Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Зачем нужен автомобильный конденсатор? – winauto.ua

Любой, кто хоть раз пробовал устанавливать аудиосистему в авто, слышал про конденсатор. Или как говорят непосвященные: «компонент не совсем понятного назначения, расположенный где-то рядом с усилителем». Зачем он нужен именно в аудиосистеме и почему он такой большой? Вспомним физику, чтобы понять дальнейшие «умные слова»…

Выбрать стоящий конденсатор можно здесь. Но для начала давайте разберемся с основным вопросом – что такое конденсатор? Это устройство, которое может накапливать электрический заряд и отдавать его. Накапливать, конечно, не до бесконечности: у каждого конденсатора есть такой параметр как емкость, которая измеряется в фарадах. Конденсатор, имеющий емкость 1 Ф, будучи заряженным до напряжения в 1 вольт, накапливает в себе электрический заряд, равный току в 1 ампер, протекающему в течении одной секунды.

Разобрались? Идем дальше.

Теперь о том, зачем он нужен: ведь в машине есть аккумулятор, емкость которого измеряется не единицами ампер в секунду, а десятками в час, что несравненно больше. И зачем, спрашивается, нужен конденсатор, при том что в домашних системах такого компонента нет? Для начала – о разнице между домашними и автомобильными системами по части питания. Домашняя система питается от розетки 220В, в то время как напряжение питания автомобильной системы – 12-14 В. Следовательно ,чтобы получить допустим, 1000 Ватт звука, домашней системе нужно (вспоминаем закон Ома) 1000:220=4,5 ампера, а автомобильной – под 80 ампер! Это при утопическом КПД в 100%, чего быть, понятное дело, не может. А усилитель, особенно сабвуферный, в пиковые моменты потребляет мощность в несколько раз превышающую среднюю. Пик – это, например, удар бас-бочки в ритмичной музыке. То есть, слушая ритмичное «бум-бум-бум», от которого содрогается все содержимое машины, надо понимать, что каждое «бум» – это пик.

Домашняя система спокойно берет этот пик из сети, а вот автомобильный аккумулятор в силу своих особенностей не может быстро отдавать большой ток – он создавался для иных задач. В результате тот самый пресловутый пик усилитель не получает необходимый ему ток, следствием чего являются звуковые искажения – бас становится невнятным, «скомканным». В отличие от аккумумлятора, конденсатор способен очень быстро разряжаться, и применение его в цепи питания усилителя сглаживает моменты падения напряжения. Заряжается конденсатор очень быстро, и поэтому момента между пиками ему вполне хватает, чтобы зарядится и быть готовым к следующему пику. Звук в пиковые моменты не искажается и его качество заметно выше.

Обычной музыкальной системе, как правило, достаточно емкости в 1 Ф. При установке конденсатора необходимо подключать его параллельно питанию усилителя, а располагать рекомендуется непосредственно возле усилителя, на расстоянии не более 60 см. Сопротивление конденсатора очень мало – чем дальше он находится от усилителя, тем больше влияние на работу связки «усилитель+конденсатор» оказывает сопротивление соединительных проводов между ними.

Поэтому, чем меньше расстояние, тем лучше.

Теперь вкратце о самом процессе установки, потому что здесь есть тоже очень важный момент. Не секрет, что ковыряться в проводке и подключать всякие девайсы нужно при скинутых с аккумулятора клеммах, это стандартное правило безопасности. Но допустим, Вы все установили, подключили и решили, что пора уже включать. И всё бы ничего, но многие забывают, что при самом первом включении конденсатор пока ещё разряжен. А ведь это устройство, которое способно не только отдавать, но и накапливать заряд очень быстро. Так что как только клеммы коснутся аккумулятора, пустая «банка» сразу же начнется заряжаться и через конденсатор потечет очень большой ток заряда – вплоть до того, что можно сжечь предохранители. Что же делать? Как правильно зарядить конденсатор?

Самый простой вариант – использовать любую 12-вольтовую автомобильную лампочку. Перед тем как накидывать клемму, просто на несколько секунд включите её между аккумуляторной и накидываемой клеммой. Конденсатор начнет плавно заряжаться и резкого броска тока уже не произойдет. По мере заряда лампочка будет светить всё тусклее и тусклее, и когда совсем погаснет, то это и будет означать, что конденсатор зарядился и можно спокойно одевать и фиксировать клемму, а нужный компонент обрел постоянное «место жительства».

Для чего нужен конденсатор?

Начнем с ответа на второй вопрос. Конденсатор – это система из двух проводников, которые называют обкладками конденсатора, разделенных слоем диэлектрика. Эти проводники несут равные по модулю и противоположные по знаку заряды имеют такую форму и расположены так, по отношению друг к другу, что поле, которое они создают, локализовано в ограниченной пространственной области. Характеризуют конденсатор при помощи емкости (). Емкость конденсатора – это взаимная емкость обкладок.

В задачах чаще всего рассматривают плоские, цилиндрические и сферические конденсаторы. Например, емкость цилиндрического конденсатора вычисляют при помощи формулы:

   

где — электрическая постоянная; — диэлектрическая проницаемость вещества между обкладками конденсатора; и — радиусы цилиндров (внешнего и внутреннего).
Для конденсатора важной характеристикой служит пробивное напряжение – это разность потенциалов его обкладок, при которой происходит электрический разряд через слой диэлектрика. Этот параметр зависит от толщины слоя диэлектрика, его свойств и формы обкладок конденсатора.

Теперь перейдем к вопросу: для чего нужен конденсатор. Конденсаторы применяют в электронике и радиотехнике в схемах. В совокупности с сопротивлениями и транзисторами конденсаторы – основа радиотехники. В цепях переменного тока конденсатор может выступать как емкостное сопротивление. Если последовательно соединить конденсатор, лампу и источник переменного тока, то лампа будет гореть тем ярче, чем больше емкость конденсатора. Конденсаторы могут выступать как фильтры, подавляющие частотные помехи, скачки напряжения и тока. Конденсаторы могут долго копить заряд и быстро отдавать его. Так в цепях с низким сопротивлением создают сильный импульс. Этот эффект имеет применение при изготовлении лазеров, фотовспышек т.п. Конденсаторы могут копить и хранить заряд долгое время, что позволяет применять их в устройствах для хранения информации и как источники питания в устройствах низкой мощности.
Надо сказать, что конденсаторы существенно уступают аккумуляторным батареям в способности копить электрическую энергию, так как они не могут аккумулировать большие энергии и способны к саморазряду. При помощи конденсаторов подключают трехфазные двигатели к однофазной сети, так как при  подключении конденсатора к третьему выводу сети осуществляется сдвиг фазы на .  Установки конденсаторов используют в промышленности для того, чтобы компенсировать реактивную энергию.

Для чего нужен конденсатор?

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и автомобиле, поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

 

Зачем нужны электролитические конденсаторы и как их менять

Рубрика: Статьи обо всем, Статьи про радиодетали Опубликовано 13.04.2020   ·   Комментарии: 0   ·   На чтение: 5 мин   ·   Просмотры:

Post Views: 964

Электролитические конденсаторы обладают большой емкостью. Они используются в основном в цепях питания, где требуется фильтрация напряжения от помех.

Их чего состоят

Больших емкостей можно добиться только с помощью химических источников.

Электролитические конденсаторы очень близки к химическим источникам тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.

Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.

По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические.

Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.

Характеристики электролитического конденсатора

К характеристикам можно отнести емкость и рабочее напряжение. Они указаны на корпусе.

Маркировки у электролитов по сути нет, основана информация указывается на корпусе. Микрофарады обозначаются µF, а рабочее напряжение в V.

А вообще, есть еще понятие ESR.

Рабочее напряжение ни в коем случае нельзя превышать.

Преимущества и недостатки

Преимущества электролитических конденсаторов:

  • Большая емкость;
  • Компактность.

Недостатки:

  • Со временем электролит высыхает, теряется емкость;
  • Работает только на низких частотах;
  • Ограничения по эксплуатационным условиям и риск вздутия/взрыва.

Разберём подробнее преимущества и недостатки электролитов.

Большая емкость

Электролитические конденсаторы обладают большой емкостью, и это их отличительная и самая главная особенность среди остальных конденсаторов.

Емкость обозначается в микрофарадах (мкФ), поскольку электролиты с меньшими значениями не выпускают.

Они обычно выпускаются от нескольких мкФ, до нескольких Ф (1 000 000 мкФ).

Компактность

Благодаря использованию химии, конденсаторы большой емкости намного компактнее, чем если бы их делали керамическими или пленочными.

Емкость конденсатора можно увеличить только за счет его обкладок, диэлектрика и геометрии. Поэтому электролиты лидируют по соотношению емкость/габариты.

Ионисторы

Разновидность электролитических конденсаторов — это ионисторы. Они обладают большей емкостью (например, 3000 Ф), и работают в основном как резервный или автономный низковольтный источник питания схемы. А также поддерживает схему в спящем режиме без другого источника. Их кстати в большей степени можно отнести к аккумуляторам.

Высыхание электролита

Основная проблема таких конденсаторов – это высыхание электролита. Обычно такая проблема проявляется из-за того, что техникой долго не пользуются или нарушаются условия эксплуатации (перегрев корпуса). Из-за этого электролит начинает высыхать, поэтому происходит потеря емкости.

Можно восстановить емкость конденсатора путем разбавления засохшего электролита дистиллированной водой (как аккумулятор), но это не выгодно. Лучше и надежнее всего заменить старый на новый, аналогичный по параметрам.

Работа на низких частотах

Это скорее особенность, чем недостаток. Большие емкости — это высокое реактивное сопротивление для высоких частот.

Поэтому, такие конденсаторы используются в низкочастотных цепях. Например, в блоках питания в качестве фильтров и сглаживания пульсаций.

Когда конденсатор вздувается и взрывается

Всегда еобходимо соблюдать полярность подключения.

Конденсаторы, как и аккумуляторы, могут вздуваться и взрываться. Иногда это происходит из-за неправильного включения или перегрева.

Если вы подключите минус источника к плюсу конденсатора и плюс источника к минусу конденсатора, то сразу же начнется вскипание электролита. Такой эффект возникает из-за обратной химической реакции. Конденсатор может взорваться.

В старых конденсаторах типа К-50 корпус монолитный, и он взрывался громко и достаточно разрушительно.

В современных электролитах на корпусе есть небольшой надрез, который в случае вскипания электролита позволяет горячему пару выйти наружу.

Иногда они просто вдуваются без нарушения герметизации, а бывают и такие случаи, когда конденсатор полностью теряет герметичность.

Тем не менее, надрез на корпусе значительно уменьшил взрывы, поэтому конденсаторы теперь чаще вздуваются, а не взрываются.

На корпусах современных конденсаторов вертикальной чертой указывается минусовой контакт.

Внимательно устанавливайте и записывайте прежнее положение, ибо многие производители ставят свои обозначения.

Например, среди радиолюбителей обычно минусовые контакты рисуют в виде квадрата.

А производители печатных плат наоборот, рисуют квадратные контактные площадки под плюс конденсатора. И то, так делают не все.

Так как есть такая путаница среди и радиолюбителей и производителей, всегда обращайте на то. где указан плюсовой контакт. И записывайте прежнее положение детали, иначе это чревато взрывом.

Характерные признаки неисправности электролитов

К таким признакам можно отнести:

  • Устройство не включается. Блок питания уходит в защиту или не запускается;
  • Устройство включается, но сразу же выключается. Емкость конденсаторов высохла или потеряла свое прежнее значение, поэтому блок питания уходит в защиту;
  • Перед неисправностью был писк в блоке питания. Обычно это означает, что конденсатор потерял герметичность и электролит начинает вытекать;
  • Нет регулировки яркости в мониторе. Отсутствие нужной емкости приводит к нарушению работы всего устройства. Емкость в данном случае делает функцию настройки;
  • Перед неисправностью был взрыв и неприятный запах. Неприятный запах – это электролит;
  • Устройство включается через раз. Это значит, что есть большая вероятность протечки фильтра питания.

Внешние признаки неисправности электролитических конденсаторов:

  • Вздутие корпуса;
  • Повреждение корпуса:
  • Наличие электролита под корпусом;
  • Вздутие со стороны контактов (внизу корпуса, обычно еле заметно).

Также высокочастотные пульсации вредят электролитам. Поэтому чаще всего они выходят из строя в блоках питания, поскольку именно там много пульсаций.

Правила работы с электролитами

Внимание! Перед тем, как прикоснуться к плате неисправного источника, убедитесь, что емкости разряжены. Даже если неисправен преобразователь, а не электролит, то конденсаторы могут быть заряжены. Им попросту некуда девать свой заряд. Поэтому первым делом аккуратно и не касаясь щупом мультиметра, измерьте емкости с высоким напряжением. Если они заряжены, разрядите их с помощью лампочки.

Как менять старый на новый

Среди электронщиков есть два мнения. Первое это то, что менять нужно неисправный старый конденсатор менять на такой же старый. Это объясняется тем, что вся работы схемы «привыкла» к старому конденсатору.

Но технически правильно и обоснованное мнение – это то, что нужно ставить только новый и только подходящий по параметрам конденсатор. Нет никакого привыкания схемы. Да, многие компоненты устарели и не могут работать как прежде, но у конденсатора по сути нет ничего того, что кардинально влияло бы на ухудшение работоспособности всех схемы. Устройство наоборот, будет работать лучше.

Меняйте старые конденсаторы на новые, максимально близкие по параметрам. Например, емкость можно взять чуть больше, если речь идет о блоке питания. А если это цепь настройки, то увеличив или уменьшив емкость, так можно повлиять на весь режим работы схемы. Нужно действовать по ситуации.

Ставить конденсатор с меньшими рабочим напряжением, чем в схеме, категорически нельзя. Он начнет нагреваться и взорвется. Да, многие разработчики считают с запасом, но лучше не рисковать.

Также не стоит забывать о таком параметре, как ESR (эквивалентное последовательное сопротивление).

Post Views: 964

Для чего нужны конденсаторы — Автозвук

Почему появляются просадки напряжения?

Во-первых, штатный автомобильный аккумулятор не способен отдавать большие токи достаточно быстро из-за своего большого внутреннего сопротивления (от 30мОм). В результате, вместо 13,5 – 14 В даже при работающем двигателе, особенно в моменты пиковой мощности, например, ударов по барабанам или другого басового импульса, напряжение может проседать на несколько вольт. Такое падение напряжения однозначно приводит к значительному снижению мощности и появлению звуковых искажений, ощутимых на слух даже неопытному слушателю.

Во-вторых, значительная удаленность аккумулятора от усилителей требует применения довольно длинных силовых кабелей. Любой кабель, даже если он сделан из меди и самого подходящего сечения имеет свое, пусть и небольшое сопротивление. Чем длиннее кабель, тем больше его сопротивление, тем больше он препятствует мгновенной передаче больших токов.

В-третьих, в электрической цепи присутствует множество соединительных элементов: держателей предохранителей, разветвителей питания, клемм и др. Каждый из этих элементов соединяет разные металлы, создавая так называемое переходное сопротивление. Конечно, качественные латунные соединительные элементы незначительно влияют на общие просадки напряжения. Однако, как правило, в погоне за ценой многие используют соединительные элементы из низкокачественных сплавов на основе цинка. Это приводит к энергетическим потерям на данных участках цепи.

Как конденсатор решает эту проблему?

Конденсатор или накопитель – это источник питания, который обладает мгновенной скоростью отдачи электроэнергии. Когда штатный аккумулятор и кабели “не успевают предоставить” очередную порцию энергии, усилитель мгновенно получает ее от конденсатора. Отдав частично или полностью свой заряд, конденсатор также мгновенно заряжается. Таким образом, конденсатор стабилизирует напряжение в системе питания.

Проведем аналогию. Представим, что электрический ток – это вода. Для максимально эффективной работы усилителям звука нужно много энергии, т.е. воды. Тогда штатный аккумулятор – это большая бутылка с узким горлышком. Через горлышко не может вылиться много воды сразу, которую требуют усилители звука для обработки мощного широкополосного сигнала или басового импульса. В таком случае, конденсатор – это ведро. Ведром можно быстро черпать и выливать большое количество воды. Таким образом и конденсатор мгновенно отдает и получает снова свой заряд, стабилизируя напряжение на питающих кабелях усилителя.

Зачем нужен конденсатор на электромоторчике? И что будет если его удалить


Если вы когда-нибудь разбирали детскую машинку и вынимали из нее небольшие моторчики, то могли заметить, что на каждом из них напаян небольшой конденсатор к выводам питания.
Если его отпаять и проверить работу мотора, то практически ничего не изменится. Так зачем он нужен?
Конденсаторы емкостью 0,1-0,01 мкФ обычно припаиваются параллельно выводам коллекторных электродвигателей.

Проверим на опыте


Давайте возьмем двигатель и отпаяем конденсатор. Возьмем вольтметр и подключим параллельно выводам мотора. Для питания будем использовать две пальчиковые батарейки включенные последовательно, общим напряжением 3 В.

При включении и отключении мотора от питания появляются импульсы высокого напряжение до 1000 В

Это нормально, ЭДС самоиндукции еще никто не отменял. Причем с конденсатором таких скачков не наблюдалось.
Такие импульсы называю еще обратным током, они обычно губительный для любой цепи где есть электроника. Это первое для чего устанавливают этот конденсатор.

Изменения в работе


Теперь давайте подключим каждый двигатель по отдельности и послушаем на слух их работу.


Изменения конечно не очевидные, но мотор без конденсатора работает с дребезгами и более не устойчиво. Это второе зачем ставят конденсатор: искрогашение, благодаря чему увеличивается ресурс щеток и двигателя в целом.
И наконец третье, для чего используют конденсатор, это помехозащищенность. Если во время работы моторчика без конденсатора включить любой радиоприемник, то в нем будут отчетливо слышны помехи издаваемые коллектором двигателя.

Итог: зачем нужен электродвигателю нужен конденсатор?


У коллекторного мотора во время работы происходи постоянная коммутация обмоток якоря. Использование конденсатора в цепи питания мотора решает следующие проблемы:
  • Первое – это искрогашение на щетках коллектора.
  • Второе – помехозащита.
  • Третье – защита питающей цепи от обратного тока.


Смотрите видео


Необходим ли конденсатор и выбор его емкости.

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Только запитанный с запасом мощности усилитель выходит на паспортный уровень усиления мощности.

Задача конденсатора в автозвуке – поддерживание напряжения бортовой сети на приемлемом уровне в моменты пиковых нагрузок сабвуфера.
Провал напряжения возникает из-за нескольких причин: единовременная большая нагрузка, неправильно рассчитанное сечение силового провода (увеличенное сопротивление и потери на участках цепи), недостаточность выделяемой мощности аккумулятором.

Монтаж конденсатора необходимо производить на кратчайшем расстоянии от потребителя тока (усилителя), максимально рекомендуемое расстояние 40см. Дальнейшее увеличение расстояния приводит к уменьшению эффективности работы конденсатора. Предохранитель питания от бортовой сети желательно устанавливать на таком же расстоянии.


Подбирая конденсатор, исходят из формулы на 1кВт мощности всех усилителей не менее 1Ф емкости конденсатора.

Вопрос: Почему не поставить второй аккумулятор.

Ответ: В серьезных инсталляциях устанавливаются как дополнительные аккумуляторы, так и конденсаторы большой мощности. Однако аккумулятор более «медленный» источник питания по сравнению с конденсатором, и конденсатор намного быстрее отдаст свой заряд, испытывающему недостаток питания усилителю. На данный момент производятся так называемые буферные емкости, которые являются объеденным в одном корпусе конденсатором и аккумулятором.

Вопрос: Брать или не брать конденсатор?

Ответ: В инсталляциях небольшой мощности или не использующих сабвуферы конденсатор не нужен ведь именно пиковая нагрузка низкочастотной нагрузки влечет за собой провал бортовой сети.

Вопрос: Как правильно подключить конденсатор?

Ответ: Конденсатор должен быть подключен параллельно аккумулятору. Следует соблюдать полярность подключения (в основном она указана на конденсаторе), изменение полярности уменьшает эффективность работы конденсатора и может привести к разрушению. Дополнительным плюсом вашей силовой установки может стать диод, установленный в разрыв цепи от аккумулятора к усилителю. Он проводит ток только в одну сторону (усилителя) и позволяет вашему конденсатору более эффективно обслуживать именно усилитель, а не всю остальную бортовую сеть.

Вопрос: Как правильно произвести первый запуск конденсатора?

Ответ: Конденсатор обладает не только очень быстрым током разрядки, но и мгновенным током зарядки. А ведь фарад — это очень большая ёмкость. Планета земля обладает емкостью ~ 700мФ. Впрочем, емкость гибридных конденсаторов (ионисторов) может достигать нескольких килофарад. В звуковой аппаратуре используются гибридные конденсаторы ёмкостью до 40 Фарад. Можно назвать ток зарядки конденсатора – током короткого замыкания, в результате которого можно повредить электронные приборы автомобиля.

Внимание: Необходимо зарядку конденсатора «С НУЛЯ» производить только через сопротивление (можно использовать обычную автомобильную лампу накаливания). После зарядки конденсатора «С НУЛЯ» необходимо очень быстро убрать резистор и подключить конденсатор к бортовой сети напрямую и в дальнейшем в случае разрядки конденсатора порядок зарядки необходимо повторить.

Существуют конденсаторы с функцией ограничения тока зарядки. На данный момент таких большинство, но всегда надо читать инструкцию по монтажу.

Назад в Статьи


Похожие статьи:

Как работают конденсаторы? – Объясни, что это за штука

Часто смотрите в небо, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же накапливают энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите изолятором (материал что не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электрической энергии к конденсатору называется зарядный ; высвобождая энергию из Конденсатор известен как разрядный .

Фото: Маленький конденсатор в транзисторной радиосхеме.

Конденсатор немного похож на батарею, но у него другая работа делать. Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее – часто за секунды или меньше.Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за долю секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты.Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» – это два очень тонких листа металла; диэлектрик – маслянистая пластиковая пленка между ними.Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: вскрытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом). Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электротехнике. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них – увеличить размер тарелок.Другой – сдвиньте пластины ближе друг к другу. Третий способ – сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики. такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867). Один фарад – это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада – обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов – или как ваше тело и Земля. Если вы их разделите, вам придется «работать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Работа: Раздвигание положительных и отрицательных зарядов сохраняет энергию. Это основная принцип конденсатора.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году.Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка. Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разобьется, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры – электрического тока – в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера – это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое “индуцирует” равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении – и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки с обычным стеклом в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Как работают конденсаторы? – Объясни, что это за штука

Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите изолятором (материал что не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электрической энергии к конденсатору называется зарядный ; высвобождая энергию из Конденсатор известен как разрядный .

Фото: Маленький конденсатор в транзисторной радиосхеме.

Конденсатор немного похож на батарею, но у него другая работа делать. Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее – часто за секунды или меньше.Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за долю секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты.Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» – это два очень тонких листа металла; диэлектрик – маслянистая пластиковая пленка между ними.Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: вскрытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом). Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электротехнике. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них – увеличить размер тарелок.Другой – сдвиньте пластины ближе друг к другу. Третий способ – сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики. такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867). Один фарад – это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада – обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов – или как ваше тело и Земля. Если вы их разделите, вам придется «работать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Работа: Раздвигание положительных и отрицательных зарядов сохраняет энергию. Это основная принцип конденсатора.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году.Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка. Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разобьется, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры – электрического тока – в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера – это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое “индуцирует” равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении – и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки с обычным стеклом в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Как работают конденсаторы? – Объясни, что это за штука

Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите изолятором (материал что не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электрической энергии к конденсатору называется зарядный ; высвобождая энергию из Конденсатор известен как разрядный .

Фото: Маленький конденсатор в транзисторной радиосхеме.

Конденсатор немного похож на батарею, но у него другая работа делать. Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее – часто за секунды или меньше.Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за долю секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты.Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» – это два очень тонких листа металла; диэлектрик – маслянистая пластиковая пленка между ними.Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ: вскрытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электротехнике. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них – увеличить размер тарелок.Другой – сдвиньте пластины ближе друг к другу. Третий способ – сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики. такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад – это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада – обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов – или как ваше тело и Земля. Если вы их разделите, вам придется «работать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Работа: Раздвигание положительных и отрицательных зарядов сохраняет энергию. Это основная принцип конденсатора.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году.Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка. Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разобьется, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры – электрического тока – в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера – это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое “индуцирует” равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении – и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки с обычным стеклом в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.

Что такое конденсатор? – Основы схемотехники

Конденсатор представляет собой электрический компонент, используемый для хранения энергии в электрическом поле. Он имеет два электрических проводника, разделенных диэлектрическим материалом, которые накапливают заряд при подключении к источнику питания. Одна пластина получает отрицательный заряд, а другая – положительный.

Конденсатор не рассеивает энергию, в отличие от резистора.Его емкость характеризует идеальный конденсатор. Это количество электрического заряда на каждом проводнике и разность потенциалов между ними. Конденсатор отключает ток в цепях постоянного и короткого замыкания в цепях переменного тока. Чем ближе два проводника и чем больше площадь их поверхности, тем больше его емкость.

Общие типы конденсаторов

  • В керамических дисковых конденсаторах в качестве диэлектрического материала используется керамика. Керамический конденсатор заключен в капсулу с двумя выводами, которые выходят снизу и образуют диск.Керамический дисковый конденсатор не имеет полярности и подключается в любом направлении на печатной плате. В керамических конденсаторах относительно высокая емкость достигается при небольшом физическом размере из-за их высокой диэлектрической проницаемости. Его значение колеблется от пикофарад до одной или двух микрофарад, но его номинальное напряжение относительно низкое.

Трехзначный код, напечатанный на их корпусе, используется для определения емкости конденсатора в пикофарадах. Буквенные коды используются для обозначения их значения допуска, например: J = 5%, K = 10% или M = 20%.Например, керамический дисковый конденсатор выше с маркировкой 154 указывает на то, что имеется 15 и 4 нуля пикофарад, или 150 000 пФ (150 нФ).


Значение допуска керамического дискового конденсатора
  • Электролитические конденсаторы часто используются, когда требуются большие значения емкости. Они обычно используются для уменьшения пульсаций напряжения или для приложений связи и развязки. Электролитические конденсаторы изготовлены из двух тонких пленок алюминиевой фольги с оксидным слоем в качестве изолятора.Они поляризованы и при неправильном подключении могут выйти из строя или взорваться. Этот тип конденсатора имеет большой допуск, но плохо работает на высоких частотах.
Конденсатор электролитический
  • Танталовые конденсаторы обычно используются для средних значений емкости. Их лучше всего использовать, когда имеют значение размер и производительность, но они обычно не имеют высоких рабочих напряжений и не обладают очень высокой допустимой нагрузкой по току. Танталовые конденсаторы поляризованы и могут взорваться под нагрузкой.У них очень низкая терпимость к обратному смещению. Маркировка танталовых конденсаторов с выводами
Маркировка танталовых конденсаторов SMD

Маркировка танталовых конденсаторов SMD обычно состоит из трех цифр. Последний – множитель, а первые два – значащие цифры. Его значения указаны в пикофарадах. Таким образом, танталовый конденсатор SMD, показанный выше, имеет значение 47 x 10 6 пФ, что соответствует 47 мкФ.

Маркировка танталовых конденсаторов SMD Танталовые конденсаторы

также могут иметь прямую маркировку, как показано на рисунке выше.

  • Серебряные слюдяные конденсаторы используются во многих радиочастотных цепях, таких как генераторы и фильтры. Серебряная слюда дает очень высокие характеристики с жесткими допусками, но с небольшими изменениями температуры. В нем используются серебряные электроды, которые наносятся непосредственно на слюду. Несколько слоев помогают получить требуемый уровень емкости, и на эту емкость влияет площадь, покрытая электродами.
Серебряный слюдяной конденсатор
  • В пленочных конденсаторах в качестве диэлектрика используется тонкая пластиковая пленка.Пленочные конденсаторы используются во многих приложениях из-за их стабильности, низкой индуктивности и низкой стоимости. Они не поляризованы, поэтому подходят для сигналов переменного тока и питания. Они также изготавливаются с очень точными значениями емкости и сохраняют ее дольше, чем любой другой тип конденсатора.
Пленочный конденсатор
  • Конденсаторы переменной емкости – это конденсаторы с емкостью, которую можно изменять в зависимости от требований к определенному диапазону значений. Переменные конденсаторы состоят из металлических пластин.Среди этих пластин одна неподвижная, а другая подвижная. Емкость Тиера может составлять от 10 до 500 пикофарад. Эти переменные резисторы находят множество применений, например, для настройки LC-цепей в радиоприемниках, для согласования импеданса в антеннах и т. Д. Есть два типа переменных конденсаторов – настроечный конденсатор и подстроечный конденсатор.
Конденсатор настройки

Каркас в этом конденсаторе обеспечивает поддержку конденсатора, сделанного из слюды, и находящегося в нем «статора».С помощью вала ротор стремится вращаться, когда статор неподвижен. Когда пластины подвижного ротора входят в неподвижный статор, емкость, возможно, достигает максимального уровня. В противном случае значение емкости будет минимальным.

Подстроечный конденсатор

Конденсатор этого типа имеет три вывода. Один соединен с неподвижной частью, другой – с частью, которая отвечает за движение, называемое поворотным, а другой вывод является общим.

Поляризованные и неполяризованные конденсаторы

Когда дело доходит до хранения и разгрузки, оба они работают по одному и тому же принципу.Однако есть много факторов, которые отличают их друг от друга.

  • Различные диэлектрики – Диэлектрик – это материал между двумя пластинами конденсатора. В поляризованных конденсаторах в качестве диэлектрика используется электролит, что дает им большую емкость, чем у других конденсаторов того же объема. Однако полярные конденсаторы, произведенные из различных материалов и процессов электролита, будут иметь разные значения емкости. Использование полярных и неполяризованных конденсаторов зависит от обратимых свойств диэлектрика.
  • Различные конструкции – чаще всего используются электролитические конденсаторы круглой формы; квадратные конденсаторы встречаются редко. Существуют также невидимые конденсаторы или распределенные конденсаторы, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.
  • Условия использования и использование – внутренние материалы и конструкции обеспечивают большую емкость и высокочастотные характеристики полярных конденсаторов, что делает их очень подходящими для фильтров источников питания и т.п.Однако есть полярные конденсаторы с хорошими высокочастотными характеристиками – танталовый электролизный, который обычно не используется из-за своей дороговизны.
  • Различная производительность – Максимальная производительность – одно из основных требований при выборе конденсатора. Если в источнике питания телевизора в качестве фильтра используется металлооксидный пленочный конденсатор, емкость и выдерживаемое напряжение должны соответствовать требованиям фильтра; внутри корпуса можно установить только блок питания.Следовательно, в фильтре можно использовать только полярные конденсаторы, а полярная емкость необратима. Обычно электролитические конденсаторы имеют емкость более 1 МФ; лучше всего использовать для связи, развязки, фильтрации источника питания и т. д. Неполярные конденсаторы, как правило, менее 1 MF, что включает только резонанс, связь, выбор частоты, ограничение тока и т. д. Однако есть также большие емкости, высоковольтные. неполярные конденсаторы, в основном используемые для компенсации реактивной мощности, фазового сдвига двигателя и фазового сдвига мощности преобразования частоты.
  • Различная емкость – конденсаторы одинаковой емкости имеют разную емкость в зависимости от их диэлектриков.

Общие области применения конденсаторов

  • Связь по переменному току / блокировка по постоянному току – компонент позволяет только сигналам переменного тока проходить от одного участка цепи к другому, блокируя любое статическое напряжение постоянного тока. Они обычно используются для разделения компонентов переменного и постоянного тока в сигнале. В этом методе необходимо убедиться, что полное сопротивление конденсатора достаточно низкое.Номинальное напряжение конденсатора должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение питающей шины с некоторым запасом для обеспечения надежности.
  • Развязка источника питания – Конденсатор используется для развязки одной части схемы от другой. Развязка выполняется, когда входящий линейный сигнал проходит через трансформатор и выпрямитель; результирующая форма волны не является гладкой. Оно варьируется от нуля до пикового напряжения.При применении к цепи маловероятно, что это сработает, потому что обычно требуется постоянное напряжение.
  • Фильтрация шума переменного тока от цепей постоянного тока – Любые сигналы переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или других узлах, которые должны быть свободны от определенного переменного сигнала, должны быть удалены конденсатором. Он также должен выдерживать напряжение питания, подавая и поглощая уровни тока, возникающие из-за шума на рельсе.
  • Фильтрация аудиосигнала – необходимо учитывать ВЧ характеристики конденсатора.Эта производительность может отличаться на более низких частотах. Здесь обычно используются керамические конденсаторы, поскольку они имеют высокую частоту собственного резонанса, особенно конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, которые могут вызвать какую-либо индуктивность.

Что такое суперконденсаторы?

Он также известен как двухслойный электролитический конденсатор или ультраконденсатор. Суперконденсатор может хранить большое количество энергии. В частности, от 10 до 100 раз больше энергии на единицу массы или объема по сравнению с электролитическими конденсаторами.Он имеет более низкие пределы напряжения, которые перекрывают разрыв между электролитическими конденсаторами и аккумуляторными батареями.

Некоторые общие области применения суперконденсаторов

  • Ветряные турбины – суперконденсаторы помогают сгладить прерывистую энергию ветра.
  • Двигатели, приводящие в движение электромобили, работают от источников питания, рассчитанных на сотни вольт, что означает, что для хранения нужного количества энергии в типичном рекуперативном тормозе необходимы сотни последовательно соединенных суперконденсаторов.
  • Электрические и гибридные транспортные средства – суперконденсаторы используются в качестве временных накопителей энергии для рекуперативного торможения, при этом энергия транспортного средства обычно расходуется впустую при остановке, кратковременно сохраняется и затем повторно используется, когда он снова начинает движение.

Суперконденсаторы и кривая разряда батареи

Кривая разряда батареи экспоненциальная. Как видите, экспоненциальный разряд обеспечивает стабильную мощность до конца. Энергия остается высокой на протяжении большей части заряда, а затем быстро падает, когда заряд заканчивается .

Кривая разряда суперконденсатора линейная. Как видите, линейный разряд не позволяет полностью использовать энергию. Он обеспечивает самую высокую мощность в начале .


Что такое конденсатор (C)

Что такое конденсатор и расчет конденсатора.

Что такое конденсатор

Конденсатор – это электронный компонент, который хранит электрический заряд. Конденсатор состоит из двух замкнутых проводников (обычно пластин), которые разделены диэлектрическим материалом.Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.

Емкость – это количество электрического заряда, которое сохраняется в конденсаторе при напряжении 1 Вольт.

Емкость измеряется в единицах Фарад (Ф).

Конденсатор отключает ток в цепях постоянного (DC) и короткое замыкание в цепях переменного (AC).

Фотографии конденсатора

Обозначения конденсаторов

Емкость

Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (В):

C – емкость в фарадах (Ф)

Q – это электрический заряд в кулонах (Кл), который хранится на конденсаторе

.

В – напряжение между пластинами конденсатора в вольтах (В)

Емкость пластин конденсатора

Емкость (C) пластин конденсатора равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):

C – емкость конденсатора в фарадах (Ф).

ε – диэлектрическая проницаемость диалектического материала конденсатора в фарадах на метр (Ф / м).

А – площадь пластины конденсатора в квадратных метрах (м 2 ).

d – расстояние между пластинами конденсатора в метрах (м).

Конденсаторы серийные

Суммарная емкость конденсаторов, включенных последовательно, C1, C2, C3, ..:

Конденсаторы параллельно

Суммарная емкость конденсаторов, включенных параллельно, C1, C2, C3 ,.. :

C Итого = C 1 + C 2 + C 3 + …

Ток конденсатора

Мгновенный ток конденсатора i c (t) равен емкости конденсатора

раз производная мгновенного напряжения конденсатора v c (t):

Напряжение конденсатора

Мгновенное напряжение конденсатора v c (t) равно начальному напряжению конденсатора

плюс 1 / C, умноженный на интеграл мгновенного тока конденсатора i c (t) за время t:

Энергия конденсатора

Накопленная энергия конденсатора E C в джоулях (Дж) равна емкости C в фарадах (Ф)

раз больше напряжения конденсатора квадратной формы В C в вольтах (В) разделенных на 2:

E C = C × V C 2 /2

Цепи переменного тока

Угловая частота

ω = 2 π f

ω – угловая скорость, измеренная в радианах в секунду (рад / с)

f – частота, измеренная в герцах (Гц).

Реактивное сопротивление конденсатора

Импеданс конденсатора

Декартова форма:

Полярная форма:

Z C = X C ∟-90º

Типы конденсаторов

Конденсатор переменной емкости Конденсатор переменной емкости с изменяемой емкостью
Конденсатор электролитический Электролитические конденсаторы используются, когда требуется большая емкость.Большинство электролитических конденсаторов поляризованные
Конденсатор сферический Сферический конденсатор сферической формы
Силовой конденсатор Силовые конденсаторы используются в высоковольтных энергосистемах.
Конденсатор керамический Керамический конденсатор имеет керамический диэлектрический материал. Имеет функцию высокого напряжения.
Танталовый конденсатор Диэлектрический материал из оксида тантала.Имеет высокую емкость
Слюдяной конденсатор Конденсаторы высокой точности
Конденсатор бумажный Бумажный диэлектрический материал


См. Также:

Что делает конденсатор HVAC? | Домашние гиды

Майкл Логан Обновлено 21 июля 2017 г.

Кондиционеры для бытовых нужд работают от однофазного переменного тока, поставляемого электроэнергетическими предприятиями. Однофазные двигатели в таких устройствах, как кондиционеры, используют конденсаторы для обеспечения дополнительного крутящего момента для запуска и для уменьшения потребления электроэнергии после запуска.Двигатели имеют пусковой и рабочий конденсаторы, что делает их более эффективными.

Конденсаторы

Конденсаторы накапливают электричество. Полностью заряженный конденсатор позволяет току течь на максимальном уровне при высвобождении заряда. По мере разряда конденсатора напряжение повышается до тех пор, пока ток не станет минимальным, а напряжение не станет максимальным. Следовательно, напряжение не в фазе с током.

Без конденсатора напряжение и ток совпадают по фазе – при повышении напряжения увеличивается и ток.Конденсатор сдвигает напряжение в противофазе с током, так что напряжение отстает от тока.

Двигатели для кондиционеров

Для электродвигателей требуется вращающееся магнитное поле, создаваемое электрическим током, который вращается впереди магнитного поля ротора. Вращающееся магнитное поле притягивает противоположное магнитное поле ротора, что заставляет вал двигателя вращаться. Для запуска двигателя требуется два магнитных поля, но однофазный переменный ток может питать только одно поле.У каждого поля есть два полюса, северный и южный.

Однофазные двигатели, используемые в кондиционерах, нуждаются в сильном дополнительном поле для запуска под нагрузкой компрессора. Без дополнительного поля мотор гудит, но не крутится.

Конденсаторные двигатели с пуском

Конденсатор, помещенный в линию со второй вспомогательной обмоткой двигателя, заставляет напряжение обмотки отставать от тока. Это создает дополнительное магнитное поле, которое не совпадает по фазе с полем в основной обмотке.По мере того, как переменный ток растет, падает и меняется на противоположное, поля вращаются между обмотками двигателя, и ротор начинает вращаться.

Конденсатор, запускающий двигатель кондиционера, пропускает большой ток, чтобы дать двигателю крутящий момент, необходимый для запуска двигателя. Когда скорость двигателя приближается к полной, выключатель отключает пусковой конденсатор.

Конденсаторные двигатели

Как только выключатель отключает пусковой конденсатор, двигатель кондиционера теряет дополнительное магнитное поле, создаваемое пусковым конденсатором.Двигатель большего размера мог бы легко продолжать вращаться без дополнительного поля, но он потребляет больше электроэнергии и менее эффективен.

Конденсатор меньшего размера по-прежнему обеспечивает фазовый сдвиг, необходимый для создания дополнительного магнитного поля, но использует меньший ток. Этот рабочий конденсатор всегда подключен к вспомогательной обмотке двигателя для создания сдвинутого по фазе магнитного поля, что позволяет кондиционеру использовать более компактный и более эффективный двигатель.

Конденсаторы – основная причина выхода из строя кондиционеров

Жизнь в пустыне сопряжена с множеством проблем, но ни одна из них не является такой сложной, как жаркая летняя жара.К счастью, современные кондиционеры состоят всего из нескольких частей, что делает их невероятно надежными. Вы можете рассчитывать на то, что ваше устройство будет эксплуатироваться в течение многих лет с минимальным обслуживанием, но если ваш кондиционер внезапно отказывается запускаться в один прекрасный день, несмотря на все ваши заботы, вероятно, виноват конденсатор. Хотя конденсаторы небольшие, они играют большую роль в повседневной работе вашего кондиционера.

Что такое конденсатор?

Конденсатор – это умное устройство, состоящее из двух металлических проводников, разделенных изоляционным материалом.В кондиционере они часто выглядят как большие цилиндрические батареи с двумя или тремя столбиками, торчащими из верхней части. Основная задача конденсаторов – накапливать электроны для обеспечения пусковой энергии вашего кондиционера, они накапливают заряд, когда через них проходит электричество, обменивая электроны между двумя проводящими пластинами внутри.

Из-за своих конденсаторов кондиционеры при каждом запуске делают небольшой фокус. Вашему блоку кондиционирования воздуха на самом деле требуется гораздо больше энергии для запуска, чем доступно через домашнюю проводку, поэтому конденсатор добавляется в цепь, чтобы дать электрический толчок в тот же момент, когда ваш кондиционер потребляет энергию от электрической сети. сетка.Вместе эти два электрических источника обеспечивают необходимое количество сока для вашего кондиционера. Конденсатор работает до тех пор, пока не завершится цикл кондиционирования воздуха. Затем компрессор должен снова запуститься.

Ваш кондиционер может фактически содержать несколько различных конденсаторов, включая рабочий конденсатор двигателя компрессора, рабочий конденсатор двигателя внешнего вентилятора, рабочий конденсатор двигателя внутреннего вентилятора и пусковой конденсатор. Чаще всего выходит из строя конденсатор двигателя компрессора.У него большая работа, и он занимает больше места в вашем кондиционере. На самом деле это сдвоенный конденсатор с тремя выводами вместо двух.

Почему хорошие конденсаторы выходят из строя

Конденсаторы выходят из строя каждый день – они делают тяжелую работу, и, к сожалению, их работа требует больших затрат. Однако есть несколько факторов, которые сильно влияют на срок службы ваших конденсаторов. К ним относятся:

Тепловое воздействие. В Фениксе, возможно, одним из самых вредных элементов для конденсаторов кондиционеров является тепло.К сожалению, длительное воздействие высоких температур на эти устройства значительно сокращает их срок службы и может нанести значительный ущерб вашему устройству. Убедитесь, что вы затенили кондиционер. Держите его в чистоте и поддерживайте циркуляцию воздуха, чтобы продлить срок службы конденсатора.

Номинальное напряжение. Все конденсаторы имеют номинальное напряжение, которое сообщает техническим специалистам по кондиционированию воздуха, какой именно конденсатор соответствует какому кондиционеру. К сожалению, домовладельцы могут попытаться сократить расходы, решив заменить конденсатор самостоятельно, не понимая, как правильно выбрать конденсатор.Конденсатор меньшего размера не повредит вашему кондиционеру, но значительно сократит срок его службы. Если вы решите выполнить эту работу своими руками, помните, что чем больше, тем лучше – если ваш кондиционер рассчитан на 370 вольт, повышение до 400-вольтового конденсатора гарантирует, что вы получите достаточную мощность и что ваш конденсатор приблизится к достижению максимального срока службы. охватывать.

Возраст. Как и все остальное, конденсаторы имеют ограниченный срок службы. Большинство из них рассчитаны на срок службы около 20 лет, но ряд факторов может привести к их более быстрому износу.Если ваш кондиционер работает намного быстрее, чем в среднем, ваш конденсатор слишком мал (как упоминалось выше) или построен из проблемных частей, и расчетный срок службы может значительно сократиться.

Добавить комментарий

Ваш адрес email не будет опубликован.