в роторе, и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться до почти синхронной скорости. Как только двигатель разгонится до почти синхронного скорости, поток вращающегося магнитного поля следует по пути минимума реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает ротор блокируется синхронно с вращающимся магнитным полем, а двигатель работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами. снизить скорость до желаемого уровня.

ДВИГАТЕЛИ HOLTZ

В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть выступающие (выступающие или выступающие) полюса ротора. Обмотка типа “беличья клетка” создается путем вставки металлической планки в нижнюю часть каждого слота.Когда питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается синхронная скорость, выступающие полюса будут синхронизироваться с полюсами поля каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от синхронная скорость) для двигателя.

УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ

Универсальный двигатель часто называют двигателем переменного тока. это очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока к переменному току двигатель будет плохо работать по нескольким причинам. Обмотки якоря будут иметь большое индуктивное сопротивление. при подключении к переменному току. Кроме того, полевые столбы большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было подключено к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов в полюсах.Универсальные двигатели содержат ламинированный сердечник для предотвращения Эта проблема. Компенсирующая обмотка намотана на статор и функционирует для противодействия индуктивному сопротивлению обмотки якоря.

Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока. Напряжение. При работе от постоянного тока компенсирующая обмотка включен последовательно с последовательной обмоткой возбуждения (FGR. 41).

==


FGR.42 Компенсация проводимости.

==


FGR. 43 Индуктивная компенсация.

==


FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости позиция.

==

ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА

Когда универсальный двигатель работает от сети переменного тока, компенсирующий обмотку можно подключить двумя способами. Если он подключен последовательно с якорь, как показано на FGR.42, это называется компенсацией проводимости.

Компенсирующая обмотка также может быть подключена путем короткого замыкания ее выводов вместе. как показано в FGR. 43. При таком подключении обмотка действует как закороченная вторичная обмотка трансформатора. Наведенный ток позволяет обмотка должна работать при таком подключении. Эта связь известна как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда двигатель подключен к постоянному току.

НЕЙТРАЛЬНЫЙ САМОЛЕТ

Так как универсальный двигатель содержит намотанный якорь, коллектор и щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот может быть выполнено в универсальном двигателе аналогично настройке нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль положение плоскости в универсальном двигателе, последовательное или компенсирующее можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте последовательная обмотка (FGR.44), переменный ток подключен к якорю. ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда наносится на арматуру. Затем положение щетки перемещается до тех пор, пока вольтметр не подключенное к серии поле достигает нулевой позиции. (Нулевая позиция достигается, когда вольтметр достигает своей нижней точки.)

===


FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость позиция.

===

Если компенсирующая обмотка используется для установки нейтральной плоскости, то попеременно на якорь снова подключается ток и подключается вольтметр к компенсационной обмотке (FGR. 45). Затем применяется переменный ток. к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет его максимальное или пиковое напряжение.

ПРАВИЛА СКОРОСТИ

Регулировка скорости универсального двигателя очень плохая.Поскольку это у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока. Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость практически неограничен. Этот двигатель нередко эксплуатируется при несколько тысяч оборотов в минуту. Универсальные двигатели используются в количество переносных устройств, отличающихся высокой мощностью и малым весом. необходимо, например, буровые электродвигатели, пилы для профессионального использования и пылесосы. Универсальный двигатель способен производить большую мощность для своего размера и веса, потому что его высокой рабочей скорости.

ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ

Направление вращения универсального двигателя можно изменить в таким же образом, как и изменение направления вращения двигателя постоянного тока. Чтобы изменить направление вращения, измените выводы якоря относительно к полю ведет.

РЕЗЮМЕ

• Не все однофазные двигатели работают по принципу вращающегося магнитного поле.

• Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу. условие тока в обмотке хода и тока в пуске обмотка.

• Сопротивление провода в пусковой обмотке пускового резистора. Асинхронный двигатель используется для создания разности фаз между ток в пусковой обмотке и ток в пусковой обмотке.

• В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока. для увеличения разности фаз между пусковым и рабочим током. Это вызывает увеличение пускового момента.

• Максимальный пусковой момент для двигателя с расщепленной фазой достигается, когда Пусковой ток обмотки и ток рабочей обмотки сдвинуты по фазе на 90 ° с друг друга.

• Большинство асинхронных двигателей с резистивным пуском и индукционные двигатели с конденсаторным пуском. двигатели используют центробежный переключатель для отключения пусковых обмоток, когда двигатель достигает примерно 75% скорости при полной нагрузке.

• Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель. потому что и пусковая, и пусковая обмотки остаются под напряжением во время работы двигателя.

• В большинстве двигателей с конденсаторным пуском, работающих от конденсатора, используется масляный конденсатор переменного тока. соединены последовательно с пусковой обмоткой.

• Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить коэффициент мощности.

• Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося магнитное поле.

• Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается. разместив затемняющие петли или катушки на одной стороне полюсного наконечника.

• Синхронная скорость возбуждения однофазного двигателя определяется количество полюсов статора и частота приложенного напряжения.

• Последовательные полюсные двигатели используются, когда требуется изменение скорости двигателя. и должен поддерживаться высокий крутящий момент.

• Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток. с обмоткой главного хода.

• Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения их от перегрева при уменьшении их скорости.

• Направление вращения двигателей с расщепленной фазой изменяется реверсированием. пусковая обмотка по отношению к ходовой обмотке.

• Двигатели с расщепленными полюсами обычно считаются нереверсивными.

• Существует два типа однофазных синхронных двигателей: Уоррена и Holtz.

• Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.

• Двигатель Уоррена работает со скоростью 3600 об / мин.

• Двигатель Holtz работает со скоростью 1200 об / мин.

• Универсальные двигатели работают от постоянного или переменного тока.

• Универсальные двигатели содержат намотанный якорь и щетки.

• Универсальные двигатели также называются двигателями серии переменного тока.

• Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные реактивное сопротивление.

• Направление вращения универсального двигателя можно изменить реверсированием. якорь ведет относительно проводов возбуждения.

ВИКТОРИНА

1. Какие три основных типа двигателей с расщепленной фазой?

2.Напряжения в двухфазной системе на сколько градусов не совпадают по фазе. друг с другом?

3. Как подключены пусковая и рабочая обмотки двигателя с расщепленной фазой? по отношению друг к другу?

4. Для создания максимального пускового момента в двигателе с расщепленной фазой, на сколько градусов не совпадает по фазе должны запускаться и запускаться токи обмотки быть друг с другом?

5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед индукционный двигатель с резистивным пуском?

6.В среднем, на сколько градусов не совпадают по фазе друг с другом пусковые и управляющие токи обмоток в асинхронном двигателе с резистивным пуском?

7. Какое устройство используется для отключения пусковых обмоток цепи? в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?

8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток были отключены от цепи?

9. Как можно изменить направление вращения двигателя с расщепленной фазой?

10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения, как связаны друг с другом ходовые обмотки?

11. При определении направления вращения двигателя с расщепленной фазой, следует ли смотреть на двигатель спереди или сзади?

12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного выключатель?

13. Каков принцип работы конденсаторно-пускового конденсатора. запустить мотор?

14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами мотор?

15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами? быть изменен?

16. Как изменяется скорость последующего полюсного двигателя?

17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других асинхронные двигатели без вреда для обмоток двигателя?

18. Какова скорость работы мотора Уоррена?

19.Какая скорость работы мотора Хольца?

20. Почему двигатель серии переменного тока часто называют универсальным двигателем?

21. Какова функция компенсирующей обмотки?

22. Как изменить направление вращения универсального двигателя?

23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости. кистей, используя поле серии.

25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего обмотка.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:

Вы – подрядчик по электрике, и вас вызвали на дом. установить скважинный насос. Домовладелец купил насос, но делает не знаю как его подключить. Вы открываете крышку клеммной коробки и обнаружите, что двигатель имеет 8 клеммных выводов, помеченных с T1 по T8. Двигатель должен быть подключен к напряжению 240 В.В настоящее время Т-выводы подключены следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и Т8 соединены вместе. Линия L1 подключена к группе клемм с T1, а линия L2 подключена к группе клемм с T2. Является нужно ли поменять провода для работы от 240 В? Если да, то как они связаны?

Часто задаваемые вопросы о конденсаторах двигателя

Часто задаваемые вопросы о конденсаторах двигателя
Обзор

Напряжение
Емкость
Частота (Гц)
Тип соединительной клеммы
Форма корпуса
Размер корпуса
Пуск vs.Рабочие конденсаторы

Пусковые конденсаторы

Приложения
Технические характеристики
Как узнать, неисправен ли мой пусковой конденсатор?
Мой мотор медленно заводится. Мой пусковой конденсатор плохой?
На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Рабочие конденсаторы

Как заменить пробку в кондиционере?
Приложения
Технические характеристики
Когда заменять
Почему вышел из строя рабочий конденсатор?
Как долго должен работать рабочий конденсатор?
Двойные рабочие конденсаторы
Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Обзор

Напряжение

Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти каждый конденсатор будет использовать вставной соединитель “типа флажка. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4. Клеммы на каждую стойку.Убедитесь, что заменяемые клеммы имеют по крайней мере такое же количество клемм на каждую клемму подключения, как и у оригинального конденсатора двигателя.

Форма корпуса (круглая или овальная)

Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.

Старт vs.Конденсаторы рабочие

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.

В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.

Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


Пусковые конденсаторы

Приложения

Пусковые конденсаторы

используются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи двигателя.


Технические характеристики

Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ “с двумя клеммами на соединительную клемму.


Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно вызван пусковой цепью электродвигателя, которая задействована слишком долго для номинальной кратковременной нагрузки пускового конденсатора. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же на стартовой крышке может быть только разорванный блистер сброса давления .В любом случае легко сказать, что стартовый колпачок нуждается в замене.


Мой двигатель медленно заводится. Мой пусковой конденсатор плохой?

Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.


На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?

Большинство заменяемых пусковых крышек не имеют резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора – сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.


Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Да. Щелкните здесь для получения более подробной информации.


Рабочие конденсаторы

Приложения

Рабочие конденсаторы используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.


Технические характеристики

Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на клемму подключения.


Когда заменять

Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.

Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением значения номинальной емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь “допуск”, описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.

Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.


Почему вышел из строя рабочий конденсатор?

Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.

Время – Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но после того, как расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ можно отнести к тому, что он «просто старый».

Heat – Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов значительно сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете держать свой рабочий конденсатор холодным, он прослужит намного дольше.

Ток – Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.

Напряжение – Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


Как долго должен работать рабочий конденсатор?

Срок службы послепродажного рабочего конденсатора хорошего качества (который не входит в комплект поставки вашего двигателя) составляет от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») Могут резко изменить разумный ожидаемый срок службы рабочего конденсатора.


Конденсаторы двойного действия

Двойные рабочие конденсаторы – это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона – 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.


Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Единственное преимущество конструкции двойного рабочего конденсатора заключается в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

Конденсатор пробега

vs.Пусковой конденсатор

Все конденсаторы предназначены для хранения энергии. Разница заключается в том, для чего эта энергия хранится и используется.

Если у вас возникла проблема с системой кондиционирования воздуха, конденсатор может быть причиной, но какой из них вам нужен для ремонта?

Когда дело доходит до кондиционирования воздуха, существует два основных типа конденсаторов, рабочих конденсаторов и пусковых конденсаторов. Различия между рабочий конденсатор и пусковой конденсатор могут сбивать с толку.Однако с четким понимание того, что такое каждый тип конденсатора, эта путаница может быть легко устранена. решено.

Рабочие конденсаторы

Рабочие конденсаторы чаще используются в системах кондиционирования воздуха. систем, чем пусковые конденсаторы. Рабочий конденсатор в вашем AC используется для хранения энергии, которая используется для вращения двигателя вентилятора, важный компонент вашего рабочего переменного тока. Без рабочего конденсатора вентилятор не может повернуться.

Пусковые конденсаторы

Пусковые конденсаторы – вторые по распространенности конденсатор в системе переменного тока.Без начала конденсатор, ваш переменный ток вообще не запустится, так как это пусковой конденсатор который обеспечивает начальную энергию, необходимую для запуска. Большой крутящий момент необходимо для запуска системы переменного тока, поэтому пусковой конденсатор будет иметь большую емкость, чем рабочий конденсатор.

Конденсаторы переменного тока

Термин «AC конденсатор »обычно относится к конденсатору запуска вашего кондиционера, просто потому что рабочие конденсаторы чаще встречаются в системах кондиционирования воздуха. Если у вас неисправный рабочий конденсатор, ваша система переменного тока не сможет охлаждать ваш дом правильно или эффективно, что приводит к потере энергии и денег.Если у тебя есть неисправный пусковой конденсатор, ваш переменный ток может вообще не работать.

Есть несколько ключевых признаков, на которые стоит обратить внимание. Укажите, что ваш конденсатор переменного тока неисправен.

  • Ваш кондиционер больше не дует холодным воздухом
  • Ваш кондиционер издает тихий гудящий звук, которого не было там до
  • Ваши счета за электроэнергию увеличиваются
  • Ваш кондиционер иногда не включается или не включается включается вообще
  • Ваш переменный ток неожиданно отключается

Помните, если вы не уверены, нужен ли ваш конденсатор переменного тока заменив, вы можете использовать мультиметр для проверки конденсатора переменного тока.

Конденсатор генератора

Аналогично всем описанным конденсаторам выше, генератор конденсатор также сохраняет электрический заряд. Конденсатор генератора обеспечивает напряжение и регулирует напряжение внутри генератора. Показания низкого напряжения может указывать на неисправность конденсатора генератора.

Вы можете проверить свой генератор конденсатор с помощью мультиметра.

Конденсатор холодильника

Холодильник конденсатор чаще всего относится к более распространенному рабочему конденсатору в холодильнике.

Скорее всего, рабочий конденсатор в вашем холодильнике находится рядом с компрессором, поэтому признаки того, что рабочий конденсатор в вашем холодильнике может быть Неисправные включают:

  • Слышен щелчок при включении холодильника компрессор работает
  • Кажется, что компрессор холодильника работает слишком часто (несколько раз в час нормально, чаще при частом использовании)
  • Компрессор холодильника не работает работает достаточно часто

Замените рабочий конденсатор в ремонтной мастерской

В ремонтной мастерской

есть инструкции и детали, необходимые для простой замены рабочего конденсатора или пускового конденсатора переменного тока, генератора или холодильника.

МАГАЗИН РАБОЧИХ КОНДЕНСАТОРОВ МАГАЗИН ПУСКОВЫХ КОНДЕНСАТОРОВ

Двигатели с конденсаторным пуском

: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя

Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами. Один из часто используемых методов – это двигатели с расщепленной фазой. Другой метод – это индукционные двигатели с конденсаторным пуском.

Конденсаторные асинхронные двигатели

Нам известно об активности конденсатора в чистом A.C. Схема. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол. В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. В этих двигателях используются конденсаторы электролитического типа, которые обычно видны, поскольку они установлены вне двигателя как отдельный блок. (щелкните изображение, чтобы увеличить его).

Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи.Но ток через основную обмотку Im по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.

Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается, отсоединяя обмотку стартера и конденсатор от основной обмотки. Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой.Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует принимать во внимание, что результирующий ток I небольшой и почти совпадает по фазе с приложенным напряжением V.

Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Im.Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что одно только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой крутящий момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой. Кривая характеристики «скорость-крутящий момент» показывает пусковой и рабочий крутящие моменты асинхронного двигателя с конденсаторным пуском.

Типы двигателей

Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях.Они следующие:

  1. Одно напряжение, внешне реверсивное,
  2. Одно напряжение, нереверсивное исполнение,
  3. Реверсивные на одно напряжение и с термостатом,
  4. Одно напряжение, нереверсивное, с магнитным переключателем,
  5. Двухвольтный, нереверсивный тип,
  6. Двухвольтный, реверсивный,
  7. Одно напряжение, трехпроводное, реверсивное,
  8. Одно напряжение, мгновенно-реверсивное,
  9. Двухскоростной тип и
  10. Двухскоростной с двухконденсаторным типом.

Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.

Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.

Кредиты изображений:

www.tpub.com

www.allaboutcircuits.com

Машины A / C-D / C от A.K&B.Л. Тераджа.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *