Катушка тесла | это… Что такое Катушка тесла?
Разряды с провода на терминале
Трансформа́тор Те́сла — единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. «Трансформатор Тесла» также известен под названием «катушка Теслы» (англ. Tesla coil). В России часто используют следующие сокращения: ТС (от Tesla coil), КТ (катушка Тесла), просто тесла и даже ласкательно — катька. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».
Содержание
|
Описание конструкции
Схема простейшего трансформатора Теслы
В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).
Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.
Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.
Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.
Функционирование
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.
Заряд
Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения (50 или 60 Гц).
Генерация
После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения!
Модификации
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника. Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами.
В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются (или просто замыкают) к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников их иногда помещают в жидкие или газообразные диэлектрики (например, в масло). Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DCDRSSTC. В отдельную категорию также относят магниферные катушки Теслы.
Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.
Использование трансформатора Теслы
Разряд трансформатора Теслы
Разряд с конца провода
Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину.
Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняют вреда внутренним органам (см. Скин-эффект), оказывая при этом тонизирующее и оздоравливающее влияние.
В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.
- ↑ Однако необходимо знать, какие напряжения и диапазоны частот безвредны для организма
- ↑ Появление злокачественных опухолей (рака)
Трансформатор Теслы используется военными для быстрого уничтожения всей электроники в здании,танке,корабле.Создается на доли секунды мощный электромагнитный импульс в радиусе нескольких десятков метров.В результате перегорают все микросхемы и транзисторы,полупроводниковая электроника.Данное устройство работает совершенно бесшумно.В прессе появилось сообщение, что частота тока при этом достигает 1 Терагерц.
Эффекты, наблюдаемые при работе трансформатора Теслы
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Неизвестные эффекты трансформатора Теслы
На крупных купюрах сербских динаров с портретом Теслы на реверсе изображён трансформатор Теслы. 1992 и 1993 |
Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.
Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.
Трансформатор Теслы в культуре
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».
В игре Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию. Tesla coil (в одном из переводов — башня Тесла) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно “заряжать” башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.
Также в игре
В игре Return to Castle Wolfenstein есть оружие, именуемое «Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.
В первой редакции игры
Ссылки
- Tesla Downunder — Интересные любительские реализации трансформатора Теслы.
- Видеоролики экспериментов и фокусов с трансформатором Тесла
- flyback.org.ru — Российский форум Общества любителей высоких напряжений и экспериментов, связанных с высокими напряжениями, энергиями, мощными разрядами и различными экспериментами с ними в домашних условиях.
- www.tb3.com/tesla/index.html — сайт Терри Блэйка, видного американского тесластроителя.
- www.hot-streamer.com — англоязычный сайт о трансформаторах Теслы.
- Симфония катушки Теслы
- Простая реализация трансформатора Теслы.
См. также
- Закон Пашена
- Лампа чёрного света
- Плазменная лампа.
Трансформатор Теслы | это… Что такое Трансформатор Теслы?
Разряды с провода на терминале
Трансформа́тор Те́сла, также катушка Теслы (англ. Tesla coil) — единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».
Содержание
|
Описание конструкции
Схема простейшего трансформатора Теслы
В элементарной форме трансформатор Теслы состоит из двух катушек — первичной и вторичной, а также обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).
Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.
Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.
Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.
Функционирование
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.
Заряд
Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения (50 или 60 Гц).
Генерация
После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения.
Модификации
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.
Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются (или просто замыкают) к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников их иногда помещают в жидкие или газообразные диэлектрики (например, в масло). Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DCDRSSTC. В отдельную категорию также относят магниферные катушки Теслы.
Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как IGBT транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.
Использование трансформатора Теслы
Разряд трансформатора Теслы
Разряд с конца провода
Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.
Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи якобы не причиняли вреда внутренним органам (см.: скин-эффект), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.
Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния. Так же он использовался как орудие пыток. Мощные разряды высокой частоты почти всегда приводили к смерти.
Похожая на этот трансформатор схема используется в системах зажигания двигателей внутреннего сгорания, но там она низкочастотная.
В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.
Эффекты, наблюдаемые при работе трансформатора Теслы
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Неизвестные эффекты трансформатора Теслы
На крупных купюрах сербских динаров с портретом Теслы на реверсе изображён трансформатор Теслы. 1992 и 1993 |
Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.
Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.
Трансформатор Теслы в культуре
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».
В фильме «Престиж» Кристофера Нолана, для победы одного иллюзиониста над другим в мастерстве «телепортации», Роберт Энджер (Хью Джекман), обращается к Николе Тесла за помощью. Никола же в свою очередь сделал ему машину, с трансформатором Теслы, у которой оказалась одна недоработка — она не телепортировала, а клонировала. Телепортация же была побочным эффектом.
В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию.
Tesla coil (в одном из переводов — башня Тесла) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно «заряжать» башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.
Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.
В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.
В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum
В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.
В игре “Вивисектор” присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.
Сравнительные особенности
Напряжение на выходе данного трансформатора является переменным, а ток чрезвычайно мал. Это приводит к тому, что, несмотря на потенциал в миллионы вольт, прикосновение и разряд в тело человека может быть безопасным. В противоположность этому, другие высоковольтные генераторы, например, преобразователь для люстры Чижевского, высоковольтный умножитель телевизора, и иные бытовые ВВ генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение — “всего” порядка 25 кВ — являются смертельно опасными. Их выходные выпрямительные ёмкости могут дать при прикосновении импульс тока величины, несовместимой с жизнью. В люстре Чижевского должны быть предусмотрены токоограничительные резисторы. Но в телевизоре их установить невозможно.
См. также
- Закон Пашена
- Плазменная лампа
Ссылки
- Tesla Downunder — любительские реализации трансформатора Теслы.
- Видеоролики экспериментов и фокусов с трансформатором Тесла
- Как сделать трансформатор Тесла (на русском языке)
- Форум Общества любителей высоких напряжений и экспериментов, связанных с высокими напряжениями, энергиями, мощными разрядами и различными экспериментами с ними в домашних условиях(рус.)
- Сайт Терри Блэйка, американского тесластроителя
- Сайт о трансформаторах Теслы(англ.)
- Симфония катушки Теслы
- Простая реализация трансформатора Теслы
Беспроводное электричество? Как работает катушка Теслы
Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот как это работает.
Студент Университета Иллинойса Стив Уорд и старший техник Fermilab Джефф Ларсон разработали двойные катушки Теслы, способные испускать искры на 12 футов (4 метра). (Изображение предоставлено Фермилаб)Среди своих многочисленных инноваций Никола Тесла мечтал создать способ обеспечения мира электроэнергией без прокладки проводов по всему миру. Изобретатель был близок к этому, когда его эксперименты с электричеством в стиле «безумного ученого» привели к созданию катушки Теслы.
Первая система, которая могла передавать электричество по беспроводной связи, катушка Тесла была поистине революционным изобретением. Ранние радиоантенны и телеграфы использовали это изобретение, но варианты катушки также могут делать просто крутые вещи — например, стрелять молниями, посылать электрические токи через тело и создавать электронные ветры.
Тесла разработал катушку в 1891 году, до того, как обычные трансформаторы с железным сердечником использовались для питания таких устройств, как системы освещения и телефонные цепи. Эти обычные трансформаторы не могут выдержать высокую частоту и высокое напряжение, которые могут выдержать более свободные катушки в изобретении Теслы. Концепция катушки на самом деле довольно проста и использует электромагнитную силу и резонанс. Используя медную проволоку и стеклянные бутылки, электрик-любитель может построить катушку Тесла, которая может производить четверть миллиона вольт. [Инфографика: как работает катушка Теслы]
Установка
Катушка Тесла состоит из двух частей: первичной и вторичной, каждая со своим конденсатором. (Конденсаторы хранят электроэнергию точно так же, как батареи.) Две катушки и конденсаторы соединены искровым разрядником — воздушным зазором между двумя электродами, который генерирует электрическую искру. Внешний источник, подключенный к трансформатору, питает всю систему. По сути, катушка Тесла представляет собой две разомкнутые электрические цепи, соединенные с искровым разрядником.
Катушка Тесла нуждается в высоковольтном источнике питания. Обычный источник питания, питаемый через трансформатор, может выдать ток необходимой мощности (не менее тысячи вольт).
В этом случае трансформатор может преобразовывать низкое напряжение сети в высокое напряжение.
Как катушки Теслы генерируют электрические поля высокого напряжения. (Изображение предоставлено Россом Торо, художником по инфографике)Как это работает
Источник питания подключен к первичной обмотке. Конденсатор первичной обмотки действует как губка и впитывает заряд. Сама первичная катушка должна выдерживать большой заряд и огромные скачки тока, поэтому катушку обычно делают из меди, которая хорошо проводит электричество. В конце концов, конденсатор накапливает столько заряда, что разрушает сопротивление воздуха в искровом промежутке. Затем, подобно выдавливанию смоченной губки, ток течет из конденсатора вниз по первичной обмотке и создает магнитное поле.
Большое количество энергии приводит к быстрому разрушению магнитного поля и генерирует электрический ток во вторичной обмотке. Напряжение, пронизывающее воздух между двумя катушками, создает искры в искровом промежутке. Энергия перебрасывается туда и обратно между двумя катушками несколько сотен раз в секунду и накапливается во вторичной катушке и конденсаторе. В конце концов, заряд во вторичном конденсаторе становится настолько высоким, что он вырывается на свободу в результате мощного выброса электрического тока.
Возникающее в результате высокочастотное напряжение может освещать люминесцентные лампы на расстоянии нескольких футов без подключения к электрическому проводу. [Фотографии: Историческая лаборатория Николы Теслы в Уорденклиффе]
В идеально спроектированной катушке Теслы, когда вторичная катушка достигает максимального заряда, весь процесс должен начаться заново, и устройство должно стать самоподдерживающимся. Однако на практике этого не происходит. Нагретый воздух в искровом промежутке отводит часть электричества от вторичной катушки обратно в зазор, так что в конечном итоге катушка Тесла исчерпает энергию. Вот почему катушка должна быть подключена к внешнему источнику питания.
Принцип работы катушки Теслы заключается в достижении явления, называемого резонансом. Это происходит, когда первичная катушка пропускает ток во вторичную катушку как раз в нужное время, чтобы максимизировать энергию, передаваемую во вторичную катушку. Думайте об этом как о моменте, когда нужно подтолкнуть кого-то на качелях, чтобы они качнулись как можно выше.
Настройка катушки Тесла с регулируемым поворотным разрядником дает оператору больше контроля над напряжением тока, который она производит. Вот как катушки могут создавать сумасшедшие вспышки молнии и даже могут быть настроены для воспроизведения музыки, приуроченной к вспышкам тока.
Хотя катушка Теслы больше не имеет практического применения, изобретение Теслы полностью изменило понимание и использование электричества. В радиоприемниках и телевизорах до сих пор используются разновидности катушки Теслы.
Подпишитесь на Келли Дикерсон в Twitter . Подпишитесь на нас @livescience , Facebook и Google+ . Оригинальная статья о Live Science .
Келли Дикерсон — штатный сотрудник Live Science и Space.com. Она регулярно пишет о физике, астрономии и проблемах окружающей среды, а также на общенаучные темы. Келли работает над степенью магистра гуманитарных наук в Высшей школе журналистики Городского университета Нью-Йорка, а также имеет степень бакалавра наук и степень бакалавра гуманитарных наук в колледже Берри. Келли занимается плаванием в течение 13 лет, увлекается скимбордингом и бегом на длинные дистанции.
Большая катушка Тесла | Демонстрационный зал физики UCSC
Рисунок 1: Наша катушка Тесла (искровой разрядник)
Наша самодельная катушка Тесла может генерировать 1,2 миллиона вольт высокочастотного переменного тока. Он может производить длинные шумные искры и является одной из любимых демонстраций учащихся. Также доступна настольная версия катушки Тесла высотой 12 дюймов.
Оборудование:
- Катушка Тесла
- Длинная люминесцентная лампа
- Демонстратор (в одиночку это должны делать только опытные инструкторы!)
Демонстрация:
- Разместите катушку Тесла вдали от любых металлических предметов, ноутбуков и людей (не менее нескольких метров). Проложите кабель с красной кнопкой на конце на приличном расстоянии от катушки.
- Поверните ключ в положение «ВКЛ», затем включите вентилятор.
- Приглушите свет.
- Встаньте в нескольких метрах от катушки и нажмите красную кнопку на кабеле, чтобы из металлической сферы вырвался свет.
- Поместите люминесцентную лампу на стол рядом с катушкой, чтобы показать, что катушка Тесла может питать ее посредством беспроводной передачи энергии
Объяснение:
Все катушки Тесла состоят из 4 основных компонентов: первичной катушки, вторичной катушки, верхней нагрузки и схемы управления. При правильном сочетании эти части позволяют катушкам Теслы создавать экстремальные напряжения в верхней нагрузке, что позволяет создавать большие электрические дуги в воздухе.
Рисунок 2: Диаграмма катушки Тесла, Live Science
Для обычной катушки Тесла этот впечатляющий дисплей основан на накоплении энергии в схеме управления и передаче энергии от первичной катушки к вторичной. Во-первых, энергия накапливается в большой батарее конденсаторов (группировка конденсаторов последовательно или параллельно) под основными катушками. Этот конденсаторный накопитель энергии позволяет подавать короткие импульсы высокой мощности на первичную катушку. Как только этот высокочастотный ток поступает в первичную катушку, следующая ступень передачи энергии зависит от соединения первичной и вторичной катушек. Первичная катушка, большая медная трубка, обернутая вокруг основания катушки Тесла, имеет гораздо меньшее количество витков по сравнению со вторичной катушкой, тонким красным проводом, охватывающим всю катушку Тесла до верхней нагрузки. Эта комбинация катушек эффективно создает повышающий трансформатор, преобразующий низкое напряжение, сильноточный ток в первичной катушке в высоковольтный, слаботочный электричество во вторичной катушке. Вторичная катушка подключена к верхней нагрузке, в нашем случае к большому металлическому шару, а другой конец заземлен. Эти соединения можно увидеть на рисунке 3:
Рисунок 3: Схема катушки Тесла, Википедия
На данном этапе наша катушка Тесла имеет большой перепад напряжения (1,2 миллиона вольт) между верхней нагрузкой и землей. Единственная причина, по которой он может создавать такие большие напряжения, связана с эффективной емкостью (C2 на рис. 3 выше) между верхней нагрузкой и землей, создаваемой воздушным зазором между ними. Однако, как только напряжение поднимется достаточно высоко, этот воздушный зазор окажется коротким для нашего высоковольтного электричества. Наконец, наша катушка Теслы посылает длинные электрические разряды по воздуху.
На самом деле связь между первичной и вторичной обмотками не так проста, как в обычном повышающем трансформаторе. Трансформаторы обычно работают с постоянным током и, следовательно, с постоянным магнитным полем в их сердечнике. Напротив, катушки Теслы работают с переменным током, что делает их связь катушек резонансным гармоническим генератором. Каждая катушка имеет соответствующую резонансную частоту:
Приравнивание этих частот дает отношение L 1 C 1 =L 2 C 2
Когда резонансные частоты этих двух катушек равны, колебание достигает максимальной передачи мощности. Чтобы согласовать эти две частоты, проще всего изменить количество витков как в первичной, так и во вторичной катушках. Емкость цепи первичной катушки достаточно просто отрегулировать, так как это батарея конденсаторов, используемая в схеме управления. Однако емкость вторичной цепи гораздо сложнее настроить, потому что она связана с формой верхней нагрузки и расстоянием, на котором искры проходят через воздух. Обычно эти резонансные частоты находятся в диапазоне радиочастот (от 100 кГц до 1 МГц).
Исходя из вышеизложенного, можно предположить, что первичная и вторичная катушки являются наиболее заметными частями сборки катушек Теслы. Тем не менее, схема управления играет неоспоримо большую роль в работе этой искрогасительной штуковины. Из-за сложного состава электрических компонентов проектирование схемы управления относится к области электротехники. С другой стороны, связь первичной и вторичной катушек в большей степени зависит от физики в виде наведенных магнитных полей, вызванных движущимися заряженными частицами.
Конструкция этих цепей, подающих ток на первичную катушку, в значительной степени зависит от того, какой тип катушки Теслы предполагается построить. Наиболее распространенные формы катушки Тесла включают искровой разрядник и полупроводниковую катушку.
Наша катушка Тесла имеет искровой разрядник. Схема управления искровым разрядником намного проще, чем ее твердотельные аналоги, потому что она состоит только из зарядного конденсатора и искрового разрядника, как следует из названия. Конденсатор накапливает ток до тех пор, пока не достигнет достаточно высокого напряжения для короткого замыкания искрового промежутка (замыкание цепи с небольшим или нулевым сопротивлением), посылая высокочастотный переменный ток на первичную катушку. Принципиальную схему такой цепи можно увидеть на рисунке 4 ниже:
Рис. 4. Упрощенный ТП искрового разрядника, Википедия
Рис. 5. ТП искрового разрядника в работе, Википедия
На более сложной стороне конструкции находится твердотельная катушка Тесла (SSTC). SSTC отличается от эквивалента искрового разрядника тем, что в нем используются транзисторы (BJT, MOSFET и тиристоры) и микросхемы операционных усилителей (операционный усилитель) для подачи питания на первичную катушку. Повышенная сложность этой конструкции дает много преимуществ. Во-первых, использование транзисторов для подачи тока позволяет регулировать диапазон выходных частот. Это позволяет легко оптимизировать передачу мощности между первичной и вторичной обмотками. Во-вторых, такая установка гораздо тише подает ток, поскольку в ней отсутствует зазор, через который с шумом проскакивают искры. Наконец, SSTC позволяет вносить более широкий диапазон изменений в производимые искры. Изменение рабочего цикла на выходе вашей схемы управления создает возможность изменения формы дуги (щеточный, стримерный или коронный разряд). Кроме того, подача выходного сигнала, сочетающего две частоты, может создавать слышимый звук, также известный как поющая катушка Тесла. Пример оформления SSTC:
Рисунок 6: Твердотельная TC-диаграмма, катушки Тесла Стива Уорда
Рисунок 7: SSTC, производящие кистевые разряды, катушки Тесла Стива Уорда
Эти высокие уровни сложности позволяют повысить эффективность и отдачу мощности по сравнению с их альтернативами с искровым разрядником. Помимо этих различий, искровой разрядник и SSTC очень похожи и дают аналогичные результаты.
Демонстрационные фотографии:
Рисунок 8: Наша катушка Тесла в Thimann 3
Рисунок 9: Катушка Тесла и люминесцентный свет
Рисунок 10: Наша катушка Тесла в действии
Рисунок 11: Катушка Тесла питает люминесцентную лампу без контакта
Примечания:
- Внимание! и может повредить компьютеры или чувствительное оборудование.