Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

1. Счетчики Основные параметры и классификация

Счетчиком называется функциональный узел ЭВМ, предназначенный для подсчета числа входных сигналов и хранения результата счета в двоичном коде. Счетчики выполняются на элементах памяти (триггерах), образующих двоичные разряды, и элементах комбинационной логики.

Счетчики могут быть с естественным и произвольным порядком счета. При естественном порядке счета результат счета изменяется на единицу при поступлении на вход счетчика каждого сигнала (импульса). В счетчиках с произвольным порядком счета, называемых также пересчетными устройствами, при поступлении входных сигналов результат счета может изменяться произвольно в соответствии с заданным законом.

Основными параметрами счетчиков являются модуль счета (коэффициент пересчета, емкость счетчика) Ксч и быстродействие. Модулем счета называют число состояний, которые он приобретает под действием входных сигналов. Если счетчик начал считать с начального состояния, то через каждые Кcч входных сигналов он снова возвращается в начальное состояние, а на его выходе появляется сигнал Ксч-ичного переноса. Быстродействие счетчика определяется разрешающей способностью и временем установки. Разрешающая способность t

Р характеризуется периодом входных импульсов ТСЧ, при котором счетчик еще работает без сбоев, а время установки tУСТ — интервалом времени от момента поступления сигнала на вход счетчика до завершения перехода счетчика в новое состояние.

По значению модуля счета счетчики делятся на двоичные (Ксч =2n, где n число разрядов), двоично-кодированные (имеют произвольный модуль счета, но все состояния кодируются двоичными кодами), счетчики с одинарным кодированием (состояние счетчика определяется местом расположения единственной единицы), счетчики с унитарным кодированием (состояние счетчика представлено числом единиц) и др.

По направлению счета счетчики могут быть суммирующими (прямого счета), вычитающими (обратного счета) и реверсивными, т.е. способными работать как в режиме суммирования, так и в режиме вычитания.

По структурной организации счетчики делятся на последовательные (асинхронные), параллельные (синхронные) и параллельно-последовательные.

Помимо входа для приема подсчитываемых сигналов счетчик может иметь вход общего сброса R и входы данных Di для параллельной загрузки произвольного кода. В последнем случае для осуществления загрузки предусматривается еще один вход — вход разрешения параллельной загрузки PL (parallel 1оаd).

Счетчики используются в ЭВМ для осуществления последовательного выполнения команд программы, подсчета числа циклов выполненных операций, образования адресов при обращении к запоминающим устройствам, в качестве делителей частоты в цифровых электронных часах и частотомерах и др.

2-3 Последовательные счетчики

В счетчиках, показанных на рис.12.1, используется непосредственная связь между выходами и входами триггеров. Поскольку каждый триггер (кроме первого) переключается выходным сигналом предыдущего, в таких счетчиках нет специальных схем формирования сигналов переноса или заема: их роль выполняют сигналы с выходов старшего разряда. Наращивание разрядности достигается путем последовательного подключения нужного количества триггеров. Однако несмотря на эти достоинства, а также простоту схемной реализации, область применения последовательных счетчиков с непосредственными связями ограничивается пределом их быстродействия.

На рис. 12.2 приведены временные диаграммы трехразрядного суммирующего счетчика, выполненного по схеме рис. 12.1, а.

Параметр tТГ характеризует задержку переключения триггера при поступлении на его вход отрицательного перепада напряжения. Наличие этой задержки вызывает появление “ошибочных” результатов, не предусмотренных таблицей его функционирования (см. табл. 12.1). Так, например, после окончания действия второго входного импульса перед правильным состоянием Q2Q1Q0=010 на некоторое время возникает неправильное состояние Q2Q1Q0=000, соответствующее переходным процессам в триггерах нулевого и первого разрядов. Из-за переходных процессов при переключениях триггеров всех трех разрядов после окончания четвертого (а также восьмого) входного импульса установлению правильного состояния Q2Q1Q0=100 предшествуют два неправильных: 010 и 000. Следовательно индикацию результата счета в таком счетчике (а значит, и интервал между входными импульсами) следует осуществлять не ранее, чем через время t=3t

ТГ. При этом максимальная частота следования входных импульсов определяется формулой:

,

где tИ – длительность импульса.

С увеличением разрядности счетчика увеличивается время задержки переключения триггера n-го разряда относительно среза входных импульсов, поэтому для n-разрядного счетчика с последовательным переносом максимальная частота входных импульсов будет равна:

.

На диаграммах виден и режим деления частоты: каждый последующий триггер переключается вдвое реже, чем предыдущий. Поскольку предыдущий триггер выполняет роль генератора импульсов для последующего, то максимальная частота входных импульсов в режиме деления частоты ограничивается возможностями триггера младшего разряда и равна 1/tТГ. Задержки переключения триггеров последующих разрядов вызовут лишь появление фазовых сдвигов между входной и выходной последовательностями импульсов.

Примером интегрального двоичного счетчика с непосредственными связями может служить микросхема К155ИЕ5 (рис.  12.3,  а). Она представляет собой 4-разрядный двоичный счетчик, выполненный на двухступенчатых JK-триггерах с двумя счетными входами С1 и С2 и двумя входами сброса в нуль R1 и R2. Выход Q0 внутренне не соединен с последующими триггерами, что дает возможность использовать схему в качестве 3-разрядного или 4-разрядного двоичного счетчика. В первом случае счетные импульсы подают на вход С2, а во втором – на вход С1, предварительно объединив выход Q0 со входом C2. Входы сброса R1 и R2 обеспечивают сброс счетчика в нулевое состояние при R1=R2=1. При выполнении операции счета на одном из входов R

1 или R2 ( или на обоих ) должен присутствовать потенциал низкого уровня.

Условное обозначение счетчика дано на рис. 12.3, б.

studfile.net

Классификация электросчетчиков

Счетчики электроэнергии  – многофункциональные устройства для учета, потребления и сохранение информации по потреблению электроэнергии. Еще до недавно электросчетчики были достаточно простыми устройствами индукционного типа действия с одно тарифным учетом,  но с появлением в современном мире микро элементной базы счетчики стремительно эволюционировали, разделились по многим классам и функциональным возможностям.

  1. Счетчики электроэнергии делятся на индукционные и электронные
    • Индукционные счетчики –названы так за счет эффекта магнитной индукции, приводящей в движение магнитопровод и отчетное устройство счетчика, под действием протекающего тока.    Особенности: слабая защита от хищений, повышенное собственное потребление, ограниченность доп. функций, низкий класс точности.
    • Электронные электросчетчики – устройства, с шунтом в качестве датчика тока ( в подавляющем большинстве) и микросхемой платы для анализа показаний и вывода на отчетное устройство.  Особенности –  высокий класс точности, возможен много тарифный учет и сохранение информации по потреблению. 
  2. По типу сети, к которой подключается счетчик
  3. Способ подключения. Счетчики электроэнергии подключаются или напрямую к измеряемой сети, в этом случае подключение называют «прямым», или через измерительный трансформатор –«трансформаторное подключение»
  4. По количество  измеряемых тарифов счетчики  подразделяются на много тарифные и одно тарифные. Много тарифная система учета –  это подсчет количества потребленной энергии в различное время суток, дней недели, связи с различной стоимостью электроэнергии в течении дня.  По умолчанию много тарифные электросчетчики запрограммированы под тариф «день-ночь» согласно смене тарифного расписания в Вашем регионе. 
  5. Тип тарификатор а у многотарифных электросчетчиков : с внутренним и внешним тарификатором 
    • С внешним  тарификатором – переключение происходит под действием внешнего сигнала от внешнего тарификатора (отдельно приобретаемое устройство) или сигнал передается через каналы связи если электросчетчик включен в систему АСКУЭ
    • Внутренний тарификатор – устройство,  включенное в устройство электросчетчика. Из недостатков, при изменении тарифного расписания в регионе необходимость ручного перепрограммирования каждого счетчика.
  6. По максимальному, базовому, стартовому измеряемому току
    • Стартовый ток –величина с которой начинается регистрации электроэнергии счетчиков
    • Максимальный ток– максимальная величина тока, при котором происходит корректная регистрация потребляемого тока. 
    • Базовый ток – значение тока, который является  исходным для установления требований к счетчику с непосредственным включением.
  7. По классу точности  – погрешность измерения относительно диапазона измерений. При классе точности 1 и максимальному току  60А, максимальная погрешность равна 0,6А. В настоящий момент большинство бытовых электросчетчиков имеют класс точности 1.0
  8. По типам интерфейсов связи интерфейсы связи
    • Телеметрический (импульсный) – передача импульсов по двухпроводной линии связи пропорционально потребленной электроэнергии.
    • Оптопорт (ИК) порт –передача данных через инфракрасную связь.
    • RS 485 полудуплексный многоточечный последовательный интерфейс передачи данных. Передача данных осуществляется по одной паре проводников с помощью дифференциальных сигналов. 
    • RS-232 – последовательный сетевой интерфейс стандарта RS-232 для обмена данными со счетчиками. Дальность передачи данных несколько десятков метров. По умолчанию встроен в большинство компьютеров. Необходима прокладка дополнительных линий.
    • ВОЛС – волоконно-оптическая линия связи для односторонней передачи данных измерения счетчика.  Необходима прокладка дополнительных линий.
    • CAN – (англ. Controller Area Network – сеть контроллеров) – стандарт промышленной сети, ориентированный прежде всего на объединение в единую сеть различных исполнительных устройств и датчиков.
    • PLC-модем – Power Line Communications (PLC) – современная телекоммуникационная технология, использующая электросеть для высокоскоростного информационного обмена данными . В этой технологии, основанной на частотном разделении сигнала, высокоскоростной поток данных разбивается на несколько низко скоростных, каждый из которых передается на отдельной частоте с последующим их объединением в один сигнал.. Таким образом, обычная электросеть используется одновременно для передачи  электроэнергию и обмена данными, без снижения основных функций.  Дальность передачи данных до 1-го километра
    • GSM – интерфейс сотовой связи. Позволяет дистанционно считывать информацию со счетчиков по линиям сотовых операторов. Нет необходимости прокладки дополнительных линий. в настоящий момент с GSM модемов в основном используют счетчики типа Меркурий 230 ART PQRSCGDN

www.elektro-portal.com

Счетчики импульсов: схемы, назначение, применение, устройство

Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Счетчики импульсов классифицируют

● по модулю счета:
• двоично-десятичные;
• двоичные;
• с произвольным постоянным модулем счета;
• с переменным модулем счета;
• по направлению счета:
• суммирующие;
• вычитающие;
• реверсивные;
● по способу формирования внутренних связей:
• с последовательным переносом;
• с параллельным переносом;
• с комбинированным переносом;
• кольцевые.

Суммирующий счетчик импульсов

Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду. В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
{xtypo_quote}В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).{/xtypo_quote}

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯Q1 − 1.

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

 

Трехразрядный реверсивный счетчик с последовательным переносом

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1. При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):
● ИЕ6 — двоично-десятичный реверсивный счетчик;
● ИЕ7 — двоичный реверсивный счетчик.
Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число. Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.

pue8.ru

6.7.Классификация счетчиков

Цифровое устройство, циклически меняющее свои состояния под действием импульсов, подаваемых на один вход, называется счетчиком. Количество тактов, через которое повторяетсяисходное состояние счетчика, называют коэффициентомпересчета (модулем счета) Ксч. Счетчикистроят из цепочек триггеров с динамическим управлением.

По коэффициенту пересчета различают счетчики двоичные (Ксч = 2n, где n – разрядность счетчика), десятичные (Ксч = 10n, где n – количество декад счетчика), с произвольным постоянным Ксч, с изменяемым Ксч (программируемые).

По направлению счета счетчики делятся на суммирующие, вычитающие, реверсивные.

По способу организации внутренних связей между триггерами счетчики могут быть асинхронными (с последовательным переносом) и синхронными (с параллельным переносом). Синхронные счетчики обладают бóльшим быстродействием.

    1. Асинхронный двоичный счетчик

Асинхронныедвоичные счетчики строят из цепочки счетных триггеров, соединяя выход предыдущего с входом последующего. Такой счетчик реализован на микросхеме К155ИЕ5 (рис. 6.10).

При совпадении логических единиц на выводах 2 и 3 счетные триггеры сбрасываются в нулевое состояние. При замыкании выводов 1 и 12 получаем четырехразрядный двоичный счетчик. Частота счетных импульсов последовательно делится в два раза каждым триггером. При этом счетчик проходит 16 состояний (с 0 по 15), каждому из которых соответствует четырехразрядный код на выходах с весовыми коэффициентами 8, 4, 2, 1.

6.9. Асинхронный двоично-десятичный счетчик

Микросхема К155ИЕ2 состоит из счетного триггера (вход – С1, выход – Q1) и счетчика с коэффициентом пересчета Ксч = 5 (вход – С2, выходы – Q2, Q3, Q4). Если их соединить между собой так, как это показано на рис. 6.11, а, то получится двоично-десятичный счетчик, временные диаграммыработы которого приведены на рис. 6.11,б. При поступлении десятого импульса (по его срезу) кодовая комбинацияQ4 Q3 Q2 Q1 = 1001 сменяется комбинацией 0000, и далее цикл из десяти состояний счетчика (с 0 по 9) периодически повторяется. При совпадении логических единиц на входахRсчетчик устанавливается в состояние «0», при совпадении логических единиц на входахS9 – в состояние «9».

    1. Синхронный двоичный счетчик

Всинхронном двоичном счетчике (рис. 6.12) счетный импульсТвоздействует сразу на все триггеры. Первый триггер работает как счетный. Каждый последующий меняет свое состояние на противоположное, когда все предыдущие находятся в единичном состоянии. Устройство реализует алгоритм работы суммирующего двоичного счетчика сКсч = 16.

    1. Реверсивные счетчики

Реверсивные счетчики обладают универсальными возможностями. На рис. 6.13 показаны ИМС синхронных реверсивных десятичного (К555ИЕ6) и двоичного (К555ИЕ7) счетчиков. Уровнем логического нуля на входеL в счетчик записывается четырехразрядный код со входов предустановки 1, 2, 4, 8 (параллельная загрузка). Эта возможность позволяет строить на таких микросхемах счетчики и делители частоты с изменяемымКсч. Уровнем логической единицы на входеRсчетчик сбрасывается в нулевое состояние. ВходRимеет приоритет по отношению ко входуL. При подаче импульсов на суммирующий вход +1 на вычитающем –1 должен быть высокий уровень и наоборот.

    1. Счетчики с произвольным модулем счета

Счетчики с произвольным модулем счета Ксчстроятся на основе микросхем двоичных и двоично-десятичных счетчиков. Одним из способов получения произвольного значения модуля счета является использование цепи обратной связи, сбрасывающей его в нулевое состояние, как только суммирующий счетчик переходит в состояние, равноеКсч. Так построен, например, делитель частоты в 14 раз (рис. 6.14). Как только счетчик переходит в 14-е состояние (совпадают логические 1 на входах трехвходового элемента 3И-НЕ), в единичное состояние устанавливаетсяRS-триггер, который сбрасывает счетчик в нулевое состояние. Единичный уровень следующего счетного импульса сбрасываетRS-триггер в нуль.

Другой вариант счетчика(например, с коэффициентом пересчетаКсч = 147), показанный на рис. 6.15, организован на основе восьмиразрядного двоичного счетчика (Ксч = 256), который дополнен цепью сброса. Когда счетчик переходит в состояние 147=10010011В (совпадают логические 1 на входах элементов И, подключенных к выходам счетчика с весовыми коэффициентами 128, 16, 2 и 1), происходит его сброс, в результате чего его состояния циклически повторяются через каждые 147 входных тактов.

ИМС программируемых делителей частоты (счетчиков с переменным коэффициентом деления).Существует ряд ИМС счетчиков с переменным (программируемым) коэффициентом деления, например, К155ИЕ8, 564ИЕ15.

ИМС К155ИЕ8 может быть названа преобразователем «код – частота». Ее УГО и функции выводов показаны на рис. 6.16. Эта микросхема содержит шестиразрядный двоичный счетчик и программируемое логическое устройство, уменьшающее частоту выходной последовательностиfвыхпо сравнению со входнойfвх. Из входной последовательности в 64 импульса, поступающей на счетный входС, на выход проходитNимпульсов, гдеN– десятичное число, шестиразрядный двоичный код которого подается на управляющие входы микросхемы с метками 32, 16, 8, 4, 2, 1. Выходная частота связана с входной соотношениемfвых = fвх · N / 64. Таким образом, частота импульсов на выходе микросхемы пропорциональна значению управляющего кодаN. Надо только учитывать, что еслиNне равно степени числа 2, то импульсы в выходной последовательности расположены неравномерно.

В табл. 6.1 приведены номера импульсов (из входной последовательности в 64 импульса), которые проходят на выход при логической единице на соответствующем управляющем входе. При произвольном коде Nна выход проходят импульсы, соответствующие логическим единицам во всех разрядах числаN.

Таблица 6.1

Таблица функционирования микросхемы К155ИЕ8

Метка управляющего входа

Номера импульсов, проходящих на выход

1

2

4

8

16

32

32

16,48

8,24,40,56

4,12,20,28,36,44,52,60

2,6,10,14,18,22,26,30,34,38,42,…

1,3,5,7,9,11,13,15,17,19,21,23,25,27,…

Другой способ построения счетчиков с произвольным модулем счета реализован в программируемом делителе частоты, представленном на рис.6.17.

SA1 DD1 DD2 SA2 DD3 DD4

Рис. 6.17. Программируемый делитель частоты

На лимбах программных переключателей SA1,SA2 набирается числоN=AB(A-десятки,В-единицы). На выходах переключателей формируется инверсный двоично-десятичный код цифрАиВ. ИнверторыDD1,DD3 подают на входы предварительной установки счетчиковDD2,DD4 прямой двоично-десятичный код числаN. Счетчики работают в режиме вычитания (обратного счета). Когда счетчики находятся в нулевом состоянии и приходит счетный импульс, по его фронтуD-триггер формирует логический ноль на выходе и в счетчик загружается числоN, которое в течение следующихNтактов считывается до нуля. Число состояний счетчика равноN +1. Таким образом,fвых=fвх/(N +1), т.е. на программном переключателе надо набирать число, на единицу меньшее требуемого коэффициента деления частоты. Длительность выходного импульса (активный уровень – нулевой) равна периоду входных импульсов.

    1. Регистры сдвига

Регистры представляют собой цепочки триггеров и предназначены для записи, хранения, сдвига и считывания из них двоичной информации (полубайта, байта и т. д.).

Различают регистры сдвиговые (со сдвигом вправо, влево и реверсивные), с параллельной загрузкой, универсальные, кольцевые и файловые.

Регистры сдвигастроятся наD-триггерах с динамическим управлением. Тактовые входы объединяются, входDпервого триггера служит для приема информации, а входыD последующих подключаются к прямым выходам предыдущих (рис. 6.18).

За четыре такта C (четыре синхроимпульса) последовательную информацию со входа D можно преобразовать в параллельную на выходах DO0 – DO3.

    1. Регистры памяти

Регистры с параллельной загрузкой также чаще строят наD-триггерах, объединяя их тактовые входы. Микросхемы регистров памяти могут тактироваться потенциалом (К580ИР82) или фронтом (К555ИР27) тактового импульса (рис. 6.19). Обязательным условием при записи данных в регистр является их фиксация до поступления такта. Хранимые данные с выхода первой микросхемы читаются при логическом нуле на входе (разрешение выхода). При логической единице на входе выходы микросхемы находятся в высокоимпедансном состоянии. Запись информации во вторую микросхему происходитпо фронту тактового импульса только при логическом нуле на входе (Load –разрешение загрузки). При = 1 имеет место режим хранения данных в регистре.

    1. Универсальные регистры

Микросхема К155ИР13 (рис. 6.20) является примером универсального регистра. Режим ее работы задается уровнями сигналов на входахSRиSL (см. таблицу состояний регистра). При сдвиге вправо сигнал со входа DR переписывается в младший разряд DO0 по фронту каждого тактового импульса, а старая информация выхода DO7 теряется. При сдвиге влево информация с входаDLзаписывается на выходDO7, а информация с выходаDO0 теряется. ПриSL = SR = 1 микросхема работает как параллельный регистр, запись информации в который с входовDIпроисходит по фронту тактового импульса. При подаче 0 на вход все триггеры регистра сбрасываются в нулевое состояние.

    1. Кольцевой регистр

Иногда желательно осуществлять многократный последовательный вывод информации (регенерацию) из регистра без ее стирания. Для этого необходимо снова ввести данные с помощью обратной связи. Пример схемы кольцевого регистра, который предоставляет такую возможность, показан на рис. 6.21.

До тех пор, пока на управляющем входе Uподдерживается уровень логической 1, DR = Dвх, обратная связь не действует. За первые n тактов запоминается n-разрядный входной код Dвх. Если теперь подать U = 0, то DR = Qn и выведенный из регистра код поразрядно поступает на вход. После n тактовых импульсов регистр сдвига опять находится в исходном состоянии. Следовательно, логическое состояние на входе управления определяет, вводится ли новая информация или в регистре циркулирует старая.

Помимо основного назначения, регистры имеют другие многочисленные применения. Рассмотрим только некоторые из них.

    1. Кольцевой счетчик

На регистрах сдвига реализуются самые разнообразные счетчики. Простейшим из них является кольцевой счетчик (рис. 6.22). Элемент 4ИЛИ-НЕ разрешает запись информации в первый триггер регистра только тогда, когда все триггеры находятся в нулевом состоянии. Эта кодовая 1 и перемещается по кольцу (выходы 1, 2, 3, 4, 5). Данное устройство представляет собой синхронный счетчик сКсч = 5 и выполняет функции распределителя уровня логической единицы по пяти каналам. Его можно использовать для последовательного включения во времени пяти объектов управления.

    1. Счетчики на регистрах сдвига

Счетчик Джонсона. Проанализируем работу другого счетчика на регистре сдвига (вариант счетчика Джонсона), в котором используется перекрестная обратная связь (рис. 6.23).

Исследуемое устройство представляет собой синхронный счетчик на регистре сдвига, построенном на трехJKтриггерах. Состояние первого триггера после подачи очередного среза счетных импульсов генератораGзависит от сигналов обратной связи, поступающих на его информационные входыJиKс выходовQ2иQ3. ТриггерТ2повторяет состояние триггераТ1на предыдущем такте, а триггерТ3– состояние триггераТ2.

Удобно анализ работы устройства провести с помощью таблицы состояний, предположив, что первоначально триггеры были сброшены в нулевое состояние (Q1=Q2=Q3=0), а затем на счетный вход поступает очереднойk-тый импульс (рис. 6.24).

До подачи первого импульса на информационных входах триггера Т1J=1,K= 0. После первого импульсаТ1переходит в единичное состояние, а логические нули с выходовQ1,Q2переписываются на выходыQ2,Q3. Уровни сигналов на информационных входахТ1не изменились. Поэтому после второго импульса он снова будет находиться в состоянииQ1=1. Теперь уже иQ2=1. На информационных входахТ1устанавливаются уровниJ=K= 0.

После третьего импульса Т1не меняет своего состояния, оставаясь в состоянииQ1=1. В этот момент все триггеры находятся в единичном состоянии. При этом на входахТ1 J=0,K=1 и после четвертого импульса триггерТ1сбрасывается в нулевое состояние. После пятого импульса состояниеТ1не меняется. Теперь на входахТ1 J=K=1. Поэтому после шестого импульса триггерТ1меняет свое состояние на противоположное и переходит в состояниеQ1=1.

Анализ таблицы состояний показывает, что после шестого импульса состояние счетчика такое же, как после первого. Следовательно, в цикле реализуются пять состояний иКсч = 5. На каждом выходе чередуются три единичных и два нулевых состояния. ВыходQ2 повторяет выходQ1 с задержкой на один такт, а выходQ3с задержкой на один такт повторяет выходQ2 (см. временные диаграммы сигналов).

При включении источника питания каждый триггер может установиться либо в нулевое, либо в единичное состояние. У счетчика на трех триггерах таких состояний восемь. В рассмотренном цикле повторяются пять состояний. Вне цикла остается три состояния. Из состояния 000 (Q1 Q2 Q3) поведение счетчика мы уже рассмотрели. Остается проследить, как будет работать счетчик, если при включении он установится в состояния 101 или 010. Такой анализ показывает, что из этих состояний, так же как из состояния 000, счетчик выходит на описанный режим работы, когда циклически повторяются состояния 100, 110, 111, 011, 001. Следовательно, начальная установка триггеров в фиксированное состояние не требуется.

    1. Примеры построения цифровых устройств

последовательностного типа

Пример 6.1. Цифровой широтно-импульсный модулятор

Двоичный счетчик на микросхемах DD1,DD2 (K555ИЕ7) последовательно в цикле пробегает состояния с 0 по 255 (рис. 6.25), формируя на входахАiцифрового компаратора код развертки, повторяющийся с периодомТ=256/f, гдеf – частота генератора тактовых импульсовG. Цифровой компаратор выполнен на микросхемахDD3,DD4 (К555СП1). На входыBiцифрового компаратора подается восьмиразрядный код управляющего сигнала. Пропорционально этому коду меняется длительность импульсов, формируемых на выходе А< цифрового компаратора, в то время как их период неизменен и равенТ.

Принцип работы микросхемы цифрового компаратора К555СП1 состоит в следующем. Если число, код которого подан на входы А1-А8, больше числа, код которого подан на входыВ1-В8, на выходе А> микросхемы появляется логическая 1, на выходах А= и А< – логические 0. Если код числаА меньше кода числаВ, логическая 1 появляется на выходе А<, на выходах А= и А> – логические 0. Если коды, поданные на входыАиВ, равны, микросхема передает на свои выходы сигналы со входов >, < и = , если на этих входах только одна логическая единица.

Пример 6.2. Электронный таймер

Обеспечивает включение исполнительного реле на время от 1 до 99 минут, индикацию времени в режиме обратного счета. Генератор Gформирует прямоугольные импульсы с частотойf1=2 Гц (рис. 6.26), а на выходе делителя частоты формируются импульсы с периодомT=1/f2=1 мин. Двоично-десятичный код реверсивного счетчикаDD3,DD4 (К155ИЕ6) с помощью дешифраторовDD5,DD6 (514ИД1) преобразуется в код управления цифровыми индикаторамиHG1,HG2 (АЛС324А). При нажатой кнопкеS1 (установка) импульсы генератора с частотой 2 Гц проходят на суммирующий вход счетчика для установки временной задержки. Пуск таймера осуществляется при нажатии кнопкиS2.RS-триггерDD1.2 (К155ТМ2) устанавливается в единичное состояние, включая релеК1, и снимает запрет на прохождение минутных импульсов на вычитающий вход счетчика.

После реализации временной задержки RS-триггер сбрасывается в нулевое состояние, выключая реле. Таймер переходит в режим ожидания новой установки, сохраняя нулевое состояние счетчика. ДиодVD1 защищает выход триггера от перенапряжения, которое возникает при выключении релеК1 (РЭС64А).

Пример 6.3. Устройство управления многоразрядным

индикатором

Полупроводниковые знаковые многоразрядныеминиатюрные одноцветные индикаторы предназначены для преобразования низковольтных электрических сигналов в визуальную буквенно-цифровую информацию. Индикатор представляет собой набор семи-восьми сегментных индикаторов и межэлектродных соединений, конструктивно расположенных и смонтированных в одном корпусе. Эти приборы являются многоразрядными гибридными индикаторами с оптическим увеличением и предназначены в основном для визуальной индикации результатов в малогабаритных счетных устройствах.

Конструктивно монолитные многоэлементные кристаллы помещают на общем основании, а для увеличения видимого изображения используется многоэлементная (по числу цифр) пластмассовая линза. Коэффициент увеличения размера знака, в зависимости от типа применяемой линзы, достигает двух-трех. Использование оптического увеличения позволяет также увеличить силу света индикаторов в 2 – 5 раз. Индикаторыисполнены в монолитной полимерной герметизации с числом разрядов от двух до пяти, с учетом возможности бесшовной стыковки и обеспечивают набор шкал на любое число знакомест с шагом разряда 3,7 и 5мми высотой высвечиваемого знака 2,5; 3,75 и 5мм.

На рис. 6.27 приведено графическое изображение индикатора АЛ308Б. Наименование сегмента соответствует наименованию вывода. Одноименные разряды во всех сегментах объединены и имеют общий вывод (ОК – общий катод). Выводы 1, 2, 3, 4 – это выходы ОК первого, второго, третьего и четвертого индикаторов. При подаче на входы А –Gнекоторого символа засветится тот индикатор, общий катод которого соединен с общей шиной. Чтобы обеспечить индикацию четырехразрядного кода, необходимо поочередно подавать код данного разряда на входыA–Gи одновременно подключать ОК этого индикатора к общей шине. Такой способ индикации называетсядинамическим. Динамическая индикация основывается на кратковременном периодическом высвечивании соответствующей цифры в индикаторе, так что при достаточно высокой частоте повторения этого процесса глаз человека не замечает мерцаний, цифра в индикаторе представляется оператору высвечивающейся непрерывно. На рис. 6.28 приведена структурная схема устройства динамической индикации с использованием мультиплексоров, отчего ее называютмультиплексной.

Четырехразрядные коды от четырех декад группируют поразрядно на входах четырех мультиплексоровDD1DD4 (41). На входыDD1 подаются младшие разряды декад, на входыDD4 – старшие. С выходов мультиплексоров четырехразрядный код подается на преобразователь двоично-десятичного кода в код управления семисегментным индикатором. С преобразователя код AG поступает на одноименные сегменты четырех индикаторов. Синхронизация работы мультиплексного (динамического) индикатора осуществляется с помощью генератораGи двухразрядного двоичного счетчика. Частота генератора выбирается такой, чтобы мерцание индикаторов было незаметно. Выходные сигналыQ1 иQ2 подаются на адресные входы мультиплексоров. КодQ1=Q2=0 выдает на вход преобразователя код первой декады (D00,D01,D02,D03), одновременно на первом выходе дешифратораDC(DD6) формируется лог. 0, что обеспечивает зажигание первого индикатора. ПриQ1=1,Q2=0 зажигается второй индикатор, остальные погашены и т.д. Так идет циклический «опрос» декад и зажигание индикаторов.

studfile.net

Счетчики. Назначение, устройство, классификация, принцип действия, область применения. Типовые интегральные схемы счетчиков.

 

Счетчиком называется устройство, сигналы на выходе которого в определенном коде отображают число импульсов, поступивших на счетный вход. Счетчик, образованный цепочкой из m триггеров может подсчитать в двоичном коде импульсов. Каждый из триггеров называется разрядом счетчика. Число называется коэффициентом или модулем счета.

Информация может сниматься с прямых и инверсных выходов триггеров. Когда число входных импульсов , то при n входа равном Kсч происходит переполнение, счетчик возвращается в нулевое состояние и повторяет цикл. Каждый разряд счетчика делит частоту входных импульсов пополам. Для периодических сигналов .

Коэффициент счета называют коэффициентом деления, следовательно каждый счетчик может использоваться как делитель частоты.

Обозначения:

СТ 2 – двоичный

СТ10 – двоично-десятичный

СТ2/10 – переключающийся

Основные параметры: емкость и быстродействие. Емкость численно равна коэффициенту счета и характеризует число импульсов, доступных счету за 1 цикл. Быстродействие определяется двумя параметрами: разрешающей способностью и временем установления.

Под разрешающей способностью подразумевают минимальное время между двумя сигналами, при которых еще не возникают сбои в работе tразр.сч.

Время установления кода tуст равно времени между моментом поступления входного сигнала и переходом счетчика в новое состояние.

Счетчики классифицируются следующим образом:

1) по модулю счета:

· двоичные

· двоично-десятичные

· с произвольным фиксированным модулем счета

· с переменным модулем

2) по направлению счета:

· суммирующие

· вычитающие

· реверсивные

3) по способу организации внутренних связей

· с последовательным переносом (асинхронные)

· с параллельным переносом (синхронные)

· с комбинированным переносом

· кольцевые

Классификационные признаки независимы и могут встречаться в разных комбинациях.

Число, записанное в счетчик, определяется по формуле:

где m – номер триггера,

Q – может принимать значение «1» и «0»,

– вес младшего разряда.

Введением дополнительных логических связей (обратных и прямых) счетчики могут быть обращены в недвоичные, для которых . Например, двоично-десятичные с Ксч=10 (двоичный по коду счета, десятичный по числу состояний). Организуется из 4-х разрядных двоичных путем исключения избыточных состояний за счет введения дополнительных связей. Когда счетчик используется в качестве делителя, направление счета роли не играет.

Счетчики с последовательным переносом представляют собой цепочку триггеров, в которых импульсы, подлежащие счету, поступают на вход 1-го триггера, а сигнал переноса передается последовательно от одного разряда к другому.

Достоинства: простота схемы и увеличение разрядности.

Недостатки: низкое быстродействие из-за последовательного принципа работы.

Счетчики с параллельным переносом.

У них счетные импульсы подаются одновременно на все тактовые входы, а каждый из триггеров цепочки служит по отношению к последующему только источником информационных сигналов. Срабатывание триггеров параллельного счетчика происходит синхронно, а задержка переключения всего счетчика равна задержке одно триггера.

В счетчике с параллельно-последовательным переносомтриггеры соединены в группы так, что отдельные группы образуют счетчики с параллельным переносом внутри группы, а группы соединяются в счетчик с последовательным переносом. Общий коэффициент счета равен произведению коэффициентов счета всех групп.

Счетчики ТТЛ с последовательным переносом

Состоят из 4-х одинаковых JK-триггеров, которые могут использоваться как по прямому назначению, так и в качестве ТК-триггеров. Переброс осуществляется по срезу. Три триггера соединяются в последовательную цепочку, 4-й самостоятельно.

К155ИЕ5

К155ИЕ4 (ИЕ5)

 

К155ИЕ4

К155ИЕ2

Счетчик ТТЛ с параллельным переносом

Двоично-десятичный суммирующий счетчик.

Имеет 4 входа предварительной установки счетчика при V1=0 независимо от предыдущего состояния и сигналов на входах С, V2, V3. При происходит нормальный счет, причем переброс осуществляется по переднему фронту. Счет либо от нуля, либо от информации, записанной на входы D.

При «1» на входе V3 на выходе Р формируется импульс логической «1» (перенос) с девятым входным импульсом.

V3 – разрешает перенос.

V2=0 – прерывает счет, однако информация на выходах при этом сохраняется.

V1 – предварительная запись.


Похожие статьи:

poznayka.org

Классификация счётчиков газа по принципу действия (основные виды)

 

·         Мембранный (камерный, диафрагменный)

Самый распространённый тип счетчика газа. Первый патент на прибор такого типа был получен в Англии в 1844 году. Счетчик механического типа. Принцип действия основан на перемещении подвижных мембран камер при поступлении газа в прибор. Впуск и выпуск газа вызывает попеременное перемещение мембран и через комплекс рычагов и редуктор приводит в действие счётный механизм.
Счётчики этого типа применяются для максимальных расходов Qмакс от 2,5 до 100 м3/ч. Эти счётчики отличаются широким диапазоном измерения до 1:100.

Достоинства:

  • широкий диапазон измерения;
  • большой межповерочный интервал (МПИ) — до 10 лет;
  • возможность автономной работы
  • надежность и простота конструкции
  • стойкость к пыли и загрязненному газу
  • долговечность (срок службы составляет до 30 лет)
  • безопасность эксплуатации – замеры производятся в герметично закрытом корпусе
  • невысокая стоимость

Недостатки:

  • крупные габариты, особенно для счётчиков на большие расходы;
  • невысокое максимальное давление измеряемого газа — до 0,5 бар;
  • чувствительность к механическому загрязнению измеряемой среды

·         Ротационный(роторный)

Счетчик механического типа. Два ротора располагаются в измерительной камере поперек потока газа. При поступлении газа на вход счетчика оба ротора под его напором приходят во вращение. Форма роторов (в сечении напоминающая цифру 8) и сечение измерительной камеры рассчитывается таким образом, чтобы при вращении ротор одним концом описывал профиль поверхности стенки измерительной камеры, а другим концом описывал профиль поверхности второго, вращающегося навстречу ротора. В начальном положении ротора располагаются под углом 90° друг к другу, это взаимное положение фиксируется двумя колесами-синхронизаторами, установленными на осях роторов. Эти же колеса обеспечивают строго синхронное вращение роторов. При вращении оба ротора попеременно отсекают определенный объем газа (порцию), заключенный между ротором и стенкой измерительной камеры и перепускают его на выход счетчика. Объем прошедшего через счетчик газа пропорционален количеству порций и, соответственно, пропорционален числу оборотов роторов. Вращение ротора с его оси через механическую передачу (редуктор, магнитная муфта, система шестерен) передается на счетный механизм, в котором происходит накопление количества прошедшего газа.

Достоинства:

·         широкий диапазон расходов;

·         более высокая точность при резко изменяющихся расходах;

·         компактность монтажа

Недостатки:

·         меньшие возможные диаметры и меньшие возможные типоразмеры;

·         шумность;

·         чувствительность к механическим загрязнениям среды;

·         чувствительность к пневмоударам

·         потенциальная взрывоопасность из-за особенностей конструкции (при повреждении защитного стекла происходит утечка газа)

 

·     Турбинный

Счетчик механического типа. Конструктивно представляет собой отрезок трубы, в проточной части которого последовательно по потоку расположена турбина с валом и подшипниковыми опорами вращения. Газ, проходящий через измерительную камеру счетчика, вращает турбину, скорость вращения которой пропорциональна скорости потока и, соответственно, расходу газа. Вращение турбины через механическую передачу (червяк, редуктор, магнитная муфта, система шестерен) передается на счетный механизм, на котором механически интегрируется по времени и накапливается объём прошедшего газа.

Применяются для максимальных расходов Qмакс от 100 до 10000 м3/ч, с шириной диапазона расходов от 1:10 до 1:50.  Приборы подобного типа отличаются повышенной точностью измерения расхода газа, а также высокой надежностью эксплуатации. Именно такими механизмами чаще сего оборудуются газовые магистрали, прокладываемые в готовых к вселению квартирах. Современные турбинные счетчики близки к мини-компьютеру, который способен осуществлять не только подсчет расхода газа, но и анализировать данные и передавать их через модем.

·       Ультразвуковой

Ультразвук, пускаемый по ходу движения газа, и ультразвук, пускаемый против хода потока газа, имеют разницу скорости движения, которая пропорциональна скорости движения газа. Сравнивая их, получают скорость потока и, соответственно, расход и объём прошедшего газа. Самые простые и недорогие приборы такого типа небольших диаметров имеют одну пару ультразвуковых излучателей, расположенных друг напротив друга по оси прибора или на противоположных стенках под углом к потоку. Или, как вариант, на одной стенке.

В этом случае ультразвуковая волна от одного излучателя отражается от противоположной стенки и попадает на второй, парный. И наоборот, от второго к первому. Также в прибор встраивается температурный датчик для приведения измеряемой среды к стандартным условиям по ГОСТ 2939-63. Некоторые приборы могут содержать энергонезависимую память и позволяют хранить данные о расходе за несколько месяцев. Более сложные и дорогие приборы больших диаметров имеют несколько пар излучателей, расположенных радиально на стенках прибора под углом к потоку, что позволяет более точно определять среднюю скорость потока по сечению.

·         Струйный

Принцип действия – в электронном преобразователе вычисляется количество прошедшего газа через струйный генератор. К струйным счетчикам относятся бытовые, малогабаритные счетчики – Гранд и СГБМ.

akonter.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *