Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Маркировка конденсаторов – виды и описание расшифровок

Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10

-9 и 10-12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Таблица значений фарад

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы.
    Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
Маркировка больших изделий
  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.
Числовая и численно-буквенная маркировка маленьких конденсаторов

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
Керамические конденсаторы с маркировкой
  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
    • первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
ЦветЗначение
Черный0
Коричневый1
Красный2
Оранжевый3
Желтый4
Зеленый5
Голубой6
Фиолетовый7
Серый8
Белый9
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Заключение

Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

Маркировка конденсаторов – таблица расшифровки конденсаторов

Конденсаторы предназначены для накопления электрического заряда. Емкость измеряется в фарадах (Ф, или F). Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10

-9 и 10-12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

БУКВЕННО-ЦИФРОВАЯ И ЦИФРОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВ

В таком случае первые цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей.
При обозначении емкостей менее 10 пФ последней цифрой может быть «9», например, 109 = 1 пФ.
При обозначении емкостей 1 пФ и менее первой цифрой будет «0», например, 010 = 1 пФ.
В качестве раздельной запятой используется буква R, например, 0R5 = 0,5 пФ.

При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка, например, 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ.

В маркировке может использоваться буква R, число что стоит после нее значит десятые доли микрофарада (мкФ), например, R1 — 0,1 мкФ, R22 — 0,22 мкФ, 3R3 — 3,3 мкФ.
После обозначения емкости может быть нанесен буквенный символ, который обозначает допустимое отклонение емкости конденсатора.

Как определить единицы измерения? На корпусе конденсаторов может быть проставлена буква, обозначающая единицу измерения, например, p — пикофарад, n — нанофарад, u — микрофарад. Но если после цифр стоит одна буква, скорее всего, это маркировка значения допуска, а не маркировка единицы измерения (как правило, буквы «p» и «n» в маркировке значения допуска не участвуют, но бывают исключения).

Емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10-12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10

-6 Ф.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквой В и V, например, 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Больше примеров расшифровки маркировки конденсаторов смотрите ниже:

ЦВЕТОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВ

Также популярна цветная маркировка конденсаторов. Выполнена она цветовыми метками — полосами либо точками. Количество меток может быть от трех до шести. Если у конденсатора выводы расположены слева и справа корпуса (как у резистора), то первой меткой считается та, которая ближе к выводу. Если выводы конденсатора расположены с одной стороны, то первой считается метка, которая ближе к верхушке конденсатора (стороне корпуса, противоположной расположению выводов).

Цветом определяется код номинальной емкости, ее множителя и допустимого напряжения. Код номинальной емкости соответствует цвету краски корпуса конденсатора у выводов (вывода), кодом множителя может бута цвет пятна посередине корпуса, а код допустимого напряжения — краска второй части корпуса конденсатора.

Ниже додаем таблицы маркировки конденсаторов, по которым легко определить номинальную емкость и другие параметры конденсаторов в зависимости от цвета полоски или точки.

Таблица цветовой маркировки конденсаторов общего применения:

Таблица цветовой маркировки напряжения конденсаторов:

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек: первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Цветовая маркировка танталовых конденсаторов:

КОНДЕНСАТОРЫ НА ЭЛЕКТРИЧЕСКИХ СХЕМАХ

Обозначение конденсатора на схемах: постоянный, полярный, неполярный, оксидный проходной, опорный, переменный, полупеременный конденсатор и другие. Рядом с этим указывают позиционное обозначение, состоящее из буквы С и номера по порядку на схеме. Здесь также указывается номинал емкости, значение емкости лежит в пределах 1 … 9999 пФ и является целым. Если значение емкости является десятичной дробью, то обозначение емкости имеет размерность, например, С2 38,2 пФ.

Как обозначаются (маркируются) конденсаторы на схемах: маркировка конденсаторов

Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях.

Различные типы конденсаторных элементов

О конденсаторе

Базовая структура конденсатора имеет простое объяснение. Между двумя конденсаторными пластинами имеется диэлектрик, изолирующий две проводящие поверхности. Таким образом, конденсатор представляет собой пассивное устройство, способное хранить электрозаряд.

Конденсаторные пленки, диэлектрик и конструкция в значительной мере определяют свойства конденсатора, а именно возможность сохранять заряд, который пропорционален напряжению, приложенному к его пластинам. Эта пропорциональность, получившая название емкости, считается существенной особенностью конденсатора.

Технологически конденсаторы можно подразделить на три типа:

  • электростатические;
  • электролитические;
  • другие электрохимические устройства (двойнослойные).

Применение конденсатора зависит от вида и предназначения схемы. Буферный конденсаторный элемент используется для перехвата пиковых нагрузок. Применяются эти элементы в фильтрах для подавления помех и построения резонансных схем.

Условные обозначения конденсаторов

Разработаны системы УГО (условных графических обозначений) для конденсаторов в РФ (ГОСТ 2.728-74) и общемировые стандарты (IEEE 315-1975).

Обозначение различных конденсаторов на схеме показывает их тип и главные характеристики.

Конденсатор с постоянной емкостью

Делятся на два основных типа:

  • поляризованные;
  • неполярные.

Малогабаритные неполяризованные конденсаторные элементы могут быть подсоединены в любом направлении. Существуют различные типы, но керамические являются наиболее широко распространенными и подходящими для большинства целей.

На электросхемах обозначаются парой коротких параллельных линий, перпендикулярных соединительным схемным линиям. Рядом часто размещается величина емкости элемента.

Обозначение конденсатора с постоянной емкостью

Важно! Иногда в иностранных схемах встречается обозначение MFD. Это не мегафарады, а μF.

Возможные единицы емкости:

  • микро (μ) означает 10 в -6 степени фарад;
  • нано (n) – 10 в -9 степени фарад;
  • пико (р) – 10 в -12 степени фарад.

На поверхность самого конденсатора тоже наносится значение емкости. Часто оно указано без обозначений единиц, особенно на маленьких элементах. Например, 0,1 – это 1 мкФ = 100 нФ.

Иногда написание единиц используется вместо десятичной точки. Если встречается обозначение 4n7, это значит 4,7 нФ.

Код номера конденсатора

Цифровой код часто применяется на маленьких элементах, где печать затруднена:

  • первые два числа – начальные цифры значения ёмкости;
  • третья показывает число нулей, а сама величина измеряется в пФ;
  • буквы могут означать допуски и номинальное напряжение.

Например:

  • 102 означает 1000 пФ, а не 102 пФ;
  • 472J – это 4700 пФ (J свидетельствует о 5-процентном допуске).

Важно! Неполярные конденсаторы обычно имеют ёмкость менее 1 мкФ.

Поляризованные конденсаторы

Конденсаторные элементы такого типа должны быть подключены с учетом полюсов. На схеме это показано символом «+». На самом приборе указывается нанесением маркировки, которая идентифицирует «плюс». Для деталей цилиндрической формы обычно более длинный вывод является «плюсом». Поляризованные конденсаторы не повреждаются при паяльных работах.

Поляризованные конденсаторы

Электролитические конденсаторы – наиболее широко используемый тип поляризованного конденсаторного элемента. Они доступны в двух исполнениях:

  • цилиндрические, с обоими выводами на одном конце;
  • осевые, с выводами на каждом конце.

Цилиндрические, как правило, немного меньше и дешевле.

Реальные размеры таких элементов достаточно большие, чтобы четко наносить на них значение емкости, номинального напряжения и указывать «плюсовой» вывод. Поэтому их легко идентифицировать.

Важно! При включении в обратном направлении элементы могут повредиться и даже взорваться, поэтому необходимо четко придерживаться полярности.

Номинальное напряжение электролитических конденсаторов довольно низкое. При отсутствии четких требований лучше выбирать деталь с номиналом, несколько большим напряжения схемы.

Электролитический конденсаторный элемент на схемах может указываться в трех вариантах, представленных на рисунке.

Обозначение поляризованных конденсаторов

Танталовые конденсаторы

Конденсаторы из тантала поляризованы и имеют низкое пробивное напряжение. Они обладают очень малыми габаритами, используются в особых ситуациях, где важен размер.

На последних моделях танталовых конденсаторных элементов указывается значение емкости, напряжения и «плюсовой» вывод. Более старые модели имеют систему цветового кода, которая условно обозначает емкость.

Код состоит из двух полос сверху элемента (для двух цифр) и цветового пятна, обозначающего количество нулей. Соответствие цветовых значений для конкретных емкостей определяется по таблицам. Пятно серого цвета означает, что емкостное значение в мкФ надо умножить на 0,01, белого – на 0,1. Нижняя полоса около конденсаторных выводов дает значение напряжения:

  • желтая – 6,3 В;
  • черная – 10 В;
  • зеленая – 16 В;
  • синяя – 20 В;
  • серая – 25 В;
  • белая – 30 В;
  • розовая – 35 В.

Важно! «Плюсовой» контакт находится всегда с правой стороны элемента, если разместить его цветовым пятном к себе.

Танталовые конденсаторы

Переменные конденсаторы

Этот тип конденсаторных элементов главным образом применяется в радиосхемах. Элемент состоит из двух систем дисков. Одна – закреплена стационарно, другая – может поворачиваться, входя в промежутки между стационарными дисками. Переменные детали обладают маленькими емкостями, 100-500 пФ, и не используются в электросхемах синхронизации из-за малой емкостной величины и ограниченных пределов доступных значений. Вместо них применяются обычные конденсаторы с фиксированными значениями емкости и переменные резисторы.

Обозначение переменных конденсаторов

На схеме переменные конденсаторы представлены конденсаторным символом, перечеркнутым наклоненной стрелкой, а вместо точной емкостной величины написаны пределы ее изменения.

Конденсаторы-триммеры

Разновидность переменных конденсаторных элементов – триммеры, это миниатюрные детали с переменной емкостью. Они монтируются непосредственно на печатной плате, а емкостная величина изменяется только в период настройки схемы. Поэтому их еще именуют подстроечными. Регулирование производится с помощью отвертки.

Обозначение подстроечного конденсатора

Емкостное значение триммера обычно меньше 100 пФ. На электросхеме триммер указан, как переменный конденсатор со стрелкой, только стрелка вместо острия имеет перпендикулярную черту. Рядом пишется диапазон изменения емкости.

Ионистор

Ионистор называют суперконденсатором. Он представляет собой двухслойный элемент с относительно высокой емкостью (0,22-10 Ф). Структура суперконденсатора отличается от структуры обычной электролитической детали. В двойном слое на границе раздела между поверхностью электрода и электролитом образуется зона неподвижных носителей заряда, где энергия хранится, как электростатическое поле, в отличие от химической энергии электролитического конденсаторного элемента. Так как пограничный слой чрезвычайно тонкий, а поверхность электрода велика, достигается большая емкость, что делает суперконденсатор пригодным для использования в качестве ИП.

Ионистор и его обозначение

Температурный коэффициент конденсатора

Температурный коэффициент (ТКЕ) отражает, как изменяется емкость, измеренная при 20°С, при температурных изменениях. Есть элементы с линейными и нелинейными зависимостями.

Важной для практики является рабочая температура элемента. Она оказывает значительное влияние на срок его службы. Определяется конструктивным исполнением конденсатора. Например, электролитические конденсаторы больше подвержены температурному влиянию, чем керамические.

Видео

Оцените статью:

Маркировка конденсаторов таблица с расшифровкой

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Конденсаторы различных типов

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF. Здесь на помощь приходят габариты конденсатора и здравый смысл.

Пример обозначения

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Пример обозначения напряжения

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Пример маркировки различных характеристик

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Цветовая маркировка

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Трехзначная кодировка

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Маркировка SMD

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Оцените статью:

Маркировка конденсаторов — radiohlam.ru

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра “9” обозначает показатель степени “-1”. Если первая цифра “0”, то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091. 0 пФ  
1591.5 пФ  
2292.2 пФ  
3393.3 пФ  
4794.7 пФ  
6896.8 пФ  
10010 пФ0.01 нФ 
15015 пФ0.015 нФ 
22022 пФ0.022 нФ 
33033 пФ0.033 нФ 
47047 пФ0.047 нФ 
68068 пФ0.068 нФ 
101100 пФ0.1 нФ 
151150 пФ0.15 нФ 
221220 пФ0. 22 нФ 
331330 пФ0.33 нФ 
471470 пФ0.47 нФ 
681680 пФ0.68 нФ 
1021000 пФ1 нФ 
1521500 пФ1.5 нФ 
2222200 пФ2.2 нФ 
3323300 пФ3.3 нФ 
4724700 пФ4.7 нФ 
6826800 пФ6.8 нФ 
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0. 047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву “п” от английской “n”.

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2. 7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице “A” — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH
(T для танталовых)
K2A
напряжение
(Вольт)
2,546,3
(иногда 63)
10162025355080100

Как работают конденсаторы, параметры конденсаторов

Введение в электронику. Конденсаторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Конденсаторы

Надо сказать, что конденсатор, как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсаторэто две металлических пластинки и воздух между ними. Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного.


Конденсаторы бывают постоянные, подстроечные, переменные и электролитические. Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные, слюдяные, керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость. Она измеряется в микро-, нано– и пикофарадах. На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мFнанофарады – нф, Н или п, пикофарады – пф или pf. Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости.  Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке, которая может содержать полосы, кольца или точки. Маркируемые параметры: номинальная емкостьмножитель; допускаемое отклонение напряжения; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 10010 пикофарад0,01 нанофарада0,00001 мкф(!))



При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы. Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны, поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы, хотя применяются они довольно редко. Существую еще и танталовые конденсаторы, которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают.
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись  радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения.


Перейти к следующей статье: Диоды



Маркировка электролитических конденсаторов расшифровка

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

ГодКод
1990A
1991B
1992C
1993D
1994E
1995F
1996H
1997I
1998K
1999L
2000M
2001N
2002P
2003R
2004S
2005T
2006U
2007V
2008W
2009X
2010A
2011B
2012C
2013D
2014E
2015F
2016H
2017I
2018K
2019L

Расположение маркировки на корпусе

Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

Цветовая маркировка отечественных радиоэлементов

При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.

Маркировка smd компонентов

Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.

Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.

Заключение

Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Допуск в % Буквенное обозначение
лат.рус.
± 0,05pA
± 0,1pBЖ
± 0,25pCУ
± 0,5pDД
± 1,0FР
± 2,0GЛ
± 2,5H
± 5,0JИ
± 10KС
± 15L
± 20MВ
± 30NФ
-0. +100P
-10. +30Q
± 22S
-0. +50T
-0. +75UЭ
-10. +100WЮ
-20. +5YБ
-20. +80ZА

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Номинальное рабочее напряжение, B Буквенный код
1,0I
1,6R
2,5M
3,2A
4,0C
6,3B
10D
16E
20F
25G
32H
40S
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
350T
400Y
450U
500V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Как читать код конденсатора

Просмотры сообщений: 16 024

Загрузить: Руководство по электронике (которое мы даем нашим клиентам)

Полезные ссылки:

Как читать конденсатор:

Конденсаторы – это элементы схемы, которые реагируют на быстро меняющиеся сигналы, а не на медленно меняющиеся или статические сигналы. Конденсаторы могут накапливать энергию сильных быстро меняющихся сигналов и возвращать эту энергию в схему по желанию.Чаще всего конденсаторы используются для поглощения шума, который по определению является быстро меняющимся сигналом, и отводят его от интересующего сигнала. Для улавливания разных типов шума необходимы конденсаторы разной емкости. Воспользуйтесь этими советами, чтобы научиться читать обозначения конденсаторов и определять номинал конденсатора.

ШАГ 1

Узнайте об единицах измерения, используемых для конденсаторов. Базовая единица измерения емкости – Фарад (Ф).Это значение слишком велико для использования в цепи. Меньшие номиналы емкости используются в электронных схемах.

  • Считать мкФ как мкФ. 1 мкФ составляет 1 умножить на 10 до -6 Фарада в степени.
  • Считать пФ как пикоФарад. 1 пикофарад равен 1 умножению на 10 до -12 Фарада степени.

ШАГ 2

Считайте значение непосредственно на конденсаторах большего размера. Если поверхность корпуса достаточно большая, значение будет напечатано прямо на конденсаторе.Например, 47 мкФ означает 47 мкФ.

ШАГ 3:

Считайте емкость меньших по размеру конденсаторов как два или три числа. Обозначения мкФ или пФ не отображаются из-за малых размеров корпуса конденсатора.

  • Считайте двузначные числа в пикофарадах (пФ). Например, 47 будет читаться как 47 пФ.
  • Считайте трехзначные числа как значение базовой емкости в пикофарадах и множитель. Первые две цифры указывают значение базового конденсатора в пикофарадах.Третья цифра будет указывать множитель, который будет использоваться на базовом числе, чтобы найти фактическое значение конденсатора.
  • Используйте третью цифру от 0 до 5, чтобы поместить соответствующее количество нулей после базового значения. Третья цифра 8 означает умножение базового значения на 0,01. Третья цифра 9 означает умножение базового значения на 0,1. Например, 472 будет обозначать конденсатор 4700 пФ, а 479 – конденсатор 4,7 пФ.
  • цифра-символ-цифра. Некоторые конденсаторы малой емкости имеют коды типа 1n0.Цифры – это значения до и после десятичной точки, а символ указывает размер; Таким образом, в данном примере значение 1,0 нФ (нано-Фарад).

ШАГ 4:

Ищите буквенный код. Некоторые конденсаторы обозначаются трехзначным кодом, за которым следует буква. Эта буква представляет собой допуск конденсатора, означающий, насколько близким фактическое значение конденсатора может быть ожидаемое к указанному значению конденсатора.Допуски указаны ниже.

  • Считать B как 0,10 процента.
  • Считайте C как 0,25 процента.
  • Считать D как 0,5 процента.
  • Считайте E как 0,5 процента. Это дублирование кода D.
  • Считайте F как 1 процент.
  • Считайте G как 2 процента.
  • Считайте H как 3 процента.
  • Считайте J как 5 процентов.
  • Считайте K как 10 процентов.
  • Считайте M как 20 процентов.
  • Считайте N как 0,05 процента.
  • Считайте P как от плюс 100 процентов до минус 0 процентов.
  • Считайте Z как от плюс 80 процентов до минус 20 процентов.

КОНДЕНСАТОР ЭЛЕКТРОЛИТИЧЕСКИЙ

Электролитический конденсатор – это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.


В случае сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4.7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.

В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение. Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25 В». В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже.Первые два числа представляют значение в пикофарадах, а третье число – количество нулей, добавляемых к первым двум. Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.

О конденсаторах:

Руководство по материалам для поверхностного монтажа Тип упаковки: чип-конденсатор

Конденсаторы обычно обозначаются такими символами, как C, CN, EC, TC, PC, BC с номерами, добавленными к ним для обозначения их характеристик.Различные типы конденсаторов имеют разные обозначения схем; EC23, EC30 и EC31 – электролитические конденсаторы, а C162, C165, C158 и C179 – неполярные конденсаторы. Обычно способность выдерживать напряжение конденсатора указывается рядом с обозначением цепи конденсатора.

(Чтобы прочитать нашу статью о чип-резисторах, нажмите здесь)

1. Классификация конденсаторов

Конденсаторы различаются по принципу классификации.Есть много способов их разделить. В основном это следующие методы:

  1. В соответствии со структурой его можно разделить на конденсатор постоянной емкости (емкость не фиксированная) и конденсатор переменной емкости (емкость конденсатора можно регулировать)
  2. В соответствии со средой ее можно разделить на конденсаторы с воздушным диэлектриком, конденсаторы с твердой средой (керамические, полиэфирные и т. Д.) И электролитические конденсаторы. Электролитические конденсаторы обычно используются в качестве конденсаторов большой емкости.
  3. В зависимости от наличия или отсутствия полярности делится на неполярные конденсаторы и полярные конденсаторы (например, электролитические конденсаторы). Обычно отрицательная сторона электролитического конденсатора обозначается знаком «-» на стороне цилиндра. Конечно, электролитические конденсаторы также имеют полярность, например, для схемы деления звуковой частоты и запуска двигателя. Конденсаторы электролитические алюминиевые для электрических цепей.
  4. Согласно материалу диэлектрика конденсатора : алюминиевые электролитические конденсаторы, танталовые электролитические конденсаторы, керамические конденсаторы, полиэфирные конденсаторы, бумажные диэлектрические конденсаторы и т. Д.

2. Некоторые общие конденсаторы

2.1. Конденсатор электролитический алюминиевый

Алюминиевый электролитический конденсатор состоит из алюминиевого цилиндра в качестве отрицательного электрода, который заполнен жидким электролитом, который вставляется в изогнутую алюминиевую ленту в качестве положительного электрода. Он также подвергается обработке напряжением постоянного тока для образования оксидной пленки на листе положительного электрода в качестве среды. Алюминиевые электролитические конденсаторы характеризуются большой емкостью с положительной и отрицательной полярностью, но также могут иметь большие утечки и плохую стабильность.Они подходят для фильтрации источников питания или низкочастотных цепей. При использовании нельзя поменять местами положительный и отрицательный полюса.

Нежидкие конденсаторы этого семейства называются твердотельными алюминиевыми электролитическими конденсаторами. Самая большая разница между ними и обычными конденсаторами (например, жидкими алюминиевыми электролитическими конденсаторами) заключается в том, что используются разные диэлектрические материалы. Материал диэлектрика жидкого алюминиевого конденсатора является электролитом, а диэлектрический материал твердого конденсатора – проводящим полимером.

Почему стоит выбирать одно перед другим? Конденсаторы жидкие, пока в долговременном

Использование

на основной плате может привести к перегреву, что приведет к расширению электролита из-за тепла, в результате чего конденсатор потеряет свою функцию даже из-за расширения, превышающего точку кипения. Если основная плата не находится под напряжением в течение длительного периода времени, электролит легко образуется с глиноземом. Химическая реакция, которая затем вызывает взрыв, когда он включается или когда он находится под напряжением. Однако при использовании твердотельных конденсаторов такой скрытой опасности нет.Поскольку в твердотельном конденсаторе в качестве диэлектрического материала используется проводящий полимерный продукт, этот материал не взаимодействует с оксидом алюминия и не взрывается после подачи напряжения. В то же время это твердый продукт, поэтому, естественно, нет трещин из-за теплового расширения

sion. Ситуация ушла. Таким образом, твердотельные конденсаторы обладают превосходными характеристиками защиты окружающей среды, низким импедансом, стабильностью при высоких и низких температурах, высоким сопротивлением пульсациям и высокой надежностью.Это продукты высшего качества на рынке электролитических конденсаторов. Твердотельные конденсаторы намного превосходят конденсаторы из жидкого алюминия в том, что они могут выдерживать температуру до 260 градусов по Цельсию, имеют хорошую проводимость, хорошие частотные характеристики и большую долговечность. Они подходят для низковольтных и сильноточных приложений и в основном используются в цифровых продуктах, таких как тонкие DVD-диски. Проекторы, компьютеры и др.

2.2. Конденсатор электролитический танталовый

Танталовые электролитические конденсаторы изготовлены из металлического тантала или ниобия в качестве положительного электрода, разбавленного серной кислотой или аналогичного вещества в качестве отрицательного электрода и изготовлены из оксидной пленочной среды, сформированной на поверхности положительного электрода.Эта полезная модель имеет преимущества небольшого объема, большой емкости, стабильной работы, длительного срока службы, большого сопротивления изоляции и хороших температурных характеристик. Они используются в оборудовании с высокими требованиями к производительности. В настоящее время многие танталовые электролитические конденсаторы устанавливаются рядом с микросхемой, а внешний корпус обычно залит смолой.

2.3. Керамический конденсатор

  • Керамические конденсаторы изготовлены из керамики в качестве среды со слоем серебра, нанесенным на обе стороны керамической подложки.Затем он обжигается в серебряной пленке в виде пластины. Керамические конденсаторы обладают небольшими размерами, хорошей термостойкостью, низкими потерями и высоким сопротивлением изоляции. Обратной стороной является то, что у них небольшая емкость. Они больше подходят для высокочастотных цепей. Конденсаторы с керамическими кристаллами имеют большую емкость, но большие потери и температурный коэффициент, поэтому они больше подходят для частотных цепей.

    Пытаетесь управлять своим SMT-производством?

    Nex PCB может помочь.

    В NexPCB у нас есть необходимые технологии и опыта для производства SMT, печатных плат и печатных плат. Мы специализируемся на сборке прототипов печатных плат Quick-Turn, сборке печатных плат в небольших объемах с поверхностным монтажом (SMT), сквозными отверстиями (THT) и смешанными компонентами. Узнайте больше о наших возможностях здесь

    У нас также есть специальная команда по закупкам, которая позаботится о том, чтобы вы получили необходимые компоненты по разумным и оптимальным ценам.

    Во всем, мы позаботимся о том, чтобы произвести для вас лучший продукт качества путем полной проверки.

    Просто нажмите кнопку ниже, чтобы сообщить нам о потребностях вашего проекта, и наша команда будет рада вам помочь!

Чтобы узнать больше о материалах SMT, перейдите по ссылкам ниже

Для получения дополнительных статей о пайке SMT, методах и красном клее перейдите по ссылкам ниже

Быстрая грунтовка по паяльной пасте SMT
Основы печати паяльной пастой SMT
Температурная кривая пайки SMT оплавлением
Что такое пайка оплавлением азотом SMT?
Основы температурной пластины для пайки оплавлением SMT
Что такое система впрыска паяльной пасты SMT
Анализ срезов паяных соединений SMT BGA
Как использовать красный клей SMT

Часть 8 – Классификация диэлектриков

Добро пожаловать в серию «Основы работы с конденсаторами», где мы расскажем вам обо всех особенностях микросхем конденсаторов – их свойствах, классификации продуктов, стандартах испытаний и сценариях использования – чтобы помочь вам принимать обоснованные решения о подходящие конденсаторы для ваших конкретных приложений.После описания линейных диэлектриков в нашей предыдущей статье давайте обсудим различные типы диэлектриков.

Различные диэлектрические материалы имеют свои особенности и практическое применение. Вообще говоря, существует компромисс, заключающийся в том, что диэлектрики с более высокой диэлектрической проницаемостью K имеют большие потери и меньшую стабильность с точки зрения температуры, напряжения и времени. Диэлектрические составы классифицируются в промышленности по их температурному коэффициенту емкости (T CC ) или по тому, насколько емкость изменяется с температурой.Классы I и II обычно используются для изготовления конденсаторов с керамическими кристаллами, а класс III – для изготовления дисковых конденсаторов.

Диэлектрики I класса

Диэлектрики класса I состоят из несегнетоэлектрических линейных диэлектриков, которые демонстрируют наиболее стабильные характеристики и имеют диэлектрическую постоянную менее 150. Класс I также включает подгруппу «расширенной» термокомпенсирующей керамики с небольшими добавками сегнетоэлектрических оксидов (таких как CaTiO ). 3 или SrTiO 3 ), которые демонстрируют почти линейные и предсказуемые температурные характеристики с диэлектрической проницаемостью до 500.Обе группы обычно используются в схемах, требующих стабильности конденсатора из-за таких характеристик, как:

  • Слабое старение диэлектрической проницаемости или его отсутствие
  • Низкие потери, при которых коэффициент рассеяния (DF) составляет менее 0,001 или менее 0,002 для керамики с расширенной температурной компенсацией
  • Незначительное или нулевое изменение емкости или диэлектрических потерь при изменении напряжения или частоты
  • Прогнозируемое линейное поведение при температуре в пределах заданных допусков

Стандарт 198 Ассоциации электронной промышленности (EIA) определяет буквенно-цифровой код для описания температурного коэффициента диэлектриков класса I следующим образом:

Таблица 1.Обозначения EIA для диэлектриков класса I

Наиболее распространенным диэлектриком класса I для конденсаторов микросхем является обозначение C0G (выделено красным текстом в таблице 1), а также известен как NP0 (отрицательный-положительный-ноль) в спецификации вооруженных сил США (MIL) из-за его плоского температурного коэффициента. Допустимое изменение емкости составляет ± 30 ppm / ° C в диапазоне рабочих температур от -55 ° C до 125 ° C.

C0G стабилен по напряжению, имеет незначительное старение и имеет максимальное значение DF, равное 0.15% (что меньше, чем у диэлектриков X7R, описанных ниже). При работе на высоких частотах этот более низкий DF означает, что потери мощности в конденсаторе уменьшаются, и компонент менее подвержен перегреву. Как правило, диэлектрики C0G имеют значения K от 20 до 100 и используются для создания стабильных частей с более низкой емкостью в диапазоне от пикофарада (пФ) до нанофарада (нФ). Обычно они используются для схем фильтрации, балансировки и синхронизации.

Рисунок 1.Температурные коэффициенты линейных диэлектриков

Диэлектрики класса II

Сегнетоэлектрические составы относятся к диэлектрикам класса II. Они обладают гораздо более высокими диэлектрическими постоянными, чем диэлектрики класса I, но обладают менее стабильными свойствами в отношении температуры, напряжения, частоты и времени. Разнообразный спектр свойств сегнетоэлектрической керамики разделен на две подгруппы, определяемые температурными характеристиками:

  • «Стабильный Mid-K», класс II Диэлектрики имеют максимальный температурный коэффициент ± 15% от эталонной 25 ° C в диапазоне температур от -55 ° C до 125 ° C.Эти материалы обычно имеют диэлектрическую проницаемость от 600 до 4000 и соответствуют характеристикам EIA X7R (см. Таблицу 2 ниже).
  • Диэлектрики «High K» класса II имеют температурные коэффициенты, превышающие требования X7R. Эти составы с высоким содержанием K имеют диэлектрическую проницаемость от 4000 до 18000, но с очень крутыми температурными коэффициентами (из-за того, что точка Кюри смещена в сторону комнатной температуры для достижения максимальных диэлектрических постоянных).

Таблица 2.Обозначения EIA для диэлектриков класса II

X7R (выделен красным текстом в таблице 2) является одним из наиболее часто используемых диэлектриков класса II. «X» и «7» определяют нижний и верхний диапазон рабочих температур (т.е. -55 ° C и + 125 ° C соответственно). «R» обозначает стабильность в пределах температуры (т. Е. Допуск ± 15%). DF составляет максимум 2,5%, а скорость старения для X7R составляет от 1% до 2% за десятилетие (что означает, что при старении 1% 2% значения емкости будут потеряны между 10 часами и 1000 часами. ).X7R имеет высокое значение K, около 3000, и используется для значений емкости в диапазоне от нФ до микрофарад (мкФ). Благодаря этим характеристикам X7R обычно используются в приложениях для хранения энергии, сглаживания и фильтрации.

Военная спецификация США для конденсаторов с керамическими микросхемами (MIL-C-55681) также попадает в подгруппу Stable Mid-K и обозначается как «BX». Фактически, характеристика BX аналогична обозначению X7R, если совокупный коэффициент напряжения и температурный коэффициент не превышают + 15% -25% ΔC.На рисунке 2 в качестве примера показаны некоторые типичные кривые температурного коэффициента класса II.

Рисунок 2. Температурные коэффициенты сегнетоэлектрических диэлектриков

Надеюсь, часть 8 дала вам лучшее понимание классификации диэлектриков и того, как их свойства могут повлиять на ваше конкретное применение. В части 9 мы подробно рассмотрим параметры испытания конденсаторов и их электрические свойства. Также ознакомьтесь с нашими конденсаторами Knowles Precision Devices, чтобы ознакомиться с полным ассортиментом нашей продукции.


Чтобы узнать больше о конденсаторах, загрузите нашу электронную книгу «Руководство по выбору правильного конденсатора для вашего конкретного применения».

Стандартные цветовые коды конденсаторов | Напряжение на конденсаторе

ВВЕДЕНИЕ

Емкость конденсатора – это способность конденсатора накапливать максимальный заряд на своих пластинах. Емкость конденсатора измеряется в фарадах. Обычно значения емкости, рабочего напряжения и допусков указаны на корпусе конденсатора.

Но иногда бывает трудно определить эти значения емкости и напряжения на корпусе конденсатора в случае десятичных значений. Это также приводит к неправильному считыванию фактических значений емкости и напряжения. Таким образом, был использован метод определения значений емкости с использованием букв типа p (пико) и n (нано) вместо десятичных значений (например, 200k = 200 * 1000pF = 200nF и 47n = 47nF, n47 = 0.47nF и т. Д.).

Итак, чтобы избежать этих проблем, для конденсаторов, таких как резисторы, была введена цветовая схема.Эта цветовая схема конденсаторов обычно называется цветовым кодированием конденсаторов. В этой схеме каждый цвет конденсатора указывает на конкретное значение емкости. Используя эту цветовую схему, мы можем легко определить значения емкости, напряжения и допуски любого конденсатора. Эти цветовые схемы; цветовая кодировка и цвета, присвоенные значениям, объясняются ниже.

Вернуться к списку

Таблица: Цветовой код конденсатора

Вернуться к списку

Таблица: Цветовой код напряжения конденсатора

Назад к списку

Конденсатор опорного напряжения

Конденсатор имеет значение емкости, напряжение, допуск и номера производителя на корпусе конденсатора.Некоторые значения напряжения используются в качестве справочных для рабочих напряжений конденсатора. В этом представлении мы видим некоторые буквы или символы, такие как J, K, N, M и т. Д. Теперь давайте узнаем значение тех букв, которые используются на корпусе конденсатора.

J-Type => Конденсаторы танталового типа

K-Type => Конденсаторы слюдяного типа

L-Type => Полиэфирные (или) полистирольные конденсаторы

M-Type => Электролитические 4-полосные конденсаторы

N-Type => Электролитические 3-х полосные конденсаторы

Вернуться к списку

Металлизированный полиэфирный конденсатор

Ссылка на изображение
: www.electronics-tutorials.ws/capacitor/cap29zz.gif 

Конденсаторы, показанные на рисунке выше, представляют собой металлизированные полиэфирные конденсаторы с цветовыми кодами. Здесь каждый цвет представляет определенный параметр для значений емкости, допусков и рабочих напряжений. Все вышеуказанные конденсаторы имеют разные значения емкости и допусков. Эти значения можно понять по таблице цветовых кодов, которая приведена на стороне конденсаторов на приведенном выше рисунке.

Вернуться к списку

Диск и керамический конденсатор

Взаимодействие с другими людьми Ссылка на изображение
: www.electronics-tutorials.ws/capacitor/cap29a.gif 

На приведенном выше рисунке показаны дисковые и керамические конденсаторы с цветовыми кодами. Эти цветовые коды используются уже много лет для неполяризованных конденсаторов, таких как дисковые и керамические конденсаторы. Но в случае старых конденсаторов определить значения сложно. Итак, эти старые конденсаторы теперь заменены новыми.

В представлении трехзначного числа третье число представляет количество нулей, например 471 = 470 пФ, 101 = 100 пФ. В случае представления двузначного числа также определяется допуск.В двухзначном представлении дисковые или пленочные конденсаторы обычно имеют значение емкости в пикофарадах, например 47 = 47 пФ, 20 = 20 пФ. На приведенном выше рисунке мы наблюдали, что значения емкости и допуск для небольших дисковых конденсаторов или больших дисковых конденсаторов могут быть рассчитаны с использованием цветового кода, который показан на стороне конденсаторов.

Вернуться к списку

Таблица Буквенные коды допусков конденсаторов

Конденсатор имеет цифры и буквы на корпусе для обозначения значений емкости и значений допусков соответственно.Буквы для обозначения конкретного значения допуска показаны в таблице ниже. Теперь мы рассмотрим один пример, чтобы понять эту концепцию ниже.

Конденсатор, показанный на рисунке выше, имеет код 473J на корпусе. Здесь 4 – первая цифра, 7 – вторая цифра и 3 – количество нулей, то есть значение емкости составляет 47 * 1000 пФ = 47000 пФ = 47 нФ = 0,047 мкФ. Здесь буква «J» обозначает допуск конденсатора, согласно приведенной выше таблице, допуск этого конденсатора составляет +/- 5%.Таким образом, просто используя цифры и буквы на корпусе конденсатора, мы можем легко определить значения емкости и допуски конденсаторов.

Вернуться к списку

Таблица: буквенные коды конденсаторов

Емкость конденсатора измеряется в пикофарадах, нанофарадах или микрофарадах. Соотношение между этими значениями для разных буквенных кодов показано в таблице выше. Из этой таблицы мы ясно можем понять единицы измерения емкости.Основное соотношение между ними: 1 мкФ = 1000 нФ = 1000000 пФ.

Вернуться к списку

Конденсаторы компьютерного класса

– поиск подходящего конденсатора.

ГЛАВНАЯ> РЕСУРСЫ> Конденсаторы компьютерного класса – поиск подходящего конденсатора

Если вам нужен конденсатор большой емкости (более 500 мфд) или высоковольтный (до 500 вольт) конденсатор, то вы, вероятно, ищете электролитический конденсатор большой емкости , обычно называемый конденсатором компьютерного класса .

Если деталь, которую вы заменяете, начинается с одной из следующих серий, вам нужен большой электролитический конденсатор для банки, обычно идентифицируемый по двум винтовым клеммам (высокий столб имеет изолятор на верхней части банки).

Популярная серия емкостных электролитических конденсаторов.

  • CGS (стандарт компьютерного класса 85C)
  • CG (компьютер с долгим сроком службы 85C)
  • CGR (105C компьютерный высокотемпературный)
  • CGO (компьютерный класс 85C с низкой утечкой)
  • DCMC (компьютерный класс 85C с низким ESR)
  • DCM (85C компьютерный уровень, низкий ESR, высокий пульсирующий ток)
  • Тип 500 (долгий срок службы компьютерного класса 85C)
  • Тип 100 (компьютер 105C с низким СОЭ)
  • Тип 101 (компьютер 105C с низким СОЭ)
  • 36D (стандарт компьютерного класса 85C)
  • 36DX (стандарт компьютерного класса 85C)
  • 23A (стандарт компьютерного класса 85C)
  • 23M (85C компьютерный уровень, низкий ESR, высокий пульсирующий ток)
  • 3186 (стандарт компьютерного класса 85C)
  • 3188 (долгий срок службы компьютерного класса 105C)

Обычно конденсаторы компьютерного класса большой емкости имеют емкость, измеряемую в микрофарадах (мфд), или обозначение мкФ.Эта емкость представлена ​​числами (например, 10 000 мкФ или 25 000 мкФ). Затем вы увидите напряжение на устройстве, обозначенное как V или WVDC (рабочее напряжение). В 99% случаев эти конденсаторы измеряются напряжением постоянного тока. Это постоянное напряжение, которое выдерживают эти конденсаторы.

При замене этих конденсаторов важны не только емкость и напряжение, но и размер блока.Диаметр этих конденсаторов в основном бывает следующих диаметров (в дюймах):

  • 1,375 (1 3/8)
  • 1,750 (1 3/4)
  • 2,0
  • 2,5 (2 1/2)
  • 3,0

В большинстве случаев эти большие электролитические конденсаторы монтируются на плату или шасси с помощью круглых зажимов серии VR.

95% банок попадут в эти категории.Высота блоков может варьироваться от 2,125 до 8,75 дюйма.

Важная информация о больших электролитах для жестяных банок – это их допуски. Обычно для напряжений от 6 до 150 вольт допуск составляет -10% + 75%. Это важно, потому что конденсатор емкостью 10 000 мфд при 50 вольт на самом деле может считывать показания с положительной стороны. до 17 500 мфд и находиться в пределах допуска. Поэтому, выбирая заменяющий конденсатор, обычно у вас есть возможность выбрать математически подходящую замену.При напряжении выше 150 до 450 вольт типичный допуск составляет -10% + 50%, что дает вам гибкость при выборе замены конденсатора компьютерного класса .

Эти конденсаторы обычно поставляются с изоляционной трубкой из ПВХ.

Размеры конденсаторов компьютерного класса.

Керамика конденсатора – обзор

КЕРАМИКА И MICAS

Названия, используемые для типов конденсаторов, являются названиями диэлектрических материалов, потому что характеристики конденсатора так тесно связаны с типом используемого материала для его диэлектрика.Керамика покрывает любые материалы, состоящие в основном из оксидов металлов, сплавленных при очень высоких температурах; типичное сырье – оксид алюминия (оксид алюминия) и оксид титана. Слюда – это натуральный материал, который распадается на очень тонкие пластины; его основная форма – минерал мусковит или рубиновая слюда. Когда этот материал разделен на пластины, пластины часто имеют серебристый вид (из-за воздушной пленки между оставшимися пластинами), поэтому их называют серебристо-слюдой . Это вызвало значительную путаницу, потому что покрытие листов слюды серебром создает композит, называемый посеребренной слюдой .

Из-за естественной формы сырья слюда используется для изготовления конденсаторов пластинчатой ​​формы, круглой или прямоугольной. Керамике можно придать любую подходящую форму, включая пластины и трубки, так что диапазон форм конденсаторов больше для керамики, чем для слюды. Какой бы из этих двух типов изолятора не использовался, способ формирования конденсатора заключается в нанесении металлического слоя с каждой стороны диэлектрика.Это проще всего, когда материал имеет форму пластины, а осаждение металла может быть выполнено химическими методами (традиционный метод, который особенно легко осаждать серебро), а также испарением или распылением. Металлический слой необходимо держать в стороне от краев или протирать с краев, чтобы избежать коротких замыканий или потенциальных точек искрения. Затем соединительные провода можно припаять к металлическому слою, а весь конденсатор покрыть изолятором, который может быть из пластика или другого керамического материала.

Трубчатая керамика формируется так же, как и пластины, но процесс металлизации значительно сложнее, и для нанесения покрытия внутри трубки можно использовать только химический метод. Подключение к этому покрытию также является более сложным, но небольшой объем трубчатого типа иногда может быть преимуществом, так что этот тип конденсатора используется в течение многих десятилетий, хотя теперь он исчез из многих каталогов, потому что он может быть изготовлен только в наименьшие размеры емкости, для которых существует множество других вариантов.Пластинчатая форма конденсатора имеет значительное преимущество, заключающееся в том, что металлизированные пластины могут быть сложены вместе для увеличения емкости (рис. 4.4), при очень небольшом увеличении объема.

Слюдяные конденсаторы могут быть выполнены в виде однопластинчатых или уложенных друг на друга пластин. В прошлом конденсаторы с слюдяными пластинами изготавливались из фольги, проложенной между слюдяными пластинами, или с пластинами, скрепленными вместе с помощью металлических люверсов. Эти старые формы теперь устарели, и единственный оставшийся тип – это посеребренная слюдяная конструкция, которая имеет слои серебра, нанесенные на слюду, независимо от того, использует ли конденсатор одну пластину или несколько пластин.Конденсатор из посеребренной слюды обладает наилучшим сочетанием электрических, термических и механических свойств, которое можно найти у конденсатора низкой стоимости.

Натуральная слюда имеет значение относительной диэлектрической проницаемости около 5,4, и это значение сохраняется до очень высоких рабочих частот, особенно до 1 ГГц. Коэффициент рассеяния очень низкий на частотах от 1 кГц и выше, порядка 0,0003, хотя при 50 Гц коэффициент рассеяния составляет около 0,005 из-за присутствия ионов в материале (что вызывает рубиновый цвет природного минерала).Диэлектрическая прочность удивительно высока, порядка 150–180 кВ / мм, и это связано с пластинчатой ​​формой материала. Структура слюды состоит из плоских молекул силиката алюминия-калия, которые соединяются вместе в листы, которые в конечном итоге имеют толщину в одну молекулу. Через эти листы нет естественного пути проводимости, потому что расстояние между листами намного больше, чем расстояние между молекулами вдоль листа, так что любая проводимость должна быть вдоль листа, а не от листа к листу.Даже самые тонкие кусочки слюды, которые мы можем разрезать, состоят из множества листов, так что изоляция и электрическая прочность не имеют себе равных среди любого материала, в котором молекулы расположены в трехмерной структуре.

Объемное сопротивление натуральной слюды составляет 5 × 10 15 Ом · м, что не является самым высоким значением, но представляет собой среднее значение, не учитывающее огромных различий, вызванных разными направлениями измерения. Значение удельного сопротивления, измеренное в направлении листа слюды, будет намного меньше, чем значение, измеренное между листами, и указанное значение является средним.Слюда является примером анизотропного материала, физические свойства которого будут варьироваться в зависимости от направления измерения длины. Все кристаллические материалы анизотропны, и материалы, которые образуют плоские листы, такие как слюда, очень заметно. Это свойство не ограничивается минералами и кристаллами – дерево является примером очень известного анизотропного материала, прочность которого зависит от направления волокон.

Температурный коэффициент посеребренного слюдяного конденсатора положительный и находится в диапазоне +50 ± 50 ppm / ° C, что не так низко, как у типичной керамики.Чем больше емкость, тем меньше температурный коэффициент. Производимые посеребренные слюды доступны в диапазоне от 2,2 пФ до 100 пФ (10 нФ), а обычная инкапсуляция – это воск, покрытый керамическим цементом. Нормальный рабочий диапазон температур составляет от –40 ° C до + 80 ° C (в некоторых случаях до + 150 ° C и более), с коэффициентом мощности 0,002 и сопротивлением изоляции около 10 10 Ом. Рабочее напряжение обычно составляет максимум 350 В, и это значение включает импульсный режим.

Посеребренные слюды сейчас дороги в Великобритании по сравнению с конденсаторами других типов (в США это не так), но их комбинация параметров не может сравниться ни с одним другим типом, поэтому приложения, требующие максимально возможной стабильности, должны указывать эти конденсаторы.Типичные применения – это настроенные схемы и фильтры, для которых важна стабильность частоты. Из-за своей физической формы слюды имеют очень низкую самоиндукцию, поэтому их резонансная частота очень высока, а низкие потери (очень низкое эквивалентное последовательное сопротивление) делают эффективное значение добротности (отношение реактивного сопротивления к сопротивлению) очень большим. высокая.

Все конденсаторы имеют значение собственной индуктивности, которое низкое для значений низкой емкости, но довольно высокое для некоторых типов намотанной фольги.В результате для каждого значения емкости конденсатора будет резонансная частота, когда собственная индуктивность находится в последовательном резонансе с емкостью. На этой частоте конденсатор имеет минимальный импеданс, а выше этой частоты импеданс будет преимущественно индуктивным. Коэффициент добротности конденсатора также будет минимальным на резонансной частоте. Физическая форма посеребренных слюдяных конденсаторов делает их самоиндуктивность очень низкой, особенно когда конденсаторы сделаны в форме, пригодной для поверхностного монтажа (см. Главу 8).Керамические конденсаторы большой емкости и типы фольги (кроме типов с расширенной фольгой) имеют сравнительно низкие значения собственного резонанса.

Керамические конденсаторы, напротив, очень часто используются в ситуациях, когда потери не имеют большого значения. В отличие от слюды, керамика, которая используется для конденсаторов, изготавливается искусственно, хотя и из натуральных материалов. Традиционные материалы, такие как силикат магния и оксид алюминия, были дополнены другими материалами, такими как титанат бария и диоксид титана, и производители склонны использовать смеси, состав и обработка которых не раскрываются.Большинство производителей теперь указывают буквы / цифры стандартных спецификаций, а не точные материалы.

Из этих стандартов, старый установленный N750T96 имеет номер 750, потому что это его температурный коэффициент при преобразовании в конденсатор, а N означает, что коэффициент отрицательный. Также доступен соответствующий материал N150, но наиболее стабильные конденсаторы изготавливаются из материалов COG (ранее известных как NPO) с нулевым температурным коэффициентом и низкой пропиткой.Все эти типы имеют низкие характеристики потерь и заменили посеребренную слюду для критических применений.

Керамические конденсаторы емкостью 120 пФ и ниже практически не изменяются, относящиеся к типу COG (NPO).

Многие другие типы керамики, особенно с высоким содержанием титана, имеют очень высокие значения диэлектрической проницаемости, в некоторых примерах доходящие до 6000. К сожалению, многие из этих керамических материалов также являются сильно анизотропными, что очень нежелательно – значение относительной диэлектрической проницаемости изменяется при изменении приложенного электрического поля, так что значение емкости изменяется по напряжению.Такие материалы, как титанат бария, на самом деле являются пьезоэлектрическими, а это означает, что размеры всего кристалла будут изменяться при изменении напряжения на материале. Некоторые материалы обладают высокой относительной диэлектрической проницаемостью, которая сочетается с разумной стабильностью, и одна из спецификаций таких конденсаторов – X7R / 2C1. Для менее требовательных приложений, где допускается изменение значения емкости в зависимости от приложенного напряжения или температуры, можно использовать спецификацию Z5U / 2F4.

Для некоторых типов керамических конденсаторов коэффициент рассеяния может быть значительным, порядка 0.15% (0,0015) для типа C0G / NP0, возрастает до 3% (0,03) для типа Z5U, так что эквивалентное последовательное сопротивление этих типов сравнительно велико. Тип C0G / NP0 с номинальным нулевым температурным коэффициентом может иметь значения ± 30 ppm / ° C, что является приемлемо низким значением. Другие типы имеют гораздо более высокие температурные коэффициенты, которые могут изменяться, так что значение температурного коэффициента само будет изменяться при изменении температуры. Для этих конденсаторов обычно заменяют температурный коэффициент на процент максимального изменения.Например, если для керамического конденсатора вместо температурного коэффициента указаны цифры + 56%, –35%, это означает, что максимальное изменение, которое можно ожидать при крайних значениях температурного диапазона, будет составлять эти проценты. Номинальный диапазон температур для материала X7R составляет от –55 ° C до + 125 ° C, а для Z5U – от –10 ° C до + 85 ° C. Типичные максимальные изменения в этих диапазонах температур составляют от + 15% до –25% для X7R и от + 56% до –20% для Z5U.

Области применения керамических конденсаторов, следовательно, должны быть адаптированы к типу используемого диэлектрика.Конденсаторы, в основном в диапазоне 10–100 пФ, в которых используется диэлектрик NPO, подходят для общих (обычно низковольтных) целей, включая схемы настройки генератора, схемы синхронизации и фильтры, характеристики которых не требуют использования посеребренных слюд. Более стабильный из материалов с высокой диэлектрической проницаемостью, X7R, указан для значений примерно до 0,1 мкФ, и эти конденсаторы используются в приложениях байпаса и развязки, менее требовательных схемах фильтрации, синхронизации и для приложений связи, в которых температурная стабильность ниже. важный.Диэлектрик Z5U имеет самый высокий диапазон значений относительной диэлектрической проницаемости и используется для получения очень высоких значений емкости в диапазоне от 0,22 мкФ до 1 мкФ. Эти конденсаторы используются в основном для развязки и байпаса, хотя их также можно использовать для связи в цепях, постоянная времени которых не обязательно должна быть стабильной. Сопротивление изоляции меньшего значения емкости составляет порядка 10 11 Ом, но для больших значений используется формула 10 9 / C Ом, с C в микрофарадах, чтобы указать сопротивление.

Из всех керамических конденсаторов только типы C0G / NP0 подходят для схем выборки и хранения. Эта керамика доступна в размерах до 0,01 мкФ.

Дисковая керамика с высокой относительной диэлектрической проницаемостью изготавливается специально для развязки аналоговых и цифровых схем. Большинство цифровых схем генерируют очень резкие импульсы при включении и выключении устройств, и эти импульсы могут распространяться по линиям электропитания постоянного тока или линиям шины, если их не подавить.В большинстве примеров необходимо разместить развязывающий конденсатор на каждой ИС, подключенный между положительной линией питания и землей, но в некоторых схемах, использующих низкие тактовые частоты, это может быть уменьшено до одного конденсатора на каждые пять ИС. Стабильность значения не важна в таком приложении, где важными особенностями являются высокая емкость в небольшом объеме и низкая индуктивность.

Современная дисковая керамика хорошо подходит для этой цели с диапазоном емкости от 1 нФ до 100 нФ (0,1 мкФ). Они могут быть низковольтными, подходящими для цифровых схем, и высоковольтными, которые используются в телевизионных и радиолокационных схемах.Допустимое отклонение значения велико, в диапазоне от + 80% до –200%, и редко указывается изменение в зависимости от температуры. Типичное сопротивление изоляции 10 10 Ом. Более специализированная форма для цифрового использования – это низкопрофильный тип DIL, который имеет форму и размер ИС, но плоский, с четырьмя контактами, расположенными так, что два контакта подходят к положительным и отрицательным положениям питания типичных ИС и две другие булавки – пустышки. Эти конденсаторы DIL могут быть установлены в монтажное положение ИС под ИС, таким образом сводя к минимуму индуктивность выводов, и, при необходимости, могут быть установлены поверх существующих ИС, если существующая развязка неадекватна.Диапазон выводов – для 14-, 16-, 20-, 24-, 28- и 40-выводных ИС.

Обратите внимание, что старый тип дисковой керамики имел сравнительно высокую самоиндукцию, что делало их непригодными для развязки в критических приложениях. Более современные многослойные диски намного превосходят их.

Конденсаторы с керамической пластиной также используются для проходных (проходных) конденсаторов, используемых для фильтрации нижних частот, когда кабель питания проходит через металлическую панель. Значения варьируются от 100 пФ до 10 нФ, и комбинация последовательной индуктивности и параллельной емкости может быть указана в децибелах затухания для высокочастотных сигналов при стандартном импедансе линии 50 Ом.Проходные типы не эффективны для синусоидальных сигналов менее 10 МГц, но очень полезны для фильтрации цифровых цепей линий питания, особенно сейчас, когда в компьютерных схемах используются высокие тактовые частоты 800 МГц и выше. Значения затухания варьируются от 1 дБ для 10 МГц / 100 пФ до 63 дБ для 1 ГГц / 10 нФ.

Также существует линейка конденсаторов с низкой диэлектрической проницаемостью и отрицательными температурными коэффициентами, предназначенных для температурной компенсации. Принцип заключается в том, что, комбинируя основной конденсатор с положительным температурным коэффициентом в настроенной цепи с меньшим значением с отрицательным температурным коэффициентом, можно полностью устранить влияние температуры в разумном диапазоне частот.Поскольку основной конденсатор может быть слюдяного типа с очень низким положительным значением температурного коэффициента, необходимо параллельно подключить только небольшой конденсатор с отрицательным температурным коэффициентом; в качестве альтернативы можно использовать большое значение емкости, подключенное последовательно. Используемые диэлектрики относятся к типам от N150 до N750, и даже можно использовать тип C0G / NP0, поскольку его температурный коэффициент может находиться в диапазоне от +30 до 30 ppm / ° C. Обычно используемые значения находятся в диапазоне от 2,2 пФ до 220 пФ, но доступны и гораздо большие размеры, вплоть до 0.01 мкФ. Некоторые производители используют цветовую маркировку конденсаторов, чтобы указать применимый температурный коэффициент.

Емкость, диполи и диэлектрическое поглощение – Европейский институт пассивных компонентов

C1.1 ЕМКОСТЬ

Емкость определяется, среди прочего, характеристиками диэлектрического материала. Международные стандарты говорят о диэлектрической проницаемости , постоянной или диэлектрической проницаемости , ​​обозначенной символом ε.


C1.1.1 Описание

Конденсатор служит резервуаром для электрических зарядов. Размер «резервуара» называется емкостью и выражается величиной F (арад) или As / V. Принципиальный рисунок C1-1 показывает, как емкость прямо пропорциональна активной площади A и диэлектрической проницаемости и обратно пропорциональна расстоянию между электродами. Формула на рисунке применима к вакууму и воздуху.

A = площадь (м 2 ),

d = расстояние между электродами (м),

ε 0 = диэлектрическая проницаемость для вакуума (≈air) = 1 × 10 -9 / 36π.

Рисунок C1-1. Принцип емкости, кл.

Если величина электрического заряда конденсатора обозначена Q (As), то действует общая формула C1-1.

……………………………… [C1-1]

Рисунок C1-2. Диэлектрик с его постоянной.

Если мы теперь вставим изоляционный материал между электродами, как показано на рисунке C3-2, формула на рисунках C3-1 и -2 получит следующее общее выражение

……………………………….[C1-2]

ε r – это относительное число – относительная диэлектрическая проницаемость – которое говорит нам, во сколько раз увеличивается емкость, когда мы заменяем воздушный зазор между электродами из разных диэлектрических материалов. Это относительная диэлектрическая проницаемость ε r , которая указана в технических таблицах и каталогах. В таблице ниже показана диэлектрическая проницаемость наиболее распространенных материалов.

Рисунок C1-2b Диэлектрическая проницаемость наиболее распространенных изоляционных материалов

Емкостное реактивное сопротивление

Если мы изменим полярность на рисунке C1-2, приложив переменное напряжение к конденсатору, это вызовет определенное сопротивление в цепи, так называемое емкостное реактивное сопротивление, X C , выраженное в омах.

Реактивное сопротивление обратно пропорционально частоте согласно формуле

…………………… .. [C1-3]

  • ω = 2 x π x f,
  • f = частота в Гц,
  • C = емкость в F.

Мера миниатюризации

Желаемая миниатюризация конденсаторов разных типов может быть выражена по-разному. Наименьшего номинального напряжения для электростатических конденсаторов часто более чем достаточно для применения, как показано в разделе C2.1.4 тоже. Следовательно, мы обычно не обращаем внимания на напряжение и сравниваем различные типы с помощью их максимально возможной скорости К / В , ​​что означает емкость C на единицу объема V (d * A на рисунке C1-1).

По формуле C1-2 получаем C / V = ​​ε 0 * ε r * A / (d * A * d) = ε 0 * ε r / d 2 .

Скорость C / V будет максимальной для d мин , то есть для V Rmin .

В электролитических конденсаторах номинальное напряжение играет большую роль, потому что оно может быть адаптировано также к очень низким рабочим напряжениям.Здесь конденсаторы сгруппированы в соответствии с их количеством заряда, то есть C R * V R . Мы ссылаемся на продукт CV .

Подключения

Если мы подключим конденсаторы параллельно , как показано на рисунке C1-3, активная площадь (и, следовательно, емкость) увеличится со всеми дополнительными элементами конденсатора.

Рисунок C1-3. Принципиальная величина полной емкости при параллельном соединении элементов.

Формула для общей емкости параллельных соединений :

……………. [C1-4]

На рисунке C1-4 в принципе показано, как соединение последовательно увеличивает толщину диэлектрика без изменения количества заряда. Емкость уменьшается пропорционально увеличению толщины диэлектрика.

Рисунок C1-4. Принцип последовательного подключения.

На рисунке показано упрощенное изображение последовательного соединения с двумя одинаковыми по размеру конденсаторами.Если вместо этого мы выберем конденсаторные элементы разного размера, количество заряда на разных электродах все равно будет одинаково большим, то есть Q = CV = C 1 В 1 = C 2 В 2 = C 3 В 3 ; Q / C = V; Q / C 1 = V 1 ; Q / C 2 = V 2 ; Q / C 3 = V 3… Но V 1 + V 2 + V 3 +…. = V. Это дает нам в целом общую емкость для
последовательного соединения :

………….[C1-5]

Смешанные диэлектрики

Все чаще встречаются так называемые смешанные диэлектрики. Они состоят из разных пленочных материалов в одном конденсаторе. Например, намотав конденсатор как из бумаги, так и из диэлектрика из полиэфирной пленки, мы объединяем превосходные самовосстанавливающиеся свойства бумаги и относительно высокое сопротивление изоляции полиэстера. В принципе, это все еще вопрос о двух последовательно соединенных элементах конденсатора с одинаковой площадью и толщиной диэлектрика d 1 + d 2 .Тогда верно изображенное выше соотношение: Q = VC = V 1 C 1 = V 2 C 2 ; V 1 x ε 1 x A / d 1 = V 2 x ε 2 x A / d 2 ; если мы денонсируем напряженность электрического поля E, то получим
ε 1 x E 1 = ε 2 x E 2 , или в целом

ε 1 x E 1 = ε 2 x E 2 = ε 3 x E 3 = ……………………… [C1-6]

Прочие вычисления емкости без пластин и емкости с различной геометрией

Расчет емкости по уравнению [C1-2] и показанный на рисунке C1-2 основан на типе плоского конденсатора.Однако на рынке существует множество других типов конструкции и геометрии конденсаторов. См. Расчет теоретического значения емкости для некоторых других конфигураций, а также для смешанных диэлектрических ситуаций ниже:


Стандартизированные значения емкости и допуск

В соответствии с международными стандартами EIA / IEC 62 значения емкости и допуски стандартизированы следующим образом:

Диапазон E

Емкость

соответствует стандартизированным «диапазонам E», определенным для логарифмических шагов, таких как шаги E3, E6… E24, E48.

Естественно, выбранный диапазон E также связан с полем допуска – чтобы не перекрывать следующий диапазон допуска емкости – см. Ниже.

Конденсаторные технологии серии E определяются его способностью производить воспроизводимые значения емкости с жесткими допусками при массовом производстве. Вы можете найти соответствующие значения емкости и диапазоны допусков, определенные в каталогах производителей.


C 1.1.2 Диполи

Раздел о диполях и диэлектрическом поглощении имеет жизненно важное значение для понимания практического конденсатора.Все материалы содержат какие-то диполи, то есть электрически полярные элементы. Когда они подвергаются воздействию электрического поля, он создает крутящий момент, который, в зависимости от напряженности поля, будет стремиться выровнять их в этом поле. Эти крутящие моменты можно разделить на четыре группы. Те, которые вызваны

  • движения электронов в атомах и молекулах,
  • движения атомов в симметричных молекулах,
  • движения атомов в несимметричных молекулах и
  • накопления заряда на границах раздела между различными материалами в диэлектрике.

Пока конденсатор не смещен, диполи имеют произвольную ориентацию без какого-либо результирующего полюса. В принципе это может выглядеть как на рисунке C1-5.

Рисунок C1-5. Ориентация диполя в несмещенном диэлектрике.

Если они должны быть подвергнуты воздействию напряженности электрического поля, как показано на рисунке C1-6, через определенное время они будут стремиться выровняться в дипольные цепи. Диэлектрический материал был поляризован .

Рисунок C1-6.Идеально выровненные дипольные цепи.

Напряженность электрического поля (количество воображаемых силовых линий, которые могли бы образоваться в вакууме) была уменьшена с увеличением количества установленных дипольных цепочек. Каждая дипольная цепь связывает на границе раздела, например, с положительным электродом + заряд, и количество свободных носителей заряда в электроде было уменьшено до соответствующей степени. Таким образом, по истечении времени настройки диполей электрод может принять столько новых свободных носителей заряда, сколько тех, которые связали дипольные цепи , ​​без увеличения напряженности электрического поля (или напряжения) по сравнению с исходным напряжением. точка.Это означает соответствующее увеличение емкости. Если мы назовем эту поляризуемость , ​​количество связанных зарядов q и количество зарядов в начальной точке Q , ​​можно показать, что

……………………. [C1-7]

Зависимость частоты от частоты показана на Рисунке C1-8 ниже.

Поскольку r в зависимости от материала диэлектрика варьируется примерно от двух до многих тысяч, мы понимаем, какое огромное значение играют диполи материала и поляризуемость.

Частотная зависимость емкости

Скорость, с которой диполь реагирует на приложенное электрическое поле, называется временем его релаксации. Эти времена релаксации колеблются от 10 -17 с для электронно-зависимых диполей до нескольких часов для больших молекулярных комплексов. Это означает, что самые быстрые диполи успевают за всеми практическими частотами, в то время как более медленные в той или иной степени требуют времени, чтобы внести свой вклад в дипольные цепи, увеличивающие емкость. Это явление можно описать как основной конденсатор в сочетании с рядом дополнительных конденсаторных элементов, скрытых в резистивных цепях с более короткими или более длинными постоянными времени (рисунок C1-7).

Рисунок C1-7. Дипольные категории в конденсаторе.

Пример частотного диапазона, в который вносят вклад различные типы диполей, показан на рисунке C1-8.

  • α e = дипольный эффект от движений электронов;
  • α a = дипольный эффект от движений атомов в симметричных диполях;
  • α d = дипольный эффект от движений атомов в несимметричных молекулах;
  • α i = диполи, зависящие от границы раздела фаз.

Рисунок C1-8. Типичный пример схематического изменения поляризуемости твердого материала от частоты.

Таким образом, емкость уменьшается с увеличением частоты. В компонентах с большими диэлектрическими потерями и значительным процентом инертных диполей мы узнаем, как кривая импеданса начинает отклоняться от номинальной кривой емкостного реактивного сопротивления, когда мы приближаемся к резонансной частоте. Рисунок C1-20.


C 1.1.3 Диэлектрическое поглощение

Если диполи были «активированы» для образования дипольной цепи, потребуется соответствующее время, чтобы «деактивировать» их при той же температуре.На рисунке C1-9 предполагается, что конденсатор сначала был заряжен, затем на мгновение закорочен и, наконец, оставлен открытым. Те дипольные цепи, которые были слишком инертны, чтобы реагировать в момент короткого замыкания, удерживали свои заряды в электроде. Через некоторое время в отсутствие электрического поля они начинают принимать случайные, невыровненные положения, высвобождая захваченные заряды в электродах (рис. C1-9). Высвободившиеся заряды проявляются как остаточное напряжение в конденсаторе и измеряются в В.Это остаточное напряжение является мерой диэлектрического поглощения «DA» конденсатора и выражается в процентах от приложенного начального напряжения.

Рисунок C1-9. Эффект диэлектрического поглощения.

DA обычно является нежелательным свойством, которое сильно нагружает одни диэлектрические материалы, другие – незначительно или совсем незначительно. Иногда это может вызвать проблемы, которые мы обсудим позже.

Определение DA производится путем смещения конденсатора напряжением постоянного тока в течение определенного периода времени, затем короткого замыкания части через резистор на указанное количество секунд и, наконец, оставления его разомкнутым на несколько минут до остаточного напряжения. читается.Выражается в процентах от зарядного напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *