Замена неполярных конденсаторов полярными конденсаторами
Разделы статьи:
Замена неполярных конденсаторов полярными конденсаторами
Если вы занимаетесь ремонтом радиотехники, то должны знать о том, что конденсаторы бывают полярными и неполярными. И если у мастеров своего дела проблем с заменой конденсаторов не возникает, то вот у новичков, чаще всего всё наоборот.
Многие из них задаются вопросами о том, можно ли заменить неполярный конденсатор полярным, и что будет? Как известно, основное отличие полярных конденсаторов от неполярных заключается в том, что у них присутствует плюс и минус. То есть, полярный конденсатор нужно впаивать только строго с соблюдением полярности, а иначе он обязательно взорвётся.
В свою очередь при установке неполярных конденсаторов нет нужды придерживаться полярности. Такие конденсаторы не имеют плюса и минуса, в схеме они обозначаются буквами «NP» – неполярный конденсатор. Соответственно назревает вопрос, а можно ли заменить неполярные конденсаторы полярными?
Замена неполярных конденсаторов полярными — что нужно знать?
На самом деле, если под рукой нет неполярного конденсатора, а есть только полярные конденсаторы, то можно произвести их замену по следующей схеме:
- Сначала нужно определить, где именно на плате плюс, а где минус, и затем уже впаивать полярный конденсатор, соблюдая полярность;
- Использовать схему из двух полярных конденсаторов, вместо одного неполярного конденсатора.
Второй способ наиболее предпочтителен, ведь именно он позволяет новичку не углубляться слишком далеко в изучение схемы питания. Достаточно соединить два полярных конденсатора вместе, чтобы получить один неполярный конденсатор.
Соединяются два полярных конденсатора плюсами, а минусу уходят в схему. В итоге получается один неполярный конденсатор.
Например, нам нужно заменить один неполярный конденсатор на 5 мкФ, но его нет под рукой. Тогда мы берём два полярных конденсатора по 10 мкФ, соединяем их плюсами, а минусами впаиваем в плату. Соблюдать при этом полярность нет необходимости, ведь мы из двух полярных конденсаторов получили один неполярный конденсатор.
Как проверить неполярные конденсаторы мультиметром
Ранее в статьях я рассказывал о том, как проверить конденсатор мультиметром. Речь шла о проверке именно полярных конденсаторов, но ничего не говорилось о проверке неполярных конденсаторов.
Проверка неполярных конденсаторов осуществляется практически по той же самой схеме, но с некоторым отличием. В первую очередь, необходимо используя мультиметр произвести зарядку конденсатора, не забыв перед этим его разрядить.
Для этого переводим мультиметр в режим проверки сопротивления на 20 kOm и несколько секунд заряжаем конденсатор, приложив щупы мультиметра к его ножкам. Далее переводим мультиметр в режим измерения постоянного напряжения и смотрим, набрал ли неполярный конденсатор свою емкость.
На самом деле всё достаточно просто, и если конденсатор совсем нерабочий, то на табло мультиметра ничего не высветится.
Также еще раз оговорюсь и скажу, что неполярные конденсаторы обозначаются буквами «NP», и не имеют каких-либо обозначений в виде «+» на старых, еще советских платах или на корпусе. В случае же с использованием полярных конденсаторов, плюс на плате всегда указывался.
Поделиться статьей в социальных сетях
Полярный конденсатор – Большая Энциклопедия Нефти и Газа, статья, страница 1
Cтраница 1
Электролитические алюминиевые конденсаторы. [1] |
Полярные конденсаторы работоспособны при условии, что на их положительный электрод ( анод) подается положительный потенциал источника. Электролитические конденсаторы выпускают с большим интервалом емкости ( от десятых долей до десятков тысяч микрофарад) и напряжением от 3 до 500 В. [2]
Если полярный конденсатор включить в сето переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, который может выйти из строя. [3]
Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. [4]
Конструкция сухого электролитического конденсатора типа ЭТ.| Зависимость емкости от времени эксплуатации конденсаторов с различным уплотнением при номинальном рабочем напряжении. [5] |
Для различных применений изготовляются полярные конденсаторы как с гладкими, так и с травлеными анодами, а также неполярные конденсаторы.
[6]Как уже говорилось, АЭК – полярные конденсаторы, поэтому напряжение обратной полярности предотвращается там, где это необходимо, подключением диода параллельно конденсатору. Падение на диоде порядка 0 8 В является допустимым. Обратные напряжения 1 5 В допустимы для конденсатора за время до 1 с при условии, что такой режим работы не является повторяющимся. [7]
Использование полупроводниковой сегнетокерамики позволяет получить и полярные конденсаторы с одним омическим и одним неомическим контактами, обладающие в несколько раз большей емкостью, чем неполярные конденсаторы. [8]
Если максимальное значение переменного напряжения, приложенного к полярному конденсатору, невелико, по сравнению с тем напряжением, при котором проводилась формовка оксидного слоя, то в течение некоторого времени конденсатор может работать без заметного ухудшения своих характеристик. Тем не менее применять полярные конденсаторы даже при малых значениях переменного напряжения для длительной работы не рекомендуется, если вместе с переменным напряжением к конденсатору не прикладывается одновременно поляризующее постоянное напряжение, превышающее по величине амплитуду переменного напряжения.
Конденсаторы этого типа обладают большой емкостью и относятся к виду полярных конденсаторов. В качестве наполнителя в них используется электролит в жидком или порошкообразном виде. Конденсаторы с жидким электролитом в настоящее время почти не используются из-за необходимости соблюдения осторожности в обращении с электролитом. [10]
Вторичная формовка неполярных конденсаторов выполняется в том же режиме, что и для полярных конденсаторов, с той разницей, что она производится последовательно для каждой обкладки конденсатора, вследствие чего требует в два раза больше времени. [11]
Полярность или условные обозначения выводов микроэлементов на схеме сборки указывают около соответствующих точек: для диодов или полярных конденсаторов – знаки или -; для транзисторов – Б; Э; К; для трансформаторов – номера выводов. [12]
В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стекло-керамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делятся на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом ( полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, поме-хоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение. Наибольшую номинальную емкость ( до 22 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсатеоы. [13]
В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стеклокерамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делят на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом ( полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, помехоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение. Наибольшую номинальную емкость ( до 470 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсаторы. [14]
В Советском Союзе выпускаются сухие полярные и неполярные танталовые электролитические конденсаторы с анодами из гладкой фольги. Полярные конденсаторы обозначаются – тип ЭТ, неполярные – тип ЭТН. [15]
Страницы: 1 2
Что такое неполяризованный конденсатор? По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор. И в этой статье будет подробно рассказано: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованным конденсатором и неполяризованным конденсатором? давайте посмотрим
youtube.com/embed/WoM1wo-ww8s” allowfullscreen=”allowfullscreen” data-mce-fragment=”1″>
Сравнение поляризованного конденсатора с неполяризованным
Как проверить неполяризованный конденсатор?
Ⅱ Концепция
Неполяризованные конденсаторы являются конденсаторами без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть вставлены в цепь случайным образом и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и генерации. На рисунке ниже показана эталонная схема неполяризованного конденсатора.
Рисунок 1. Неполяризованный конденсатор
Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости применяют какие-то специальные материалы и конструкции, что приводит к тому, что собственно конденсаторы несколько поляризованы. Обычные поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость. Неполяризованный конденсатор большой емкости сделать не так просто, потому что объем станет очень большим. Вот почему в реальной схеме так много поляризованных конденсаторов. Поскольку его размеры малы, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.
Мы используем поляризованные конденсаторы, чтобы избежать недостатков и воспользоваться преимуществами. Мы можем понять это следующим образом: Поляризованный конденсатор на самом деле является конденсатором, который можно использовать только в одном направлении напряжения. Для неполяризованных конденсаторов можно использовать оба направления напряжения. Таким образом, только с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Вполне возможно заменить поляризованные конденсаторы на неполяризованные, если емкость, рабочее напряжение, объем и т. д. могут соответствовать требованиям.
Ⅲ Функция
Неполяризованные конденсаторы, применяемые в цепях чистого переменного тока, и из-за их небольшой емкости они также могут применяться для фильтрации высоких частот. Вот пример, иллюстрирующий применение конденсатора:
В этом случае в основном используется RC-схема подавления искр. При приеме радио- и телепрограммы на антенну, если люминесцентная лампа включена и люминесцентная лампа мигает, будет слышен неравномерный звук радио или динамика телевизора. Многие четкие яркие линии и яркие пятна на экране телевизора являются высокочастотными помехами, вызванными электрическими искрами.
При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рис. 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах катушки создается большая собственная индуктивность. . Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение пробьет воздух и образует электрическую искру.
Искра может привести к абляции и окислению контактов, что приведет к неисправности. Поэтому важно устранить искру между контактами. При отключении цепи, пока ток управляющей катушки не падает, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет, как показано на схеме справа внизу. , цепь подавления искры RC подключена к обоим концам катушки индуктивности. Когда переключатель внезапно выключается, i1 заряжает конденсатор. Часть энергии магнитного поля в индукторе рассеивается на резисторах R и r, а часть преобразуется в энергию электрического поля в конденсаторе С, что вызывает повторный разряд конденсатора С, тем самым устраняя искру.
Рис.2. Цепь с индуктивностью и искрогасительной цепью
Ⅳ Как выбрать неполяризованные конденсаторы?
Неполяризованные конденсаторы очень удобны в выборе и использовании. Вы можете напрямую выбрать конденсаторы той же модели и с одинаковыми характеристиками. Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:
1. Выберите разумную точность конденсатора. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость примерно такую же, как эталонная емкость. В схемах колебаний, схемах фильтрации, схемах задержки и схемах тона абсолютное значение ошибки должно быть в пределах 0,3–0,5%.
2. Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для цепи обхода низкочастотного переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях высокой частоты или высокого напряжения.
3. Конденсаторы могут быть выбраны с номинальным напряжением, большим или равным фактическим потребностям.
4. ВЧ конденсаторы нельзя заменять низкочастотными.
5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.
6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но напряжение, добавляемое к конденсатору, должно быть меньше выдерживаемого напряжения конденсатора.
Ⅴ Разница между неполяризованными и поляризованными конденсаторами
Как полярные, так и неполярные конденсаторы имеют одинаковый принцип, то есть накопление и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться
Различные среды, разные характеристики, разная емкость и разная структура приводят к разным условиям использования и использованию. И наоборот, с развитием науки и техники и открытием новых материалов будут появляться более совершенные и разнообразные конденсаторы.
Рис.3. Различные типы конденсаторов
5.1 Различные диэлектрики
Что такое диэлектрик? Другими словами, — это вещество между двумя пластинами конденсатора. В большинстве конденсаторов с полярностью в качестве диэлектрика используются электролиты, благодаря чему конденсатор с полярностью имеет большую емкость по сравнению с другими конденсаторами того же объема. Кроме того, конденсаторы с разной полярностью, изготовленные из разных электролитных материалов и процессов, будут иметь разную емкость. Между тем, выдерживаемое напряжение в основном связано с диэлектрическим материалом. А также существует множество неполяризованных материалов, в том числе наиболее часто используемая пленка из оксида металла и полиэстер. Использование полярных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.
Рис.4. Неполяризованный конденсатор и поляризованный конденсатор
5. 2 Различная производительность
Производительность и максимизация требований являются требованием использования. Если в блоке питания телевизора в качестве фильтра используется металлооксидно-пленочный конденсатор, и если для удовлетворения фильтра требуется емкость и выдерживаемое напряжение, то, боюсь, внутрь корпуса можно установить только блок питания.
Таким образом, фильтр может использовать только полярный конденсатор, а полярная емкость необратима. Как правило, электролитический конденсатор выше 1 мФ, который участвует в соединении, развязке, фильтрации источника питания и так далее. Неполярный конденсатор в основном меньше 1 мФ, что связано с резонансом, связью, выбором частоты, ограничением тока и так далее. Конечно, существуют также неполярные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, сдвига фазы двигателя, сдвига фазы мощности преобразования частоты и других целей. Существует много видов неполяризованных конденсаторов.
Рис.5. Конденсаторы
5.3 Разная емкость
Как было сказано ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.
5.4 Другая конструкцияВ принципе можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, редко встречаются квадратные. Форма конденсаторов разнообразна, например трубчатая, деформированная прямоугольная, пластинчатая, квадратная, круглая, комбинированная квадратная или круглая и так далее, в зависимости от того, где они используются. Конечно, есть и невидимые, называемые распределенным конденсатором, которые нельзя игнорировать в высокочастотных и промежуточных устройствах.
5.5 Различное использование Окружающая среда и использованиеИз-за внутреннего материала и конструкции емкость конденсатора с полярностью (например, электролиз алюминия) может быть очень большой, но его высокочастотные характеристики не очень хорошие, поэтому он подходит для питания фильтры и другие случаи. Есть еще конденсаторы полярности с хорошими ВЧ характеристиками – танталовые электролизные, цена которых сравнительно высока;
Включая керамические конденсаторы, монолитные конденсаторы, конденсаторы из полиэтилена (CBB) и т. д. Эти неполяризованные конденсаторы имеют небольшие размеры, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. Керамические конденсаторы обычно используются в высокочастотной фильтрации, колебательной цепи.
Рис.6. Различные конденсаторы
Магнитные диэлектрические конденсаторы используют керамический материал в качестве мезона и используют серебряный слой на поверхности в качестве электрода. Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для применения в высокочастотных и высоковольтных цепях.
Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора. Материал с большой диэлектрической проницаемостью (например, сегнетокерамика, электролиты) подходит для конденсаторов большой емкости и малого объема, потери в которых также велики. Материал с малой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.
pcb — поляризованный конденсатор по сравнению с неполяризованным конденсатором. Что использовать, когда?
спросил
Изменено 2 месяца назад
Просмотрено 8к раз
\$\начало группы\$
Поляризованный конденсатор имеет полярность (+ и -). Его еще называют электролитическим конденсатором? (Вопрос 1)
Неполяризованный конденсатор не имеет полярности (нет + и -). Неполярный конденсатор может быть подключен в любом направлении, но это не так с поляризованным конденсатором.
При каких обстоятельствах следует использовать поляризованный конденсатор и аналогичный неполярный конденсатор? (Вопрос 2)
- конденсатор
- печатная плата
- дизайн печатной платы
- встроенный
- оборудование
\$\конечная группа\$
1
\$\начало группы\$
В любом источнике питания постоянного тока или линиях питания на печатной плате вы увидите много конденсаторов большой емкости, которые ДОЛЖНЫ быть поляризованы.
То есть отведение (+) должно быть более положительным, чем отведение (-). Они могут быть электролитическими или более дорогими танталовыми. Подключите их в обратной полярности, и они могут лопнуть, в зависимости от доступного тока.Используются для массовой фильтрации напряжения питания. Керамика SMD меньшего размера или керамика со сквозным отверстием предназначена для фильтрации высокочастотного шума, поэтому они очень близки к месту их использования, например, в ЦП или МПУ или в большинстве любых ИС. Объемные конденсаторы, которые сглаживают пульсации низких и средних частот, могут находиться на расстоянии нескольких дюймов, и их высокое ESR допустимо. Некоторые из них очень большие и нуждаются в отдельном зарезервированном пространстве.
Крошечные SMD-конденсаторы (неполяризованные) имеют очень низкое ESR, поэтому используются для фильтрации ВЧ-шума и часто находятся на расстоянии менее 1/4 дюйма от устройства, которому они нужны.
В источниках питания постоянного тока используются как поляризованные, так и неполяризованные источники питания, и они безопасны при условии, что поляризованные конденсаторы вставлены правильно и ни один из конденсаторов не подвергается воздействию напряжения, превышающего его номинальное значение. В источниках питания переменного тока обязательны неполярные конденсаторы, а при подключении к сети переменного тока они должны иметь номинал X или Y по соображениям безопасности.
Для сигналов переменного/радиочастотного диапазона без напряжения смещения постоянного тока лучше всего использовать неполярные конденсаторы. Эти схемы могут иметь высокий импеданс, что позволяет использовать крошечные SMD-корпуса.
Некоторые менее распространенные типы включают биполярные электролиты для высокочастотных, полосовых и низкочастотных фильтров для динамиков, часто в сочетании с катушками индуктивности и низкоомными резисторами.
Инженер-конструктор должен спланировать резервное пространство для всех этих типов конденсаторов.
\$\конечная группа\$
3
\$\начало группы\$
Поляризованный конденсатор также известен как электролитический конденсатор.
С его электродами, погруженными в гелевый электролит, он поляризован по своей конструкции, чтобы сформировать и поддерживать тонкий оксидный слой на аноде, служащем диэлектриком.
Полученный в результате очень малый зазор между электродами и большая площадь поверхности анода, полученная травлением, позволяют использовать конденсаторы очень высокой емкости, имеющие меньший объем.
Используются для низкочастотной связи и развязки, накопления и фильтрации энергии в источниках питания.
Электролитический конденсатор выбирают в основном из-за его относительно небольшого размера и только для приложений постоянного тока.
Изменение полярности или подача переменного тока могут повредить диэлектрический слой и привести к непоправимому/катастрофическому повреждению конденсатора.
Электролитический конденсатор для кроссоверной сети динамиков подобен идентичной паре конденсаторов, соединенных последовательно в оппозиции.
Он будет специально разработан с двумя анодами в одном корпусе, служащими неполяризованными электродами.
Звуковая (переменная) связь не повредит, так как диэлектрическое ухудшение и переформирование на анодах будет происходить через чередующиеся полупериоды.
\$\конечная группа\$
2
\$\начало группы\$
Ответ на второй вопрос: Основное различие между поляризованным и неполяризованным конденсатором заключается в емкости, какое напряжение он может хранить. Еще одно отличие состоит в том, что неполяризованные конденсаторы могут работать на гораздо более высоких частотах. Подробнее здесь.
Ответ на первый вопрос: Насколько я знаю, все электролиты поляризованы
Простите меня, если моя информация неверна, я действительно пытаюсь.
\$\конечная группа\$
9
\$\начало группы\$
- f -3 дБ BW =~0,25/(ESR*C=Tau @64%)
Из-за диэлектрической поверхности раздела электродов неэлектролитические конденсаторы, как правило, имеют гораздо более высокое значение f-3 дБ, но гораздо меньшую плотность, чем электронные конденсаторы с низким ESR, которые имеют ~2 мкс и в 100 раз большую полосу пропускания, чем электронные конденсаторы общего назначения ≈200 мкс.