Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

значение формулы заряда, принцип работы

 

 

Конденсаторы часто встречающийся элемент в электрических схемах.
Они нужны для накопления заряда, сглаживания пульсаций электрического тока, фильтрация отдельных видов частот,
создание фазовых сдвигов обеспечивающих работу электрических двигателей и для других технических решений.

Содержание

  1. Что такое конденсатор
  2. От чего зависит емкость и заряд конденсатора
  3. Как устроен конденсатор
  4. Виды конденсаторов
  5. Плоский
  6. Сферический
  7. Цилиндрический
  8. Полярные
  9. Танталовые
  10. Ионисторы
  11. Электролитические
  12. Неполярные
  13. Керамические
  14. Пленочные
  15. Smd
  16. Переменные
  17. Максимальное рабочее напряжение на конденсаторе
  18. Величина и значение потери у конденсатора
  19. Конденсатор в цепи электрического тока
  20. Постоянного
  21. Переменного
  22. Сопротивления конденсатора в зависимости от
  23. Частоты и сдвига фаз
  24. Номинала конденсатора
  25. Последовательное и параллельное соединение конденсаторов
  26. Формулы для вычисления
  27. Посредством математических выражений
  28. Как зависит емкость от среды диэлектрика
  29. Как измерить емкость
  30. Мультиметром
  31. Осциллографом
  32. Тестером не имеющим прямой функции
  33. Мостовыми измерителями
  34. Единицы расчета
  35. Математическое выражение фарада
  36. Диэлектрическая проницаемость
  37. Маркировка конденсаторов
  38. Способы обозначения конденсатора
  39. Код конденсаторов импортных
  40. Кодовая для конденсаторов поверхностного монтажа

Что такое конденсатор

Конденсаторы — это компоненты в электронике, которые могут накапливать электрические заряды.

Эти детали используются в любом электронном устройстве.

Свойство конденсатора – это накопление заряда и последующая его отдача.

От чего зависит емкость и заряд конденсатора

Емкость конденсатора это физическая величина по которой производится оценка его возможностей выполнять свои функциональные задачи.

Практическое значение емкости выражается в способности электрического устройства к накоплению заряда.

Величина напряжения на пластинах в прямой пропорции влияет на количественные характеристики заряда на обкладках.
Формула определения емкости выглядит как

C = q/U,

где С — емкость конденсатора,

q — означает количество заряда на одной из пластин,

U — разница потенциалов на обкладках.
Приведенная формула расчета имеет в большей степени теоретический характер.

Существует иное определение емкости, которое полезнее в практическом смысле.

В формуле C = єS/d обозначена ее связь с площадью S обкладок, расстоянием между пластинами d и свойствами диэлектрика є.

Из формулы следует, что чем больше площадь обкладок, тем больший заряд может на них разместиться и чем больше расстояние между пластинами,
тем слабее заряженные частицы будут притягиваться друг к другу, увеличивая их шансы покинуть обкладку.

Максимальная диэлектрическая проницаемость материала, расположенного между пластинами, увеличивает емкость конденсатора без изменения габаритных характеристик.

Как устроен конденсатор

Конденсатор состоит из двух или нескольких металлических пластин, между которыми располагается диэлектрический материал.
Электроны начинают двигаться, но не в состоянии преодолеть диэлектрик, из-за этого между пластинами накапливается электрический заряд.

Хорошими диэлектрическими свойствами обладают бумага покрытая оксидом алюминия, слюда, электролит, керамика и подобные материалы.

Заряды на разных обкладках одинаковые по величине, но противоположные по знаку.

Виды конденсаторов

Конденсаторы различаются по целому ряду параметров: по конфигурации, по типу диэлектрика,
по материалу обкладок, по виду изменения емкости (постоянные, переменные, подстрочные),
по рабочему напряжению.
Ниже на рисунке рассмотрим основные виды электрических устройств различной конфигурации.

Плоский

Плоский вид устройства, – это две пластины, которые располагаются параллельно друг против друга.
Они отличаются компактностью, сохраняя при этом большую емкость.

Емкость плоского конденсатора возрастает по мере увеличения площади пластин и при уменьшении расстояния между ними.

Для расчета емкости плоского конденсатора следует пользоваться формулой C = εεS / d

Сферический

Сферический конденсатор это две концентрично расположенные сферы с находящимся между ними тонким диэлектриком.
Наружную поверхность внешней обкладки заземляют для создания электрического поля непосредственно между обкладками.
С учетом геометрии обкладок расчет емкости сферического конденсатора производится по формуле

C = 4πεε0 Rr/ R — r, где R — радиус наружной обкладки, r — радиус внутренней.

Цилиндрический

Цилиндрический конденсатор выполнен из двух полых цилиндров с разными радиусами образующих их окружностей с общей осью.
Между наружной поверхностью малого цилиндра и внутренней поверхностью большого находится диэлектрик.
Для расчета емкости цилиндрического конденсатора можно воспользоваться формулой
C = 2πєє0L/ ln (R2/R1),

где L — длина цилиндрических обкладок,

R2 — радиус наружного цилиндра,

R1 — радиус внутреннего цилиндра,

ln — обозначение логарифмического действия.

Полярные

Полярные конденсаторы – это приборы, имеющие полярность, а именно плюс и минус.
Важно чтобы плюсовой контакт был соединен с «плюсом» источника питания, а минусовой с его «минусом».
Нарушение полярности может привести даже к взрыву конденсатора.
К полярным принадлежат танталовые, ионисторы, конденсаторы с электролитическим диэлектриком.

Танталовые

В танталовых конденсаторах, относящихся к электролитическому типу, в качестве диэлектрика используется спеченный танталовый порошок оксид тантала, отсюда происходит их название.
Такой диэлектрик сводит практически к нулю ток утечки.

Недостаток заключается в невозможности работать в электрических цепях с высоким напряжением.

Танталовый конденсатор включает в себя 4 элемента – анод, диэлектрик, электролит и катод.

В отличие от электролитических танталовые имеют меньшую собственную индуктивность, благодаря чему их можно применять на высоких частотах.

Компактность танталовых устройств позволяет их использовать в качестве составляющих монтажных схем.

Ионисторы

Ионисторы принадлежат к разряду электрохимических конденсаторов.
Особенность конструкции заключается в сочетании свойств обычного конденсатора и аккумуляторной батареи.
Пространство между электродами заполняется твердым электролитом на основе рубидия и аналогичных материалов.
Такая конструкция исключает самопроизвольный разряд ионистора.

Быстрая разрядка и зарядка делают возможным его использование в некоторых видах электрических схем вместо аккумулятора.

Аккумулятор, в отличие от ионистора, потребует значительное время для своей зарядки.
Емкость ионистора отличается повышенным значением среди всех электролитических устройств.

Работает ионистор только с источником постоянного напряжения.

Электролитические

Большое распространение получили электролитические конденсаторы, у которых одна из обкладок выполнена в виде алюминиевой фольги.
Другой обкладкой служит твердый или жидкий электролит обеспечивающий движение заряженных частиц для сохранения оксидной пленки.

Емкость электролитического конденсатора на сегодняшний день является наибольшей при соотношении емкости и объема элемента.

Электролитические элементы устанавливаются в фильтрах, но важно соблюдение полярности.

По сравнению с танталовыми конденсаторами в электролитических  идут значительный ток утечки.

Процессы переноса заряженных частиц происходят медленно, что увеличивает количество выделяемого тепла.
Отсюда перегрев и низкий срок службы.

Неполярные

Неполярные конденсаторы корректно работают при любых вариантах подключения их в электрическую схему.

Это связано с похожей структурой материалов образующих границу между обкладкой и диэлектриком.
Стороны одинаковы. Все это приводит к тому, что во время установки конденсатора нет необходимости соблюдать полярность.
В качестве неполярных электрических устройств в основном используются сухие, реже электролитические, изготовленные по измененной технологии.

Керамические

Керамические конденсаторы имеют высокие электрические показатели, маленькие габариты и приемлемую стоимость.

Устанавливаются элементы в контурах радиоаппаратуры.
Керамические конденсаторы подразделяются на

  • с постоянной емкостью
  • подстроечные.

Элементы с постоянной емкостью – устанавливают в контурах генераторов и гетеродинов.
Подстроечные – используются для подгонки параметров колебательных контуров.
Широкое распространение получили благодаря разнообразию емкостей, широкому диапазону рабочих напряжений,
стандартными типоразмерами аналогичными керамическим устройствам разных производителей.

Пленочные

Особенностью таких устройств будет диэлектрик в виде пленки.
Пленка изготавливается из фторопласта, металлизированной бумаги, полипропилена, поликарбоната и подобных материалов.
Металлическая пленка или фольга напыляются или напрессовываются на диэлектрик.

Благодаря большому количества слоев – получается увеличение площади, соответственно, существенно увеличивается емкость.

Из достоинств пленочного конденсатора следует отметить сравнительно высокую надежность, стабильность теплового состояния при действии нагрузок вызванных переменным током.

К недостаткам можно отнести невысокое значение диэлектрической проходимости.

Пленочные конденсаторы используются в цепях постоянного тока, всевозможных фильтрах и резонансных схемах.

Smd

В цепях управления некоторых видов плат используются небольшие по размерам Smd конденсаторы, имеющие форму маленьких кирпичиков.
На плату радиоэлемент устанавливается посредством правила поверхностного монтажа.
Smd устройства бывают следующих видов:

  • электролитические
  • керамические;
  • танталовые.

Керамические SMD конденсаторы, имеющие диэлектрик с высокой проницаемостью, маркируются тремя буквами.
Первыми двумя буквами обозначается нижняя и верхняя предельно допустимая граница рабочего диапазона температур,
третья буква используется при обозначении отклонений изменения емкости для измеряемых диапазонов.

Маленькие размеры Smd конденсаторов не всегда позволяют нанести маркировку на корпус или она будет очень мелкая.

В таких случаях без специального измерительного прибора, например, мультиметра не обойтись.

Переменные

Конденсаторы переменной емкости (КПЕ) состоят из части секций металлических пластин.
Одна из них двигается плавно по отношению ко второй.
Во время передвижения получается, что подвижные пластины (ротора), попадают в зазоры неподвижной пластины (статора).
Благодаря процессу площадь перекрытия одних пластин другими изменяется, в результате чего изменяется у конденсатора емкость.
Слоем диэлектрика в этом случае является воздух.

В конденсаторах, установленных в небольших устройствах, используется твердый диэлектрик, например, фторопласт или полиэтилен.

В старых радиоприемниках устройство применялось для настройки на определенную частоту колебательного контура работающей радиостанции.

Максимальное рабочее напряжение на конденсаторе

Напряжение, подаваемое на конденсатор, не должно превышать максимальное, так как может произойти пробой диэлектрика и выход элемента из строя.

Для анализа работы конденсатора в цепи переменного тока, критерием для сравнения следует брать максимальную амплитудную величину напряжения.

Это значит, что если на нем обозначено какое то максимальное напряжение DC WV , то в действительности при включении в сеть оно должно быть на 1,4 меньше.

Величина и значение потери у конденсатора

Ток утечки конденсатора – критический фактор для использования, особенно если его применяют для силовой электроники.
Потеря напрямую завязана со свойствами диэлектрика.

Никакой диэлектрик не способен гарантировать на 100% изоляцию металлических обкладок.

Через изолятор всегда будет проходить ток, меньший или больший в зависимости от свойств диэлектрика и теряться энергия.
Кроме изолирующих способностей диэлектрика на ток утечки влияют факторы:

  • температура окружающего пространства;
  • срок годности конденсатора без напряжения, температура;
  • величина тока утечки прямо пропорциональна приложенному к обкладкам напряжению.

Восстановить работоспособность конденсатора после длительного хранения можно, приложив к нему рабочее напряжение с выдержкой в течение нескольких минут.

При этом этапе окислительный слой заново накапливается и восстанавливает работоспособность конденсатора.

Конденсатор в цепи электрического тока

Принцип работы конденсатора простой – подается напряжение и накапливается заряд.
Накопитель по-разному ведет себя в двух вариантах электрической цепи.

Постоянного

Если в цепь с присоединенным к ней конденсатором подать ток, то стрелка на амперметре придет в движение и быстро вернется в предыдущее положение.
Это связано с тем, что прибор быстро заряжается и ток исчез.
Через обкладки разделенные диэлектриком постоянный ток проходить не может.
Практическое применение конденсатора в такой цепи вызывает много вопросов.
В условиях постоянного тока конденсатор функционирует, но непродолжительное время.
Переходные процессы в виде зарядки и разрядки снимают все сомнения.
В электронных схемах на постоянном токе конденсаторы один из самых распространенных компонентов.

Переменного

При подключении переменного напряжения полюса конденсатора меняют плюс на минус с частотой подачи напряжения.
В данном случае электроны передвигаются сначала в одну, а потом в другую.
На обкладках при такой смене остаются излишки заряда, которые собственно и создают ток во внешней цепи.

Конденсатор в цепи переменного тога выступает в качестве резистора.

Сопротивления конденсатора в зависимости от

Сопротивление конденсатора зависит от частоты подаваемого на него напряжения и показателя емкости.

Частоты и сдвига фаз

Устройство накопления зарядов одинаковой емкости на разных частотах оказывает различный уровень сопротивления.
Оно растет или уменьшается.

При повышении частоты входного напряжения сопротивление, называемое емкостным уменьшается.

На низких частотах имеется сдвиг по фазе входного напряжения и напряжения на нагрузке.

С увеличением частоты сдвиг по фазе уменьшается.

При достижении частоты определенного уровня фазовый сдвиг стремиться к нулю.

Хс = 1/ωС,

где ω — круговая частота, равная произведению 2πf,

С—емкость цепи в фарадах.

Номинала конденсатора

Емкость конденсатора влияет на процесс зарядки и разрядки при прохождении через него переменного тока.

Устройство с меньшей емкостью будет быстрее отдавать заряд и вновь заряжаться.

Сопротивление переменному току будет выше, чем при медленной зарядке и разрядке.

Отсюда вывод: емкостное сопротивление находится в обратной зависимости от номинала конденсатора.

Последовательное и параллельное соединение конденсаторов

Наиболее популярным типом соединения конденсаторов является параллельное.
При этом подключении электроемкость повышается, а напряжение остается исходным.

К одной точке может подключаться несколько конденсаторов.

Так как электрическая емкость конденсаторов равна площади обкладок, общая емкость при таком виде соединения пропорциональна сумме емкостей всех конденсаторов в цепи.

Собщ.= C1+C2.

При последовательном соединении конденсаторов общая емкость снижается, а напряжение работы конденсатора возрастает.

Конденсаторы подключены так, что только первый и последний имеют доступ к источнику ЭДС/тока одной из своих пластин.
Заряд одинаковый на всех пластинах, но наружные получают заряд от источника, а внутренние образуются благодаря разделению зарядов ранее нейтрализовавших друг друга.
Емкость последовательного соединения двух конденсаторов мы можем вычислить по формуле

Собщ.= С1*С2/ C1+C2.

Формулы для вычисления

Измерения емкости осуществляется по специально выведенной формуле.
Электрическая емкость (С) — это отношение сообщенного заряда (Q) к образующему в результате этого потенциалу (U).
Формулу, которую используют, чтобы измерить емкость, выглядит следующим образом:
C=Q/V .
Единицей измерения служит фарада, которая обозначается буквой Ф.
Емкость величиной 1 фарада будет хранить заряд q = 1 кулон при напряжении на обкладках U =1 Вольт.
Так как конденсаторы имеют разные виды, формулы также используются разные.

Посредством математических выражений

Математическое выражение для определения емкости конденсатора С = q*U в единицах измерения в системе СИ каждой из входящих в формулу
физических величин определяет значение 1 фарады.

Как зависит емкость от среды диэлектрика

Влияние изолятора на емкость конденсатора зависит от проводящих свойств вещества внутри этой прокладки.
Способность межпластинного проводника на изоляцию называют диэлектрической проницаемостью.
С учетом характеристик диэлектрика формула емкости плоского устройства станет:
С = є0є S/d,
где под буквой є стоит значение диэлектрической проницаемости изолятора,
а є0 — постоянная величина равная диэлектрической проницаемости вакуума (воздуха).

На практике применяется коэффициент, обозначающий во сколько раз применяемый диэлектрик уменьшает электрическое поле по сравнению с воздухом.

Таблица:

Как измерить емкость

Существует некоторое количество способов измерения емкости конденсатора с помощью приборов и различных методик.
В статье описывается использование мультиметра, осциллографа, тестера и мостовых измерителей.

Мультиметром

В начале, прежде чем начать измерение емкости конденсатора, его необходимо разрядить до полного исчезновения тока.

Как пример: сделать это с путем замыкания выводов отверткой.

Если пренебречь этим нюансом, то мультиметр может поломаться.

Измерить емкость с помощью мультиметра можно следующим образом:
активируйте режим «Сх» и установите предел замера 2000 пФ, если он есть.
На стандартном устройстве он равный 20 мкФ;
Установите конденсатор в соответствующие гнезда в мультиметре или используйте щупы для подключения конденсатора.
На экране прибора будет отображено значение емкости.

Осциллографом

Для измерения понадобиться кроме осциллографа собрать схему из тестируемого конденсатора, резистора и генератора синусоидальных колебаний.

Точки подключения осциллографа к схеме находятся до резистора и после конденсатора.

Частота колебаний генератора изменяется до получения на экране осциллографа одинаковых по амплитуде синусоидальных кривых.
Это делается для точности измерений.
Представьте как рассчитать емкость конденсатора с помощью амплитудных значений напряжений?
Для этого  требуется воспользоваться формулой UR/UC*2πfR подставив в нее измеренные значения.
С его помощью также рассчитывается ток утечки конденсатора косвенным способом – через снижение напряжения на предварительно известном сопротивлении.
Осциллограф способен вычислить емкость конденсаторов от 20 pF до 200 mkF.

Тестером не имеющим прямой функции

Для нахождения варианта определения емкости с помощью тестера, но без функции замера емкости,
обратите внимание на формулу мгновенного значения тока во время его зарядки или разрядки i = С dU/dt.

Здесь дело в том, что кроме тестера, секундомера следует собрать схему с источником питания,

конденсатором и резистором с большим сопротивлением для увеличения времени процесса зарядки или разрядки.
После снятия всех показаний с тестера и секундомера можно, достаточно приближенно вычислить и узнать емкость.
Зная, как определить емкость конденсатора современными приборами, будет несложно разобраться и с устройством со времен СССР.
На экране происходит вывод не цифр, а отклонения стрелки, за которой важно внимательно следить.
Измерение емкости осуществляется только на разряженном конденсаторе.
Щупы выведите к контактам конденсатора, если он рабочий, то стрелка изначально отклонится и по мере заряда займет исходную позицию.
Скорость передвижения стрелки зависит от объема емкости.
Если стрелка тестера не сдвинулась с места, либо эта величина минимальная или отклонилась и зависла в одном положении – это показатель неисправности конденсатора.

Мостовыми измерителями

Емкость конденсатора измеряется методом сравнения с эталонной емкостью.
Для чего выполняется мостовая схема, где одно плечо работает с образцовым электрическим устройством, другое с тестируемым.
Показания моста могут быть реализованы на цифровых носителях.

Единицы расчета

Математическое выражение фарада

C=Q/V, где С – электрическая емкость, Q – сообщенный заряд, V – приложенное напряжение.

Диэлектрическая проницаемость

D = εF, где D – электрическая индукция в среде, ε — диэлектрическая проницаемость среды, F — сила взаимодействия между зарядами в вакууме.

Маркировка конденсаторов

На корпусе каждого конденсатора имеется специальная маркировка – буква и цифра.
По сравнению с резисторами, маркировка конденсатора, обозначающая емкость и код отклонения емкости, довольно-таки сложная и разнообразная.
Иногда обозначения наносятся прописными буквами – MF (микрофарады), fd – фарады.
Также на корпусе указаны положительные и отрицательные символы, помогающие определить полярность конденсатора.

Способы обозначения конденсатора

Единицей измерения емкости конденсатора является фарад, поэтому на корпусе элемента обязательно присутствует буква Ф или F:

  • 1 миллифарад = 10-3 фарад = 1мФ;
  • 1 микрофарад = 10-6 фарад = 1 мкФ;
  • 1 нанофарад = 10-9 фарад = 1 нФ;
  • 1 пикофарад = 10-12 фарад = 1 пФ.

Если на элементе не обозначен номинал, то целое значение свидетельствует о том, что емкость указана в пикофарадах.
На корпусе емкость указывается с отклонением, если указана буква J – то диапазон отклонения менее 5%, буква М – 20%.

Код конденсаторов импортных

Устройства зарубежного производства, так же как и российские, имеют маркировку согласно международных стандартов.
Данный нормативный документ предполагает нанесение кода из трех цифр. Первые две цифры обозначают емкость в пикофарадах.
Третья цифра говорит о количестве нулей, например, если емкость будет меньше 1 пикофарады, цифра будет выглядеть как «0».

Кодовая для конденсаторов поверхностного монтажа

Маркировка электролитических SMD конденсаторов состоит из емкости и рабочего напряжения.
Например,108V, где закодирована электроемкость 10 пф и рабочее напряжение 8 Вольт.
Знак плюс находится рядом с полоской.
Есть три основных способа кодировки:
код из двух или трех знаков (буквы или цифры), которые указывают на рабочее напряжение и номинальную емкость.
Показатели указываются буквой, а цифра является множителем;
четыре знака, обозначающие напряжение и номинальную емкость.
Первая буква – это рабочее напряжение, следующие символы – емкость в пикофарадах, последняя цифра – количество нулей;

если площадь корпуса большая, кода располагают на две строки.
Верхняя строка – номинал емкости, нижняя – рабочее напряжение.

 

Маркировка конденсаторов – Блог Getchips.ru

войти в систему

Добро пожаловат!Войдите в свой аккаунт

Ваше имя пользователя

Ваш пароль

Вы забыли свой пароль?

восстановление пароля

Восстановите свой пароль

Ваш адрес электронной почты

1627

Справочная информация. Как расшифровывается маркировка конденсаторов по обозначению на корпусе.

Почти все конденсаторы обладают маркировкой нанесённой на корпус для определения их электрических характеристик: ёмкости, номинального напряжения и допуска на отклонение от номинала, и т.

д.

На конденсаторах с большим размером корпуса обычно указывается полная информация о параметрах, но маркировка конденсаторов в малых корпусах зачастую может быть не понятна на первый взгляд. Так же существует цветовая маркировка, расшифровка которой тоже может стать непростой задачей.

На чип-конденсаторах и конденсаторах малых размеров обычно прописывают только значение ёмкости, ввиду отсутствия места на корпусе. На конденсаторах, для которых важна полярность, на корпусе будет отмечен положительный вывод. Если вам необходимо получить более полную информацию о параметрах, то придётся обратиться к документации на элемент.

Для начала вспомним, в чём измеряется ёмкость конденсатора.  Единицей измерения электрической ёмкости является фарад, но емкость в единицы фарад могут иметь только, так называемые, суперконденсаторы или ионисторы.

Большинство конденсаторов используемых при создании электроники имеют ёмкость в доли фарад. В таблице ниже приведены примеры обозначения единиц измерения электрической ёмкости в маркировке конденсаторов.

ОбозначениеЕдиница измерения
1 мкФ, 1 µF, 1 uF, 1 mF, 1mFМикрофарад, = 10-6 Ф
1 нФ, 1 nFНанофарад = 10-9 Ф
1 пФ, 1 pF, mmF, uuFПикофарад = 10-12 Ф

Так же иногда применяется маркировка строчными символами, MF вместо mF (1  — 1 микрофарад), а   F — fd/FD (1 mmfd — 1 пикофарад).

Существуют разные типы маркировки: цветом, цифрами или комбинацией цифр и букв.

Цветовая маркировка конденсаторов

Маркировка может состоять из полос, колец и точек; меток, обозначающих различные параметры.

Цветовая маркировка конденсаторовЦветовая маркировка конденсаторов — постоянные конденсаторыЦветовая маркировка конденсаторов — танталовые конденсаторы

Количество маркеров может разниться в зависимости от типа конденсатора, а в некоторых из них (например, трубчатых конденсаторах), при наличии пяти полос первый цвет обозначает температурный коэффициент, а остальные — ёмкость.

Маркировка цифрами

Конденсаторы, в корпусах больших размеров, позволяют указать в маркировке полную информацию об их параметрах. Например, 10 pF±10% 25V означает, что ёмкость конденсатора — 10 пикофарад; допуск на ёмкость — 10%; максимальное напряжение — 25 вольт. Если позволяет место на корпусе, указывается и тип тока в цепи (AC/DC), и полярность (для электролитических конденсаторов, обозначается символами «+» и «-»), а так же диапазон рабочих температур, например, -30/+55С°, дата изготовления и логотип компании изготовителя. Однако на компонентах малых размеров использовать полное обозначение не получится, и в таком случае прибегают к сокращенной записи, чаще всего это три или четыре цифры.

Цифровая маркировка конденсаторов

Если маркировка конденсатора состоит только из цифр, то его ёмкость всегда измеряются в пикофарадах, т.е. цифры в маркировке 5 и 10 значат 5 и 10 пикофарад соответственно. Если маркировка состоит из трёх цифр, то это значит, что значение ёмкости следует читать так: первые две — это мантисса числа в пикофарадах, а третья (от 0 до 6; цифра 7 обычно не используется) — порядок числа, т.

е количество нулей после мантиссы.

Так, код 104 означает, что надо взять число 10 и дописать к нему справа 4 нуля; получится 100000 пикофарад или, если перевести в более крупные единицы, 100 нанофарад или 0,1 микрофарада. При этом, если:

  • последняя цифра — 0, то нули дописывать не нужно, то есть 820 — это 82 пикофарада;
  • первая цифра — 0, то ёмкость конденсатора составляет менее 10 пикофарад: 010 = 1 пикофарад;
  • третья цифра 8, то первые две цифры надо умножить на 0,01.

То есть, например, маркировка 318 означает ёмкость конденсатора в 0,31 пикофарад (31 х 0,01). Если третья цифра 9, то первые две цифры умножаются на 0,1. Например, маркировка 709 — это ёмкость в 7 пикофарад (70 х 0,1).

Для более точного указания ёмкости используются четыре цифры, например, 4753. Принцип тот же самый: последняя цифра — количество нулей, цифры перед ней — ёмкость, то есть 4753 — это 475000 пикофарад или 475 нанофарад.

Маркировка конденсаторов цифрами и буквами

Всё чаще вместо просто цифровой маркировки используется маркировка с использованием цифр и букв. В этом случае важна не только сама буква в коде, но и позиция на которой она стоит. Так, буква R используется в качестве запятой, например, код 0R5 (или R5) равен 0,5 пикофарад, код 4R7 — 4,7 пикофарада. Буквы «p», «n» и «u», а также их прописные варианты тоже используются в качестве десятичной запятой, но вместе с тем обозначают и единицу измерения (пикофарад, нанофарад, микрофарад, соответственно). То есть код 5n6 означает 5,6 нанофарада, n56 — 0,56 нанофарада, 5u2 — 5,2 микрофарада, 4P7 — 4,7 пикофарада. Прописные буквы после трёхзначного числа (или трёхзначного числа + единица измерения) означают допуск:

Буквенный кодПроцент допуска
B± 0,10%
C± 0,25%
D± 0,5%
F± 1%
G± 2%
H± 3%
J± 5%
K± 10%
M± 20%
N± 0. 05%
P+100% ,-0%
Z+80%, -20%

Если код состоит из пяти или шести значений (1E504К), то его нужно разбить на три части. Первая — первая цифра и буква, означающие напряжение; вторая — обычный трёхзначный код; третья — буква допуска. То есть 1E504K — это конденсатор ёмкостью 504 нанофарада, номинальным напряжением 25 В и допуском ± 10%.

Обозначения напряжения

Цифро-буквенное обозначениеЗначение напряжения
0G4 В
0L5,5 В
0J6,3 В
1A10 В
1C16 В
1E25 В
1H50 В
1J63 В
0k80 В
2A100 В
2Q110 В
2B125 В
2C160 В
2Z180 В
2D200 В
2P220 В
2E250 В
2F315 В
2V350 В
2G400 В

Если напряжение обозначается только одной буквой, то по умолчанию цифра перед ней — единица. Например, маркировка D1622K означает, что ёмкость конденсатора — 16,2 нанофарада, допуск — ±10%, напряжение — 20 В. Двойка же перед буквой означает, что напряжение, обозначенное буквой, умножается на 10. То есть 1А = 10 В, 2А = 100 В; 1E = 25 В, 2Е = 250 В.

Если маркировка на конденсаторе имеет вид “буква-цифра-буква”, то информация касается рабочих температур устройства. Первая буква означает минимальную температуру:

Z = 10ºCY = -30ºCX = -55ºC

Цифра между буквами — максимальную температуру:

2 = 45ºC, 4= 65ºC, 5 = 85ºC, 6 = 105ºC, 7 = 125ºC, 8 = 150ºC, 9 = 200ºC

Вторая буква показывает процент изменения ёмкости конденсатора в пределах указанных температур:

А = ±1,0%Е = ±4,7%S = ±22%
В = ±1,5%F = ±7,5%Т = +22%,-33%
С = ±2,2%Р = ±10%U = +22%,-56%
D = ±3,3%R = ±15%V = +22%,-82%

Например, код X7R означает, что конденсатор будет работать в диапазоне температур от -55 до +125°C, а его ёмкость будет меняться в пределах ±15%.

Если маркировка имеет вид “буква-буква-цифра”, первая буква обозначает напряжение, вторая — ёмкость, а цифра — множитель.

Первая буква (рабочее напряжение)Вторая буква (ёмкость в пикофарадах)Цифра (множитель, количество нулей)
G = 4 В
J = 6,3 В или 7 В
А = 10 В
С = 16 В
D = 20 В
Е = 25 В
V = 35 В
T = 50 В
А = 1,0 пФ
Е = 1,5 пФ
J = 2,2 пФ
N = З,З пФ
S = 4,7 пФ
W = 6,В пФ
5 = 105
6 = 106
7 = 107

Перед буквами может стоять цифра, указывающая диапазон напряжения:

0 — для напряжений до 10В, 1 — для напряжений 100В, 2 — для напряжений до 1000В. То есть если С = 16 В, то 0С = 1,6 В; 1С = С = 16 В; 2С = 160 В. Таким образом, код АА7 будет читаться как 10 В, 10000000 пФ, то есть 10 микрофарад. Код JN6 — 6,3/7 В, 3,3 микрофарада.

Другие виды маркировок конденсаторов

В зависимости от типа конденсатора, страны и компании производителя, а также возраста компонента можно увидеть и другие обозначения — например, тип диэлектрика: NP0 (C0G), X7R, Y5V (Z5U). На старых отечественных конденсаторах маркировка нанесена кириллицей, например, Л = ±2% (соответствует G), А = +80%, -20% (соответствует Z) и т.д.

В некоторых случаях указывается значение температурного коэффициента ёмкости (ТКЕ). Буква в коде в этом случае будет разной для конденсаторов с ненормируемым показателем ТКЕ, конденсаторов с линейной и с нелинейной зависимостью ёмкости от температуры.

Больше примеров расшифровки маркировки конденсаторов.

Рассылка

Email–рассылка

Подпишитесь на Email-рассылку новостей проекта GetChips.

Имя

E-mail

Этот сайт использует cookie для хранения данных. Продолжая использовать сайт, Вы даете свое согласие на работу с этими файлами.

404: Страница не найдена

Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы извиняемся за любые неудобства.

Что я могу сделать сейчас?

Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:

Поиск
  • Пожалуйста, свяжитесь с нами, чтобы сообщить, что эта страница отсутствует, или используйте поле выше, чтобы продолжить поиск
  • Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, WhatIs.com.
  • Посетите нашу домашнюю страницу и просмотрите наши технические темы

Просмотр по категории

Сеть

  • оптоволокно до дома (FTTH)

    Оптоволокно до дома (FTTH), также называемое оптоволокном до дома (FTTP), представляет собой установку и использование оптического волокна от центрального …

  • Манчестерское кодирование

    При передаче данных манчестерское кодирование — это форма цифрового кодирования, в которой состояние бита данных — 0 или 1 — представляется . ..

  • нслукап

    Nslookup — это название программы, которая позволяет пользователям вводить имя хоста и узнавать соответствующий IP-адрес или доменное имя…

Безопасность

  • WPA3

    WPA3, также известный как Wi-Fi Protected Access 3, является третьей итерацией стандарта сертификации безопасности, разработанного Wi-Fi …

  • брандмауэр

    Брандмауэр — это устройство сетевой безопасности, предотвращающее несанкционированный доступ к сети. Проверяет входящий и исходящий трафик…

  • защита облачных рабочих нагрузок

    Защита рабочих нагрузок в облаке — это защита рабочих нагрузок, распределенных по нескольким облачным средам. Предприятия, использующие …

ИТ-директор

  • Agile-манифест

    The Agile Manifesto — это документ, определяющий четыре ключевые ценности и 12 принципов, в которые его авторы верят разработчикам программного обеспечения. ..

  • Общее управление качеством (TQM)

    Total Quality Management (TQM) — это система управления, основанная на вере в то, что организация может добиться долгосрочного успеха, …

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

HRSoftware

  • непрерывное управление производительностью

    Непрерывное управление эффективностью в контексте управления человеческими ресурсами (HR) представляет собой надзор за работой сотрудника …

  • вовлечения сотрудников

    Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.

  • кадровый резерв

    Кадровый резерв — это база данных кандидатов на работу, которые могут удовлетворить немедленные и долгосрочные потребности организации.

Обслуживание клиентов

  • бесконтактная оплата

    Бесконтактный платеж — это беспроводная финансовая транзакция, при которой покупатель совершает покупку, перемещая токен безопасности в …

  • исходящий вызов

    Исходящий вызов — это вызов, инициированный оператором центра обработки вызовов клиенту от имени центра обработки вызовов или клиента.

  • социальная CRM

    Social CRM, или социальное управление взаимоотношениями с клиентами, — это управление взаимоотношениями с клиентами и взаимодействие с ними, поддерживаемое …

Как прочитать конденсатор?

Конденсатор представляет собой электронный компонент, накапливающий энергию в электрическом поле. Он используется во многих различных приложениях, от компьютеров и телевизоров до автомобилей и грузовиков. Если вам когда-либо приходилось заменять конденсатор, вы знаете, что они могут быть дорогими. Вот почему важно иметь возможность прочитать его, чтобы вы могли определить, нужно ли его заменить или нет. В этой статье мы демистифицируем процесс чтения конденсатора, чтобы вы могли принять обоснованное решение в следующий раз, когда вам нужно его заменить.

Что такое конденсатор?

Конденсатор — это электронное устройство, которое накапливает и выделяет электрическую энергию. Конденсаторы можно найти в самых разных электронных устройствах, от компьютеров до сотовых телефонов и автомобилей. При зарядке конденсаторы накапливают энергию в электрическом поле между двумя проводящими пластинами. При разряде они высвобождают эту накопленную энергию в цепь. Его можно использовать для питания электронных устройств или для повышения тока при необходимости.

Конденсаторы бывают разных размеров и форм, но все они имеют две клеммы, которые позволяют подключать их к цепи. Размер конденсатора (измеряется в фарадах) определяет, сколько заряда он может хранить. Конденсаторы доступны в широком диапазоне размеров, от крошечных дисковых конденсаторов, которые могут поместиться в вашем кармане, до больших контейнерных конденсаторов, которые используются в промышленных приложениях.

Конденсаторы бывают двух основных типов: электролитические и неэлектролитические. Наиболее распространенным типом является электролитический конденсатор, который состоит из двух металлических пластин, разделенных электролитом. Эти конденсаторы поляризованы, что означает, что они могут быть подключены к цепи только одним способом. Если вы соедините их в обратном порядке, они будут уничтожены. Другой тип конденсатора — керамический конденсатор, состоящий из двух частей керамического материала, разделенных тонким слоем металла. Керамические конденсаторы неполяризованы и могут быть подключены к цепи любым способом.

Конденсаторы часто используются для фильтрации нежелательных электрических помех в сигнале. Их также можно использовать для кратковременного накопления энергии, например, во вспышке фотокамеры или в системе зажигания автомобиля. При выборе конденсатора важно учитывать размер, номинальное напряжение и емкость (измеряется в фарадах). [1]

Знакомство с единицами измерения

Теперь, когда мы ответили на вопрос «что такое конденсатор?», давайте перейдем к тому, как его читать. При чтении конденсатора вам нужно знать три вещи: значение, допуск и номинальное напряжение.

Считайте значение емкости

Конденсаторы обычно маркируются их емкостью, которая измеряется в фарадах. Фарад — это единица измерения, которая представляет собой количество заряда, которое может хранить конденсатор. Один фарад равен одному кулону (единица СИ электрического заряда) на вольт (единица СИ электрического потенциала). Фарады названы в честь Майкла Фарадея, английского ученого, открывшего электролиз в 1834 году.

Емкость конденсатора равна обычно печатается сбоку компонента вместе с номинальным напряжением и другой информацией. Например, конденсатор может иметь маркировку «100 В» и «0,47 мкФ». Это означает, что конденсатор имеет емкость 0,47 микрофарад (мкФ) и номинальное напряжение 100 вольт.

Чтобы считать конденсатор, вам нужно знать, как преобразовать фарады в микрофарады (мкФ). Один фарад равен и равен одному миллиону микрофарад , поэтому 0,47 фарад будет записано как 0,00047 фарад или 4700 мкФ.

Не обращайте особого внимания на заглавные буквы ; часто можно увидеть конденсаторы с маркировкой «µF» и «UF». [2], [4]

Проверка номинального напряжения

Номинальное напряжение конденсатора — это максимальное напряжение, которое можно приложить к клеммам без повреждения компонента. Как мы уже упоминали, это обычно напечатано на боковой стороне конденсатора вместе с емкостью и другой информацией. Например, конденсатор может иметь маркировку «100 В» и «0,47 мкФ». Это означает, что конденсатор имеет емкость 0,47 микрофарад (мкФ) и номинальное напряжение 100 вольт.

Важно проверить номинальное напряжение конденсатора перед его использованием в вашей цепи. Подача слишком большого напряжения на конденсатор может повредить или разрушить компонент.

Также важно отметить, что конденсаторы могут демонстрировать так называемую «зависимость от напряжения». Это означает, что их емкость может незначительно изменяться при изменении напряжения на них. Например, конденсатор емкостью 0,47 мкФ и зависимостью от напряжения ±20 % будет иметь емкость в диапазоне от 0,376 мкФ до 0,568 мкФ при 100 вольт, но только от 0,39 мкФ.от 2 мкФ до 0,544 мкФ при 50 вольт. [2], [3], [4]

Найдите допустимое значение

Допустимое отклонение конденсатора — это величина, на которую емкость может отличаться от указанного значения. Например, конденсатор емкостью 0,47 мкФ и допуском 20 % может иметь емкость в диапазоне от 0,376 мкФ до 0,568 мкФ. Чем ниже допуск, тем точнее будет значение емкости.

Допуск обычно обозначается кодом, напечатанным на боковой стороне конденсатора. Наиболее распространенными кодами являются J (±20%), K (±30%), M (±50%) и Z (±100%). Допуск обычно печатается на боковой стороне конденсатора рядом с емкостью.

При выборе конденсатора важно учитывать допуски, так как они будут влиять на то, насколько хорошо компонент будет работать в вашей схеме. Если вам нужно точное значение для правильной работы вашей схемы, вам следует выбрать конденсатор с небольшим допуском (например, ± 0,01%). Однако, если у вас есть некоторая гибкость в использовании значений, вы можете выбрать конденсатор с большим допуском (например, ± 20%).[2], [3], [4]

Учитывайте полярность выводов

При считывании показаний конденсатора также важно обращать внимание на полярность выводов. Большинство конденсаторов поляризованы, что означает, что они могут быть подключены к цепи только одним способом. Положительный отвод обычно помечается знаком «+», отрицательный — знаком «-». Некоторые конденсаторы, например электролитические, могут быть повреждены при обратном подключении.

Для правильной работы поляризованные конденсаторы должны быть подключены в правильном направлении. Если вы подключите поляризованный конденсатор в неправильном направлении, он не будет работать правильно (и может быть поврежден). Неполяризованные конденсаторы можно подключать в любом направлении, и они все равно будут работать правильно. Например, если вы используете конденсатор для фильтрации шума переменного тока от источника питания, вам необходимо убедиться, что положительный вывод конденсатора подключен к положительному выводу источника питания, а отрицательный вывод конденсатор подключен к земле. [2], [3], [4]

Чтение кодов компактных конденсаторов

Теперь, когда вы знаете основы чтения конденсаторов, давайте рассмотрим некоторые распространенные способы маркировки конденсаторов.

Запишите первые две цифры значения емкости

Если код конденсатора состоит из цифр и букв, первые две цифры кода будут представлять значение емкости . На большинстве конденсаторов напечатан трехзначный код. Первые две цифры — это значение, а третья цифра — множитель.

Если ваш конденсатор показывает только две цифры, за которыми следует буква, это значение вашей емкости в пикофарадах (пФ). Буква — это ваш множитель, никаких дополнительных вычислений выполнять не нужно.

Используйте третью цифру в качестве нулевого множителя

Если ваш код состоит из трех цифр, за которыми следует буква, третья цифра является вашим нулевым множителем . Это означает, что вам нужно будет умножить значение емкости в десять раз, чтобы получить истинное значение. Например, если ваш код читает 104 КБ, вы должны добавить четыре 0 в конце 104, чтобы получить 104 000.

Однако из этого правила есть несколько исключений. Если третье число равно 8, то число следует умножить на 0,01. Итак, если ваш код показывает 188 КБ, вы должны умножить 18 на 0,01, чтобы получить истинное значение, равное 0,18.

Если третье число 9, то число следует умножить на 0,1. Например, если ваш код показывает 188 КБ, вы должны умножить 18 на 0,1, чтобы получить истинное значение, равное 0,18.

Расчет единиц емкости для размера

Когда вы знаете, в каких единицах измеряется конденсатор, это значительно упрощает чтение его значения. Если вы не уверены в единицах измерения, поищите контекстные подсказки на принципиальной схеме или в другой документации. Однако в некоторых случаях размер конденсатора может дать вам представление о единицах его емкости. Например, очень маленькие конденсаторы обычно измеряются в пикофарадах (пФ), а большие конденсаторы — в фарадах (Ф).

Обзор демонтажного пистолета Hakko 808

Как читать коды, содержащие буквы

Не все коды начинаются только с цифр, в некоторых есть и буквы. Они представляют собой допуск конденсатора, то есть насколько точно значение емкости на самом деле. Наиболее часто встречающаяся буква — «R», что означает «пФ». Это означает, что значение емкости 6R2 будет около 6,2.

Маленькие буквы, такие как p, n или u, обычно обозначают пикофарад (пФ), нанофарад (нФ) или микрофарад (мкФ) соответственно. Итак, код, который читает n47, будет 0,47 nf.

Иногда код смешивает значение напряжения с емкостью, например 1A348. В этом случае сначала указывается напряжение (1 А), а затем емкость (348).

K или M обычно являются самыми высокими множителями, которые вы можете увидеть, и оба они представляют собой тысячу. Таким образом, код, который читает 104K, будет 104 000 пФ.

Прочтите код допуска для керамических конденсаторов

Керамические конденсаторы являются одним из наиболее распространенных типов конденсаторов, используемых в электронных схемах. Они изготовлены из керамического материала с высокой диэлектрической проницаемостью. Это означает, что они могут хранить очень большое количество электрического заряда для своего размера. Керамические конденсаторы обычно небольшие и легкие, что делает их идеальными для использования в портативных электронных устройствах.

Одним из недостатков керамических конденсаторов является то, что они имеют относительно низкий диапазон рабочих температур. Это означает, что они могут быть повреждены при воздействии чрезмерного тепла или холода. Еще одним недостатком является то, что они, как правило, менее надежны, чем другие типы конденсаторов, например электролитические конденсаторы.

Будучи меньше, неудивительно, что коды, используемые для чтения их значений, более компактны. На самом деле, много раз вы найдете четырехсимвольный код вместо стандартных пяти цифр. Первые три цифры в этом коде представляют емкость, а третий символ, буква, представляет допуск. Например, керамический конденсатор с кодом «223J» будет иметь значение 223 пикофарад с допуском +/- 5%.

Как видите, разные буквы обозначают разные значения допуска. Давайте перечислим их вместе с соответствующим процентом:

  • B: +/-0,1 пф
  • C: +/-0,25 пф
  • D: +/-0,5 пф
  • F: +/-1%
  • G : +/-2%
  • J: +/-5%
  • K: +/-10%
  • M: +/-20%
  • Z: +80%/-20%

Как видите, прочитать показания керамического конденсатора относительно легко, если знать, что искать. Просто помните, что первые две цифры представляют собой значение, а третья цифра представляет собой допуск. Имея в виду эту информацию, вы сможете без проблем прочитать код любого керамического конденсатора.

Чтение значений допуска буква-цифра-буква

Иногда допуск представляется не только одной буквой, но и комбинацией буква-цифра-буква. Их называют кодами «множителей», и они используются для обозначения допуска очень больших или маленьких конденсаторов.

Первым символом в этом коде всегда является буква, представляющая минимальный температурный коэффициент . Например, Z будет равно 10ºC, Y равно -30ºC, а X равно -55ºC.

Далее следует число, представляющее максимальную температуру . Например: 2 = 45°С, 4 = 65°С, 5 = 85°С, 6 = 105°С, 7 = 125°С.

Последняя буква обозначает изменение емкости в зависимости от температуры. Буква A является наиболее точной и указывает на изменение +/- 1%. Буква V является наименее точной и указывает на изменение +22/-82%.

Интерпретация кодов напряжения

Наконец, некоторые конденсаторы также имеют код напряжения. Чтобы прочесть его, вам необходимо обратиться к таблице EIA. Код напряжения появится в виде двузначного кода, состоящего из цифры и буквы. Например, если вы видите 2D, это означает, что конденсатор рассчитан на использование до 200 вольт.[4]

Часто задаваемые вопросы

Как измерить конденсатор с помощью мультиметра?

Чтобы измерить конденсатор с помощью мультиметра, вам необходимо установить мультиметр в режим «емкость». Сделав это, просто прикоснитесь выводами конденсатора к соответствующим клеммам на мультиметре. Показание на дисплее покажет вам емкость конденсатора.

Важно отметить, что на большинстве конденсаторов напечатано их значение, поэтому часто вы можете просто посмотреть его вместо использования мультиметра. Однако, если значение не напечатано или вы хотите проверить неизвестный конденсатор, использование мультиметра, безусловно, является подходящим способом.

Какая маркировка имеется на конденсаторе?

Маркировка на конденсаторе называется «маркировкой полярности». Они указывают порядок слоев внутри конденсатора. Положительный вывод (более длинная нога) идет к «+», а отрицательный вывод (более короткая нога) — к «-».

Если вы все еще не уверены, что есть что, есть несколько других способов определить. Сначала найдите полосу или точку на одном из проводов. Это указывает на отрицательное отведение. Во-вторых, посмотрите на корпус конденсатора. Более длинный провод обычно находится ближе к земле (большая металлическая пластина).

Что означают буквы и цифры на конденсаторе?

Буквы и цифры на конденсаторе указывают его номинал и допуск. Значение измеряется в фарадах (символ: F), а допуск обозначается знаком процента. Например, если конденсатор имеет маркировку «100 нФ 50 В», его емкость составляет 100 нанофарад (0,0001 фарад) с допуском плюс-минус 50%.

Чтобы считать конденсатор, вам нужно знать две вещи: значение и допуск. Значение измеряется в фарадах, а допуск обозначается знаком процента.

Как узнать напряжение на конденсаторе?

Напряжение конденсатора можно измерить с помощью мультиметра. Сначала установите мультиметр в положение «Напряжение постоянного тока». Затем прикоснитесь черным щупом мультиметра к отрицательной клемме конденсатора, а красным щупом мультиметра — к положительной клемме конденсатора. По показаниям мультиметра вы узнаете напряжение на клеммах конденсатора.

Полезное видео: Как читать цифры на конденсаторе

Заключение

Благодаря этому руководству вы теперь знаете, как читать конденсатор. Базовое значение конденсатора измеряется в фарадах (Ф), которые являются единицей емкости. Если вам нужно освежить память, помните, что конденсаторы накапливают электрическую энергию в электрическом поле между двумя проводниками (обычно металлическими пластинами). На конденсаторах будет написан код, код говорит вам о емкости, напряжении и допуске. В зависимости от типа конденсатора код может состоять из пяти, четырех или трех цифр.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *