Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

404 page not found | Fluke

Talk to a Fluke sales expert

Связаться с Fluke по вопросам обслуживания, технической поддержки и другим вопросам»

What is your favorite color?

Имя *

Фамилия *

Электронная почта *

FörКомпанияetag *

Номер телефона *

Страна * United States (Estados Unidos)CanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAzerbaijanBahamasBahrainBangladeshBarbadosБеларусь (Belarus)Belgien/Belgique (Belgium)BelizeBeninBermudaBhutanBoliviaBonaireBosnia and HerzegovinaBouvet IslandBotswanaBrasil (Brazil)British Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral African RepublicČeská republika (Czech Republic)ChadChile中国 (China)Christmas IslandCittà Di VaticanCocos (Keeling) IslandsCook IslandsColombiaComorosCongoThe Democratic Republic of CongoCosta RicaCroatiaCyprusCôte D’IvoireDanmark (Denmark)Deutschland (Germany)DjiboutiDominicaEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEspaña (Spain)EstoniaEthiopiaFaroese FøroyarFijiFranceFrench Southern TerritoriesFrench GuianaGabonGambiaGeorgiaGhanaGilbralterGreeceGreenlandGrenadaGuatemalaGuadeloupeGuam (USA)GuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelIslas MalvinasItalia (Italy)Jamaica日本 (Japan)JordanKazakhstanKenyaKiribati대한민국 (Korea Republic of)KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMéxico (Mexico)MicronesiaMoldovaMonacoMongoliaMontenegroMonserratMoroccoMozambiqueMyanmarNamibiaNauruNederland (Netherlands)Netherlands AntillesNepalNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorge (Norway)Norfolk IslandNorthern Mariana IslandsOmanÖsterreich (Austria)PakistanPalauPalestinePanamaPapua New GuineaParaguayPerú (Peru)PhilippinesPitcairn IslandPuerto RicoРоссия (Russia)Polska (Poland)Polynesia (French)PortugalQatarRepública Dominicana (Dominican Republic)RéunionRomânia (Romania)RwandaSaint HelenaSaint Pierre and MiquelonSaint Kitts and NevisSaint LuciaSaint Vincent and The GrenadinesSan MarinoSao Tome and PrincipeSaudi ArabiaSchweiz (Switzerland)SenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and The South Sandwich IslandsSouth SudanSri LankaSudanSuomi (Finland)SurinameSvalbard and Jan MayenSverige (Sweden)SwazilandTaiwanTajikistanTanzaniaThailandTimor-LesteTokelauTogoTongaTrinidad and TobagoTunisiaTürkiye (Turkey)TurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVirgin Islands (British)Virgin Islands (USA)VenezuelaVietnamWallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

Почтовый индекс *

Интересующие приборы

iGLastMSCRMCampaignID

?Отмечая галочкой этот пункт, я даю свое согласие на получение маркетинговых материалов и специальных предложений по электронной почте от Fluke Electronics Corporation, действующей от лица компании Fluke Industrial или ее партнеров в соответствии с политикой конфиденциальности.

consentLanguage

Политика конфиденциальности

Конденсатор в цепи переменного тока

Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока. Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора. В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.

Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:

   

По определению емкость на конденсаторе равна:

   

Следовательно, напряжение на конденсаторе:

   

Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:

   

Сила тока равна:

   

Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на . Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.

В течение периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.

Амплитуда силы тока (), исходя из выражения (5), равна:

   

Емкостное сопротивление конденсатора

Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением ():

   

Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:

   

где – амплитудное значение силы тока; – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):

   

На основании (9) говорят, что сопротивление конденсатора переменному току.

При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты уменьшается.

Примеры решения задач

Что такое конденсатор и как он работает. Для чего нужен конденсатор в электрической цепи: особенности работы

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы) , а на другой отрицательно заряженные частицы (электроны) . Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока. Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:
  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф) , на практике часто встречаются мкФ (1мкФ = 0,000001 Ф ), нФ (1нФ = 0,000000001 Ф ), пФ (1пФ = 0,000000000001 Ф) , так как емкость в 1Ф очень велика. Но есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже) .
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В) . При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить
    (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В
    ). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения — допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее) .
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR
    (удельное электрическое сопротивление)
    , что ведет к уменьшению емкости конденсатора.
Для чего же нужны конденсаторы и с чем их «едят».
  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах) , он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т. п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Данный элемент применяется практически в любых электронных приборах, поэтому, чтобы понять, в чем назначение конденсаторов, необходимо разобраться в их устройстве и принципах функционирования. Конденсатором называется одна из составных частей электрической цепи, у которой имеются две проводящие обкладки (одна обладает положительным зарядом, а другая – отрицательным). Чтобы исключить саморазрядку устройства, между обкладками помещают специальное вещество – диэлектрик, который препятствует перетоку заряда.

Классификация устройств

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда. Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях. Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами. К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением. Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии). Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно. Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд. Ведь, как только прибор подключается к источнику тока, напряжение в цепи равно нулю. Затем, по мере наполнения зарядами, напряжение становится равным тому, которое подается от источника.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Возможное применение устройств

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Электрический конденсатор – это устройство, которое может накапливать заряд и энергию электрического поля. В основном он состоит из пары проводников (обкладок), разделенных слоем диэлектрика. Толщина диэлектрика всегда намного меньше, чем размер обкладок. На электрических схемах замещения конденсатор обозначается 2-мя вертикальными параллельными отрезками (II).

Основные величины и единицы измерения

Существует несколько основных величин, определяющих конденсатор. Одна из них — это его емкость (латинская буква С), а вторая – рабочее напряжение (латинская U). Электроемкость (или же просто емкость) в системе СИ измеряется в фарадах (Ф). Причем как единица емкости 1 фарад – это очень много – на практике почти не применяется. Например, электрический заряд планеты Земля составляет всего 710 микрофарад. Поэтому в большинстве случаев из-меряется в производных от фарада величинах: в пикофарадах (пФ) при очень маленьком значении емкости (1 пФ=1/10 6 мкФ), в микрофарадах (мкФ) при достаточно большом ее значении (1 мкФ = 1/10 6 Ф). Для того чтобы рассчитать электроемкость, необходимо разделить величину заряда, накопленного между обкладками, на модуль разницы потенциалов между ними (напряжение на конденсаторе). Заряд конденсатора в данном случае – это заряд, накапливающийся на одной из обкладок рассматриваемого устройства. На 2-х проводниках устройства они одинаковы по модулю, но отличаются по знаку, поэтому сумма их всегда равняется нулю. Заряд конденсатора измеряется в кулонах (Кл), а обозначается буквой Q.

Напряжение на электроприборе

Одним из самых важных параметров рассматриваемого нами устройства является пробивное напряжение — разность значений потенциалов двух проводников конденсатора, приводящая к электрическому пробою слоя диэлектрика. Максимальное напряжение, при котором не происходит пробоя устройства, определяется формой проводников, свойствами диэлектрика и его толщиной. Условия работы, при которых напряжение на обкладках электроприбора близко к пробивному, недопустимы. Нормальное рабочее напряжение на конденсаторе меньше пробивного в несколько раз (в два-три раза). Поэтому при выборе следует обратить внимание на номинальное напряжение и емкость. В большинстве случаев значение этих величин указывается на самом устройстве или в паспорте. Включение конденсатора в сеть на напряжение, превышающее номинальное, грозит его пробоем, а отклонение значения емкости от номинального может привести к выбросу в сеть высших гармоник и перегреву устройства.

Внешний вид конденсаторов

Конструкция конденсато-ров может быть самой разнообразной. Она зависит от значения электроемкости устройства и его назначения. На параметры рассматриваемого устройства не должны влиять внешние факторы, поэтому обкладки имеют такую форму, при которой электрическое поле, созданное электрическими зарядами, сосредотачивается в небольшом зазоре между проводниками конденсатора. Поэтому они могут состоять из двух концентрических сфер, двух плоских пластин или двух коаксиальных цилиндров. Следовательно, конденсаторы могут быть цилиндрическими, сферическими и плоскими в зависимости от формы проводников.

Постоянные конденсаторы

По характеру изменения электроёмкости конденсаторы делят на устройства с постоянной, переменной ёмкостью или подстроечные. Разберем подробнее каждый из упомянутых типов. Приборы, чья ёмкость не меняется в процессе работы, то есть она является постоянной (значение емкости все-таки может колебаться в допустимых пределах в зависимости от температуры),- это постоянные конденсаторы. Существуют также электроприборы, меняющие свою электроемкость в процессе работы, они называются переменными.

От чего зависит С в конденсаторе

Электроемкость зависит от площади поверхности его проводников и расстояния между ними. Есть несколько способов изменения этих параметров. Рассмотрим конденсатор, который состоит из двух видов пластин: подвижных и неподвижных. Подвижные пластины перемещаются относительно неподвижных, в результате чего изменяется электроемкость конденсатора. Переменные аналоги используются для настроек аналоговых устройств. Причем емкость можно изменять в процессе работы. Подстроечные конденсаторы в большинстве случаев используют для настройки заводской аппаратуры, например для подбора емкости эмпирическим путем при невозможности расчета.

Конденсатор в цепи

Рассматриваемый прибор в цепи постоянного тока проводит ток только в момент включения его в сеть (при этом происходит заряд или перезаряд устройства до напряжения источника). Как только конденсатор полностью заряжается, ток через него не идет. При включении устройства в цепь с переменным током процессы разрядки и зарядки его чередуются друг с другом. Период их чередования равен приложенного синусоидального напряжения.

Характеристики конденсаторов

Конденсатор в зависимости от состояния электролита и материала, из которого он состоит, может быть сухим, жидкостным, оксидно-полупроводниковым, оксидно-металлическим. Жидкостные конденсаторы хорошо охлаждаются, эти устройства могут работать при значительных нагрузках и обладают таким важным свойством, как самовосстановление диэлектрика при пробое. У рассматриваемых электрических устройств сухого типа достаточно простая конструкция, немного меньше потери напряжения и ток утечки. На данный момент именно сухие приборы пользуются наибольшей популярностью. Основным достоинством электролитных конденсаторов являются дешевизна, компактные габариты и большая электроемкость. Оксидные аналоги – полярные (неверное подключение приводит к пробою).

Как подключается

Подключение конденсатора в цепь с постоянным током происходит следующим образом: плюс (анод) источника тока соединяется с электродом, который покрыт окисной пленкой. В случае несоблюдения этого требования может произойти Именно по этой причине жидкостные конденсаторы нужно подключать в цепь с переменным источником тока, соединяя встречно последовательно две одинаковые секции. Или нанести оксидный слой на оба электрода. Таким образом, получается неполярный электроприбор, работающий в сетях как с постоянным, так и с Но и в том и в другом случаях результирующая емкость становится в два раза меньше. Униполярные электрические конденсаторы обладают значительными размерами, зато могут включаться в цепи с переменным током.

Основное применение конденсаторов

Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная. При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).

В бардачке каждого автолюбителя можно найти пару-тройку этих электроприборов. Зачем нужны конденсаторы в автомобиле? Там они используются в усиливающей аппаратуре акустических систем для качественного воспроизведения звука.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Конденсатор (электронный компонент) – это… Что такое Конденсатор (электронный компонент)?

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Слева – конденсаторы для поверхностного монтажа; справа – конденсаторы для объёмного монтажа; сверху – керамические; снизу – электролитические.

Различные конденсаторы для объёмного монтажа

Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора —
r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Эквивалентное последовательное сопротивление —
R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

Эквивалентная последовательная индуктивность —
L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь – отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT – увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
  • ИП влажности древесины
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

Внешние ссылки

Смотри также

Ссылки

  1. Частота в радианах в секунду.
  2. ГОСТ 2.728-74 (2002)

как определить напряжение, вольтаж конденсаторов

Конденсатор – один из самых важных элементов электрической цепи. Он накапливает внутри себя электрический заряд и передает его другим элементам электрической цепи. О том, что представляет собой конденсатор и как определить на нём напряжение, рассказывается ниже.

Что такое конденсатор

Конденсатор – это двухполюсное устройство, имеющее постоянное или переменное емкостное значение и малую проводимость. Это элемент цепи, служащий накопителем энергии, что формирует электрическое поле; пассивный электронный компонент любого подключения. Содержит в себе несколько металлических электродов или обкладок, между которыми находится диэлектрик. Может иметь пакетную, трубчатую, дисковую, литую секционированную и рулонную конструкцию.

Конденсатор

Конденсатор имеет в плоскую или цилиндрическую форму. Плоское устройство состоит из относительно далеко расположенных друг от друга пластин, а цилиндрический –  из нескольких полых коаксиальных проводящих цилиндров с радиусами r1 и r2 (основное условие – r1 > r2).

Термин из учебного пособия

Характеристики конденсаторов

Главной характеристикой прибора является емкость, то есть, количество энергии, которое он может накопить в виде электронов. Общее число зарядов на пластинах определяет величину емкости конденсатора.

Обратите внимание! Емкость зависит от площади обкладок и диэлектрической проницаемости материала. Чем больше площадь конденсаторных пластин, тем больше заряженных частиц могут поместиться на них и тем выше показатель емкости.

Емкость

Из важнейших характеристик также можно назвать удельную емкость, плотность, номинальную силу заряда и полярность. Из дополнительных параметров можно указать количество фаз, метод установки конденсатора, рабочую температуру, активный электрический ток переменного или постоянного типа.

В электротехнике существуют также понятия негативных факторов, искажающих рабочие свойства колебательного контура. К ним относятся электрическое сопротивление и эквивалентная последовательная индуктивность. В качестве примера негативного критерия можно привести показатель, показывающий падение заряда после отключения электричества.

В чем измеряется напряжение конденсаторов

Напряжение отражается на корпусе оборудования и показывает то, при какой силе энергии оно работает. Измеряется напряжение конденсаторов в фарадах. Это единица, названная в честь Майкла Фарадея. Один фарад – это кулон, или заряд, прошедший через проводник за одну секунду при силе тока в один ампер. Как правило, фарады и кулоны не используются для измерения на практике, потому что чаще применяются дробные величины – микро-, нано- и пикофарады.

Измерение силы заряда двухполюсника

Что влияет на напряжение конденсаторов

Чтобы возник заряд, двухполюсник должен быть подключен к электрической цепи с постоянным током. Для этой цели может быть использован генератор, каждый из которых обладает внутренним сопротивлением. Во время короткого замыкания заряжается прибор, и между его обкладками появляется заряд. Поэтому на вольтаж конденсаторов влияет внутреннее сопротивление. Также, на него оказывают влияние температурные колебания – чем выше нагрев, тем ниже номинальный показатель напряжения.

Важно! На напряжение конденсаторов оказывает большое влияние ток утечки. Вопреки сложившемуся мнению, диэлектрик пропускает небольшое количество электротока, что приводит к потере начального заряда с течением времени, и напряжение в итоге незначительно падает.

Описание влияния на показатель

Как вычислить напряжение и вольтаж

Чтобы определить мощность, напряжение и вольтаж двухполюсников, можно использовать мультиметр или специальную формулу для теоретических расчётов. Чтобы проверить мультиметром силу заряда и количество вольт, необходимо вставить щупы в измеряемое оборудование, переключить прибор на режим омметра, нажать на соответствующую клавишу проверки и получить запрашиваемый показатель.

Обратите внимание! Сила заряда при проверке быстро падает, поэтому правильной будет та цифра, которая появилась на индикаторе мультиметра в самом начале измерений.

Вычисление мультиметром

Формулы измерения напряжения конденсаторов

Численный показатель напряжения равен электродвижущей силе. Также он определяется, как емкость, поделенная на величину заряда, исходя из формулы определения его величины. В соответствии с ещё одним правилом, напряжение равно току утечки, поделенному на изоляционное сопротивление.

Основные формулы для расчета

В целом, конденсатор – это устройство для аккумулирования электрического заряда, состоящее из нескольких пластинчатых электродов, которые разделены с помощью диэлектриков. Устройство имеет электрод, измеряемый в фарадах. Один фарад равен одному кулону. На напряжение устройства влияет ток, показатели которого можно вычислить через описанные выше формулы.

Однофазные цепи переменного тока (страница 2)

Решение:
Полное сопротивление схемы

Полная мощность на входе схемы

Потери мощности в обмотке катушки

Активная мощность схемы

Коэффициент мощности схемы

Из таблиц тригонометрических величин .
Активное сопротивление схемы

сопротивление дуги

Индуктивное сопротивление цепи представлено индуктивным сопротивлением катушки:

Эту же величину можно определить из треугольника сопротивлении (рис. 25, масштаб )

Искомая индуктивность катушки

Если бы вместо катушки был включен реостат, то сопротивление схемы имело бы ту же величину 6 Ом, но было бы чисто активным:

откуда

Потери мощности в катушке

Потери мощности в реостате

Отсюда ясно, что к. п. д. схемы выше при «погашении» избытка напряжения индуктивной катушкой. Действительно, к. п. д. при наличии катушки

к. п. д. при наличии реостата

Не следует забывать, что «погашение» избытка напряжения катушкой (или конденсатором) ухудшает коэффициент мощности (в данном примере при наличии катушки и при наличии реостата).

22. Последовательно с катушкой, параметры которой и L=15,92 мГн, включен реостат сопротивлением, . Цепь включена на напряжение U=130 В при частоте f=50 Гц.
Определить ток в цепи; напряжение на катушке и реостате; коэффициент мощности цепи и катушки.

Решение:
Индуктивное сопротивление катушки

Полное сопротивление катушки

Активное сопротивление цепи, состоящей из последовательно соединенных катушки и реостата,

Полное сопротивление цепи

На основании закона Ома ток в цепи

Напряжение на катушке

Напряжение на реостате

Арифметическая сумма много больше приложенного напряжения U=130 В. Коэффициент мощности цепи

Коэффициент мощности катушки

Следовательно, реостат увеличивает коэффициент мощности и сопротивление цепи, но уменьшает ток, увеличивает потребление энергии схемой.
Действительно, активная мощность катушки

активная мощность реостата

Так как цепь неразветвленная и ток один, то с него целесообразно начать построение векторной диаграммы (рис. 26).
Напряжение на реостате, представляющем собой чисто активное сопротивление, совпадает по фазе с током; на диаграмме вектор этого напряжения совпадает по направлению с вектором тока. Из конца вектора в сторону опережения вектора тока I, под углом в сторону, противоположную вращению стрелки часов, откладываем вектор напряжения на катушке . Векторы построены так с целью сложения по правилу многоугольника.

23. Неразветвленная цепь составлена из двух катушек: у первой катушки индуктивность и сопротивление , у второй катушки индуктивность и сопротивление .
Определить ток в цепи и напряжения на каждой катушке, а также построить в масштабе векторную диаграмму, если частота f=50 Гц и приложенное напряжение U=12,6 В.

Решение:
Индуктивное сопротивление первой катушки

т. е. оно численно равно активному сопротивлению , что обусловливает отставание тока по фазе от напряжения на 1/8 периода (на 45°).
Действительно, тангенс угла сдвига фаз

Индуктивное сопротивление второй катушки

Так как ее активное сопротивление то тангенс угла сдвига фаз

Построим в масштабе треугольник сопротивлений для рассматриваемой цепи. Для этого зададимся масштабом сопротивлений . Тогда на диаграмме сопротивление 1,57 Ом будет изображено отрезком 15,7 мм, сопротивление 2,7 Ом — отрезком 27 мм и т. д. На рис. 27 отрезок, изображающий активное сопротивление , отложен в горизонтальном направлении, а отрезок, изображающий индуктивное сопротивление , — в вертикальном направлении под прямым углом к .

Полное сопротивление первой катушки является гипотенузой прямоугольного треугольника. Из вершины с этого треугольника в горизонтальном направлении отложен отрезок, изображающий сопротивление , и под прямым углом к нему вверх — отрезок, изображающий сопротивление . Гипотенуза се прямоугольного треугольника означает полное сопротивление второй катушки.
Из рис. 27 видно, что отрезок ае, изображающий полное сопротивление z неразветвленной цепи из двух катушек, не равен сумме отрезков ас и се, т. е. . Чтобы определить полное сопротивление z рассматриваемой цепи, следует сложить отдельно активные (, отрезок аf) и индуктивные (, отрезок ef) сопротивления катушек.
Гипотенуза ае, означающая полное сопротивление z цепи, определяется по теореме Пифагора:

Ток в цепи определяется по закону Ома:

Напряжение на первой катушке

Напряжение на второй катушке

Строим векторную диаграмму (рис. 28), приняв масштабы:
а) для тока ; тогда вектор тока изобразится отрезком длиной 25 мм;
б) для напряжения ; при этом вектор напряжения будет иметь длину 55,2 мм, вектор напряжения — длину 71 мм, а вектор приложенного напряжения — длину 126 мм.
Начало вектора совмещено с концом вектора для возможности сложения векторов напряжений но правилу многоугольника (напряжение, приложенное к неразветвленной цепи катушек, равно геометрической сумме напряжений отдельных катушек).

 

Конденсатор в цепи переменного тока

Конденсатор в цепи переменного тока

Подробности
Просмотров: 553

«Физика – 11 класс»

Постоянный ток не может идти по цепи, содержащей конденсатор, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор.

Есть источники постоянного и переменного напряжений, в которых постоянное напряжение на зажимах источника равно действующему значению переменного напряжения.
Цепь состоит из конденсатора и лампы накаливания, соединенных последовательно.
При включении постоянного напряжения (переключатель влево) лампа не светится.
При включении переменного напряжения (переключатель вправо) лампа загорается, если емкость конденсатора достаточно велика.

Под действием переменного напряжения происходит периодическая зарядка и разрядка конденсатора.
Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.


Если сопротивлением проводов и обкладок конденсатора можно пренебречь,

то напряжение на конденсаторе равно напряжению на концах цепи.

Следовательно,

Заряд конденсатора меняется по гармоническому закону:

q = CUm cos ωt

Сила тока, представляющая собой производную заряда по времени, равна:

Колебания силы тока опережают по фазе колебания напряжения на конденсаторе на .

Амплитуда силы тока равна:

Im = Um

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Роль этой величины аналогична роли активного сопротивления R в законе Ома.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.
Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки.
Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.
В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс.
С увеличением емкости оно уменьшается.
Уменьшается оно и с увеличением частоты ω.

На протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Итак,
сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные колебания. Физика, учебник для 11 класса – Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Роль конденсатора | Технология

Идеальный партнер для электроники

В большинстве электронных устройств используются конденсаторы, которые являются бесценной частью электронных продуктов. Конденсаторы очень популярны во многих приложениях, таких как электронные схемы, силовые цепи и блоки питания.
Конденсатор вместе с сопротивлением и катушкой, которые составляют основу электронных схем, называют «большой тройкой пассивных компонентов». Пассивные компоненты – это электронная часть, которая получает энергию для потребления, хранения и поставки.

В отличие от интегральных схем (IC), у него нет активной операции, когда низкая мощность усиливается для постоянного вывода мощности. Вы также можете рассматривать конденсатор как простую деталь для приема и подачи электричества. Однако, что более важно, такие пассивные компоненты являются незаменимыми частями для точной работы активных компонентов.

Три пассивных компонента также называются LCR, что означает катушка, конденсатор и сопротивление.

Состоит из двух металлических пластин и изолятора, базовая модель конденсатора

[Инжир.1] Основная структура конденсатора

Конденсатор в основном состоит из изолятора и двух металлических пластин, прикрепленных с обеих сторон изолятора. Изоляторы не проводят ток. Изолятор, используемый для конденсаторов, называется диэлектриком. Пока электричество течет, положительный и отрицательный заряды переносятся внутри проводника.

Заряженный электричеством, поток заряда запускается, но он блокируется, поскольку между металлическими пластинами находится изолятор.Затем заряды накапливаются только на одной из двух металлических пластин. Между тем, другая металлическая пластина, прикрепленная к изолятору, имеет противоположный заряд.

Таким образом, конденсаторы имеют структуру для хранения электричества между двумя металлическими пластинами. В качестве изоляционных материалов используются газы, масла, керамика и смолы. Что касается форм металлических пластин, существует большое разнообразие типов с параллельными пластинами, пленкой, многослойной и т. Д. Количество накопленных зарядов, а также поддерживаемые частоты различаются в зависимости от типов изоляторов или конструкции конденсаторов.Итак, необходимо выбрать подходящий конденсатор, отвечающий вашим требованиям.

Значение конденсаторов

В принципе конденсаторы состоят из двух важных частей.

  1. Накопление электрического заряда (электричества)
  2. переменный ток протекает, но не постоянный ток

Подробнее о хранении электроэнергии см. В вышеупомянутой базовой конструкции конденсатора.
Поскольку электрический заряд накапливается между металлическими пластинами, передача электрического заряда прекращается, и постоянный ток перестает течь.Однако, другими словами, до тех пор, пока конденсаторы не будут полностью заряжены, даже постоянный ток может протекать в течение короткого периода времени. В случае переменного тока направление тока переключается с определенным интервалом, а затем конденсатор заряжается и разряжается. Таким образом, электричество выглядит как проходящее через конденсатор.
Соответственно, чем выше частота переменного тока, тем легче проходит через конденсаторы. Таким образом, конденсаторы играют в электронной схеме следующие три важные роли.

1) Зарядка и разрядка электрических зарядов

Конденсаторы могут заряжаться и разряжаться благодаря своей конструкции.Конденсаторы, обладающие электрическим зарядом и разрядом, также могут использоваться в качестве источника питания. Вспышки камеры используют эту особенность конденсаторов.
Чтобы получить сильный свет, к нему должно быть немедленно приложено высокое напряжение. Между тем, такое высокое напряжение в цепи для работы камеры не требуется. Кроме того, имеется подходящая конструкция конденсатора, в которой такое высокое световое излучение обеспечивается за счет мгновенной разрядки электрического заряда, накопленного в конденсаторе.

2) Поддержание напряжения на прежнем уровне

Помимо вышеупомянутой особенности, конденсаторы также имеют функции для поддержания напряжения на определенном уровне.Конденсаторы полезны для уменьшения пульсации напряжения. Когда на параллельную цепь подается высокое напряжение, конденсатор заряжается, а с другой стороны, он разряжается низким напряжением.
В то время как электричество выходит переменным током, большинство электронных схем работает с постоянным током. Следовательно, переменный ток преобразуется в постоянный ток через схему выпрямителя, которая преобразует переменный ток в постоянный, но преобразованный постоянный ток представляет собой нестабильный ток с пульсациями на этой стадии. Чтобы справиться с этим, используется конденсатор для коррекции пульсаций и постоянного поддержания напряжения.

3) Удаление шума

Что касается шумоподавления, то функция конденсатора, пропускающего переменный ток, но постоянный ток, полезна для устранения шума. В общем, поскольку шум в постоянном токе является высокочастотной составляющей переменного тока, он имеет тенденцию легко проходить через конденсатор.
Путем вставки ответвленной цепи между входом и выходом формируется земля для подключения к конденсатору. После этого переменная составляющая проходит только через конденсатор, а затем постоянный ток течет в выходной цепи.

Типы конденсаторов

Алюминиевый электролитический конденсатор
Конденсатор изготовлен из алюминия и другого металла. Поскольку оксидная пленка блокирует электричество, она используется в качестве диэлектрического материала, образуя поверхность алюминия. Конденсаторы этого типа обладают большой емкостью по доступной цене. Поэтому он широко используется в качестве конденсатора большой емкости. Однако у него есть некоторые слабые места, такие как плохие частотные характеристики, больший размер, потеря диэлектрика из-за утечки жидкости.
Танталовый конденсатор
Конденсатор использует тантал в качестве анода и пятиокись тантала в качестве диэлектрического материала. Он имеет относительно большую емкость и меньше по размеру, чем алюминиевый электролитический конденсатор. Кроме того, конденсатор превосходит алюминиевый конденсатор по характеристикам тока утечки, частотным характеристикам, конденсаторам и температурным характеристикам.
Электрический двухслойный конденсатор
Конденсаторы с двойным электрическим слоем имеют чрезвычайно большую емкость.Он более чем в 1000–10 000 раз превосходит алюминиевые электролитические конденсаторы, и его можно использовать повторно в течение длительного периода без ограничений, таких как количество циклов заряда / разряда. Благодаря уникальной особенности конденсатор можно использовать многократно. Конденсаторы с двойным электрическим слоем имеют электрические заряды, ориентированные на границе электролита и электрода, который называется «двойным электрическим слоем» и имеет размер одной молекулы. Слой используется в качестве диэлектрического материала конденсаторов с двойным слоем.Цена на конденсаторы с двойным электрическим слоем относительно высока по сравнению с другими.
Керамический конденсатор
Конденсаторы в основном делятся на три типа в зависимости от типа керамики, используемой в качестве диэлектрического материала: тип с низкой диэлектрической проницаемостью, тип с высокой диэлектрической проницаемостью и тип полупроводника. Основная особенность конденсатора заключается в том, что увеличение напряжения приводит к изменению его емкости. Небольшой конденсатор термостойкий, хотя он хрупкий и может быть поврежден или сломан.
Пленочный конденсатор
В этом типе пленки, такие как полиэстер и полиэтилен, используются в качестве диэлектрического материала.Полиэфирные, полипропиленовые и другие пленки помещаются между электродной фольгой с обеих сторон и наматываются в цилиндрическую форму. Неполярный конденсатор, который больше керамического, имеет высокое сопротивление изоляции и отсутствие электрических потерь. Он также обеспечивает высокую надежность с отличными частотными и температурными характеристиками.
Слюдяной конденсатор
В качестве диэлектрического материала конденсатора используется слюда – природный минерал. Слюда идеально подходит для конденсатора, так как обладает высокими диэлектрическими свойствами и может отслаиваться.Слюдяные конденсаторы обладают превосходными характеристиками, такими как сопротивление изоляции, тангенс угла диэлектрических потерь, частотные и температурные характеристики, хотя есть некоторые недостатки в том, что они дороги и имеют большой размер.
Для получения дополнительной информации о типах конденсаторов перейдите по ссылке ниже.
Типы конденсаторов. Базовые знания компонентов

Соответствующие технические знания

Конденсатор

– Энциклопедия Нового Света

Конденсаторы: керамические SMD вверху слева; Тантал SMD внизу слева; сквозное отверстие в тантале вверху справа; сквозной электролитик внизу справа.Основные деления шкалы указаны в сантиметрах.

Конденсатор (или конденсатор [1] ) – это электрическое устройство, которое может накапливать энергию в электрическом поле между парой близко расположенных проводников (называемых «пластинами»). Когда на конденсатор подается напряжение, на каждой пластине накапливаются электрические заряды одинаковой величины, но противоположной полярности. Они используются в электрических цепях как накопители энергии. Их также можно использовать для различения высокочастотных и низкочастотных сигналов, что делает их полезными в электронных фильтрах.

Конденсаторы

позволили разработать многие важные элементы современной жизни, такие как компьютерные схемы, телевизоры и даже вспышки для фотоаппаратов.

История

Конденсаторы различных типов. Слева направо: многослойная керамика, керамический диск, многослойная полиэфирная пленка, трубчатая керамика, полистирол (дважды: осевой и радиальный), электролитический. Основные деления шкалы указаны в сантиметрах.

В октябре 1745 года Эвальд Георг фон Клейст (1700-1748) из Померании изобрел первый зарегистрированный конденсатор: стеклянный сосуд, содержащий проводящую жидкость, такую ​​как ртуть, которую он держал в руке, и железный гвоздь или проволоку, вставленную в жидкость. .Он обнаружил, что устройство могло сохранять заряд после того, как он электрифицировал его своей машиной трения. Он утверждал, что может зажечь духов гвоздем.

В январе 1746 года, до того, как открытие Клейста стало широко известным, голландский физик Питер ван Мушенбрук (1700–1748) независимо изобрел очень похожий конденсатор. Он был назван Лейденской банкой в ​​честь Лейденского университета, где работал ван Мушенбрук. Даниэль Гралат был первым, кто объединил несколько банок параллельно в «батарею», чтобы увеличить общий возможный накопленный заряд.

Самой ранней единицей измерения емкости была «банка», эквивалентная примерно 1 нФ.

Ранние конденсаторы были также известны как конденсаторы , термин , который иногда используется и сегодня. Он был изобретен Вольтой в 1782 году (производный от итальянского compressatore ) со ссылкой на способность устройства накапливать более высокую плотность электрического заряда, чем обычный изолированный проводник. В большинстве неанглийских языков до сих пор используется слово, производное от «конденсатор», например французское «конденсатор», немецкий, норвежский или польский «конденсатор», или испанский «конденсатор».«

Типы конденсаторов

  • Металлическая пленка : Изготовлена ​​из высококачественной полимерной пленки (обычно поликарбоната, полистирола, полипропилена, полиэстера (майлара), а для высококачественных конденсаторов – полисульфона) со слоем металла, нанесенного на поверхность. Они обладают хорошим качеством и стабильностью и подходят для схем таймеров. Подходит для высоких частот.
  • Слюда : Подобно металлической пленке. Часто высокое напряжение. Подходит для высоких частот. Дорогие.
  • Бумага : Используется для высоких напряжений.
  • Стекло : Используется для высокого напряжения. Дорогие. Стабильный температурный коэффициент в широком диапазоне температур.
  • Керамика : стружки изменяющихся слоев металла и керамики. В зависимости от их диэлектрика, будь то класс 1 или класс 2, степень их зависимости от температуры / емкости различается. Они часто имеют (особенно класс 2) высокий коэффициент рассеяния, высокий частотный коэффициент рассеяния, их емкость зависит от приложенного напряжения, а их емкость изменяется с возрастом.Тем не менее, они находят широкое применение в обычных приложениях связи и фильтрации с низкой точностью. Подходит для высоких частот.
  • Электролитический : поляризованный. Конструктивно подобен металлической пленке, но электроды изготовлены из алюминия, травленого для получения более высоких поверхностей, а диэлектрик пропитан жидким электролитом. Они страдают от высоких допусков, высокой нестабильности, постепенной потери емкости, особенно под воздействием тепла, и высокой утечки. Доступны специальные типы с низким эквивалентным последовательным сопротивлением.Имеет тенденцию терять емкость при низких температурах. Может достигать высоких мощностей.
  • Тантал : Как электролитический. Поляризованный. Лучшая производительность с более высокими частотами. Высокое диэлектрическое поглощение. Высокая утечка. Обладают гораздо лучшими характеристиками при низких температурах.
  • Суперконденсаторы : изготовлены из углеродного аэрогеля, углеродных нанотрубок или высокопористых электродных материалов. Чрезвычайно высокая емкость. Может использоваться в некоторых приложениях вместо аккумуляторных батарей.

Приложения

Конденсаторы

находят различное применение в электронных и электрических системах.

Накопитель энергии

Конденсатор может накапливать электрическую энергию при отключении от цепи зарядки, поэтому его можно использовать как временный аккумулятор. Конденсаторы обычно используются в электронных устройствах для поддержания питания во время замены батарей. (Это предотвращает потерю информации в энергозависимой памяти.)

Конденсаторы используются в источниках питания, где они сглаживают выход полнополупериодного или полуволнового выпрямителя (устройства, преобразующего переменный ток в постоянный). Их также можно использовать в схемах накачки заряда в качестве элемента накопления энергии при генерации более высоких напряжений, чем входное напряжение.

Конденсаторы подключаются параллельно к силовым цепям большинства электронных устройств и более крупных систем (например, заводов), чтобы отводить и скрывать колебания тока от первичного источника питания, чтобы обеспечить «чистый» источник питания для сигнальных или управляющих цепей. Аудиооборудование, например, использует несколько конденсаторов таким образом, чтобы отводить гудение линии электропередачи до того, как он попадет в сигнальную цепь. Конденсаторы действуют как локальный резерв для источника постоянного тока и отводят переменные токи от источника питания.Это используется в автомобильных аудиосистемах, когда конденсатор жесткости компенсирует индуктивность и сопротивление выводов свинцово-кислотного автомобильного аккумулятора.

Коррекция коэффициента мощности
Конденсаторы

используются при коррекции коэффициента мощности для сглаживания неравномерного распределения тока. Такие конденсаторы часто представляют собой три конденсатора, подключенных к трехфазной нагрузке. Обычно значения этих конденсаторов указываются не в фарадах, а скорее как реактивная мощность в вольт-амперах реактивной мощности (ВАр).Цель состоит в том, чтобы противодействовать индуктивной нагрузке от электродвигателей и люминесцентного освещения, чтобы нагрузка выглядела в основном резистивной.

Фильтрация

Муфта сигнальная

Поскольку конденсаторы пропускают переменный ток, но блокируют сигналы постоянного тока (при зарядке до приложенного постоянного напряжения), они часто используются для разделения компонентов переменного и постоянного тока в сигнале. Этот метод известен как соединение по переменному току . (Иногда для того же эффекта используются трансформаторы.) Здесь используется большое значение емкости, значение которой не нужно точно контролировать, но чье реактивное сопротивление мало на частоте сигнала.Конденсаторы для этой цели, предназначенные для установки через металлическую панель, называются проходными конденсаторами и имеют несколько иное схематическое обозначение.

Шумовые фильтры, пускатели двигателей и демпферы

Когда индуктивная цепь разомкнута, ток через индуктивность быстро падает, создавая большое напряжение в разомкнутой цепи переключателя или реле. Если индуктивность достаточно велика, энергия вызовет искру, в результате чего точки контакта будут окисляться, портиться или иногда свариваться вместе, или разрушать твердотельный переключатель.Демпферный конденсатор во вновь разомкнутой цепи создает путь для этого импульса, чтобы обойти точки контакта, тем самым сохраняя их жизнь; они обычно использовались, например, в системах зажигания с контактным выключателем. Точно так же в схемах меньшего размера искры может быть недостаточно, чтобы повредить переключатель, но все же будут излучаться нежелательные радиочастотные помехи (RFI), которые поглощает конденсатор фильтра и . Демпферные конденсаторы обычно используются с последовательно включенным резистором с низким номиналом, чтобы рассеивать энергию и минимизировать радиопомехи.Такие комбинации резистор-конденсатор доступны в одном корпусе.

И наоборот, чтобы быстро инициировать ток через индуктивную цепь, требуется большее напряжение, чем требуется для его поддержания; в таких применениях, как большие двигатели, это может вызвать нежелательные пусковые характеристики, и пусковой конденсатор двигателя используется для увеличения тока катушки, чтобы помочь запустить двигатель.

Конденсаторы также используются параллельно для прерывания блоков высоковольтного выключателя, чтобы равномерно распределять напряжение между этими блоками.В этом случае их называют градуировочными конденсаторами.

На принципиальных схемах конденсатор, используемый в основном для накопления заряда постоянного тока, часто изображен на принципиальных схемах вертикально, причем нижняя, более отрицательная пластина изображена в виде дуги. Прямая пластина указывает на положительный полюс устройства, если он поляризован.

Обработка сигналов

Энергия, запасенная в конденсаторе, может использоваться для представления информации либо в двоичной форме, как в DRAM, либо в аналоговой форме, как в аналоговых фильтрах с дискретизацией и ПЗС.Конденсаторы могут использоваться в аналоговых схемах как компоненты интеграторов или более сложных фильтров, а также для стабилизации контура отрицательной обратной связи. В схемах обработки сигналов также используются конденсаторы для интеграции токового сигнала.

Настроенные схемы

Конденсаторы и катушки индуктивности используются вместе в настроенных схемах для выбора информации в определенных частотных диапазонах. Например, радиоприемники полагаются на переменные конденсаторы для настройки частоты станции. В динамиках используются пассивные аналоговые кроссоверы, а в аналоговых эквалайзерах используются конденсаторы для выбора различных звуковых диапазонов.

В настроенной цепи, такой как радиоприемник, выбранная частота является функцией индуктивности (L) и емкости (C) последовательно и определяется выражением:

f = 12πLC {\ displaystyle f = {\ frac {1} {2 \ pi {\ sqrt {LC}}}}}

Это частота, на которой возникает резонанс в LC-цепи.

Другие приложения

Обнаружение

Большинство конденсаторов предназначены для поддержания фиксированной физической структуры. Однако различные вещи могут изменить структуру конденсатора – результирующее изменение емкости может быть использовано для определения этих вещей [1] [2].

Замена диэлектрика: Эффекты изменения физических и / или электрических характеристик диэлектрика также могут быть полезными. Конденсаторы с открытым пористым диэлектриком могут использоваться для измерения влажности воздуха.

Изменение расстояния между пластинами: Конденсаторы используются для точного измерения уровня топлива в самолетах. Конденсаторы с гибкой пластиной можно использовать для измерения деформации или давления. Конденсаторы используются в качестве датчика в конденсаторных микрофонах, где одна пластина перемещается под действием давления воздуха относительно фиксированного положения другой пластины.В некоторых акселерометрах используются конденсаторы MEMS, выгравированные на микросхеме, для измерения величины и направления вектора ускорения. Они используются для обнаружения изменений ускорения, например, как датчики наклона или для обнаружения свободного падения, как датчики, запускающие срабатывание подушки безопасности, и во многих других приложениях. Они также используются в датчиках отпечатков пальцев.

Импульсная энергия и оружие

Группы больших, специально сконструированных высоковольтных конденсаторов с низкой индуктивностью (конденсаторные батареи) используются для подачи больших импульсов тока во многих импульсных источниках питания.К ним относятся электромагнитное формирование, генератор Маркса, импульсные лазеры (особенно TEA-лазеры), сети формирования импульсов, радары, термоядерные исследования и ускорители частиц.

Большие конденсаторные батареи используются в качестве источников энергии для взрывных детонаторов или ударных детонаторов в ядерном оружии и другом специальном оружии. Ведутся экспериментальные работы по использованию батарей конденсаторов в качестве источников питания для электромагнитной брони и электромагнитных рельсотронов или койлганов.

Опасности и безопасность

Конденсаторы могут сохранять заряд долгое время после отключения питания от цепи; этот заряд может вызвать поражение электрическим током (иногда со смертельным исходом) или повреждение подключенного оборудования.Например, даже такое, казалось бы, безобидное устройство, как одноразовая вспышка для фотоаппарата, питаемая от 1,5-вольтовой батареи AA, содержит конденсатор, который может быть заряжен до более чем 300 вольт. Это легко может вызвать чрезвычайно болезненный и, возможно, смертельный шок.

Перед обслуживанием содержащего его оборудования необходимо убедиться, что любой большой или высоковольтный конденсатор должным образом разряжен. В целях безопасности все большие конденсаторы перед обращением с ними следует разрядить. Для конденсаторов на уровне платы это делается путем размещения на выводах ограничивающего резистора, сопротивление которого достаточно велико, чтобы ток утечки не влиял на схему, но достаточно мало, чтобы разрядить конденсатор вскоре после отключения питания.Высоковольтные конденсаторы следует хранить с закороченными клеммами, поскольку временно разряженные конденсаторы могут создавать потенциально опасные напряжения, когда клеммы остаются разомкнутыми.

Большие заполненные маслом старые конденсаторы необходимо утилизировать надлежащим образом, поскольку некоторые из них содержат полихлорированные бифенилы (ПХД). Известно, что отходы ПХД могут попадать в грунтовые воды под свалками. При употреблении с питьевой загрязненной водой ПХД являются канцерогенными, даже в очень незначительных количествах. Если конденсатор физически большой, он более опасен и может потребовать дополнительных мер предосторожности, помимо описанных выше.Новые электрические компоненты больше не производятся с печатными платами. («PCB» в электронике обычно означает печатную плату, но вышеупомянутое использование является исключением.) Конденсаторы, содержащие PCB, были помечены как содержащие «Askarel» и несколько других торговых наименований.

Высоковольтное

Помимо обычных опасностей, связанных с работой с цепями высокого напряжения и высокой энергии, существует ряд опасностей, характерных для высоковольтных конденсаторов. Конденсаторы высокого напряжения могут катастрофически выйти из строя при воздействии на них напряжений или токов, превышающих их номинальные значения, или по мере того, как они достигают своего нормального срока службы.Неисправности диэлектрических или металлических межсоединений могут вызвать искрение внутри маслонаполненных блоков, в результате чего диэлектрическая жидкость испаряется, что может привести к вздутию, разрыву или даже взрыву, который рассеивает горючее масло, вызывает возгорание и повреждает находящееся поблизости оборудование. Цилиндрические стеклянные или пластмассовые корпуса с жестким корпусом более подвержены взрывному разрыву, чем прямоугольные, из-за неспособности легко расширяться под давлением. Конденсаторы, используемые в ВЧ-устройствах или устройствах с длительным током, могут перегреваться, особенно в центре валков конденсатора.Захваченное тепло может вызвать быстрое нагревание и разрушение салона, даже если внешний корпус остается относительно холодным. Конденсаторы, используемые в высокоэнергетических батареях конденсаторов, могут сильно взорваться, когда неисправность одного конденсатора вызывает внезапный сброс энергии, накопленной в остальной части батареи, в неисправный блок. А вакуумные конденсаторы высокого напряжения могут генерировать мягкое рентгеновское излучение даже при нормальной работе. Надлежащая локализация, предохранение и профилактическое обслуживание могут помочь свести к минимуму эти опасности.

Для высоковольтных конденсаторов может быть полезна предварительная зарядка для ограничения пусковых токов при включении цепей HVDC.Это продлит срок службы компонента и может снизить опасность высокого напряжения.

Физика

Конденсатор состоит из двух проводящих электродов или пластин, разделенных изолятором.

Емкость

Когда электрический заряд накапливается на пластинах, в области между пластинами создается электрическое поле, пропорциональное количеству накопленного заряда. Это электрическое поле создает разность потенциалов V = E · d между пластинами этого простого конденсатора с параллельными пластинами.

Емкость конденсатора (C) является мерой количества заряда (Q) , хранящегося на каждой пластине для данной разности потенциалов или напряжения (В) , которое появляется между пластинами:

C = QV {\ displaystyle C = {Q \ over V}}

В единицах СИ конденсатор имеет емкость в один фарад, когда один кулон заряда вызывает разность потенциалов на пластинах в один вольт. Поскольку фарад – очень большая единица измерения, значения конденсаторов обычно выражаются в микрофарадах (мкФ), нанофарадах (нФ) или пикофарадах (пФ).{2}} [3]

, где ε – диэлектрическая проницаемость диэлектрика, A, – площадь пластин, а d – расстояние между ними.

На схеме повернутые молекулы создают противоположное электрическое поле, которое частично нейтрализует поле, создаваемое пластинами, процесс, называемый диэлектрической поляризацией.

Накопленная энергия

Поскольку противоположные заряды накапливаются на пластинах конденсатора из-за разделения зарядов, на конденсаторе возникает напряжение из-за электрического поля этих зарядов.Постоянно увеличивающаяся работа должна выполняться против этого постоянно увеличивающегося электрического поля по мере отделения большего количества зарядов. Энергия (измеряется в джоулях, в СИ), запасенная в конденсаторе, равна количеству работы, необходимой для установления напряжения на конденсаторе и, следовательно, электрического поля. Максимальная энергия, которая может безопасно храниться в конкретном конденсаторе, ограничена максимальным электрическим полем, которое диэлектрик может выдержать до того, как он сломается. Следовательно, все конденсаторы, изготовленные с одним и тем же диэлектриком, имеют примерно одинаковую максимальную плотность энергии (джоулей энергии на кубический метр).

Гидравлическая модель

Поскольку электрическая схема может быть смоделирована потоком жидкости, конденсатор можно смоделировать как камеру с гибкой диафрагмой, отделяющей вход от выхода. Как можно определить интуитивно, а также математически, это обеспечивает правильные характеристики.

  • Перепад давления (разность напряжений) на агрегате пропорционален интегралу тока
  • Устойчивый ток не может пройти через него, потому что приложение слишком большого давления, превышающего максимальное давление, приведет к его разрушению.
  • Но может передаваться переходный импульс или переменный ток
  • Емкость параллельно соединенных блоков эквивалентна сумме их индивидуальных емкостей

Электрические цепи

На электроны в молекулах диэлектрика влияет электрическое поле, заставляя молекулы слегка поворачиваться из своего положения равновесия. Воздушный зазор показан для наглядности; в реальном конденсаторе диэлектрик находится в прямом контакте с пластинами.Конденсаторы также пропускают переменный ток и блокируют постоянный ток.

Источники постоянного тока

Электроны не могут легко проходить прямо через диэлектрик от одной пластины конденсатора к другой, поскольку диэлектрик тщательно выбирается, чтобы он был хорошим изолятором. Когда через конденсатор проходит ток, электроны накапливаются на одной пластине, а электроны удаляются с другой пластины. Этот процесс обычно называют «зарядкой» конденсатора, даже если конденсатор всегда электрически нейтрален.Фактически, ток через конденсатор приводит к разделению электрического заряда, а не к накоплению электрического заряда. Это разделение зарядов вызывает возникновение электрического поля между пластинами конденсатора, вызывающего напряжение на пластинах. Это напряжение V прямо пропорционально количеству разделенного заряда Q. Поскольку ток I через конденсатор представляет собой скорость, с которой заряд Q проходит через конденсатор (dQ / dt), это можно математически выразить как:

I = dQdt = CdVdt {\ displaystyle I = {\ frac {dQ} {dt}} = C {\ frac {dV} {dt}}}

где

I – ток, текущий в обычном направлении, измеряется в амперах,
dV / dt – производная напряжения по времени, измеряемая в вольтах в секунду, а
C – емкость в фарадах.

Для цепей с источником постоянного (постоянного) напряжения напряжение на конденсаторе не может превышать напряжение источника. (Если в схему не входят переключатель и индуктор, как в SMPS, или переключатель и несколько диодов, как в зарядном насосе). Таким образом, достигается равновесие, при котором напряжение на конденсаторе постоянное, а ток через конденсатор равен нулю. По этой причине обычно говорят, что конденсаторы блокируют постоянный ток.

Конденсаторы также находят хорошее применение в схемах роботов-любителей, питающихся от постоянного тока.

Источники переменного тока

Ток через конденсатор от источника переменного тока периодически меняет направление. То есть переменный ток поочередно заряжает пластины: сначала в одном направлении, затем в другом. За исключением момента, когда ток меняет направление, ток конденсатора всегда отличен от нуля в течение цикла. По этой причине обычно говорят, что конденсаторы «пропускают» переменный ток.Однако электроны никогда не пересекаются между пластинами, если только диэлектрик не сломается. Такая ситуация повлечет за собой физическое повреждение конденсатора и, вероятно, всей цепи.

Поскольку напряжение на конденсаторе пропорционально интегралу тока, как показано выше, с синусоидальными волнами в цепях переменного тока или сигнальных цепях это приводит к разности фаз в 90 градусов, причем ток опережает фазовый угол напряжения. Можно показать, что переменное напряжение на конденсаторе находится в квадратуре с переменным током, протекающим через конденсатор.То есть напряжение и ток «не совпадают по фазе» на четверть цикла. Амплитуда напряжения зависит от амплитуды тока, деленной на произведение частоты тока на емкость C.

Импеданс

Импеданс аналогичен сопротивлению резистора. Импеданс конденсатора обратно пропорционален частоте, то есть для очень высокочастотных переменных токов реактивное сопротивление приближается к нулю, так что конденсатор почти замыкает короткое замыкание на очень высокочастотный источник переменного тока.И наоборот, для переменных токов очень низкой частоты реактивное сопротивление неограниченно возрастает, так что конденсатор представляет собой почти разомкнутую цепь для источника переменного тока очень низкой частоты. Это частотно-зависимое поведение объясняет большинство применений конденсатора.

Реактивность называется так потому, что конденсатор не рассеивает мощность, а просто накапливает ее. В электрических цепях, как и в механике, есть два типа нагрузки: резистивная и реактивная. Резистивные нагрузки (аналогичные объекту, скользящему по шероховатой поверхности) рассеивают энергию, передаваемую цепью, в конечном итоге за счет электромагнитного излучения, в то время как реактивные нагрузки (аналогичные пружине или движущемуся объекту без трения) накапливают эту энергию, в конечном итоге возвращая энергию обратно в схема.

Также важно то, что импеданс обратно пропорционален емкости, в отличие от резисторов и катушек индуктивности, для которых импедансы линейно пропорциональны сопротивлению и индуктивности соответственно. Вот почему формулы для последовательного и шунтирующего импеданса (приведенные ниже) являются обратными для резистивного случая. Последовательно суммируются импедансы. Параллельно суммируется проводимость.

Эквивалент Лапласа (s-домен)

При использовании преобразования Лапласа в анализе цепей емкостный импеданс в области s представлен следующим образом:

Z (s) = 1sC {\ displaystyle Z (s) = {\ frac {1} {sC}}}

, где C – емкость, а s (= σ + jω) – комплексная частота.

Ток смещения

Физик Джеймс Клерк Максвелл изобрел концепцию тока смещения, d D / dt, чтобы согласовать закон Ампера с сохранением заряда в тех случаях, когда заряд накапливается, как в конденсаторе. Он интерпретировал это как реальное движение зарядов даже в вакууме, где он предположил, что это соответствует движению дипольных зарядов в эфире. Хотя от этой интерпретации отказались, поправка Максвелла к закону Ампера остается в силе.

Сети

Последовательное или параллельное расположение

Конденсаторы в параллельной конфигурации имеют одинаковую разность потенциалов (напряжение). Их общая емкость (C экв ) определяется по формуле:

Ceq = C1 + C2 + ⋯ + Cn {\ displaystyle C_ {eq} = C_ {1} + C_ {2} + \ cdots + C_ {n} \,}

Причина установки конденсаторов Параллельно увеличивается общий накопленный заряд. Другими словами, увеличение емкости также увеличивает количество энергии, которое может быть сохранено.{2}.}

Ток, проходящий через последовательно соединенные конденсаторы, остается неизменным, но напряжение на каждом конденсаторе может быть разным. Сумма разностей потенциалов (напряжения) равна общему напряжению. Их общая емкость определяется как:

1Ceq = 1C1 + 1C2 + ⋯ + 1Cn {\ displaystyle {\ frac {1} {C_ {eq}}} = {\ frac {1} {C_ {1}}} + {\ frac {1 } {C_ {2}}} + \ cdots + {\ frac {1} {C_ {n}}}}

Параллельно эффективная площадь комбинированного конденсатора увеличилась, увеличивая общую емкость.При последовательном подключении расстояние между пластинами было увеличено, что уменьшило общую емкость.

На практике конденсаторы будут размещаться последовательно, чтобы получить экономичные конденсаторы очень высокого напряжения, например, для сглаживания пульсаций в источнике питания высокого напряжения. Три последовательно включенных конденсатора «максимум 600 вольт» увеличивают их общее рабочее напряжение до 1800 вольт. Это, конечно, компенсируется полученной емкостью, составляющей лишь одну треть от стоимости используемых конденсаторов.Этому можно противодействовать, подключив 3 из этих последовательных наборов параллельно, в результате чего получится матрица конденсаторов 3×3 с той же общей емкостью, что и отдельный конденсатор, но работающая при трехкратном напряжении. В этом приложении к каждому конденсатору будет подключен большой резистор, чтобы гарантировать, что общее напряжение распределяется поровну между каждым конденсатором, а также для разряда конденсаторов в целях безопасности, когда оборудование не используется.

Другое применение – использование поляризованных конденсаторов в цепях переменного тока; конденсаторы соединены последовательно с обратной полярностью, так что в любой момент времени один из конденсаторов не проводит ток…

Двойной конденсатор / индуктор

С математической точки зрения, идеальный конденсатор можно рассматривать как инверсию идеальной катушки индуктивности, потому что уравнения напряжения и тока двух устройств могут быть преобразованы друг в друга путем обмена членами напряжения и тока. Подобно тому, как две или более катушек индуктивности могут быть соединены магнитным полем для создания трансформатора, два или более заряженных проводника могут быть соединены электростатически, образуя конденсатор. Взаимная емкость двух проводников определяется как ток, протекающий в одном проводе, когда напряжение на другом изменяется на единицу напряжения в единицу времени.

См. Также

Банкноты

  1. ↑ «Конденсатор» теперь считается устаревшим термином для обозначения конденсатора.

Список литературы

Электричество и магнетизм . Свет и материя: Учебные материалы по физике и астрономии. Проверено 23 января 2007 года.

  • Курьер, декан. 2000. Биография фон Клейста. Австралийский центр движущихся изображений. Проверено 23 января 2007 г.
  • Currier, декан. 2000. Биография Musschenbroek.Австралийский центр движущихся изображений. Проверено 23 января 2007 г.
  • Хуэльсман, Лоуренс П. 1972. Теория основных схем с цифровыми вычислениями. Прентис-Холл. ISBN 0130574309.
  • Дженкинс, Джон Д. 2006. Музей искры. Проверено 23 января 2007 г.
  • Марш, Дэвид. 2006. Емкостные сенсорные датчики набирают обороты. EDN , Reed Electronics Group. Проверено 24 января 2007.
  • .
  • Палмер, Уэйн. 2006. Емкостные датчики могут заменить механические переключатели для сенсорного управления. Мобильный телефон DesignLine. Проверено 24 января 2007 г.
  • Зорпетт, Гленн. Январь 2005. Super Charged: крохотная южнокорейская компания пытается сделать конденсаторы достаточно мощными, чтобы создать новое поколение гибридных электромобилей. Интернет-протокол IEEE Spectrum . Проверено 24 января 2007 г.

Внешние ссылки

Все ссылки получены 9 января 2017 г.

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Конденсатор

– Конструкция и работа

Что такое конденсатор?

Конденсаторы

являются наиболее широко используемыми электронные компоненты после резисторов. Мы находим конденсаторы в телевизорах, компьютерах и во всех электронных устройствах. схемы. Конденсатор – это электронное устройство, которое хранит электрический заряд или электричество при подаче напряжения и при необходимости высвобождает накопленный электрический заряд.

Конденсатор действует как небольшая батарея, которая быстро заряжается и разряжается. Любой объект, на котором можно хранить электрический заряд, представляет собой конденсатор. Конденсатор тоже иногда называется конденсатор.

Что такое электрический заряд?

Электрический заряд – основное свойство частицы, такие как электроны и протоны. Этот электрический заряд заставляет их испытывать притягательную или отталкивающую силу, когда помещен в электромагнитное поле.

Электрические заряды бывают двух типов: положительные. и отрицательный. Электроны имеют отрицательный заряд, а протоны имеют отрицательный заряд. положительный заряд.

Как гравитационная энергия, присутствующая вокруг планет, таких как Земля, электрическая энергия присутствует вокруг заряженные частицы, такие как электроны и протоны. Однако заряженные частицы проявляют силу только на небольшом расстоянии вокруг их и сверх того они не могут применить силу.Область до сила, действующая на заряженные частицы, называется электрической поле. Если мы поместим любую заряженную частицу внутрь этого регион, он испытает силу. Эта сила может быть отталкивающей или притягательной.

Электроэнергия или электрический заряд присутствующий вокруг заряженной частицы представлен электрическим силовые линии. Направление этих электрических линий сила различна для положительного и отрицательного заряда.Для положительный заряд, электрические силовые линии начинаются от центр заряженной частицы и улетает от него. Для отрицательный заряд, электрические силовые линии начинаются вдали от заряженная частица и движется к ее центру. В В электронике дырка считается положительным зарядом.

Когда отрицательно заряженная частица (электрон) находится в электрическом поле положительно заряженного частица (протон), она притягивается.С другой стороны, когда положительно заряженная частица (протон) помещается в электрическое поле другого протона, он отталкивается. В простом словами, противоположные электрические заряды притягиваются друг к другу и одинаковы электрические заряды отталкивают друг друга.

Строительство конденсатора

Базовая конструкция всех конденсаторов похожий.Конструкция конденсатора очень проста. А Конденсатор состоит из двух электропроводящих пластин, размещенных близко друг к другу, но не касаются друг друга. Эти токопроводящие пластины обычно изготавливаются из таких материалов, как алюминий, латунь или медь.

Проводящие пластины конденсатора разделены небольшим расстоянием. Пустое пространство между этими пластины заполнены непроводящим материалом или электрическим изолятор или диэлектрическая область.Непроводящий материал или область между двумя пластинами может быть воздухом, вакуумом, стеклом, жидкий или твердый. Этот непроводящий материал называется диэлектрик.

Две токопроводящие пластины конденсатора хорошие проводники электричества. Поэтому они легко могут пропускают через них электрический ток. Электропроводящие пластины конденсатор также удерживает электрический заряд.В конденсаторах эти пластины в основном используются для удержания или хранения электрических плата.

Плохой диэлектрический материал или среда проводник электричества. Они не могут пропускать электрический ток через них. В конденсаторах диэлектрическая среда или материал блокировать поток носителей заряда (особенно электронов) между проводящие пластины. В результате электрические заряды, которые попытаться перейти с одной пластины на другую пластина будет в ловушке внутри пластины из-за сильного сопротивления со стороны диэлектрик.

Если поместить проводящую среду между эти пластины, электрические заряды легко перетекают от одной пластины к другая тарелка. Однако между пластинами течет электрический ток. не желательно. Это указывает на выход из строя конденсатора.

Мы знаем, что электрический ток – это поток носителями заряда, тогда как электрическая сила или электрическое поле являются свойство электрических зарядов.Диэлектрический материал не позволяет поток носителей заряда, но они допускают электрическую силу, электрический заряд или электрическое поле, создаваемое заряженным частицы (электроны). В результате при накоплении заряда на две пластины, сильное электрическое поле создается между две тарелки.

Как конденсатор работает?

Конденсатор без источника напряжения

Когда на конденсатор не подается напряжение, общее количество электронов и протонов в левой пластине конденсатор равны.Мы знаем, что любой объект, имеющий равное количество электронов и протонов считается электрически нейтральный. Следовательно, полный заряд левой пластины компенсирует и становится электрически нейтральным. Следовательно, левая пластина конденсатор называется электрической нейтралью.

С другой стороны, правая пластина также имеет равное количество электронов и протонов.Таким образом, общая заряд правой пластины отменяется и становится электрически нейтральный.

Отсутствие электрического заряда означает отсутствие электрического поля. Следовательно, конденсатор не накапливает заряд при отсутствии напряжения. применяется.

Зарядка конденсатор

Заряд будет построен на объекте, имеющем избыточное количество электронов или протонов.Чтобы произвести избыточное количество электронов или протонов, нам нужно подать напряжение на конденсатор.

Когда напряжение подается на конденсатор таким образом, чтобы положительный полюс аккумуляторной батареи подключен к левой стороне пластина конденсатора и отрицательный вывод аккумуляторной батареи подключен к правой боковой пластине конденсатора, происходит зарядка конденсатора.

Из-за этого напряжения питания большой количество электронов начинают двигаться от отрицательной клеммы аккумулятор через токопроводящий провод. Когда эти электроны достигают правой боковой пластины конденсатора, они испытывают сильное сопротивление диэлектрического материала. Диэлектрик материал или среда, присутствующие между пластинами, будут сильно противодействовать движению электронов с правой боковой пластины.Как в результате большое количество электронов захватывается или накапливается на правая боковая пластина конденсатора.

Из-за накопления избыточных электронов извне количество электронов (отрицательных носителей заряда) на правой боковой пластине станет больше, чем количество протоны (носители положительного заряда). В итоге правая сторона пластина конденсатора становится отрицательно заряженной.

С другой стороны, электроны слева боковая пластина испытывает сильную притягивающую силу от положительный полюс аккумуляторной батареи. В результате электроны оставьте левую боковую пластину и притяните или переместите в сторону положительный полюс аккумуляторной батареи.

Отрицательный заряд на правой стороне пластина создает сильное отрицательное электрическое поле.Этот сильный отрицательное электрическое поле также толкает подобные заряды или электроны на левой пластине.

Из-за потери большого количества электронов с левой боковой пластины, количество протонов (носителей положительного заряда) станет больше, чем количество электроны (носители отрицательного заряда). В результате левая сторона пластина конденсатора заряжается положительно.Таким образом, оба проводящие пластины конденсатора заряжены.

Положительный и отрицательный заряды на обоих пластины действуют друг на друга. Однако они не трогают друг с другом.

Из-за избыточного количества электронов на одна пластина и нехватка электронов на другой пластине, разность потенциалов или напряжение устанавливается между тарелки.Как конденсатор продолжает заряжаться, напряжение между пластинами увеличивается.

Напряжение между пластинами противостоит источнику напряжения. В результате, когда конденсатор полностью заряжен (напряжение между пластинами равно источнику напряжение) конденсатор перестает заряжаться. Потому что на данный момент энергия напряжения источника и напряжение конденсатора равны равный.В результате электроны или электрическое поле справа боковая пластина отталкивает электроны, идущие от источника напряжения.

Поэтому для дальнейшей зарядки конденсатора нам нужно увеличить напряжение на более высокий уровень. Когда напряжение подается на конденсатор повышен до более высокого уровня. Зарядка снова начинается наращивая проводящие пластины конденсатора, пока он выходит на новый уровень напряжения.Когда напряжение между пластины достигают нового уровня напряжения источника, он снова останавливается зарядка. Конденсаторы

спроектированы и изготовлены для работают при определенном максимальном напряжении. Если напряжение приложено к конденсатор превышает максимальное напряжение, электроны начинают перемещение между пластинами. Это приведет к необратимому повреждению конденсатора.

Разрядка конденсатор

Если внешний источник напряжения подключен к конденсатор удаляется, конденсатор остается заряженным.Однако, когда конденсатор подключен к любому электрическому устройству например, электрическая лампочка через проводящий провод, он запускается разрядка.

Когда конденсатор подключен к электрическая лампочка через проводящий провод, электроны захвачены на правой боковой пластине начинает протекать контур. Мы знать, что электрический ток – это поток носителей заряда (бесплатно электроны).Следовательно, когда свободные электроны или электрические ток достигает лампочки, она светится с большой силой.

Электроны, которые начали вытекать из правая боковая пластина через проводящий провод, наконец, достигла левую боковую пластину и заполните отверстия левой боковой пластины. Как В результате заряд на левой боковой пластине и правой боковой пластине начинает уменьшаться.Это снижает интенсивность электрического лампочку, потому что электрический ток, протекающий через электрическую лампочка уменьшается.

Наконец, заряд хранится на левой пластине и правая пластина полностью освобождается. В результате лампочка выключится, потому что электрический ток не течет через лампочка. Таким образом, заряд хранится на левой пластине, а на правой. пластина конденсатора разряжена.

Конденсатор условное обозначение

Обозначение схемы основного конденсатора: показано на рисунке ниже. Обозначение конденсатора представлено проведя две параллельные линии близко друг к другу, но не трогательно. Он состоит из двух терминалов. Эти терминалы используются подключить в схему.

Емкость

Способность конденсатора накапливать электрическую заряд называется емкостью.Конденсаторы с большой емкостью будет хранить большое количество электрического заряда, тогда как конденсаторы с низкой емкостью сохранят небольшое количество электрический заряд.

Емкость конденсатора может быть по сравнению с размером резервуара для воды: чем больше объем воды резервуар, тем больше воды он может вместить. Аналогичным образом чем больше емкость, тем больше электрического заряда или электричества он может хранить.

Емкость конденсатора в основном зависит от размера пластин, обращенных друг к другу, расстояние между двумя проводящими пластинами, а диэлектрическая проницаемость материал между пластинами.

Емкость конденсатора напрямую пропорционально размеру токопроводящих пластин и обратно пропорционально расстоянию между двумя пластинами.

Иными словами, конденсатор с большой проводящие пластины хранят большое количество электрического заряда, тогда как конденсатор с небольшими токопроводящими пластинами накапливает небольшое количество электрического заряда. С другой стороны, конденсатор с большой расстояние между пластинами имеет низкую емкость (малая накопитель заряда), тогда как конденсатор с малым разделением расстояние между пластинами имеет высокую емкость (высокий заряд место хранения).

Емкость конденсатора измеряется в фарад. Он представлен символом Ф. Фарад назван в честь Английский физик Майкл Фарадей. Заряженный конденсатор емкостью 1 фарад с 1 кулоном электрического заряда имеет разность потенциалов или напряжение между его пластинами 1 вольт.

Один фарад – очень большая сумма емкость. Следовательно, в большинстве случаев мы используем очень маленькую единицу емкость.Наиболее распространенные единицы емкости, которые мы используем сегодня микрофарады (мкФ), нано фарад (нФ), пикофарад (пФ) и фемофарад (фФ).

1 микрофарад = 10 -6 фарад

1 нанофарад = 10 -9 фарад

1 пикофарад = 10 -12 фарад

1 фемофарад = 10 -15 фарад

Заряд на конденсаторе

Электрический заряд, накопленный конденсатором. зависит от напряжения, приложенного к конденсатору.

Если на конденсатор подается высокое напряжение, большой заряд передается пластинам конденсатора. В результате конденсатор накапливает большой заряд.

С другой стороны, если применяется низкое напряжение на конденсатор передается только небольшой заряд к обкладкам конденсатора. В результате конденсатор хранит только небольшая сумма заряда.Однако емкость конденсатор остается постоянным. Мы не можем увеличить емкость конденсатора.

Взаимосвязь заряда, напряжения и емкость можно математически записать в трех формах:



Интегралы в электрических цепях

Производные и интегралы широко используются для описания переходных процессов в электрических цепях. t {I \ left (s \ right) ds}, \]

, где \ (C \) – значение емкости, \ (s \) – внутренняя переменная интегрирования.{- \ frac {t} {{RC}}}}. \]

Рисунок 2.

Постоянная времени \ (\ tau = RC \) здесь определяет, насколько быстро происходит переходный процесс в цепи.

RL Схема

В простой цепи RL последовательно соединены резистор и катушка индуктивности.

Рисунок 3.

Когда переключатель в момент времени \ (t = 0 \) замкнут, применяется постоянная ЭДС \ (\ varepsilon \), и ток \ (I \) начинает течь по цепи.

Как и в предыдущем разделе, напряжение на резисторе равно

.

\ [{V_R} \ left (t \ right) = I \ left (t \ right) R.\]

Напряжение на катушке индуктивности выражается производной

\ [{V_L} \ left (t \ right) = L \ frac {{dI}} {{dt}}. \]

Так, по КВЛ,

\ [{V_R} \ left (t \ right) + {V_L} \ left (t \ right) = \ varepsilon, \]

или

\ [RI \ left (t \ right) + L \ frac {{dI}} {{dt}} = \ varepsilon. {- \ frac {R} {L} t}}} \ right).\]

Рис. 4.

Мы видим, что постоянная времени для цепи RL определяется выражением \ (\ tau = \ frac {L} {R}. \)

Мощность и энергия

Электрическая энергия \ (E, \), измеряемая в джоулях (Дж), представляет собой форму энергии, которая возникает из кинетической или потенциальной энергии, которой обладают электрические заряды.

Электрическая мощность \ (P, \), измеряемая в ваттах (Вт), – это скорость, с которой электрическая энергия передается по электрической цепи.

Мощность, рассеиваемая в элементе цепи постоянного тока \ (\ left ({DC} \ right) \), определяется формулой

\ [P = VI, \]

где \ (V \) – напряжение на элементе, а \ (I \) – ток в цепи.2}}} {R}. \]

Энергия, рассеиваемая элементом схемы \ (DC \) ​​в течение периода времени \ (\ left [{0, t} \ right] \), определяется как

\ [E = VIt. \]

Когда напряжение и ток изменяются во времени, мгновенная мощность определяется как

. t {V \ left (s \ right) I \ left (s \ right) ds}, \]

где \ (s \) – внутренняя переменная интегрирования.2} – 4, & t \ gt 3 \ end {case}, \] где ток \ (I \) измеряется в \ (A \), а время \ (t \) измеряется в \ ({сек}. \). Найдите общий заряд, попавший в элемент за время \ (T = 6 \, с. \)

Пример 2

Ток в цепи увеличивается линейно во времени как \ (I \ left (t \ right) = \ alpha t \) в течение временного интервала \ (\ left [{0, T} \ right] \) и вызывает резистор \ (R \), чтобы нагреться. Предполагая, что процесс нагрева является адиабатическим, определите, как изменение температуры резистора \ (\ Delta T \) зависит от скорости \ (\ alpha.\) Удельная теплоемкость материала резистора \ (c, \), масса резистора \ (м. \)

Пример 3

Предположим, что конденсатор \ (C \) заряжается от источника с постоянной ЭДС \ (\ varepsilon. \). Вычислите тепловую энергию, рассеиваемую резистором \ (R \) за время зарядки.

Пример 4

Когда переключатель замкнут в момент времени \ (t = 0, \), начальный ток в цепи без источника \ (RL \) равен \ ({I_0} = 1 \, A. \) Найдите энергию \ ({ E_R} \), рассеиваемый резистором между \ (t = 0 \) и \ (T = 1 \, ms, \), если \ (R = 50 \, k \ Omega, \) \ (L = 0.6 = 9 + \ left ({\ frac {{216}} {3} – 4} \ right) – \ left ({3 – 12} \ right) = 60 \, C. \]

Пример 2.

Ток в цепи увеличивается линейно во времени как \ (I \ left (t \ right) = \ alpha t \) в течение временного интервала \ (\ left [{0, T} \ right] \) и вызывает резистор \ (R \), чтобы нагреться. Предполагая, что процесс нагрева является адиабатическим, определите, как изменение температуры резистора \ (\ Delta T \) зависит от скорости \ (\ alpha. \). Удельная теплоемкость материала резистора равна \ (c, \) масса резистора \ (м.2}. \]

Таким образом, изменение температуры \ (\ Delta \ theta \) пропорционально квадрату текущей скорости \ (\ alpha \).

Пример 3.

Предположим, что конденсатор \ (C \) заряжается от источника с постоянной ЭДС \ (\ varepsilon. \). Вычислите тепловую энергию, рассеиваемую резистором \ (R \) за время зарядки. {- \ frac {{Rt}} {L}}}.{- \ frac {{2 \ times 50 \ times 0.001}} {{0.1}}}}} \ right) = \ frac {1} {{20}} \ left ({1 – \ frac {1} {e }} \ right) = \ frac {{e – 1}} {{20e}} \ приблизительно 0,0316 \, J = 31,6 \, мДж \]

См. Другие проблемы на странице 2.

Основы электрического конденсатора ~ Изучение электротехники

Пользовательский поиск

Конденсаторы – это электрические устройства, обладающие емкостью. Конденсаторы противодействуют изменениям напряжения с течением времени, создавая ток. Такое поведение делает конденсаторы полезными для стабилизации напряжения в цепях постоянного тока.Один из способов представить конденсатор в цепи постоянного тока – это временный источник напряжения, всегда «желающий» поддерживать напряжение на своих выводах на одном и том же значении. Типичный конденсатор состоит из двух параллельных проводящих пластин, разделенных изолятором, называемым диэлектриком, как показано ниже:
Параллельная пластина Конденсатор

Конденсаторы имеют номинальное напряжение, а также номинальную емкость. Различные символы, используемые для обозначения конденсаторов на принципиальных схемах, показаны ниже:

Символы конденсатора

Емкость конденсатора

Электрически емкость конденсатора – это его способность накапливать электрический заряд.Чем больше емкость, тем больше сохраняется электрический заряд. Емкость конденсатора с параллельными пластинами определяется выражением:

.

C = ЄA / d

Где:

C = емкость конденсатора в фарадеях (F). Единицами измерения могут быть микрофарады (мкФ) или пикофарады (пФ)

Є = электрическая проницаемость диэлектрического материала

A = Площадь пластин конденсатора

d = Разделение пластин

Выходная емкость конденсатора будет увеличиваться, если используется материал с более высокой диэлектрической проницаемостью, или если площадь пластин увеличивается, или если расстояние между пластинами уменьшается.

Прохождение постоянного тока через конденсатор :

Соотношение между напряжением и током в конденсаторе определяется по формуле:

I = CdV / dt.

Когда конденсатор, который изначально не заряжен, подключен к источнику постоянного напряжения, он имеет тенденцию потреблять большой ток. В процессе зарядки напряжение конденсатора повышается, а зарядный ток уменьшается. После того, как конденсатор получил достаточный заряд, напряжение на конденсаторе сравняется с приложенным напряжением, и ток прекращается.После того, как конденсатор зарядился, он выглядит как обрыв в цепи постоянного тока.

Энергия, накопленная в конденсаторе

Энергия, запасенная в конденсаторе, определяется выражением:

E = ½ CV2 = 1 / 2QV

Последовательные и параллельные конденсаторы

Емкость увеличивается при параллельном подключении конденсаторов. Уменьшается при последовательном подключении конденсаторов:

C (параллельно) = C1 + C2 +… + Cn

C (ряд) = 1 / [1 / C1 + 1 / C2 +….+ 1 / Cn]

Пропуск переменного тока через конденсатор

Если переменное напряжение приложено к чистому конденсатору, ток будет максимальным, когда напряжение начинает расти от нуля, и ток равен нулю, когда напряжение на конденсаторе максимальное. Ток опережает приложенное напряжение на 90 °, как показано на диаграмме ниже:

Вектор напряжения-тока конденсатора с пропускаемым через него переменным током.

Емкостное реактивное сопротивление

Это противодействие протеканию переменного тока в чисто емкостной цепи, измеряемой в омах.Емкостное реактивное сопротивление определяется по формуле:

Xc = 1 / 2πfC

Где:

Xc = емкостное реактивное сопротивление

f = частота

C = емкость

Конденсатор

– Energy Education

Рис. 1. Схема конденсатора, включающего две параллельные пластины с площадью поверхности A и разделительным расстоянием d. Хотя не все конденсаторы имеют такую ​​форму, часто думают, что они выглядят именно так, поскольку это простейшая геометрия.

Рисунок 2. Анимация из моделирования PhET батареи, заряжающей конденсатор до тех пор, пока ток не перестанет течь через цепь. [1]

Конденсатор – это электронное устройство, которое накапливает заряд и энергию. Конденсаторы могут выделять энергию намного быстрее, чем батареи, что приводит к гораздо более высокой удельной мощности, чем батареи с таким же количеством энергии. Исследования конденсаторов продолжаются, чтобы увидеть, можно ли их использовать для хранения электроэнергии для электросети.Хотя конденсаторы – это старая технология, суперконденсаторы – это новый поворот в этой технологии.

Конденсаторы – это просто устройства, состоящие из двух проводников, несущих одинаковые, но противоположные заряды. Простой конденсатор с параллельными пластинами состоит из двух металлических пластин одинакового размера, известных как электроды, разделенных изолятором, известным как диэлектрик, который удерживается параллельно друг другу. Затем конденсатор интегрируется в электрическую цепь. В простой цепи постоянного тока каждая пластина конденсатора со временем становится противоположно заряженной из-за пути электрического тока через цепь.Батарея направляет заряд в одном направлении, так что одна пластина становится заряженной положительно, а другая – отрицательно. Это создает электрическое поле из-за накопления равных и противоположных зарядов, что приводит к разнице потенциалов или напряжению между пластинами. Поскольку емкость пластин постоянна, напряжение между пластинами пропорционально увеличивается. По мере увеличения заряда на каждой пластине напряжение между пластинами становится равным напряжению батареи, и в этот момент ток больше не будет течь через цепь. [2] Этот эффект зарядки и разрядки можно увидеть на рисунке 2. Ток может возобновиться, если открыт альтернативный путь, чтобы конденсаторы могли разрядиться самостоятельно, или с использованием переменного тока, чтобы конденсатор периодически заряжался и разряжался.

Важным параметром конденсатора является емкость, мера способности объекта накапливать заряд. Есть два основных способа рассчитать емкость, используя либо физическую площадь пластин, либо напряжение, приложенное к пластинам.2} {2} [/ математика]

  • [math] \ Delta V [/ math] – напряжение между пластинами, измеренное в вольтах (В)
  • [math] C [/ math] – это емкость конденсатора, измеренная в фарадах (F).
  • [math] E [/ math] – энергия, запасенная в конденсаторе, измеренная в джоулях (Дж)


Увеличение емкости или напряжения, или того и другого, увеличивает количество энергии, хранящейся в конденсаторе. .

В качестве альтернативы к конденсатору можно добавить диэлектрик. Диэлектрик – это изолятор, помещенный между электродами. Это увеличивает емкость конденсатора без изменения его размеров. Это позволяет конденсатору накапливать больше энергии, оставаясь при этом маленьким. Степень увеличения зависит от материала, из которого изготовлен диэлектрик. [3]

использует

Конденсаторы не имеют такой высокой плотности энергии, как батареи, а это означает, что конденсатор не может хранить столько энергии, как батарея сопоставимого размера.Тем не менее, более высокая мощность конденсаторов означает, что они подходят для приложений, требующих хранения небольшого количества энергии с последующим ее очень быстрым высвобождением. Le Mans Prototype Гоночные автомобили используют конденсаторы для питания электродвигателей на передних колесах. Эти конденсаторы заряжаются за счет рекуперативного торможения и обеспечивают полный привод и дополнительную мощность при выезде из поворотов. [4]

Конденсаторы также используются во многих электронных устройствах, для которых требуется аккумулятор.Этот конденсатор накапливает энергию, чтобы предотвратить потерю памяти во время замены батареи. Распространенным (хотя и не обязательно широко известным) примером является зарядка вспышки камеры. Вот почему нельзя сделать два снимка со вспышкой в ​​быстрой последовательности; конденсатор должен накапливать энергию от батареи. [5]

Более того, конденсаторы играют ключевую роль во многих практических схемах, в первую очередь как стабилизаторы тока и как компоненты, помогающие преобразовывать переменный ток в постоянный в адаптерах переменного тока.Их можно использовать таким образом благодаря тому факту, что конденсаторы устойчивы к внезапным изменениям напряжения, а это означает, что они обладают способностью действовать в качестве буфера для хранения и отбора электрической энергии для поддержания стабильного выходного тока. [6] Таким образом, конденсатор способен стабилизировать колеблющийся переменный ток за счет своей способности удерживать и выделять электрическую энергию в разное время.

Поскольку конденсаторы накапливают энергию в электрических полях, некоторые исследователи работают над разработкой суперконденсаторов, чтобы помочь с накоплением энергии.Это может оказаться полезным при транспортировке энергии или для хранения и высвобождения энергии из непостоянных источников, таких как энергия ветра и солнца.

Phet Simulation

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите эту симуляцию, чтобы увидеть, как гравитационная потенциальная энергия и потенциальная энергия пружины перемещаются вперед и назад и создают изменяющееся количество кинетической энергии (подсказка: щелкните , чтобы показать энергию , прежде чем подвешивать массу):

Список литературы

  1. ↑ Университет Колорадо.(25 апреля 2015 г.). Комплект для конструирования цепей [Интернет]. Доступно: http://phet.colorado.edu/sims/circuit-construction-kit/circuit-construction-kit-ac_en.jnlp
  2. ↑ Гиперфизика. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capac.html
  3. ↑ Р. Д. Найт, «Потенциал и поле», в Физика для ученых и инженеров: стратегический подход, 2-е изд. Сан-Франциско: Пирсон Аддисон-Уэсли, 2008, гл.30, сек. 5. С. 922-932.
  4. ↑ «Суперконденсаторы берут на себя ответственность в Германии» Филиппа Болла, Бюллетень MRS, Том 37, выпуск 09, 2012 г., стр. 802-803
  5. ↑ (2014, 27 июня). Как работают вспышки камеры [Интернет]. Доступно: http://electronics.howstuffworks.com/camera-flash.htm
  6. ↑ Sparkfun. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: https://learn.sparkfun.com/tutorials/capacitors

Что такое конденсатор? Каковы функции конденсатора?

Что такое конденсатор ?

Конденсатор, электронный компонент для удержания зарядов, обозначенный буквой C.Он состоит из двух металлических электродов между слоем изолирующего диэлектрика. Когда между двумя металлическими электродами подается напряжение, на электроде сохраняется заряд, поэтому конденсатор является электрической частью накопителя энергии. Любой из двух изолированных и близких друг к другу проводов образует конденсатор. Кроме того, конденсатор с параллельными пластинами состоит из электродной пластины и диэлектрика конденсатора.

Конденсатор

– один из широко используемых электронных компонентов в электронном оборудовании.Он широко используется для остановки постоянного и переменного переменного тока, связи, байпаса, фильтрации, контура настройки, преобразования энергии, управления и так далее. Конденсатор отличается от емкости. Емкость – это основная физическая величина, символ C, единица измерения – F (Фарах).

Видео с базовыми знаниями о конденсаторах


Каталог


I.Характеристики конденсатора

– Он обладает способностью заряжаться и разряжаться, предотвращая прохождение постоянного тока, позволяя проходить переменному току.

– В процессе заряда и разряда на биполярной пластине накапливается заряд, то есть устанавливается напряжение, следовательно, напряжение на конденсаторе скачкообразно не меняется.

Зарядка: две пластины с одинаковым количеством разного заряда, каждая пластина с абсолютным значением заряда называется объемом конденсатора.

Разрядка: положительные и отрицательные заряды на обоих концах конденсаторов нейтрализуются проводниками. Во время разряда в проводе возникает переходный ток.

Заряд конденсатора

– Емкостное реактивное сопротивление конденсаторов обратно пропорционально частоте и емкости. При анализе емкости необходимо проанализировать частоту и емкость контактного сигнала.

Формула конденсатора с параллельными пластинами

Диэлектрическая проницаемость вакуума εr = 1, k – постоянная гидростатической мощности, s – положительная площадь двух пластин, а d – расстояние между двумя пластинами.

Пояснение: электрическое поле в конденсаторе с параллельными пластинами представляет собой однородное электрическое поле.

II. Функции конденсатора в электрических цепях

В цепях постоянного тока действие конденсатора эквивалентно разомкнутой цепи. Конденсаторы – один из наиболее часто используемых электронных компонентов для хранения заряда.

Конденсаторы

используются в электронных схемах как фильтры нижних, верхних частот и полосовые фильтры. Фильтр – это цепь, которая пропускает ток и напряжение определенной частоты и формы волны.Реактивное сопротивление конденсатора обратно пропорционально частоте. Управляя или изменяя реактивное сопротивление, вы можете управлять допустимой частотой в цепи. Конденсаторы также играют важную роль в логических схемах высокоскоростного переключения. Уровень напряжения в таких цепях, который должен быть постоянным, может изменяться при колебаниях тока, тем самым создавая шум или сигналы ошибки. В цепи встроены развязывающие конденсаторы для стабилизации тока и минимизации шумовых сигналов.

Влияние конденсаторной связи на структуру самого себя.Простейшие конденсаторы состоят из полярных пластин на обоих концах и изолирующего диэлектрика (включая воздух) посередине. После электрификации пластина заряжается, образуя напряжение (разность потенциалов), но весь конденсатор не проводит ток из-за промежуточной изоляции. Однако условие состоит в том, чтобы не превышалось критическое напряжение (напряжение пробоя) конденсатора. Мы знаем, что любое вещество относительно изолировано, и когда напряжение на обоих концах материала увеличивается до определенной степени, материал может проводить электричество.Мы называем это напряжение пробивным напряжением. Когда конденсатор выходит из строя, это не изолятор. Однако в цепях переменного тока направление тока меняется со временем, то есть это изменение имеет функциональную связь. Процесс зарядки и разрядки конденсаторов зависит от времени, и в это время между пластинами образуется переменное электрическое поле, и это электрическое поле является функцией изменения со временем. Фактически, ток проходит между конденсаторами в виде электрического поля.

III. Как использовать конденсаторы?

Конденсаторы, как относительно распространенный электронный компонент, находят широкое применение. Следующее содержание дает вам краткое введение в 9 наиболее распространенных сценариев использования конденсаторов: остановка постоянного тока, байпас (развязка), связь, фильтрация, температурная компенсация, синхронизация, настройка, выпрямитель и накопление энергии.

1. Остановка постоянного тока : функция предотвращает прохождение постоянного тока и позволяет переменному току проходить.

Блокировочный конденсатор постоянного тока

2. Байпас (развязка) : обеспечивает путь с низким сопротивлением для некоторых параллельных компонентов в цепях переменного тока.

Сигнальный вход и выход

3. Соединение : как соединение между двумя цепями, сигналы переменного тока могут проходить и передаваться на следующий этап цепи.

Конденсатор связи модели

Конденсатор как элемент связи

Цель использования конденсатора в качестве соединительной части состоит в том, чтобы передать сигнал переднего каскада на следующий каскад и разделить влияние постоянного тока первого каскада на второй каскад, чтобы схема была простой в отладке, а ее производительность была стабильный.

Усиление сигнала переменного тока без конденсатора не изменится, но рабочие точки на всех уровнях необходимо изменить.Из-за влияния переднего и заднего этапов отладка в рабочих точках очень сложна и вряд ли может быть реализована в многоэтапном режиме.

4. Фильтрация : это очень важно для схемы, конденсатор за ЦП в основном выполняет эту функцию.

Формула импеданса (фильтрующая цепь)

То есть, чем больше частота f, тем меньше полное сопротивление Z емкости. На низкой частоте емкость C может проходить плавно из-за большого импеданса Z, а на высокой частоте емкость C очень мала из-за импеданса Z, что эквивалентно замыканию высокочастотного шума на заземление.

5. Температурная компенсация n : улучшает стабильность схемы, компенсируя влияние других компонентов на температурную адаптивность.

Температурная компенсация

Анализ: поскольку емкость синхронизирующего конденсатора определяет частоту колебаний генератора строчной развертки, емкость синхронизирующего конденсатора должна быть очень стабильной и не меняться в зависимости от влажности окружающей среды.Поэтому конденсаторы с положительным и отрицательным температурными коэффициентами используются для температурного дополнения.

При повышении рабочей температуры емкость Cl увеличивается, а емкость C2 уменьшается, а общая емкость двух конденсаторов является суммой двух конденсаторов после параллельного соединения. Поскольку одна емкость увеличивается, а другая уменьшается, общая емкость в основном стабильна.

Точно так же, когда температура снижается, емкость одного конденсатора уменьшается, а другого увеличивается, а общая емкость практически не изменяется, что стабилизирует частоту колебаний и реализует цель температурной компенсации.

6. Время : использование конденсаторов в сочетании с резисторами для определения постоянной времени цепи.

Конденсатор и резистор (синхронизирующие)

Входной сигнал от низкого к высокому, после буфера 1, затем вход RC цепи. Характеристики заряда конденсатора заставляют сигнал точки B не изменяться сразу же с входным сигналом, но есть постепенный процесс увеличения. Когда он становится больше до определенной степени, буфер 2 переворачивается, что приводит к скачку задержки с низкого на высокий на выходе.

7. Tuning : систематическая настройка схем, связанных с частотой, таких как сотовые телефоны, радио и телевизоры.

Настройка системы

Поскольку резонансная частота колебательного контура является функциональной зависимостью lc. Приятно, что отношение максимальной резонансной частоты к минимальной изменяется пропорционально квадратному корню из отношения емкостей. Здесь отношение емкостей относится к отношению емкости при минимальном напряжении обратного смещения к емкости при максимальном напряжении обратного смещения.Следовательно, кривая характеристики настройки (напряжение смещения и резонансная частота) в основном представляет собой параболу.

8. Выпрямитель : включение или выключение полузамкнутого проводящего компонента в заданное время.

Исправление

Форма волны фильтрации

9. Накопитель энергии : накопитель электроэнергии для высвобождения при необходимости. Например, фонарики для фотоаппаратов, нагревательные устройства и т. Д. (Некоторые конденсаторы теперь накапливают энергию на уровне, близком к литиевым батареям; конденсатор может хранить электричество в качестве дневной энергии для мобильного телефона.


IV. Типы конденсаторов

Согласно анализу и статистике, конденсаторы делятся на следующие 10 категорий:

1. По конструкции: твердотельный конденсатор, переменный конденсатор и настроенный конденсатор.

2. Классифицируется по электролитам: конденсатор с органическим диэлектриком, конденсатор с неорганическим диэлектриком, электролитический конденсатор, электротермический конденсатор и конденсатор с воздушным разнесением.

3. По назначению: высокочастотный байпасный конденсатор, низкочастотный байпасный конденсатор, фильтрующий конденсатор, настроечный конденсатор, высокочастотный разделительный конденсатор, низкочастотный разделительный конденсатор, малый конденсатор.

4. В зависимости от материалов: керамический конденсатор, полиэфирный конденсатор, электролитический конденсатор, танталовый конденсатор, усовершенствованный полипропиленовый конденсатор и т. Д.

5. Высокочастотный байпас: керамический конденсатор, слюдяной конденсатор, стеклянный пленочный конденсатор, полиэфирный конденсатор, стеклянный конденсатор.

6. Низкочастотный байпас: бумажный конденсатор, керамический конденсатор, алюминиевый электролитический конденсатор, полиэфирный конденсатор.

7. Фильтр: алюминиевый электролитический конденсатор, бумажный конденсатор, композитный бумажный конденсатор, жидкий танталовый конденсатор.

8. Тюнинг: керамические конденсаторы, слюдяные конденсаторы, стеклопленочные конденсаторы, полистирольные конденсаторы.

9. Низкая связь: бумажный конденсатор, керамический конденсатор, алюминиевый электролитический конденсатор, полиэфирный конденсатор, твердотельный танталовый конденсатор.

10. Малые конденсаторы: конденсатор из металлизированной бумаги, керамический конденсатор, алюминиевый электролитический конденсатор, конденсатор из полистирола, твердотельный танталовый конденсатор, конденсатор в стеклянной глазури, конденсатор из металлизированного полиэстера, конденсатор из полипропилена, конденсатор слюдяной.

В. Объем конденсатора

Поскольку конденсаторы представляют собой контейнер для хранения зарядов, возникает проблема емкости. Чтобы измерить емкость конденсаторов для хранения зарядов, определяется емкость. Конденсатор должен накапливать заряд под действием приложенного напряжения. Количество заряда, хранящегося в разных конденсаторах под напряжением, также может отличаться. Согласно международному стандарту, когда конденсатор подвергается воздействию постоянного напряжения 1 В, величина представляет собой заряд, который может накапливаться в конденсаторе (то есть количество электричества на единицу напряжения), который выражается буквой C.Базовая единица измерения емкости – Фара (Ф). При напряжении 1 В постоянного тока, если конденсатор хранит заряд, равный 1 кулону, емкость устанавливается равной 1 фарах, а Фарах обозначается символом F, 1 F = 1 Ом / В. На практике емкость конденсаторов часто равна намного меньше, чем 1F, и часто используется в меньших единицах, таких как мФ, мкФ, нФ, пФ и т. д. Соотношение между ними следующее:

1F = 1000 мФ 1 мФ = 1000 мкФ 1 мкФ = 1000 нФ
1 нФ = 1000 пФ 1F = 1000000 мкФ 1 мкФ = 1000000 пФ

VI.Заряд и разряд конденсатора

Когда конденсатор подключен к источнику питания, под действием силы электрического поля свободный электрон, связанный с положительным электродом конденсатора, перемещается через источник питания к пластине, подключенной к отрицательный электрод источника питания. Положительный электрод заряжается положительно из-за потери отрицательного заряда; отрицательный электрод заряжен отрицательно из-за накопления отрицательного заряда.Положительная и отрицательная пластины имеют одинаковый размер заряда и противоположный знак, поэтому заряд движется в фиксированном направлении, образуя ток. Из-за отталкивающего действия одного и того же заряда начальный ток максимален, а затем постепенно уменьшается. В процессе движения заряда накопленный на электродной пластине конденсатора заряд непрерывно увеличивается. Когда напряжение Uc между двумя полюсами конденсатора равно напряжению источника питания U, заряд прекращает движение. Ток I = 0, переключатель замкнут, через проводное соединение заряд обкладки конденсатора нейтрализован.Когда K замкнут, с одной стороны, положительный заряд конденсатора C может быть нейтрализован на отрицательном электроде; с другой стороны, отрицательный заряд отрицательного электрода также может перемещаться на положительный электрод. Заряд постепенно уменьшается, кажущийся ток уменьшается, а напряжение снижается до нуля.

VII. Вопросы, требующие внимания при использовании конденсаторов

Поскольку два полюса конденсатора имеют остаточный заряд, необходимо сначала сбросить заряд, иначе может произойти поражение электрическим током.При работе с неисправным конденсатором сначала следует размыкать автоматический выключатель, а также верхний и нижний разъединители комплекта конденсаторов, и, если установлена ​​защита плавким предохранителем, сначала следует снять трубку с плавким предохранителем. В это время, хотя набор конденсаторов разрядился сам, часть остаточного заряда по-прежнему остается, поэтому необходимо выполнить разряд вручную. При разрядке сначала следует закрепить заземляющий конец заземляющего провода и заземляющую сетку, затем несколько раз разрядить конденсатор заземляющим стержнем до тех пор, пока не исчезнут искры и звук разряда, и, наконец, заземляющий провод снова зафиксируется.Между тем, следует также отметить, что если конденсатор имеет внутренний разрыв, отказ предохранителя или плохой контакт с выводами, между двумя полюсами могут быть остаточные заряды, которые не будут высвобождены во время автоматического или ручного разряда. Следовательно, обслуживающий или обслуживающий персонал должен надеть изолирующие перчатки перед тем, как прикасаться к неисправному конденсатору, и использовать короткую линию для соединения двух полюсов неисправного конденсатора, чтобы он разрядился. Кроме того, конденсатор при последовательном включении должен разряжаться отдельно.

VIII. Общая неисправность конденсатора и метод лечения

(1) При взрыве конденсатора необходимо немедленно отключать питание и тушить пожар песком и тушить пожаротушением.

(2) Когда конденсатор перегорает, он должен сообщить об этом диспетчеру и размыкать автоматический выключатель конденсатора после получения согласия. Когда для его разрядки отключается подача питания, выполняются внешние проверки, например, есть ли отметки перекрытия на внешней стороне корпуса, не деформирован ли корпус, утечка масла и короткое замыкание заземляющего устройства и т. Д. ., и измеряется сопротивление изоляции между полюсами и землей. Убедитесь, что соединение комплекта конденсаторов полное, надежное, отсутствует ли фаза. Если не обнаружено явления неисправности, его можно будет заменить после вложения. Если страховка все еще тает после передачи энергии, неисправный конденсатор следует вынуть, а остальные должны быть включены. Если автоматический выключатель сработал одновременно с предохранителем, не подключайте питание. После завершения вышеуказанного осмотра страховку необходимо заменить.

(3) Сработал прерыватель цепи конденсатора, и предохранитель шунта не был нарушен, конденсатор следует разрядить в течение трех минут перед проверкой силового кабеля индуктора тока автоматического выключателя и внешней части конденсатора. Если аномалия не обнаружена, это может быть связано с колебаниями напряжения на шине внешней неисправности. После осмотра он может быть передан в суд; в противном случае следует провести комплексную проверку защиты. Посредством вышеуказанной проверки, испытания, если по-прежнему не удается найти причину, необходимо действовать в соответствии с системой, конденсатор постепенно проверяется.Пробные испытания не проводятся до тех пор, пока причина не будет найдена.


FAQ

1. Для чего нужен конденсатор?

Конденсатор (первоначально известный как конденсатор) – это пассивный двухконтактный электрический компонент, используемый для электростатического накопления энергии в электрическом поле. Формы практических конденсаторов сильно различаются, но все они содержат как минимум два электрических проводника (пластины), разделенные диэлектриком (т. Е. Изолятором).

2. Что такое конденсатор и как он работает?

Конденсатор чем-то похож на батарею. Хотя они работают совершенно по-разному, конденсаторы и аккумуляторы хранят электрическую энергию. … Внутри конденсатора клеммы соединяются с двумя металлическими пластинами, разделенными непроводящим веществом или диэлектриком.

3. Когда следует использовать конденсатор?

Блок питания сглаживания. Это самый простой и очень широко используемый вариант конденсатора….

Сроки. Если вы подаете питание на конденсатор через резистор, для зарядки потребуется время. …

Фильтрация. Если вы пропустите постоянный ток через конденсатор, он будет заряжаться, а затем блокировать протекание дальнейшего тока.

4. Что такое конденсатор и его типы?

Наиболее распространенные типы конденсаторов: Керамические конденсаторы имеют керамический диэлектрик. Пленочные и бумажные конденсаторы названы в честь их диэлектриков. Алюминиевые, танталовые и ниобиевые электролитические конденсаторы названы в честь материала, используемого в качестве анода, и конструкции катода (электролита).

5. Конденсаторы переменного или постоянного тока?

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор полностью не разрядится. Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

6. Каков принцип конденсатора?

Конденсатор – это устройство, которое используется для хранения зарядов в электрической цепи.Конденсатор работает по тому принципу, что емкость проводника заметно увеличивается, когда к нему подводят заземленный провод. Следовательно, конденсатор состоит из двух пластин, разделенных расстоянием, с одинаковыми и противоположными зарядами.

7. Опасны ли конденсаторы?

Конденсаторы могут накапливать опасную энергию даже после обесточивания оборудования и могут накапливать опасный остаточный заряд без внешнего источника. «Заземляющие» конденсаторы, соединенные последовательно, например, могут передавать (а не разряжать) накопленную энергию.

8. Конденсатор какого типа мне следует использовать?

Общее правило – всегда использовать конденсатор с более высоким рабочим напряжением, чем в цепи, в которой он используется. Это особенно важно в цепях питания с электролитическими конденсаторами высокой емкости. Рабочее напряжение всегда должно превышать пиковое рабочее напряжение цепи минимум на 20%.

9. Что такое конденсатор и его применение?

Конденсатор – это базовое запоминающее устройство для хранения электрических зарядов и их высвобождения в соответствии с требованиями схемы.Конденсаторы широко используются в электронных схемах для выполнения различных задач, таких как сглаживание, фильтрация, обход и т. Д. Конденсатор одного типа может не подходить для всех приложений.

10. Конденсаторы меняют переменный ток на постоянный?

Нет, конденсатор не может преобразовывать переменный ток в постоянный. Конденсатор может добавлять постоянный ток к переменному току, чтобы можно было изменить нулевое задание сигнала переменного тока, другими словами, конденсатор работает как устройство сдвига уровня.

11. Могут ли конденсаторы накапливать переменный ток?

Конденсаторы не накапливают переменное напряжение – они накапливают напряжение.Он рассчитан на работу с напряжением 450 В переменного тока; это означает, что он может выдерживать приложенное к нему переменное напряжение. Другими словами, конденсатор неполярный (у него нет положительного или отрицательного вывода). Полярные (или поляризованные) конденсаторы наиболее известны как «электролитические» конденсаторы.

12. В чем разница между конденсатором и батареей?

Аккумулятор – это электронное устройство, которое преобразует химическую энергию в электрическую, чтобы обеспечить статический электрический заряд для питания.В то время как конденсатор – это электронный компонент, который накапливает электростатическую энергию в электрическом поле.

13. Какой ток выдерживает конденсатор?

Зарядное устройство на 3,5 В заряжает конденсатор только до 3,5 В. Вам нужен источник постоянного тока с более высоким напряжением, чтобы зарядить конденсатор до более высокого потенциала. Помните, что в вашем случае 100 В – это максимум, с которым может работать конденсатор.

14. Что происходит при выходе из строя конденсатора?

Во время отказа половина конденсатора может выйти из строя, что приведет к потере общей емкости.Или половина конденсатора может выйти из строя, что приведет к уменьшению общей емкости вдвое.

15. Имеет ли значение тип конденсатора?

Да, тип конденсатора может иметь значение. Конденсаторы разных типов обладают разными свойствами.

Некоторые свойства, которые различаются в зависимости от типа конденсатора:

а. Поляризованные и неполяризованные

г. Максимальное напряжение

г. Эквивалентное последовательное сопротивление (ESR)

г.Срок службы (в этом случае электролиты особенно плохи)

e.

Добавить комментарий

Ваш адрес email не будет опубликован.